


Chapter 2: Complex variables 

1. If   and   find   and   

 

 

2. Use the polar representation of   to write an expression for   in terms of   and   Use your result to express 

  and   in terms of cos  and   

 
The real part gives: 

 
and from the imaginary part: 

 

3. Prove De Moivre's theorem:   

 

4. The equation   describes a parabola. Write this equation in terms of   Hint: 
use the geometric definition of the parabola. 

The parabola is a curve such that for any point on the curve the distance from a point is equal to the distance to a 

line. In this case the point is at   The distance from the point is   where: 

 
Using the equation of the parabola: 

 
where 

 

is the distance from the vertical line at   



Now we can express these ideas using complex numbers. The distance from the point 

  is  and the distance from the line is   Thus the equation we want is: 

 

5. Show that the equation 

 

represents an ellipse in the complex plane, where   and   are complex constants, and   is a real constant. Use 
geometrical arguments to determine the position of the center of the ellipse and its semi-major and semi-minor 
axes. 

The absolute value   is the distance between a point   in the Argand diagram described by   and 

the point   described by the number   Thus the equation describes a curve such that the sum of the distances 

of   from   the points   and   is a constant (  ). This is the definition of an ellipse. The points   and   are 

the foci of the ellipse, so its center is half way between them, at   

When   is at the end of the semi-major axis, then   and   so   and the 
semi-major axis is 

 
Then also 

 
and so 

 

6. Show that the equation 

 

represents an ellipse in the complex plane, where   and   are complex constants and   is a real variable. 
Determine the position of the center of the ellipse and its semi-major and semi-minor axes. 

First recall that multiplication by   corresponds to rotation counter-clockwise by an angle   (Figure 2.3c)  Thus 

if   and   then   is represented as follows: 



 

Now as   increases, the lower line rotates counterclockwise, while the upper line rotates clockwise. The two lines 
align when: 

 
or 

 

which is the direction of the major axis. The length of the major axis is   The smallest value of 

  occurs when the two ``vectors'' are in opposite directions, i.e. 

 
or 

 

Thus the minor axis, of length   is perpendicular to the major axis, as expected. 

The angle that the major axis makes with the   axis is   Let   and   be the 

coordinates of   with axes coincident with the major and minor axes of the ellipse. Then : 

 

Again we note that the factor   rotates the number in square brackets (  ) by an angle 

  counter-clockwise. Thus: 

 

where   Thus we have 

 

which is the equation of an ellipse with semi-major axis   and semi-minor axis   The center of the 
ellipse is at the origin. 



7. Find all solutions of the equations (a)   

Write   in polar form: 

 

for   Thus the solutions are 

 

 

 

 

 

 

 

(b)   The roots are     

 

These points are at the corners of a square:   (on the real axis)   (on the imaginary axis), 

    

8. Find all solutions of the equation (a)   



Write   where   and   are real, and expand the cosine: 

 
Writing the real and imaginary parts separately, we have: 

 

We can solve the second equation with either   or     But with   the first equation becomes 

  , which has no solutions. (Remember that   is real.) So we must choose   where   is any 
positive or negative integer, or zero. Then: 

 

Now the hyperbolic cosine is always positive if   is real, so we must choose   to be even, or zero. Then 

  and: 

 
and thus 

 
or 

 
Both values give the same value for the cosh. Then 

 

(b)   

 
Equating real and imaginary parts: 

 

Clearly   is not a viable solution, so we need 

 
Then 

 

Since cosh   is always positive (  is real) then   must be even, and 



 
Thus 

 
Thus 

 

9. Find all solutions of the equation   

  The imaginary part must 

be zero, so we must have   or   The real part would be   or   in the two cases. 

Since   can never equal   we must choose   with   odd, and then setting the real part equal to 

  we need 

 

and the solution is :   Thus   where   is any positive or negative integer. 

10. Find all numbers   such that   

 

11. Investigate the function   Find the functions   and   where   How many 
branches does this function have? Find the image of the unit circle under this mapping. 

 
Thus 

 

The function has a branch point at   and it has two branches. Two circuits of the   plane give the whole 

  plane. 

The unit circle is defined by     Then in the   plane we get a piece of the unit circle: 

  and, for the principal branch,   So   



 

12. The function   Find the functions   and   where   How many branches 
does this function have? Find the image under this mapping of a square of side 1 centered at the origin . 

 
Thus 

 
The function has four branches since we have to go around the original plane four times to get the whole 

  plane. 

The line     to   (  is mapped to 

 

The top side at   (    maps to 

 

The left side at   (  is mapped to: 

 

The bottom at   (    maps to 

 



 
The entire square has mapped into the first quadrant and has been deformed into a curvy polygon. The other four 
branches of the function would close the polygon by completing the other three quadrants. 

13. Oblate spheroidal coordinates       are defined in terms of cylindrical coordinates       by the 
relations: 

 

Show that the surfaces of constant   and constant   are ellipsoids and hyperboloids, respectively. What values 

of   and   correspond to the   axis and the   plane? 

 
Equating real and imaginary parts, we have: 

 

We want to find the shape of the constant   and constant   surfaces. First eliminate   

 
Thus 

 

Thus the surfaces of constant   are ellipsoids with semi-major axis   cosh  and semi-minor axis 

  Similarly, by solving for   and   squaring and subtracting, we find: 

 

so the constant   surfaces are hyperboloids. 

The   axis is described by   i.e.   Then   which ranges from   to   as 

  does. The   plane is described by   or   or   These choices correspond to different 

regions for   But   is always positive, so we don't need   Thus   ,   and 

  describes all of space. 



 

This plot shows surfaces of constant   and constant   for 

  

14. An AC circuit contains a capacitor   in series with a coil with resistance   and inductance   The circuit is 

driven by an AC power supply with emf   

(a) Use Kirchhoff's rules to write equations for the steady-state current in the circuit. 

Loop rule: 

 

Charge conservation: 

 

(b) Using the fact that cos  , find the current through the power supply in the form: 

 

where   is the complex impedance of the circuit. 

First write cos  so the first equation becomes: 

 

Now let     Then diffferentiate the loop equation with respect to time: 

 
Thus 



 
The complex impedance is: 

 

(c) Use the result of (b) to find the amplitude and phase shift of the current. How much power is provided by the 
power supply? (Your answer should be the time-averaged power.) 

Multiply top and bottom by the complex conjugate: 

 
Thus the amplitude is 

 
and the phase shift is: 

 

The time-averaged power is: 

 

(d) Show that the power is given by 

 



 

since   Then 

 

15. Small amplitude waves in a plasma are described by the relations 

 

where         and   are constants. The constant   is the collision frequency. Assume that     and 

  are all proportional to   Solve the equations for non-zero   and   to show that   satisfies 
the equation: 

 
and hence show that collisions damp the waves. 

Putting in the exponential form, the equations become: 

 

Use the second equation to eliminate   from the last: 

 

and then use the first equation to eliminate   

 

Now we have an equation with   in every term. Either   a solution we are told to discard, or else: 

 

which is the desired result. Now we solve this quadratic for   

 

With no collisions,   , the solution is   With collisions, the real part of the frequency is slightly 

altered, but the important difference is the addition of the imaginary part   The wave then has the form 



 
The real exponential shows that the wave amplitude decreases in time. 
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Chapter 2: Complex variables 

16. Write the real and imaginary parts  and  of the complex functions(a)  and (b) 

 In each case, show that  and  obey the Cauchy-Riemann relations. Find the derivative 

 first in terms of  and  and then express the answer in terms of  Is the result what you expected? 

since 

Thus 

Thus 

and 

Then 

while 

So the first relation is satisfied. 

Then 

while 

and the second relation is also satisfied. 

The derivative is 

as expected. 



(b)  Thus 

Then 

and 

So the CR relations are satisfied. Then the derivative is: 

which is the expected result. 

17.The variables  and  in a complex number  may be expressed in terms of 

 and its complex conjugate 

Show that the Cauchy-Riemann relations are equivalent to the condition 

We rewrite the derivatives using the chain rule. Suppose that  Then: 

If the Cauchy-Riemann relations are satisfied, both terms in square brackets are zero, and hence 

 as required. This means that the function  and  does not appear. 



18. One of the functions  and  is the real part of an analytic function 

 Which is it? Find the function  and write  as a function of  

Both the real and imaginary parts of an analytic fucntion satisfy the equation 

so let's test the two functions: 

and 

So the correct function is  

Then from the C-R relations: 

and 

Thus 

Then 

19. A cylinder of radius  has potential  on one half and 

 on the other half. The potential inside the cylinder may be written as a series: 

Express each term in the sum as the imaginary part of a complex number, and hence sum the series. Show that the result 
may be expressed in terms of an inverse tangent. 

The sum may be recognized as the geometric series (2.43) 

To do the integral, let  



Now the logarithm is 

and thus 

Next we find the argument:

where 

and thus 

20. The function  (cf Example 2.10) also has a zero at  What is its order? 

To find the order of the zero, we write the Taylor series centered at  

Thus the series is 

and the zero is of order 1. 

21. Find the Taylor series for the following functions about the point specified: 

(a)  about  

The series is  times the cosine series, i.e. 



(b)  about  

At   ln  

The derivative is 

The 2nd derivative is 

The 3nd derivative is 

So the series is: 

The radius of convergence is  since  has a branch point at  

(c)  about  

The derivative is 

The 2nd derivative is 

So the series is: 

The radius of convergence is  since the function has no singularities (other than the removable singularity at 

 

(d)  about  

First factor the denominator: 



There are poles at  Now let 

Expand each term in a geometric series: 

The radius of convergence is 1, since  has a pole at  

22. Determine the Taylor or Laurent series for each of the following functions about the point specified: 

(a)  about  

The function has a pole at  so the series is a Laurent series. 

First find the Taylor series for 

The general term is 

and thus 

The radius of convergence is infinite, since the function has no other poles or singularities. 

(b)  about  

The function is analytic at 

 (there is a removable singularity) so the series is a Taylor series. We start with the series for 



The radius of convergence is infinite, since the function has no poles or other singularities 

(c)  about  

There is a simple pole at  the series is a Laurent series: 

The radius of convergence is infinite, since the function has no other poles or singularities. 

(d)  about  

Th function has a branch point at . The singularity at  is removable, since  has a zero at 

 We should be able to find a Taylor series valid for   

First find the Taylor series for  Let 

So 

(e) tan  

So 



There are branch points at  There is a Taylor series valid for 

Problem 22

23. Determine all Taylor or Laurent series about the specified point for each of the following functions. 

(a)  about the origin. 

The function is analytic about the origin, so there is a Taylor series. The function has poles at 

 so the Taylor series is valid for  There is a Laurent series valid for  

Taylor series: 

Laurent series: 

We may simplify the negative powers as follows: 



valid for  

(b) about  

The function has simple poles at  so we can find a Laurent series valid for 

 and another valid for . 

Let 

In Region I, expand the second term in a geometric series: 

which is valid for  

In the outer region (II) we expand the other way: 



which is valid for  

(c)  about  

The function has poles at  We should be able to find a Laurent series valid for 

 and another for  

where  Then for  we have: 

while for 

(d)  about the origin. 

The function has poles at  so there is a Taylor series valid for  and a Laurent series valid for  



while for 

24. Find all the singularities of each of the following functions, and describe each of them completely. 

(a)  

Expand out each term in a series: 

This is a Laurent series with infinitely many negative powers, and it is valid up to the singularity at 

 so the function has an essential singularity at  

(b)  

Let's look at the series for this function about the origin: 

This is a Taylor series valid for all  Thus the function has a removable singularity at  

(c)  



The function has a removable singularity at 

But the tanh function also has singularities regularly spaced along the imaginary axis. 

and  has singularities at  The singularities are all simple poles. For example 

Since the limit exists, the pole is simple. 

(d)  

The function has a branch point where  or  

25. Incompressible fluid flows over a thin sheet from a distance 

 into a corner as shown in the diagram. The angle between the barriers is  and at  

 Assuming that the flow is as simple as possible, determine the streamlines of the flow. What is the velocity at 

 

The velocity potential satsifies 

and thus we may look for a complex potential .  must be an analytic function in the region 

, and at  we need 

The streamline function must be a constant on the surfaces  and 



 We may take this constant to be zero, and then the function  does the job. (The function 

 would also work, but would lead to more complicated flow.) This suggests that we look at the analytic function 

 The imaginary part of this function satisfies the boundary conditions at the two 
surfaces. Thus the streamlines are given by 

and the velocity is given by 

Thus at  we have 

and so 

Thus the streamlines are given by 

See Figure.  (solid line), 5 (dashes), and 1/5 (dots). 

The velocity is 

and so at   we have 
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Chapter 2: Complex variables 

26. Prove the Schwarz reflection principle: If a function  is analytic in a region including the real axis, and 

 is real when  is real, 

Show that the result may be extended to functions that posess a Laurent series about the origin with real 
coefficients. 

Verify the result for the functions (a)  and (b)  

(c) Show that the result does not hold for all  if  (the principal branch is assumed). 

If the function is analytic, it may be expanded in a Taylor series about a point  on the real axis: 

and since 

is real, then each of the  must be real. Then 

The proof extends trivially to the case where the series is a Laurent series with real coefficients. 

So 

The function  is trickier. 

Thus 

and, choosing the principal branch of the logarithm, 



Then 

and 

and the two expressions are the same. 

Note that this function has branch points at  but it is analytic on the real axis. 

(c) 

We proceed by showing that the relation fails at one point,  At  on the real axis, 

Then 

but 

27. Find the residues of each of the following functions at the point specified. 

(a)  at  

First factor the function: 

The function has a simple pole at  and the residue is: 

(b)  at  

First rewrite the function: 

and then expand in a Laurent series: 



Now we can pick out the residue: it is the coefficient of  The residue is 

(c)  at the origin 

The easiest method here is to find the Laurent series: 

and thus the residue is 

1
. 

(d)  at  

Since the denominator is a function  that has a simple zero at  we can use method 4. 
The derivative is 

and so 

28. Evaluate the following integrals: 

(a)  where  is a circle of radius  centered at the origin. 

The integrand has a simple pole at  which is inside the circle. The residue there is: 

and thus 

(b)   where  is a square of side 4 centered at the origin. 

The integrand has a simple pole at  which is inside the square. The residue there is: 

and thus 



(c)   where  is a circle of radius  centered at the origin. 

The integrand has a pole at  which is outside the circle. Thus: 

(d)  where  is a square of side 1 centered at the point  

The integrand has two simple poles, at  Only one, at  is inside the square. The residue at 

 is 

and so 

29. Evaluate the following integrals: 

(a)  

We evaluate as an ingtegral around the unit circle. Let  Then 

and 

and 

Then 



The integrand has poles at  and 

Only the poles at  and  are inside the circle. The residues at these poles are  and 

So the integral is: 

(b)  

Let  Then:  so 



The integrand has poles where 

Only one of these poles is inside the unit circle. There is an additional pole at  The residues are  and: 

Thus the integral is: 

(c)  

The integrand has poles where 

Of these 4 poles only 2 are inside the circle, at  and  The residues are: 

and 



Thus the integral is: 

(d)   

Since sin  we may rewrite the integral: 

The integrand has a pole of order  at  The residue is: 

All the terms in powers  are zero in the limit, and all the terms in powers  differentiate away. Thus 

Thus the integral is: 

30. Evaluate each of the following integrals: 

(a)  

We close the contour with a big semicircle at infinity. The integral over the semicircle is: 

The poles of the integrand are at  Only the pole at  is inside the contour. the residue is: 



and the integral is: 

(b)  

We close the contour with a big semicircle at infinity. The integral over the semicircle is: 

The integrand has poles at 

The first of these is inside the contour and the second is on it. We'll evaluate the principal value. The residue at 

 is: 

The integral around the little semicircle where  is: 



Thus 

and so 

(c)  

There are no poles on the real axis, so we may assume that the integral is real. Then we may evaluate: 

Close the contour with a big semicircle in the upper half plane. The integral along the semicircle is zero by 

Jordan's lemma. The poles are at  but only the pole at  is inside the contour. The residue is: 

Then: 

(d)  

The poles of the integrand are where 

None are on the real axis. Thus we may take: 

and close the contour with a big semicircle in the upper half plane. The integral along the semicircle is zero by 

Jordan's lemma. Only the pole at  is inside the contour. The residue is: 



Thus the integral is: 
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Chapter 2: Complex variables 

31. Use a rectangular contour to evaluate the integrals: 

(a)   

The upper side of the rectangle should be at  (for real  Then on the upper side: 

Then around the whole rectangle: 

Along the end at , with 

provided that  

Along the end at 

provided that  Thus we have: 

Now the integrand has a pole where 

or 



which is inside the contour. The residue there may be found from method 4: 

and so the integral is: 

and thus 

The result is real, as expected. 

(b)  

We put the top of the rectangle at  Then: 

There are poles inside at ,  and 3. The residues are: 

Thus summing the 3 residues, we get: 

Note: the singularities on the top line at  and on the -axis at  are removable. 

(c)  



Again we want the integral along the upper side of the contour to be a multiple of that along the 
lower. Here we find there is an additional integral that we have already evaluated. We can make use 
of the results 

So we can take  on the upper side of the rectangle, so that  and 

. Then: 

On the top side: 

TThe second integral is zero because the integrand is odd and there are no poles on the real axis. 

The third integral was evaluated in § 2.7.3, Example 2.22. The result is  Thus: 

Now at the two ends, we have: 

for  A similar proof works for Re  just factor out  in the denominator. 

Now we have: 

There is a pole where 

i.e. at 

and the residue there is: 

and therefore 



32. Evaluate the integrals 

(a) 

The integrand has a branch point at the origin and a branch cut, which we may take along the 
positive real axis. Let's evaluate 

where  is the keyhole contour in Figure 2.36. 

Along the bottom of the branch cut: 

Now along the big circle, we have: 

The integrand has poles at    All 
three are inside the contour. the residues are: 

and 

So 



(b) 

Use the keyhole contour. There are two poles inside, at  that is,   and  

Check that the integral around the small circle goes to zero: 

33. Evaluate the integral 

by integrating over a pie-slice contour with sides at  and at   

We evaluate  over the suggested contour. 

On the curved part of the contour, the integral is bounded by 

On the straight line at   and we have 



Thus 

The integrand has a pole where 

or 

(the other roots are outside the contour) and the residue there is 

Thus 

34. Evaluate the integral 

along the positive real axis by making the change of variable  Take care to discuss the 

path of integration for the integral. Use the Cauchy theorem to show that the resulting integral 
may be reduced to a known integral along the real axis. Hence show that 

 (The result has numerous applications in physics, for example 

in signal propagation. ). 

and letting  then 

The path of integration is moved off the real axis: when  then   along a 

line making an angle  with the real axis. But the integral around the closed contour formed by 
the real axis, this line, and the arc at infinity is zero because there are no poles of the integrand 

inside, and the integral along the arc  



and cos2  is positive throughout the range  so the integral  Thus the integral 
along the sloping line equals the integral along the real axis. Thus 

Problem 34.

Thus 

35. The power radiated per unit solid angle by a charge undergoing simple harmonic motion is 

where the constant  and  is the speed amplitude  (see.e.g, Jackson p 
701). Using methods from section 7.2.1, perform the time average over one period to show that 

Write  Then the time average is: 

We can simplify by doing one integration by parts: 

We convert to an integral over the unit circle in the plane and write  and 



sin  Also , so  With  the integral is 

where  The denominator is 

and there are 2 fourth-order poles at: 

where  and so the square root is imaginary: 

Only one of the two poles is inside the unit circle: 

Now we find the residue using method 3: 

where 

Thus 

Now 

and 



So 

Thus 

and thus the integral is: 

and finally 

as required. 
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36. Langmuir waves. The equation for the Langmuir wave dispersion relation takes 
the form: 

 

where   is the plasma frequency   and   is the 1-dimensional Maxwellian 

 

Notice that the integrand has a singularity at   Landau showed that the 

integral is to be regarded as an integral along the real axis in the complex   plane, 
and that the correct integration path passes around and under the pole. 

(a) Show that the integral may be expressed as: 

 
(cf Section 7.3.5) 

The principal value is defined in the section referred to 

 
We need to add to this the integral around the small semicircle that passes beneath 

the pole. On this path,   and the integral is 

 
which is the required result. 

(b) Evaluate the principal value approximately, assuming   and 

hence find the frequency   as a function of   What is the effect of the pole at   

First we integrate by parts: 

 
Because of the exponential in the Maxwellian, the numerator is very small except when 

  Thus we expand the denominator: 



 
and thus, integrating by parts 

 
Finally, the pole on the real axis contributes a term: 

 
This term is small because the exponent is large, so let's neglect it for the moment. 
Then: 

 

To zeroth order the result is   The first order correction gives: 

 
the Langmuir wave dispersion relation. Now we add in the small imaginary part: 

 

Thus   must have an imaginary part,   and thus   with 

 
The wave form 

exp  shows that with 

anegative   the wave is damped. 

(c) How would the result change if the path of integration passed over, rather than 
under, the pole? The contribution from the pole would change sign, and we would 
predict growth of the waves rather than damping. This is contradicted by experiment. 

37. Is the mapping   conformal? Find the image in the   plane of the 



circle  in the   plane, and plot it. 

The function   is analytic. The derivative 

 
is not zero except at the origin. Thus the mapping is conformal except at the origin. 

The circle is described by 

 
or 

 
which maps to 

 

and if   

 

Here's the plot: 

 

  plane



 

  plane

Invariance of angles breaks down at   where the mapping is not conformal. 

38. Is the mapping   conformal? Find the image in the   plane of (a) the 

  axis  (b) the   axis, and (c) the unit circle in the   plane. 

The function   is analytic except at   and at infinity. The derivative is 

 

which is zero at   Thus the mapping is not conformal at these two points. 

(a) The real axis maps to 

 

The origin maps to infinity, the positive   axis maps to the positive   axis with 

  , and the negative   axis maps to the negative   axis with   

(b) The imaginary axis maps to 

 

Thus the points   map to the origin. Points with   map to negative 

  while points with   map to positive   



 

  versus 

  

 

  versus 

  

(c)The unit circle   maps to 

 

---a chunk of the real-  axis between   and   

A capacitor plate has a cylindrical bump of radius   on it. The second plate is a 

distance   away. One plate is maintained at potential   and the other is 
grounded. Find the potential everywhere between the plates. 

We want to convert to a coordinate system with   so let     . 

Then the cylinder has radius   Now we map to the   plane using the 



mapping   This maps the cylinder plus   axis to the   axis. The second 

plate has coordinate   It maps to the line   In this 

plane the potential is 

 

whic is zero for   and   for   The complex potential is then: 

 

Mapping back, the potential in the   plane is: 

 
so the electric potential is: 

 

 

Equipotentials for   (dashed), 0.5 (solid blue), 0.75 (red) and 1 (green).

39. Show that the mapping   is conformal except at a finite set of points. 

A parallel plate capacitor has plates that extend from   to   . Find an 



appropriate scaling that allows you to place the plates at   Show that the given 

transformation maps the plates to the lines   Solve for the potential between 

the plates in the   plane, map to the   plane  and hence find the equipotential 
surfaces at the ends of the capacitor. Sketch the field lines. This is the so-called 
fringing field. 

Choose   where   is a coordinate measured perpendicular to the plates, and 

  is the plate separation. The function   is analytic everywhere, and the 
derivative is 

 
It is non-zero except at the points 

 
or, equivalently, 

 
The mapping takes the form: 

 

Then for       ranges from   to   i.e. we 

get the whole real axis in the   plane. The line   maps to 

      ranges from   at   to   at   This is the top 

plate of the capacitor. Similarly   maps to the lower plate. 

The mapping   has a branch point at each of the points 

  Each 2  wide strip of the   plane maps to the whole 

  plane  For each branch there are two points in the   plane at which the 
mapping is not conformal. 

In the   plane we can write the potential as   giving a complex potential 

  with the complex part being the physical potential. Equipotentials 

correspond to   const   The corresponding curves in the   plane are: 



 
Thus 

 
and 

 
The equipotenials are shown in the figure. 

 

40. Two conducting cylinders, each of radius   are touching. An insulating strip lies 
along the line at which they touch. One cylinder is grounded and the other is at 

potential   Use one of the mappings from the chapter to solve for the potential 
outside the cylinders. 

. The transformation   maps each of the cylinders to a straight line in the 

  plane. For a circle centered at   with radius   we may write a point on the 
circle as 

 
which maps to 



 

As   varies,   takes on all real values and   falls on the lines   

In the   plane, the potential is   So we can write a complex 
potential 

 

where the physical potential is the imaginary part. In the   plane we have: 

 

 
The imaginary part is: 

 

 

Problem 40. Equipotentials for   3  /4 and 

  



The equipotentials are given by 
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Chapter 2: Complex variables. 

41. Show that the mapping  maps the arcs (a)  with end points 

at  and (b)  with end points at  and  to 
straight line segments. 

(a) The arc is described by the equation 

Using the transformation: 

and thus 

Thus 

This a straight line parallel to the axis:  With  

The line extends from  to  

The arc in the plane. (a) blue (b) black



The line in the plane

(b) The circle is 

This is a straight line parallel to the axis. It extends from  to 

 . 

42. Show that  for  

If  then we can write 

where  Then  is positive and hence  is negative. 

43. Prove Cauchy's inequality: If  is analytic and bounded in a region  

 and  on the circle  then the coefficients in the 

Taylor series expansion of  about   satisfy the inequality 



Hence prove Liouville's theorem: 

If  is analytic and bounded in the entire complex plane, then it is a constant. 

Using expression (45) with  equal to the circle of radius 

as required. 

To Prove Liouville's theorem, we let  and  Then  for all  Thus 

 a constant. 

44. A function  is analytic except for well-separated simple poles at  

  Show that the function may be expanded in a series 

where  is the residue of  at  Is the result valid for  Why or why not? 

Hint: Evaluate the integral 

where  is a circle of radius  about the origin that contains the  poles. You may 

assume that  on  for  a small positive constant. 

The integrand has simple poles at the origin, at  and at   Near one of the 

poles  the integrand has the form 

The denominator of the first term has a simple zero at  and the sum is analytic at  

so the residue at  is 



Thus 

But also 

Thus  as  and so 

as required. 

The residue theorem holds when there are a finite number of poles inside the contour, so 

this proof is limited to finite  

See also Jeffreys and Jeffreys 11.175. 
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