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Chapter 2: Complex variables

1.1f 21 = 3+ 2ignd 22 = 3 -4, find 21/22 and 21 ¥ 22

Zl _ 5+21 _ (5+21‘](3+43’] _ 15+ 261 + 82 - 7426,
j 3—di 3+ di

9+ 16 25 25
z1zg = (5+ 2803 - 4i) = 15 - 14 - 8% = 23 - 14

. . . 3.
2. Use the polar representation of Z to write an expression for Z~ in terms of ¥ and 8. Use your result to express

cos 3t and sm 38 in terms of cos & and snf

23

(miﬂf = 3,3
rlcosf +isind)® = 7 (cos 36 + isin30)

cost @+ Zicos fsmb + 3% cosfeintd + P sinc @ = cos 38 +isin 38

The real part gives:
cos38 = cos®d - 3cosfein?d = cos E-'[u:oszﬁ - 351'112:?] = Cos 3[4 cosd - 3]
and from the imaginary part:
sin36 = 3cos?fsint — sin®f = sind(3cos?l - sin?f) = sind(3 - 4zin?6)

3. Prove De Moivre's theorem: (tes® +ism )™ = cosnf + ismab.
(cosd+ism)? = ()" = ™ = cosnd +isnnt.

. - 2 - - . . . L = : .
4. The equation (v —y0)® = daix - x0) describes a parabola. Write this equation in terms of Z = ¥ * . Hint:
use the geometric definition of the parabola.

The parabola is a curve such that for any point on the curve the distance from a point is equal to the distance to a

line. In this case the point is at (x.;. <. ynj. The distance from the point is d where:

d = Jix—x0-a)? +(y-y0)?
d? = (x - x0)® - 2alx - xg) +a® + (y -y )?
Using the equation of the parabola:
d* = (x—x0)* + 2alx - x0) +a® = (x - x0 +a)? = &
where

s=x~—(xg—a)

is the distance from the vertical lineat * = X0 ~ .



Now we can express these ideas using complex numbers. The distance from the point

0= (x':' Ta, J’?':'J is |2 ~ 20| and the distance from the line is &z = (%0 — @]} Thus the equation we want is:

lz = za| = Relz - (x0 — a))

5. Show that the equation
p-cltk-dl =«

represents an ellipse in the complex plane, where < and d are complex constants, and © is a real constant. Use
geometrical arguments to determine the position of the center of the ellipse and its semi-major and semi-minor
axes.

The absolute value [~ ¢lis the distance between a point £ in the Argand diagram described by Z = % * ¥ and
the point ¢ described by the number ¢ Thus the equation describes a curve such that the sum of the distances
of £from the points Cand 'is a constant ( @). This is the definition of an ellipse. The points Cand L' are

_ : : : z=Lic+d)
the foci of the ellipse, so its center is half way between them, at 2 '

When F is at the end of the semi-major axis, then [ ~¢| = a{l —elang F~d| = all +e)go @ = 22, and the
semi-major axis is

a = ol
Then also
& - ¢

o

~ =
f:'=ﬂu'1—é‘2=% 1——|d ;l =%c~:2—|a!'—c|2
\ o

z = ge+ b0

ld —c| = 2ae = & =

and so

6. Show that the equation

represents an ellipse in the complex plane, where & and b are complex constants and ¢ is a real variable.
Determine the position of the center of the ellipse and its semi-major and semi-minor axes.

First recall that multiplication by gt corresponds to rotation counter-clockwise by an angle P (Figure 2.3c) - Thus

. = 1 = i) .
if @ =7a2"%and & = r5€"°, then Zis represented as follows:



z @=0)

_—36

Now as ¢ increases, the lower line rotates counterclockwise, while the upper line rotates clockwise. The two lines
align when:

]

I?a"'(i):&b_(i’
or

- &b_&a
¢ 2

which is the direction of the major axis. The length of the major axis is =z + 75 = || + 2] The smallest value of

[] occurs when the two “vectors” are in opposite directions, i.e.
Iﬂa + (i) = ﬁb - (i) +
or

I Rl P 3
¢ 2 2

Thus the minor axis, of length llz| = 1211 is perpendicular to the major axis, as expected.

8.+ (ﬂb‘ﬂnj _ Batba . 5
The angle that the major axis makes with the * ~ axisis "¢ 2 2 Let ¥ and ¥ bethe

coordinates of Z with axes coincident with the major and minor axes of the ellipse. Then :

Ae™ + Be™® = roexplily + ¢)) + ryexpli(ds — $))

e (120 ) [ (L5 1) ) ey (L5204 4) )]

Exp (z’—(&" ; B) )zr

=

[+ :
(3 2 J rotates the number in square brackets ( Z ) by an angle

Again we note that the factor i
[
2 counter-clockwise. Thus:

Z = rae™ + rpe T = (o +rplcosa Yilrg — rp)sino

_ lf-fL)
where ™ 2 2 Thus we have

)Y )

I:,r'a+,r'b:]2 (ra_rbjz

which is the equation of an ellipse with semi-major axis [l * 2] and semi-minor axis 4] = 121l The center of the

ellipse is at the origin.



. . . 5 -
7. Find all solutions of the equations (a) £~ = -1

Write £ in polar form:

e = 1 = 1explin + 2nwi)

for 0 £ » <4 Thus the solutions are

z= lexp(i% _,_1;232%]

z = cos(%] +1‘sin(%] — 080902 + 0. 5877%

3 COS(%"'ETW] +1‘sin(%+2TxJ = cos(%x)+z’sin(3%)

—0.30902 + 025106

zz = cos(m) +ism(m) = —1

zq = cos(—?t] +1isin(?TW] = —0.30802 - 0.95106;

1R[]

z5 = cos(%x] +ism(%’*‘f] — 0.80902 - 0. 5877%

iz e
0.
o, L]
0.
z; 0.
[ + + 1
-1 -05 D 0.5 1
-1, H
.
-0, ™ zj
-0,
24‘
14 _ 2minfd
() z* = 16. The roots are 2t1) 2(+*™%), » = 0,1,2,3
Zn = 2gin2

These points are at the corners of a square: 0 = 2 (on the real axis) €1 = 2 (on the imaginary axis),
zo = —2, g3 = —2i

8. Find all solutions of the equation (a) t@: = 100.



Write € = % /. where ¥ and ¥ are real, and expand the cosine:
cosxcosiy — sinxsniy = 100
cosxcoshy — istnxsinhy = 100

Writing the real and imaginary parts separately, we have:
cosxcoshy = 100 and  smxsmhy = 0

We can solve the second equation with either ¥ = 0, or x =0, am. Butwith ¥ = U the first equation becomes

cosx = 100 which has no solutions. (Remember that X is real.) So we must choose * = %7, where * is any
positive or negative integer, or zero. Then:

cosamcoshy = 100

Now the hyperbolic cosine is always positive if ¥ is real, so we must choose * to be even, or zero. Then
coska® = +1 gang:

g’ + 2 = 200

(;,:-J‘jf* - 200 +1 =10
o = 200 + ,.'2002 -4
2
= 100 £ 9959 = 199 89 5 0001 = 10
and thus
v =In(152 59) = 5 2983
or

¥y = ]11[5. 0007 = 10'3] = -5 2983

Both values give the same value for the cosh. Then

|z = 2mr + 5 2083 |

(b) snz =&

sin(x +iy) = smxcosiy + cosxsmniy

stix coshy +icosxsinhy = 6

Equating real and imaginary parts:
stnx coshy = &

cosxsinhy = 0

Clearly ¥ = 'is not a viable solution, so we need

Then

sin(?z + %]?ccoshy = (1" coshy = &

Since cosh ¥ is always positive ( ¥ is real) then # must be even, and



& +e? = 12
e - 1202 +1=10
Do LESH ”544_4=61ﬁ
Thus
y=1n(64_r,,e'%] = 2 4779 0r - 2. 4779
Thus

z= (2n+%]?r12.47793'

9. Find all solutions of the equation coshz = =5,

coshz = coshix + &) = ceshxcoshiy + sinhx sinhiy = ceshxcosy +ismhxsiny = =3 The imaginary part must

be zero, so we must have * = Uor ¥ = #T. The real part would be C98Y or (=1)" coshx jn the two cases.

Since ©9%¥ can never equal ~2» we must choose ¥ = %7 with # odd, and then setting the real part equal to

=5 we need

coshx = 5

and the solution is : * = £2.2924. Thys z = 222824 + (Zn + 1), where # is any positive or negative integer.

10. Find all numbers Z such that € = In(=3}.
z= ]11[5@"”"'2’“'”] =I5 +im{Zn+ 1) = 1 6094 +ix(2n + 1)

11. Investigate the function ¥ = 1/WZ. Find the functions %%} and V{7 %) where W = &+ 1. How many
branches does this function have? Find the image of the unit circle under this mapping.

1 -1 e o 1 8 i
Y ﬁe ‘,.fF(EOSE zsmz]
Thus
= =1 eel = sing = - L an 8
= poosd rEOSE’v o st JFSME

The function has a branch pointat & = 0, and it has two branches. Two circuits of the 2 ~ plane give the whole

W ~ plane.

The unit circle is defined by l=r=1 6<6<x Theninthe W - plane we get a piece of the unit circle:

| = oF =1, and, for the principal branch, =02 go 02¢>-m



= .l .
12. The function Wiz} = 2 " Find the functions %78} and v{7.%) where W = u + 1. How many branches

does this function have? Find the image under this mapping of a square of side 1 centered at the origin .

W = (ré'"ﬂ]m = pligit _ rlm(cos4£+z'sin4£]

Thus
= Nl g Ll B
u=r"osandy =+ %ant
4 4
The function has four branches since we have to go around the original plane four times to get the whole

W ~ plane.

x =1

1l p=1
The line 7y =0y +5(r" zsec&,oiﬂixmj

is mapped to
ll4
W= (%secﬁ) exp(z'g)
= _1
Thetop sideat ¥ = 1,”2(?" Zamg WA <0< 3w/ maps to

(515) e (:2)

12" = Tsecd,3m/d £ 0 < S/

W

The left side at & = is mapped to:

(% sec(f — ?cj) e exp(z'g)

- 1
The bottom at ¥ = _”2(3" Zemff-m 2w <0 < Tnfd) maps to

o (a=) =2)



map of square

S

= 03 \

a 0a 1

The entire square has mapped into the first quadrant and has been deformed into a curvy polygon. The other four
branches of the function would close the polygon by completing the other three quadrants.

13. Oblate spheroidal coordinates #. ¥. W are defined in terms of cylindrical coordinates #- p. 2 by the
relations:

o +iz = ccoshin +v), w = ¢
Show that the surfaces of constant ¥ and constant ¥ are ellipsoids and hyperboloids, respectively. What values
of ¥ and V correspond to the £~ axis and the & = 0 plane?
o +iz = glcoshucosy +ismhusinw)
Equating real and imaginary parts, we have:

o = cooshucosy and z = ¢sinhusiny

We want to find the shape of the constant ¥ and constant ¥ surfaces. First eliminate ¥ :

COsY = ——— and siny = ——
ccoshu o sinhs

Thus

1= rcos

2 2
2 2 — |':| e
Vv +osmnsy = (—J + ( - )
ccoshu o sinhs

Thus the surfaces of constant ¥ are ellipsoids with semi-major axis £ cosh ¥ and semi-minor axis

¢ stih. Similarly, by solving for coshu gng snhw, squaring and subtracting, we find:

1=cosh2u—sﬁﬂ12u=(L)2_( z ]2

CLCosY cony

so the constant ¥ surfaces are hyperboloids.

+1 2
The £~ axis is described by t@sv = 0,ie. ¥~ =2 Then z = esmhu which ranges from ~®to *% as
i does. The 2 = 0 plane is described by ¥ = Oor v =0or v = 7. These choices correspond to different
regions for - But # is always positive, so we don't need ¥ = T Thus w2 v S tmf2 0 Lw L ey

0 £ w < 2r describes all of space.
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This plot shows surfaces of constant ¥ and constant ¥ for

c =1

14. An AC circuit contains a capacitor ' in series with a coil with resistance £ and inductance £. The circuit is

driven by an AC power supply with emf & = £ncoswi.
(a) Use Kirchhoff's rules to write equations for the steady-state current in the circuit.

Loop rule:

¢

spcosmi = IR+L% +E

Charge conservation:

di
J= 1=
et
= I
(b) Using the fact that cos wt = Re ':E ;' , find the current through the power supply in the form:
I=Fe (E_Zné,m]

where Z is the complex impedance of the circuit.

= 05
First write cos ®* Ee ':‘3 ) so the first equation becomes:

Respe™ = IR+ L4+ %

— 1704
I=TRe(&™) Then diffferentiate the loop equation with respect to time:

£+Ld_zf +l£
clf get O

iR — w2 L+
iy o) C

Now let

iwsg = B

I Ep

I(iwR - w?L + 1/C)
Thus



The complex impedance is:

7= R+iwl+ L
iy

(c) Use the result of (b) to find the amplitude and phase shift of the current. How much power is provided by the
power supply? (Your answer should be the time-averaged power.)

Multiply top and bottom by the complex conjugate:

/= Re 20 R_j[mL_Gj_cjlzé,imt
R+ (l- L)

il

= il (Ru:u:us mt + (mL— %J sinm:)

Ry [mL—ﬁjg

L— L
= =il b cos ol + [m i sit oo
JRE+|:DJL—C:—CJ|2 JRE+|:UJL—ﬁ:|2 JRE+|:DJL—C:—CJ|2
=]

= (cosd cos of + 51 d sin o)
7

JR3 + (0L - L)
= Ll : cos(mt — ¢

JR3+ {mL— ml—cjl

Thus the amplitude is

and the phase shift is:

1
_ 1 (U‘JL B E)
¢ = tan %
The time-averaged power is:
P =« ]z =< £a - (cosdcosaf + sind sines Jeg cos of =
2 1
JR +(oL- L)
_ oH cos ¢
B 2
2 1 4=
JR +(wl- L)
_ 1 Reg
T2 o2 132
R*+ (oL- L)
(d) Show that the power is given by
P= %Re(fg*j



2 2
_1 fo_ 1p.ZlEl® _1n_ 2 _ 1
£ zRE':ZngF 7 ke 22 pRegee ~ ghe s

since EeZ = ReZ™. Then
—lp.s - 1lp. 2.
F 5 Ee =T 5 Ee =
%Ref& = %REE&'*

15. Small amplitude waves in a plasma are described by the relations

o d _
5 + E(M.;,vj 0
ED% = —gn
and mé—i:‘; = —aF — v

where 0. €, #, ¥and £0 are constants. The constant ¥ is the collision frequency. Assume that *: £and

¥ are all proportional to EEp(kx —1wi). Solve the equations for non-zero 7,5 and ¥ to show that @ satisfies
the equation:

2
2 gy = 0T - 2
o I ey U.Jp
and hence show that collisions damp the waves.
Putting in the exponential form, the equations become:
—iwn +iktngy = 0
tkgaE = —en
and - iwery = —e& — v
Use the second equation to eliminate £ from the last:
— fupy = —e(__ﬂ] — BV
iken

and then use the first equation to eliminate # -

2
— onay = (z’i&u ] (kﬁ?vJ — e

Now we have an equation with ¥ in every term. Either ¥ = 0, a solution we are told to discard, or else:

} 2 n
—dwm = £ 00 —
igg ™
2 npe* 2
+ 3 = =
W iy = S Wi

which is the desired result. Now we solve this quadratic for

—iv t ”,I_I,E + dad

2

ol

With no collisions, ¥ = U the solutionis © = *wp. With collisions, the real part of the frequency is slightly

altered, but the important difference is the addition of the imaginary part ~1#/2. The wave then has the form



EEp (iﬁ:x —itwy |1 -

2
E fex — | w, [1- 2 —iE
Xp( [ %} ED

The real exponential shows that the wave amplitude decreases in time.

EEp (iﬁ:x —itwy |1 -
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Chapter 2: Complex variables

-2
16. Write the real and imaginary parts ¥ and ¥ of the complex functions(a) f=z"smz gpqg (b)

f=1

1% Ineach

case, show that ¥ and ¥ obey the Cauchy-Riemann relations. Find the derivative

4774z first in terms of X and ¥ and then express the answer in terms of Z. Is the result what you expected?

since

Thus

Thus

and

Then

while

F=ix+ ) sin(x +iy)
= (xz + Zixy + (:y)zjﬂsmx CoSIv + cosx siniv)
= |:x2 -2+ 2ixy}{smx coshy +icosx sinhy)
iy o PEY —.g-z'[a';v] _e7? —.go' _ _sm.hy - ety
21 21 i

= (xz —yz;l sinx coshy — 2xyvcosx sinhy + 1 (Exysmx coshy + (xz —_yz;l cosx sinty )

=
I

(x2 —yzj sinx coshy — 2xycosx sinhy

=
I

2xysmnx coshy + (x2 —yzj cosx sinhy

% = Zrsinzxcoshy + (xz —yz;l cosx coshy — 2ycosx sinhy + 2xysinx smhy
% = 2xsinx coshy + 2aysinz sinhy — Jycosxsinhy + (x? —y? Jcosxcoshy
.
dx

So the first relation is satisfied.

Then

while

% = —Zysinx coshy + (x2 —y2] sinxsinhy — 2xcosxsinhy — 2xycosx coshy

é—a; = Zysnxcoshy + 2xycosxcoshy + 2xcosxsmhy — (x2 —yz) sinx sinhy
.
dy

and the second relation is also satisfied.

The derivative is
ki
dz

as expected.

2xsinxcoshy + (x? — y?)cosxcoshy — 2y cosxsinhy + 2x sinx sinhy

+ {2y sinxcoshy + 2xy cosx coshy + 2xcosxsinhy — (x2 — y2 )sinx sinhy)

2(x + iy )(sinx coshy + icosxsinhy ) + (x? — y? + 28 )(cosx coshy — isinxsinhy)

2Z3iNZ + 22 cosz



F= 1 - 1+9‘_{'J’_
(b) = P9 Thus

- 1+x = ‘.Jf
u (x+1)2+y2’v (x + 192 + 2
Then
oy 1 _ o flHxp? (x+ 1y 4yR -2l +x)
W mr 1y (x4 17 +52) (tx + 19 +57)°
_ - (1+x)?
(tx+ 1) +5%)°
ETa —2¥(1 +x)
dy ((x+1 +_y2J
& 21*xp _du
i ((x+l +}”2J ih
and
»_ -1 % _ (1) U’QJ
D x 1)+ ((x+1 +y2J ((x+1 +yj

D R Vs S
(l:x+1}2 +sz3 dx

So the CR relations are satisfied. Then the derivative is:

4. -t L wllrx) il )
Lo (x+1P42)? (1)t (w1 )
Il S Ak ) S
pr1f IR 1?21y

which is the expected result.

17.The variables * and ¥ in a complex number = & * )Y may be expressed in terms of

*
Z and its complex conjugate £

x = 2(z+z%

1
2
= 1 *

= =lz—-=z

y= 5=
Show that the Cauchy-Riemann relations are equivalent to the condition

&
=0
P

*
We rewrite the derivatives using the chain rule. Suppose that F=Az2.2"). Then:

Lo Lp g @b (3-8

SRR

If the Cauchy-Riemann relations are satisfied, both terms in square brackets are zero, and hence

¥ -

& 0. as required. This means that the function =1z}, and " does not appeatr.



1

- 2 = 3 gy
18. One of the functions ¥1 = 2(% = ¥)* and ¥2 3 isthe real part of an analytic function

w(z] = &+ . Which is it? Find the function ¥i%.¥} and write ¥ as a function of 2.

Both the real and imaginary parts of an analytic fucntion satisfy the equation
Vi =0
so let's test the two functions:

2 = i —_ —_ i - = =]
W eu 4ax(x ¥ 4By(x yi=d+d4=8=10

and
Viug = a—ixz —%ny =Z2x-2x=10
So the correct function is ¥2-

Then from the C-R relations:

5
%=%=x2—y2:v=x2}:—%+ﬂxj
and
%=—%=2xy:\v=x2}r+ﬂy)
Thus
3
S
v o= xey 7
Then
3 3 3
f=%+ix2y—xy2—i%=%(x+zy)3=%

19. A cylinder of radius & has potential ¥ on one half and
=¥ on the other half. The potential inside the cylinder may be written as a series:
- f 2 vl e (2n + 110
o) = L (5)7 2
sl M2 ntl

Express each term in the sum as the imaginary part of a complex number, and hence sum the series. Show that the result
may be expressed in terms of an inverse tangent.

D(r, 8)

[}
I
=
M 8
3
"
et
&
x
-

The sum may be recognized as the geometric series (2.43)

Bir, 6 = 4_3‘;1111]‘;1 ﬁdw

o

R 2o
To do the integral, let wia® = sm¢, dwia® = cospdg.



A smolrtid? cosd
CD(.?",&) - Tltn-l-u md(i)
e 5t
= A [ 7 secgdd

w 0
Im{]n 1 +22:’a2 }
J1-z4at
Trn 4 In 1+Zg.-"'c22
1 - z3fg?

. 1+ 2%/
riag( 1720 )

= A¥ Im[Infsec ¢ + tan ¢ )[>" |

1
45

|
=

Now the logarithm is

1+z2%/a _ ‘ 1+z%a*
In =In
1-z%/4% 1 - z%/g?

and thus
_ 2 1 +z24a
$ir )= 2 arp - "< S
.8) i 1-2%/a®
Next we find the argument:
1+z%a® _ a® +rcos 268 + 37 5in28
1-2%a2% @ —prlcos2f—irfain2f
(a:‘ + 2 cos 20 + i sin 20) l:'a:2 - ooz 20 + i sm20)

2 .
(a? - ricos2f)” + sin? 24
at =t + 2ia?r? sin 26 _ A.fe
at —2a*rfcos 28+t

where

o = 2a°rsin2

44 _.?"4

tan

and thus

D(r,6) = 2V tan1 2a°r% 5in26

9
ﬂ4 _.?"4

o i a2 -
20. The function 7 = it (=*) (cf Example 2.10) also has a zero at Z = ™ - What is its order?

To find the order of the zero, we write the Taylor series centered at NES

= 2zooszt |,ﬁl’ =2 /moosm = —2,/7

Thus the series is

A2) = =2 /F(z= )+ o

and the zero is of order 1.

21. Find the Taylor series for the following functions about the point specified:
(a) 2052 gpout 2 = 0

The series is € times the cosine series, i.e.



2 4
zcosz=z(1—%+z—+---J

Ln
=

=z-

o™,
+
|N
+

I_h

(o) In(1 +2) gpout z = 0

Atz =0, fiz) =p(l) =0

The derivative is

The 2nd derivative is

2
A o1 - qatz-0
dz? (1+zj2
The 3nd derivative is
3
4 2 __oatz=0
=3 (1+z)3
So the series is:
2
- a_ Z 2 .3
Infl1+z) =z E+§z +
2 3

The radius of convergence is 1. since {1 * 2} has a branch pointat & = -1

(©) = aboutz = w2

The derivative is

The 2nd derivative is

ff2f _ —sihE _ ~cosz sing _ _f 2 R E _ T
22z 222 +223 B (?J+2(EJ Els = o
So the series is:

inz - 2 _ (213 (,_mys 1[of2 V- _xy

=l (T) (Z 7) +T[2(T) 1}(2 7) Gk
The radius of convergence is ™ since the function has no singularities (other than the removable singularity at
z=10.)

1
(d) =*-1 aboutZ = 2.

First factor the denominator:



There are poles at € = *1 Nowletw =z~ 2:

Expand each term in a geometric series:

_ 2_ .34 ..-1 1
GRER(])

] —

Az)

“3(rwewto e 3130 (3) )
=%(1—w+w2—w3+...—%+%—";’_2+...J

335 (3) () )
e 1o i e

The radius of convergence is 1, since 7iz) has a pole at £ = 1.

22. Determine the Taylor or Laurent series for each of the following functions about the point specified:

£osg
(@) =1 aboutZ = 1

The function has a pole at £ = 1. so the series is a Laurent series.

First find the Taylor series for £z -
cosz = cosl —sinliz- 1) - %(z— 1)2

The general term is

™ -1 mpE 17
PR o (-1} — cos 1 for s even
= (-2 BT gy for m odd
Fal
and thus
_ (z- 1) 1 it 2= 172
Ao o oot Z o] Z Gt

The radius of convergence is infinite, since the function has no other poles or singularities.

x!
s aboutz = 0

The function is analytic at

- . . . N . . . 3
z=10 (there is a removable singularity) so the series is a Taylor series. We start with the series for 51l



2 é 10
sinz =l22_2_+z T oa
z z 3| |
3 9
=z-Z +Z +
3l I

The radius of convergence is infinite, since the function has no poles or other singularities
e .
(c) r~n aboutZ = IT

There is a simple pole at Z = iT : the series is a Laurent series:

e.,x. _ gm é,x—!:n’[
Z-im z—im
2 3
" L BN [TV L T
W W 21 3l
=—l—]—ﬂ—w—2— where w = z —iw
W 2 &

The radius of convergence is infinite, since the function has no other poles or singularities.
Inz
(d) =1 aboutz = 1

Th function has a branch pointat Z = 0. The singularity at £ = 1'is removable, since Inz has a zero at

z = 1. we should be able to find a Taylor series valid for 0<l-11<1.

First find the Taylor series for lnz |gtw=2z-1

2 3
]n(l+w)=w—wT+W?+...

So

hz _ 1 (Z_l_liz—1)2+liz—1)3+m)
7 3

z-1 +':Z_1:'3 o
2 3

I
—
|

branch ]

Eut?.b‘

bk u 0.5 1 1k 1B

(e) tan E (z) =w

3
——
[

E
+
@
o
E
e
Il
th!\.l
E
|
@
|
E

&
Lt
2

[
|
o
+

[
+
-
I
o

So



1 (l+r-.lz 1 (;‘—z
WSl 1—;:2] o7 1B i+z]
There are branch points at Z = i. There is a Taylor series valid for E| < 1.
2}3[12— 1(—22J+ {z—)—z}]

z+ l(;zf + 2(3235 + o

W

3 i
-z- %23 +%25 o

1.9branch cut

0.5

-15

branch cut
"

Problem 22

23. Determine all Taylor or Laurent series about the specified point for each of the following functions.

pr:
(a) =*+1 about the origin.

The function is analytic about the origin, so there is a Taylor series. The function has poles at
z = i, 5o the Taylor series is valid for | < 1. There is a Laurent series valid for | > 1.

Taylor series:

™
]
I
——
—
+
L]
+
]
+
|N
+

+Z—---)l:1 -2t -5+ )

]
b
+
—

13 ¢, 101 s _ 389 6,
297 P igp? T agp? oo forkl <l

M
madl ';3!
Laurent series:
£ _ _ Liii(_”m 1
22 +1 22 (1 + 22 n= %! m=0 sz

We may simplify the negative powers as follows:



g _ sl =L(]+ c 222 2

Zel 21+1) 2 2 3 4
=...zi5(1—%+ .)+ZL4(—1+%+—$.
L (1-ds k)

Il
o
o
Liy]
o
[1e
T
b | —
=
=
+
Lir]
B
o
=
pa| |
2 —
+
X

valid for |Z| > 1

1 .
(b) =*+1 about = ?

The function has simple poles at Z = %i. so we can find a Laurent series valid for

0< -4 < 2and another valid for - > 2

LetWw =21

=i(l
22 +1 2iwvw

In Region |, expand the second term in a geometric series:

1 1

1

1

1 _
Z2+1 LW n? (1+wai)

i1 wo_ow?
w+4(1+2 z

Ay -0 Y_ &
= 7| ! 7" ) 3

which is valid for 0 < =& < 2

In the outer region (II) we expand the other way:

3

o)
1 z—j f(z-1y
| 16

v



2|~
+
]
Es

[ (3B )]
@) ]
-1 _ 24

wéowt oyt

= 21 4

which is valid for £ ~#| # 2.
=
(c) =2 about £ = 3

The function has poles at # = *3. We should be able to find a Laurent series valid for
0 < |2 = 3| < & and another for £ = 3| # &

2-9 E-3z+3) ww+6)

where ¥ = 2 = 3. Then for | < & we have:

z  _ w43 1
24 _ W w
z2-9 6(1+E)
w3 (1w wt o ow J
= S (1 6+62 63+
(1, 1 _woow? o owd J
_(6+2wJ(1 6 " 67 T g3
1 .1 1 1 .2 _1 B ...
S o Tz T Tt Y T Teee W T
__ 1 1 ==3) =-37
"S- 12T T T am ¢
while for [w] » ©
z _ w+3 1
z? -8 Yow(l+ L)
=W+3(1—£+£—£+ ]
w2 W w2 W3
-1 _ 3 .18 _ 108 |
W w2 w3 4
_ 1 __ 3 . 18 _ 108 .

1
(d) =*+= about the origin.

The function has poles at £ = *3, sothereis a Taylor series valid for [£| < % and a Laurent series valid for & » 2.



Laurent

Taylor

—
|

|—

—

Z+9  ©

3
1 1
& 31 ( 1 -2/ + 1+z/3i )

L+2+(£)+ (&) + +1-2+(&)- (%

_dfy_z22 2
=Gl
while for 2| > 3
1 =L( 1 1 )
=2 40 giz v 1-3iz 143
_ 1 3i 304 3047 _(_ﬁ 3iN:_ (31
_612(1+Z+(Z)+(ZJ+ 1 z+(z) (z
_ 1 (3 3i 47 3i %7
—5(747) +(2) "+ ]
_ 1 9 34
Tz AT E

24. Find all the singularities of each of the following functions, and describe each of them completely.

et _ ol
(@ 7 ~ Wz

Expand out each term in a series:

£ _ginl=1tz+2R+.. _ (l—%[ljﬂ...)

Z Z Z Z z
=1+£+i+...+_1 -1 4.
2 3l 327 5lz?

This is a Laurent series with infinitely many negative powers, and it is valid up to the singularity at
z = 0. so the function has an essential singularity at £ = 0.

COFE _ sing

(b) E4 !

Let's look at the series for this function about the origin:

cosz _oging _ 1 -z¥2+240l 4+ 2231+ 25480 -
= 22 = 22
= —£—£+i—i+
2 6 4l al
- 242 4
37 30

This is a Taylor series valid for all Z Thus the function has a removable singularity at = = 0.

tanhz

(c) =




The function has a removable singularity at & = 0

2

]jmtanhz _ ]jmsnzchz _q
=0 £ z—] 1

But the tanh function also has singularities regularly spaced along the imaginary axis.

L R
tanh iy F Tl itany

and 'Y has singularities at ¥ = (2r + 1}m/2. The singularities are all simple poles. For example
coshiy = cosy = —sinly — w/2)
—(@—xmyn%@—xmf+uj

: m\tanhz o (z-i2)sinhz
xlﬂ}g(z I?J _xl}ﬂ% zeoshz

(2 - .t% ) sinhz

= lim :

il (—.:'I[z— i) — 3‘—!(2— 2 + )
= lim sinhz

F—+Ai2 ;'2(1 + 3%—![2— 2+ J

i) T

Since the limit exists, the pole is simple.
2
@ (1 +2*)

The function has a branch point where 1 +2z* = 0, orz = .
25. Incompressible fluid flows over a thin sheet from a distance

40 into a corner as shown in the diagram. The angle between the barriers is w/3, andat* = A0,

V=V Assuming that the flow is as simple as possible, determine the streamlines of the flow. What is the velocity at
r = Xof3.0 = n/67

The velocity potential satsifies

Vi4 =0
and thus we may look for a complex potential T = ¢ +iv D mustbe an analytic function in the region
L8273 andatx = o we need

-V = ~Pof

The streamline function must be a constant on the surfaces & = U and



8= w3 we may take this constant to be zero, and then the function sin 3¢ does the job. (The function

sin 328 would also work, but would lead to more complicated flow.) This suggests that we look at the analytic function

3330 3 o
kzw = krie™ = kri{cos 30 + 13 36). The imaginary part of this function satisfies the boundary conditions at the two
surfaces. Thus the streamlines are given by

w = krisin38 = constant
and the velocity is given by

v

V¢ =-V (kr* cos36)

~3kr? cos 361 +3kr? 5in 308

~3kri[cos 38R cosd + Wain 81+ sin 30~ R sin & + Yeosd)]
3hr[~R(sm 30sind + cos3fcosd) — Yleos 30 d — sn30cos )]
= SR [-R{zos 26) + P{sin 26)]

Thus at & = 0 we have
¥ = - 3k2%
and so
3kXE = Ty
Thus the streamlines are given by
_
3XE

L ( 3xEc \'F
Vo sin 30
e _

See Figure. *o ! (solid line), 5 (dashes), and 1/5 (dots).

ain3d = constant = O

The velocity is

N 22 180528+ sin26)

Yo 3x%
and so at * = £0/2, & = /% we have
N gl an® agl o™
7 1z g TYz et
- "o o
¥ E(\J-’?:itw_»,f]
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Chapter 2: Complex variables

26. Prove the Schwarz reflection principle: If a function Az} is analytic in a region including the real axis, and

A%} is real when % is real,

fiz) = A"

Show that the result may be extended to functions that posess a Laurent series about the origin with real
coefficients.

- = top -l
Verify the result for the functions (a) fiz) = tosz gng (b) fiz) = tan " {z).
(c) Show that the result does not hold for all Z if fiz) = Iniz) (the principal branch is assumed).

If the function is analytic, it may be expanded in a Taylor series about a point 0 on the real axis:

z) = ianiz - xp)”
n=

and since
= Zﬂnl:x - xﬂjn
n=0
is real, then each of the @z must be real. Then
Za (z—xp)" = Za (r”e’”ﬂj
= Za g = Za re_‘ﬂ = fiz*)

The proof extends trivially to the case where the series is a Laurent series with real coefficients.

= aF + g E _ aHa T 4 g Y

cos 5 5
So
5, i g ] il )
(cosz)* = £ €~ *¢ Calig re = coslz")
2 2
. = -1 . L.
The function ¥ = tan " (z} is trickier.
e & o lgz:w —gw _ lEEz:w -1
g 4w i EEzw +1

Thus

and, choosing the principal branch of the logarithm,



2 ) = Lla(1+iz) - In(1 - iz)]

z
1
|—
=3
—

2 1-iz 2i
= I fi1— #x? vitant 2 —n T4t - panl X
> (]n (1-21" +x° +itan T—> In (1T +»)° +x° —itan 1+;v‘)

)

S 1Y (TR PR X : Z ., 2 g x
2(3]11 (1= +x% +tan 1_y+z]n,|||li1+y:l +x% +tan 1+y)
Then

f{z}=%(ih1‘;'l:1—y:lz+x2+tan_11;£y—z']nm+tan_llf_y
and

Az = %(—ﬂn,n'(l +y12 + 22 +tan ! 11;.; +iln J{1 -1 + 22 +tan X

1=y

and the two expressions are the same.

Note that this function has branch points at £ = i, but it is analytic on the real axis.

(©)
Iz = lnr +id
We proceed by showing that the relation fails at one point, & = ~1 Atz = ~1. on the real axis,

hz = ix
Then

(lnz)* = —iw
but

Iniz*) = In(z) = ix
27. Find the residues of each of the following functions at the point specified.

=2
(@) =1 atz = 1
First factor the function:

z—2 = z—=2
z2Z2-1 f(z+1)z-1]

The function has a simple pole at Z = 1 and the residue is:

Tl = 1 z—2 =]jmz_2= _
x—>ll:z j(z+1:lliz—1) =lz+ 1

b [—

) =P (3 1) gz =0

First rewrite the function:

and then expand in a Laurent series:

)



Now we can pick out the residue: it is the coefficient of 1. The residue is

1/=

SINE

(c) # atthe origin

The easiest method here is to find the Laurent series:

; 3 5
stz _ L(Z_z + Z +)

and thus the residue is
CO58
(d) T=inz at Z = @H

Since the denominator is a function #(z) = 1/2 = snz that has a simple zero at = /%, we can use method 4.
The derivative is

and so

ReS = lim 982 = (-1

s—nlg  CUSZ

28. Evaluate the following integrals:

CO5E
(a) jEC‘ z where T is a circle of radius £ centered at the origin.

The integrand has a simple pole at & = 0, which is inside the circle. The residue there is:
lim cosz = 1
=

and thus

COSE - :
§c sz 2i
§ s gy . . .
() T s where Cis a square of side 4 centered at the origin.
The integrand has a simple pole at Z = 1. which is inside the square. The residue there is:

lim sinhz = sinh 1
—1

and thus

jtc ;ullleZ = 2wisimh1 = ?ri(é'—gl]



(c) ﬂEC T+ Where C'is a circle of radius ! centered at the origin.

3 - a ’ 3

The integrand has a pole at Z = ~<. which is outside the circle. Thus:

fosse

£ 4 :
(d) jgu:' 4w+ where C'is a square of side 1 centered at the point Z = {1 +£)/4.
1
L3

0.6
.

0.4
0.3

-04P.20p 02 04,086 'Za 1
Sk

0.4
od
The integrand has two simple poles, at & = i/ Only one, at & = /2, is inside the square. The residue at
z= I.I'IIE is

and so

o
q

29. Evaluate the following integrals:

J‘2:i‘[ 1+cc|s|5
(a) 10 2-5111{']

. L = it
We evaluate as an ingtegral around the unit circle. Let € = 2", Then
-1 ( 1
cosd 5 z+ ?J

and

snd = %(2— %J

dz = ia0dg = df = %

and

Then



J‘f‘“l+cgsﬁ'd _j[ 1 3(24_%.:'@
02— snd cE—%[z—lexz
-4 2+(z+1) &
043'—[2—%} Z

+1

1
i
IR
+
N
by

I

i
]
[

+
[
+
—
B

The integrand has poles at Z = U and

Only the poles at Z = Oand? ~ (2 - "EJE are inside the circle. The residues at these poles are ~1 and

I R (a3 i) 1
—-E) z—(2+ﬁ)i (Z—ﬁ)i (2—ﬁ)z’—(2+ﬁ)z’
) 3-243 - (2-3 )i )

(E—E): i3

V3

_14i¥3
'3

So the integral is:
20 1+ cosl on o _ J3 - 2,43
o 5=oids Em( T+ 1+t ) 5T

A _sin'f

(b) -[D 1+cns"ﬁ'

Let 20 = ¢. Then: cos28 = 2cos?8 -1 =1-2sin"8, 5

A 71 cos2f) Izﬂl cos¢d¢;
L 1+é—c0528+1 0 3+cos¢g 2



cos¢ =ljt 1_;(24-%)@
2 o 3+'305¢ 2 J unit circle 3+1—(z+%) iz
_ {2
—i§ 2z (Z +1]@
21 o unit circle fiz + (22 + 1) Z
The integrand has poles where
_ 61 36 -4
2

= -3+ /8 = -3+2/2 = - 17157,-5 8284

Only one of these poles is inside the unit circle. There is an additional pole at £ = 0. The residues are ~1 and:

W ~(3+242 -1)°
a2z z(z- (-3-22)) (-3+242)(-3+242 - (-3-2J2))
~(~4+242 ) -2(3-242)
T (B22)(#Z)  (3+202) 2
= o2

Thus the integral is:

[ 1 e S - Lomi(-1+2) = =(V2-1) = 1.3013

+ cos

(c) '[D 1 +sin’ ﬂ

R ——
unit circle (1_31_(2_;_]2) iz

= § £ =
unit circle ( ERY

z2 - }1—(22 - 1) Jz

2m 1 _
dé =
ID 1+ sin?d

The integrand has poles where

z=il(22—lj
Z2-1F2=10
o L Bl SR
2 _1_"5
Of these 4 poles only 2 are inside the circle, at £ = 1-,2 andz = "1+ V2. The residues are:
im (-1+42) i diz
Hl-,,ﬁ(z_l(zz_u J 1= (z-1-J2)(F+22- 1)
=_%‘,.f§3-

and



o Er1-42) . 4z
=8 (-1 -1)2) el (P -2z 1)(z+ 1+ 2)

=—ii.|"§

q

Thus the integral is:

J‘z" 1 ge-= 2m(—%¢'§ijz =z 2

O 1+sin8
@) [3 sin®*6a¢

. T I L . .
Since sin“({~%) = 5“8, we may rewrite the integral:

In _ o _ In
IET s 89 = %‘l‘:[ i = %funrt circle [é(z - %]} %

1 =0

_ a In =
22:& *l I §un'rt circle (Z 1J

The integrand has a pole of order 2n+1atz =0 The residue is:
Zn s 2n In -1, [2n)(2n w2
lig b (2 - 1) = iy L T () - () 2B 2

All the terms in powers > 21 are zero in the limit, and all the terms in powers < 27 differentiate away. Thus

- 1 e n 1 g2 [ (2ni2n-1). (Zrz a+1)
i T e @~ 17 = lim s 5{22”[ 734 =) }
_ (1) @m)2n-1).. (n+1)(2 )
Zn)] 734
_ (=1)"2R)
YT

Thus the integral is:

‘l‘; SmEnﬁd& — 1 I:_l:]nz (—1}”(2nj|

30. Evaluate each of the following integrals:

o 1
(a) ‘Lm 2142 2

We close the contour with a big semicircle at infinity. The integral over the semicircle is:

I N 1 ai'z‘ L wRmax
semicirele 22 4 0 z2+ 0
= TRmax—L 1 ¢z 1
R|Tro2 | = R1- 20l

> 0asR=f| > =

The poles of the integrand are at £ ~ J—r?u@- Only the pole at € = +?\J{§ is inside the contour. the residue is:



litm 1 = 1
=2z + iﬁ Eiﬁ

Jdm 1 dx = 2wl 1 =£?r
™ xZ 42 g2 2

and the integral is:

oy P s

51+l

We close the contour with a big semicircle at infinity. The integral over the semicircle is:

I N Z ‘ L wRmaz|—£ ‘
semicircle 23 4 ] 23+ ]
- P 1 T 1
= gRmaxS | —1 | £ &
B+ 1 R |1—L”lz|3|
< 0asi=f|l— o
]
a B
The integrand has poles at
z = E_l:llﬁ — é,:':i‘[|'3 -1 Ez’ﬁ:i‘[ﬁ
_ 1,3 1 B
—_ _3, o —_—
2 2 2 2
The first of these is inside the contour and the second is on it. We'll evaluate the principal value. The residue at
= Lo 28y
z=373 tis:

x—>;_+_!£z 23 +1 1+ |:2_-+ 1:](2— é_ + %3]
1_+£3'

= 2 2

(e 51 2
l+£3‘

= 2 2
3 1 ;
(§+ 3id3 (“EJ

[]
I
|.—n
.
—_
Tl
+
-
— " —

. . - = {3
The integral around the little semicircle where & = 1+ % s



— it . : _ il .
litn 1+¢ee ige®df = lim 1 +¢ge : igede

0 v ( 1 +E€!ﬂ) +1 =0 v —1 + 3zt — 3222200 4 232500 4
= limi —1 + e #30
lﬁﬂl-ri 307 — 3o 4 g2gI -

_ " =L I
_.t_rj[ 3-5116—313

Thus
PJ‘_W .:fx + %z = ETCI'(—%I'(\E +1‘]] = %?c 3+ %i?r
and so
o 3
PJ‘_W x3x+ 1.:£x = g?c
(C) J‘+°° cnsmx

There are no poles on the real axis, so we may assume that the integral is real. Then we may evaluate:
™ Coswx b~ e [ exp(imxjdx
= 249 = x2 49
Close the contour with a big semicircle in the upper half plane. The integral along the semicircle is zero by
Jordan's lemma. The poles are at & = +31, put only the pole at & = +3i is inside the contour. The residue is:
é,z'bk _ Ez’wlﬁz’] _ .;:,'_3""‘1
=3z + 3 i fi

Then:

COSWX 7. _ BN _om S
J‘_m x2+9dx Re(Em z J =€

% 5Inx

(d) =75

The poles of the integrand are where

z4 + Dz + 2

I
)

B U X |14

None are on the real axis. Thus we may take:

[ R gy = T (7 xe” gy
gl 4 2x+ 2 = oxd 4 2x + 2
and close the contour with a big semicircle in the upper half plane. The integral along the semicircle is zero by

Jordan's lemma. Only the pole at £ = —1 *+ijs inside the contour. The residue is:



fm _zE" Cl+iespf(-1+2)) _ (1 +d)exp(-1-4)

=-1wz— (=1 -1) e e
Thus the integral is:

.|'+°° LSinx dr = Im(Em' (—1+i)exp(—-1- 3:')

- x? 4+ 2x+ 2 2

= Im{me {sin1 - cos 1) +ime {cos 1 +ainl))

me W eosl +sml)

1. 5%7
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Chapter 2: Complex variables

31. Use a rectangular contour to evaluate the integrals:
o g
@)= 1w 0 CRea < b

The upper side of the rectangle should be at ¥ = 2mfb (for real ). Then on the upper side:

‘|.+oo-|1'2ml.5 2% _e® +o E,axgzaEﬂfb Jx = Ez’azﬂ:fb Im L dx
—H 2 il 1 +é,bz = 1+ é,-b.xé,ﬂﬂ - 1 4 é,bx
Then around the whole rectangle:
as : Jid a2 H2nlh as
f €% _dz=lim [ €% _dx+ J”‘ ¥ g
rectangle 1 +&™ R w—R ] 4 g™ E 1+e™

R+2mfp az R ar
2 f € &+ -r € 4
Falals ] 4 o= —RuZmp ] 4 b=

. Joar g o) az
= lim {1 — g@a2n J“ b+ _e* 4
R—:m( ) -R 1+€-5£ -rR

1+e™
R
+ _r _e®
-Re2mls 1 4 25

Along the end at * = & with @ = o + &y

.r:tﬂm —&dz = _l.;m% e TVe v idy = el® IRE"TRI?% ere iy

1+ 1 +gbRoity e ok 4 piby
-rR‘ﬂ“"'f’ g dz‘ <o ?"fﬂ'e"ﬂ’. 2N o oRelewR 1 2m
R 1 +€bx e 5R+€zb.}l b |€zb.}l | -z 2R h

_ . Rela-blR 1 2T

provided that Eea < &.

Alongtheend at ¥ = R

.I-_R o= _ .I-El E—ct.R—'p}lEz'-:r,}-—e'rR 3,:3:}3
—RHITE ] 4 o mE ] 4 PR
-2 = L
oy ¢ ool 2250
-EaImE ] + o 1 + o PRy
—gRat_ 1 2T L 0g5R a
- P b

provided that Eea > 0. Thus we have:

anx

§ Eaxbxdz - (1 B Eiﬂzmlb.] ‘I‘+-: 1 iébx dx

rectangle 1 + 2

Now the integrand has a pole where

or



z = infh
which is inside the contour. The residue there may be found from method 4:
az 1 Eaz’:i‘[fb

residue = lim £ = 1
snlh habE £ -1

2M1 /b

and so the integral is:

az _ _imalh
jf e® 4 = zm( il ]
rectangle 1 + 2% &

and thus
J‘ dx = 2E —gifalt D 1
1 4 b b q1- .g-""z"""'f’ L) (Ez'mfb - Eﬁ'ﬁdn’b]
—x_ 1
b smwalb

The result is real, as expected.

J‘+‘°° sinth ax
(b) ™ smh dax

ax

We put the top of the rectangle at = = I/ Then:
sinhaz g, = [*° _sinhax g, 4 [ sinhaz g
frect:mgle sih 4z —= gimhdax 'I-R smhdaz

+I‘R”’“'“ sinh 2z +]’ = sinhaz
ramiz snhdgz  d-Reme sinhdaz
_ [* sinhax dx_,_.l'*“" sinhax smhax o, _ 2_[ sinhax _smhax

—= gimhdax —= ginhdax —= ginhdax
There are poles inside at £ = inmida n = 1,2, and 3. The residues are:
- o isinLam . sin 2
sinhaz  _ smhinw/d _ 4 _ i P

-]

r—vintMa da coshdaz da coshinm dacosnm 4 (1)

Thus summing the 3 residues, we get:

Ij—sﬂh4ﬂﬂxxdx = m’ﬁ(—sinE + gin & —sinﬁ] = }1 - ( J2 + 1) = %"Eﬂ:l

Note: the singularities on the top line at = = 1w/a and on the *-axis at ¥ = U are removable.

(c) -I.'m' coshax =l



Again we want the integral along the upper side of the contour to be a multiple of that along the
lower. Here we find there is an additional integral that we have already evaluated. We can make use
of the results

coshiaz) = coshla(x + 1)) = coshax cosay + ismhax sinay

So we can take ¥ = /2 on the upper side of the rectangle, so that F@5&y = Cos® = ~1land

sty = sinw = 0 Tphen:

2 + 2 3 2
jf Z .:zi'z=j];:jm[ R_x2 gy R _z .:i'z]

rectangle coshaz “k coshax B toshaz

. -4 i 2 - 2
+h1n[ it 2 _gpe [ 2 ai'z]
F=o| JBHE  coshaz ~REHE coshaz

On the top side:

I—Rﬂ'_g. 72 I—R (x +imia)? p
2% coshaz 2 n::c::-sh{ ax +im)
+8
ey N
- l:-::lshc:x - l:-::lshc:x -R coshax

TThe second integral is zero because the integrand is odd and there are no poles on the real axis.

The third integral was evaluated in § 2.7.3, Example 2.22. The result is w/a. Thus:

-R+H L 22 dr = I+R IE - (TE J3

REH%  rcoshaz -R coshax &
Now at the two ends, we have:
B+ )2 .
T Rl e
R n:osha:z 0 gaRgiay — p-aR, gy
2{R? + w2/a?
{ T pmak ( ) — 0 a5k — =
ot 1 - E.-ﬂlaR

fora » 0. A similar proof works for Re2 L0 - just factor out g ok in the denominator.

Now we have:

2 3 _ . .
fremangle DOerhﬂZ R—m:' I‘R t:cash.:zx - (%J - ETEIZ(FESIdI_]eg)

There is a pole where

coshaz = 0
i.e. at
s
z =i
2o
and the residue there is:
2 _ (im/2e )2 __ w2
s—inf2a a sihz i Hiep3

and therefore



x2 _ 1 rmy3 e
f,f = L[ —
= coshax * 2 (‘I J " dig?
- 1(z)?- 1z _ 1z
2 ha 4 43 4 43
32. Evaluate the integrals
(@)
o 3
I x27 ax

The integrand has a branch point at the origin and a branch cut, which we may take along the
positive real axis. Let's evaluate

3
2o
ol+z

where C is the keyhole contour in Figure 2.36.

Along the bottom of the branch cut:

z3m 3& T E

= I £ __gr= I dr
O,battom 1 4 53 Obattom 1 4 3 01+

Now along the big circle, we have:

faon 12
circle | 4 53

32
i IE“R—_M%&
R |J 0 1+R3E3zﬂ

i

2R 2% 0 agR 5

<
RA-1  RIE
ST V- BT BN NN I . Smis _ 1 _ A8 .
The integrand has poles at © (1) ¢ 2 i o 3B = =1_J° 2 2 "

three are inside the contour. the residues are:

By _ 3_f2= - 1 _ 1 _ W3-
Res (E ) 7= 1 322 E‘E}n‘ll 3l 3 &

Res(-1) = —L_ = -4

l: :I BEME 3
and

Res(z7™2) = 1 _ Z¥3 i

BESTE'IIE )

So

32 o 32 -3 g ;
jf 2" b EID x—cfx=2?ri(ﬁ I—i—ﬁ”)

ol +z 1+x
+oo 3|IE
x = 2
\[D ]+x3dx EW




(b)

P IRE:
I A dx
0 +2 41
Use the keyhole contour. There are two poles inside, at £ = %I, thatis, £ = g2 and g2,
1.'3 2mif3 .'6 b ]
jt dr I i &  dr=2mi ™ g’ :
s 32 + 1 0 2 +1 23 —23

(1 _gszﬂ]f = Tc(em'lﬁ _Ezﬁn‘ﬁj
- x(émfﬁ - Ezﬂﬂ‘ﬁj ) ng.lﬁ (1 - gzm'.'ﬁj
(1 _ EEm‘BJ (1 _ EEm‘B]
(1 -o0) (543 (1-045)
(1-27) 2 (3-48)
(B )(1-15) (1+343)
& (1 —iﬁfa] [1 +i3/3)

3
3

w

Check that the integral around the small circle goes to zero:

|
f“ﬂmaﬁ 0ass— 0

33. Evaluate the integral

w o Jdx
1] 1+x21'-f

by integrating over a pie-slice contour with sides at ¢ =0andatd = 7N, 027 =

dz
We evaluate * 1= over the suggested contour.

On the curved part of the contour, the integral is bounded by

“1+z

On the straight line at $ = W, z = re®” i and we have

iﬁﬁ%%UESR%m



J.U At _ —E"ﬂw‘l‘m dr
w ] 4 p2lgidn 0 1 4 2

Thus

= _dx - 1 jf =
R A e A T

The integrand has a pole where

1+z% =0

or

19

L

Zp =@

(the other roots are outside the contour) and the residue there is

Hpm ﬁerﬁp(—iﬁfﬂzw— 1}) = ﬁem(_mﬂﬁg)

()

Thus

= - 1 g1 :
0 1+i.2N - 1_Ez'ﬂfN2TH( EEXP(E%I]J
21
(-13) - e (1)
T

SN sn(w/2N)

T
TV oz

34. Evaluate the integral

=it
e dx
IEI

" . . . 2 - .2 :
along the positive real axis by making the change of variable ¥~ = 7IX™. Take care to discuss the

path of integration for the ¥ ~integral. Use the Cauchy theorem to show that the resulting ¥ ~integral
may be reduced to a known integral along the real axis. Hence show that

I sinx2dx = I cosxodx = lF. S _
24 2 (The result has numerous applications in physics, for example

in signal propagation. ).

sinx? = Ime™
, = J—iy = o
and letting ¥ = Joix = ey, then
=it R e TET
ID 8 ox ID g ¥ e
The path of integration is moved off the real axis: when ¥ = R— @, thenu = 2R o along a

line making an angle ~®/4 with the real axis. But the integral around the closed contour formed by
the real axis, this line, and the arc at infinity is zero because there are no poles of the integrand

inside, and the integral along the arc — 0:



J‘ = ‘I‘_ﬂ'l4 E-R"smﬁé.:'ﬂd& = l;RJ‘_ﬂME-R“[coszﬂﬁ'smEE]é.:'ﬂd&
are 0 ]

and cos2 is positive throughout the range —mi4 L8 L0, sothe integral — 0. Thus the integral
along the sloping line equals the integral along the real axis. Thus

S = i ot = iﬂlﬂﬁ:L £=l T ;
IDE dx = e .[né £ 2 2 ﬁ““:lz 2 2{1“:I

T/

Problem 34.

Thus
® o 2a 22 - 1 =
ID sthxdx ID cosxedx P

35. The power radiated per unit solid angle by a charge undergoing simple harmonic motion is

4P - panip cos wi
dtd {1+ fcosfsinws )’

= .2.c4 2 -
where the constant & = €“¢c8"/4ma“ gng £ = aw/c is the speed amplitude/c (see.e.g, Jackson p
701). Using methods from section 7.2.1, perform the time average over one period to show that
¢ df o K 2

4 + 52 cos?d
2= ain 8 e
bl 8 (1 —,82 n::-::-szﬁj

Write # = @£ Then the time average is:

¢ dP oo Ksind (2x__ cos'd
bl 2w 40 {1+ Fcosfsing)’

We can simplify by doing one integration by parts:

¢ 4P . Ksin'f cosg
52 (4G cosf)im | (1 + Grosfsing)®

211_ - —s;in(#) d
I” (1+ G cosfsing)? ¢i|

0

_ _Ksin® [ m__ —sing
8?:.8::0519[-[0 (1 +,8c¢sﬁsﬁ1¢:l4d¢j|

= 1_ + l
We convert to an integral over the unit circle in the £ “plane and write SEE Y 2 (2 Z ) and



= L - l i = 3 =
sin‘i’ RS ) Also ¥z = @ 'I'“f‘ﬁ, so @ = dzfiz. with 4 = Foest, the integral is

W g o 1 (z- %) dz
'I.':' (1"'4‘15]11(#))4 t#) 21 4 unit circle (1_,_%(2_?1))4 iz
lj‘ Z(z* - 1)

2 unit circle (2_3'3(22 — 1])4

where & = A/2. The denominator is

4 4
YN R L L . T U R S = jipd (a2 42 _
(z-iB:2 +iB)* = (-iB) (z Z 1) = (=B) (z iZ 1)
and there are 2 fourth-order poles at:

_ i/Bt JFUF +4 -+ [1-1/(48%) - 4 - + JaZ =7 -
? - 28 A

where 4 < 1 and so the square root is imaginary:

z=§[—lim}

Only one of the two poles is inside the unit circle:

zp=i[—l+m]

A
Now we find the residue using method 3:

_ 3 (22 - 1
Redfizy) - 3_111%%?(2 = ((z —ZE:)(Z ‘Zjn)34

4 _ 2
e @)
=% 31 dz? (z - z9)"

where
o = ﬁ[—l—ifl—ﬂz]
Thus
2 3 4 2
Resflz,) = lim - & 4z” - 2z -
ﬂ Pj =z, 3 EiZz |: [2—20)4 [Z—ans
il df 622-1 o 2721 7 = )
55, 3 dz ( (Z—En:'4 (Z—ZD:'S (E—Zu:'ﬁ
2 2_1_
:11m4( £ 7 6z _15 +57-2Z _15 Z'iz ?))
& (z-2p) (z-2q) (z-2p) (Z—2p)
Now

and



; |
B-1=2-2 [1+,f1—ﬂ2]=i[—1+.h—ﬂ?}

id A 42
=A%(C ywhere C = f1-42 = 1 - 52cos?8
So
_fC-1 _ T -1
o 3( )Elr'ldz YE
Thus
=2 -1
Resflz,) = 4| —2 - 221 , o 228~ 1 2
':3‘303'4 ':3‘30:'5 ':Z‘Zu:'ﬁ (Z‘En)?
[r—IJ1

-1

-1
: ( :l 'ul:

_afAt
- 4(21;C'J [L'—I] e 2o
o3 ( -1 :l ('3—1)! A?
['w: L ['£JJ
A
1 ﬁ(ﬂ-lj‘mﬁ‘
paef )R
4 = -1 ztc-ljhf .5 (0=17
( + ET e
i 400 - 1 - 2(6(0 - 1y* + 47 ) C°
I8 ™l ysopo- (20— 1%+ 4% + 5(C- 1)
_ i"q— —_ 3 2 2
_lﬁ(j‘?(zc“ 5C% 4 302 4 30%4% 4 50— 5420 - 5)
_i 4° 2
—i(R7cos*0) 44 proosts

18 {I—Bzcnszejm
and thus the integral is:

14 2(Z-1) L. 2w _Ksin'y (ﬁ‘*cos*&) 1 +46° cos’s
2 ¥ unit sircle (z—iB(z:"—lJr (—iF)* emfcosd 16 (1-5° I:osglf-';lm

4+ 52 cos?d

= 2afcosd
[1 - g* cosgﬁ']m
and finally
2 a2
¢ 4P 5o Ksin?6 27 cos 8 A+ b7 cos "qm
il STC.SC (l_ﬁzmszﬁj
2.2
- Lieinzg 28 cosf
4 (1 - ﬁzcc}szlﬁ'j
as required.
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36. Langmuir waves. The equation for the Langmuir wave dispersion relation takes
the form:

= v )i
0=1+2 P
T ﬂmﬁwv

where “# is the plasma frequency ne/znm and ¥ is the 1-dimensional Maxwellian
— FH F‘?E‘PE J
V) = = Bl
A= meaT Kp( 2ksT

Notice that the integrand has a singularity at ¥ = w/k. Landau showed that the

integral is to be regarded as an integral along the real axis in the complex ¥ ~ plane,
and that the correct integration path passes around and under the pole.

(a) Show that the integral may be expressed as:

E:'ﬂvfﬂv o v iiov
== @) — ﬁ:v PI

(cf Section 7.3.5)

im &
-“wkv ikt

=k

The principal value is defined in the section referred to
ij Eﬂ‘u ,”Elv _ ]JIH( tlJ||.i:—E+‘|\+m )Bﬂﬂf&u .
- = l.in_) =] —aa ulit+e o= .S.'._V
We need to add to this the integral around the small semicircle that passes beneath
the pole. On this path, ¥ = Wik + E'Eiﬂ, and the integral is
it

0 sig - 1
do = 19
\I‘_ﬂ _EEEE .EC B.P

=ik

which is the required result.

(b) Evaluate the principal value approximately, assuming “¥* # vr = Jkalim 54

hence find the frequency © as a function of £ What is the effect of the pole at w/k?
First we integrate by parts:

iV S Y |
Pl S P[m_h‘ﬂ ﬁ:‘l‘_mmdv}

=0—;:PI*°°L.@
™ (o — v )

Because of the exponential in the Maxwellian, the numerator is very small except when

v & vy & Wik Thus we expand the denominator:



1 - 1 - -1 1+2£+3£2+...]
(o — v )2 w2 lkviw - 1)° wz( “ [m J

and thus, integrating by parts
w G o E:v
P T gy - - & [ f(1+ GCAR --].:;t‘v
_%(1+U+33¢_21;§+...J

o o)

Finally, the pole on the real axis contributes a term:
df : 1 2
_im & = ;. -¥Y Jexp| -2
BV e o I\ vE D2
2
'j; vi Dk

This term is small because the exponent is large, so let's neglect it for the moment.
Then:

=ik

2 2
D=1—°‘”F’*‘C(1+3—k v,J=1——m ( —5521:;?)
"E:EL:' o l:L]2 CL:'

To zeroth order the resultis “ = “#- The first order correction gives:
w? = wi + 34w}
the Langmuir wave dispersion relation. Now we add in the small imaginary part:
5 2

w? = 2.2 _: [=® oy Wy
u:u + 3ipty? 3|'2 (kzv?)a*j{p( Ekzvf‘)
_ - 2 2 -
Thus © must have an imaginary part, @ = @ ¥ I¥. and thus @~ = wy + 25, with

1 F wh o - w3
24 2\ i 2k2vE
The wave form

exp (fhkx — dwt) = explikx —iw,t —i(iyt)) = explikx — iw,t) exp v shows that with

anegative ¥- the wave is damped.

(c) How would the result change if the path of integration passed over, rather than
under, the pole? The contribution from the pole would change sign, and we would
predict growth of the waves rather than damping. This is contradicted by experiment.

37. Is the mapping W = z* conformal? Find the image in the ¥ ~ plane of the



circle £ =% = linthe z - plane, and plot it.

. = 2. : L
The function ¥ = & is analytic. The derivative

dw = o
i

IS not zero except at the origin. Thus the mapping is conformal except at the origin.

The circle is described by
(z—i)(z" +i) = 1
or
zzt 4z -2 =0
which maps to
S () +i( - T) = 0
L

and if W = 02",

p+ifo(e™ -] =0

Here's the plot:

Z ~ plane



W ~ plane
Invariance of angles breaks down at = = 0. where the mapping is not conformal.

- 1
38. Is the mapping ¥ = ¢ * T conformal? Find the image in the ¥ ~ plane of (a) the

X ~axis - (b) the ¥ ~ axis, and (c) the unit circle in the Z ~ plane.

- 1
The function ¥ =2 7% 7 is analytic exceptat Z = 0 and at infinity. The derivative is
daw _ - 1
iz z4

which is zero at Z = *1. Thus the mapping is not conformal at these two points.

(a) The real axis maps to
1

Ww=x+ =
x

The origin maps to infinity, the positive + ~ axis maps to the positive ¥ ~ axis with
¥ > 2 andthe negative & ~ axis maps to the negative ¥ ~ axis with & -2
(b) The imaginary axis maps to

v o))

Thus the points ¥ = *1 map to the origin. Points with 0<y<1 map to negative

V. while points with ¥ > 1 map to positive V-



i yversus
X
10
]
4]
x -
T 7 T T LI T
-4 o 2y 4
-4 ]
_|j-
_3-
-10-
¥ versus
¥

(c)The unit circle ¥ = ot maps to

w =g+ = Zrosf
---a chunk of the real- ¥ axis between % = —2 and & = +Z.

A capacitor plate has a cylindrical bump of radius . on it. The second plate is a

distance & * a away. One plate is maintained at potential ¥, and the other is
grounded. Find the potential everywhere between the plates.

We want to convert to a coordinate system with @ = 1, solet * = xfa, ¥ = yia

Then the cylinder has radius r=1 Now we map to the W ~ plane using the



= o4 1

=z +—. . . e e

£~ This maps the cylinder plus # axis to the ¥ axis. The second
R |

. ' v =y - =dia .

plate has coordinate ¥ ~ dia = 1. |t maps to the line > In this

T
mapping

plane the potential is

¢=V§v

whic is zero for ¥ = Uand ¥ for ¥ = d/a. The complex potential is then:

D = FEw =y +ig

o
Mapping back, the potential in the z - plane is:
@ =re(z+1)
ot z
= E}-’E(" i + l —aﬂ]
7 re r“e

so the electric potential is:

=
Il Il
R
& &
[dn] I'.l'.i_
= =
= =3
— o—
[~ T
| |
R Y |—
L — "'\-.__...-

Equipotentials for pfv7= 0.1 (dashed), 0.5 (solid blue), 0.75 (red) and 1 (green).

39. Show that the mapping £ = W * 2" is conformal except at a finite set of points.

A parallel plate capacitor has plates that extend from & = ~lto x = = Find an



appropriate scaling that allows you to place the plates at ¥ = 7. Show that the given
transformation maps the plates to the lines ¥ = 7. Solve for the potential between

the plates in the ¥ ~ plane, map to the Z ~ plane . and hence find the equipotential
surfaces at the ends of the capacitor. Sketch the field lines. This is the so-called
fringing field.

Choose ¥ = 25%/d where ¢ is a coordinate measured perpendicular to the plates, and

d is the plate separation. The function W * e’ is analytic everywhere, and the
derivative is

ﬁ =1+g¥
It is non-zero except at the points
g% = -1
w = tiw, * Siwefc
or, equivalently,
z=-1%i2xn+ 1w

The mapping takes the form:
XAiv = utiv+ete™ = u+e¥cosv + iy +e¥siny)

the real axis inthe u - plane]

Then for ¥ = 0 { X ranges from ~®to T, j.e. we

get the whole real axis in the Z ~ plane. The line @ = IT maps to
x=u-et, y=mWw X ranges from ™ at ¥ T ® to ~lat # = 0. This IS the top

plate of the capacitor. Similarly ¥ = ~i% maps to the lower plate.

The mapping ¥ = Az} has a branch point at each of the points
z=-1x:iZn+1)T. Each 2 ™ ~ wide strip of the ¥ ~ plane maps to the whole

Z ~ plane - For each branch there are two points in the Z ~ plane at which the
mapping is not conformal.

In the W ~ plane we can write the potential as ¢ = viiir, giving a complex potential
T = wlfin, with the complex part being the physical potential. Equipotentials

correspond to ¥ T const T Y0. The corresponding curves in the Z ~ plane are:



X =utetcosv
¥ = v +e¥snyvg
Thus
oY = .:"r._ o
11V
and

x = (y—vglocotvg T

The equipotenials are shown in the figure.

S
I: |'r J'f
1/ /
'
cepaciter plate — J.: / W4 p
. -
'J.Fﬁl ’ 4 ff-'ur.l'ﬁ
-~ I N
Il
._'__._a-"""- 2‘__-""#-'-
_»"'-'_'-I-'-'-c
,_,-—'—"'-'
e
-3 -2 -1 ] 1 E 3

40. Two conducting cylinders, each of radius . are touching. An insulating strip lies
along the line at which they touch. One cylinder is grounded and the other is at

potential V. Use one of the mappings from the chapter to solve for the potential
outside the cylinders.

. The transformation Z = Za/w maps each of the cylinders to a straight line in the

W ~ plane. For a circle centered at Z = i with radius @ we may write a point on the
circle as

z = tig + q2'®

which maps to



_ et _ i - i
= — = , - +iz + o
" i + qa'? [iz'.:z + .:::é."q’) (?1'.:1 + .:ze"‘""j ( )
= m(;i'FCGStﬁ—isﬁlcﬁ:l
_ n::-::-s.cia T
1*smndg

AS ‘i’ varies, ¥ takes on all real values and ¥ falls on the lines +1.

In the ¥ ~ plane, the potential is ¢ = (v + 112 50 we can write a complex
potential

D = (w + P72

where the physical potential is the imaginary part. In the Z ~ plane we have:

o ()

_fdalx-) NV _f2a . NV
* (E—fJE (e +i)g

The imaginary part is:

b= Vhsng+ L= TV

2 IE +l;|__r2 2

Problem 40. Equipotentials for T =04, 3V /4and
¥



The equipotentials are given by

e

=l=a|™

L-9)
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Chapter 2: Complex variables.

41. Show that the mapping ¥ = Lz - 2) maps the arcs (a) £ = 4] = 2 with end points
atz = 3% ﬁiand(b) e —i2+%)| = 1 withend pointsatZ = 3+iandz = 1 +ito
straight line segments.
(a) The arc is described by the equation
(z—4yz*-4)=4
zZzt -4z +zN)+12 =10

Using the transformation:

z= 2+—%;
and thus
(2+ 3 2+WLJ*—4(2+i+[2+%J*]+12=m
ol ) et ) e
il k) -
Thus

1-2lw+w' ) =10
This a straight line parallel to the ¥ ~axis: ¥ = /4 withz = 32 ﬁz’,

1 _ 1F 3
1+ /3 4

The line extends from ¥ = v/3/4 o v = = \f3/4.

w:

The arc in the € ~plane. (a) blue (b) black
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The line in the ¥ “plane

(b) The circle is

Ty
|
e
+
R=]
S
—
k)
|
-
[~
+
]
-
—_
*
Il
—l

I
=,
—
[~
=1,
=
—

= _1
Y = ——
2
. o | w=_Ll =-LlL_z
This is a straight line parallel to the ¥ ~axis. It extends from -1+ 2 2to

42. Show that [ (x) < Ugor =1 < x < 0

If =1 < x < 0, then we can write

Hx) = smﬁxlif:l -x) ) —|sin;x|l"(y)

where 1 <% < 2 Then IV} is positive and hence Fixdis negative.

43. Prove Cauchy's inequality: If fiz)is analytic and bounded in a region R

lz—zo0] < & and [fiz)| < M on the circle £ = 20| = 7 < &, then the coefficients in the
eqn 44)

Taylor series expansion of 7 about 20 ( satisfy the inequality



o] <

M
s

Hence prove Liouville's theorem:
If fizd is analytic and bounded in the entire complex plane, then it is a constant.

Using expression (45) with I equal to the circle of radius 7

=
|c”|=glj:- ﬁ:)ﬂdz‘
T |¥ circle (z — zg )"
_ M
L—0 d0 = 2=
27 fcircle prtl " p

as required.

To Prove Liouville's theorem, we let Rand?”—> =@ Thencn = Uforall # > 0. Thus

flz) = cn. a constant.

44. A function Az} is analytic except for well-separated simple poles at & = Z=.

= 1-M, z, # U. Show that the function may be expanded in a series

Zﬂ”( Za T Zrz)

where 2= is the residue of ¥ at Z=- Is the result valid for &% — =7 Why or why not?

Hint: Evaluate the integral

Iy = ﬂ“’:' LT

2m Co Wiw — z)

where Ci s a circle of radius & about the origin that contains the N poles. You may

assume that /2| < 85 on Cii for £ a small positive constant.

The integrand has simple poles at the origin, at . and at =. # < . Near one of the

poles Z». the integrand has the form

H +Z W_En)k

wiw —zliw — zn)

The denominator of the first term has a simple zero at Z» and the sum is analytic at Z=»-

so the residue at €= is



idn — tin
d,i[wﬂw —zZ)w — zx)] | [(w —z)(w —zn) + wiw —za) + wiw —2)][,5
Ly W=E,
ZnlZn — Z)
Thus
N
= _Dj L2 Z—ﬂﬂ
~ z = ZplZn — Z)
But also
Fog
In| £ i 2Ry &
< 5 R R S TR
Thus f» = Uas £w — = and so
S N 1 1
He) = A0 2=y~ +§b” =t e

as required.

The residue theorem holds when there are a finite number of poles inside the contour, so

this proof is limited to finite N

See also Jeffreys and Jeffreys 11.175.
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