SOLUTIONS MANUAL

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

$3^{\text {rd }}$ Edition

Michael S. Mamlouk Arizona State University

John P. Zaniewski West Virginia University

FOREWORD

This solution manual includes the solutions to numerical problems at the end of various chapters of the book. It does not include answers to word questions, but the appropriate sections in the book are referenced. The procedures used in the solutions are taken from the corresponding chapters and sections of the text. Each step in the solution is taken to the lowest detail level consistent with the level of the text, with a clear progression between steps. Each problem solution is self-contained, with a minimum of dependence on other solutions. The final answer of each problem is printed in bold.

The instructors are advised not to spread the solutions electronically among students in order not to limit the instructor's choice to assign problems in future semesters.

CHAPTER 1. MATERIALS ENGINEERING CONCEPTS

1.2. Strength at rupture $=\mathbf{4 5} \mathbf{~ k s i}$

Toughness $=(45 \times 0.003) / 2=\mathbf{0 . 0 6 7 5} \mathbf{k s i}$
1.3. $\mathrm{A}=0.36 \mathrm{in}^{2}$
$\sigma=138.8889 \mathrm{ksi}$
$\varepsilon_{\mathrm{A}}=0.0035 \mathrm{in} / \mathrm{in}$
$\varepsilon_{\mathrm{L}}=-0.016667 \mathrm{in} / \mathrm{in}$
$\mathbf{E}=39682 \mathrm{ksi}$
$v=0.21$
1.4. $\mathrm{A}=201.06 \mathrm{~mm}^{2}$
$\sigma=0.945 \mathrm{GPa}$
$\varepsilon_{\mathrm{A}}=0.002698 \mathrm{~m} / \mathrm{m}$
$\varepsilon_{\mathrm{L}}=-0.000625 \mathrm{~m} / \mathrm{m}$
$\mathbf{E}=350.3 \mathbf{G P a}$
$v=0.23$
1.5. $\mathrm{A}=\pi \mathrm{d}^{2} / 4=28.27 \mathrm{in}^{2}$
$\sigma=\mathrm{P} / \mathrm{A}=-150,000 / 28.27 \mathrm{in}^{2}=-5.31 \mathrm{ksi}$
$\mathrm{E}=\sigma / \varepsilon=8000 \mathrm{ksi}$
$\varepsilon_{\mathrm{A}}=\sigma / \mathrm{E}=-5.31 \mathrm{ksi} / 8000 \mathrm{ksi}=-0.0006631 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{L}=\varepsilon_{\mathrm{A}} \mathrm{L}_{\mathrm{o}}=-0006631 \mathrm{in} / \mathrm{in}(12 \mathrm{in})=-0.00796 \mathrm{in}$
$\mathrm{L}_{\mathrm{f}}=\Delta \mathrm{L}+\mathrm{L}_{\mathrm{o}}=12$ in -0.00796 in $=\mathbf{1 1 . 9 9 2}$ in
$\nu=-\varepsilon_{\mathrm{L}} / \varepsilon_{\mathrm{A}}=0.35$
$\varepsilon_{\mathrm{L}}=\Delta \mathrm{d} / \mathrm{d}_{\mathrm{o}}=-v \varepsilon_{\mathrm{A}}=-0.35(-0.0006631 \mathrm{in} / \mathrm{in})=0.000232 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{d}=\varepsilon_{\mathrm{L}} \mathrm{d}_{\mathrm{o}}=0.000232(6 \mathrm{in})=0.00139 \mathrm{in}$
$\mathrm{d}_{\mathrm{f}}=\Delta \mathrm{d}+\mathrm{d}_{\mathrm{o}}=6$ in $+0.00139 \mathrm{in}=6.00139$ in
1.6. $\mathrm{A}=\pi \mathrm{d}^{2} / 4=0.196 \mathrm{in}^{2}$
$\sigma=\mathrm{P} / \mathrm{A}=2,000 / 0.196 \mathrm{in}^{2}=10.18 \mathrm{ksi}$ (Less than the yield strength. Within the elastic region)
$\mathrm{E}=\sigma / \varepsilon=10,000 \mathrm{ksi}$
$\varepsilon_{\mathrm{A}}=\sigma / \mathrm{E}=10.18 \mathrm{ksi} / 10,000 \mathrm{ksi}=0.0010186 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{L}=\varepsilon_{\mathrm{A}} \mathrm{L}_{\mathrm{o}}=0.0010186 \mathrm{in} / \mathrm{in}(12 \mathrm{in})=0.0122 \mathrm{in}$
$\mathrm{L}_{\mathrm{f}}=\Delta \mathrm{L}+\mathrm{L}_{\mathrm{o}}=12$ in +0.0122 in $=\mathbf{1 2 . 0 1 2 2}$ in
$\nu=-\varepsilon_{\mathrm{L}} / \varepsilon_{\mathrm{A}}=0.33$
$\varepsilon_{\mathrm{L}}=\Delta \mathrm{d} / \mathrm{d}_{\mathrm{o}}=-v \varepsilon_{\mathrm{A}}=-0.33(0.0010186 \mathrm{in} / \mathrm{in})=-0.000336 \mathrm{in} / \mathrm{in}$
$\Delta \mathrm{d}=\varepsilon_{\mathrm{L}} \mathrm{d}_{\mathrm{o}}=-0.000336(0.5 \mathrm{in})=-0.000168 \mathrm{in}$
$\mathrm{d}_{\mathrm{f}}=\Delta \mathrm{d}+\mathrm{d}_{\mathrm{o}}=0.5$ in -0.000168 in $=0.49998$ in
1.7. $\mathrm{L}_{\mathrm{x}}=30 \mathrm{~mm}, \mathrm{~L}_{\mathrm{y}}=60 \mathrm{~mm}, \mathrm{~L}_{\mathrm{z}}=90 \mathrm{~mm}$
$\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=\sigma_{\mathrm{z}}=\sigma=100 \mathrm{MPa}$
$\mathrm{E}=70 \mathrm{GPa}$
$v=0.333$
$\varepsilon_{x}=\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] / E$
$\varepsilon_{\mathrm{x}}=\left[100 \times 10^{6}-0.333\left(100 \times 10^{6}+100 \times 10^{6}\right)\right] / 70 \times 10^{9}=4.77 \times 10^{-4}=\varepsilon_{\mathrm{y}}=\varepsilon_{\mathrm{z}}=\varepsilon$
$\Delta \mathrm{L}_{\mathrm{x}}=\varepsilon \times \mathrm{L}_{\mathrm{x}}=4.77 \times 10^{-4} \times 30=0.01431 \mathrm{~mm}$
$\Delta \mathrm{L}_{\mathrm{y}}=\varepsilon \times \mathrm{L}_{\mathrm{y}}=4.77 \times 10^{-4} \times 60=0.02862 \mathrm{~mm}$
$\Delta L_{\mathrm{z}}=\varepsilon \times \mathrm{L}_{\mathrm{z}}=4.77 \times 10^{-4} \times 90=\mathbf{0 . 0 4 2 9 3} \mathbf{~ m m}$
$\Delta V=$ New volume - Original volume $=\left[\left(\mathrm{L}_{\mathrm{x}}-\Delta \mathrm{L}_{\mathrm{x}}\right)\left(\mathrm{L}_{\mathrm{y}}-\Delta \mathrm{L}_{\mathrm{y}}\right)\left(\mathrm{L}_{\mathrm{z}}-\Delta \mathrm{L}_{\mathrm{z}}\right)\right]-\mathrm{L}_{\mathrm{x}} \mathrm{L}_{\mathrm{y}} \mathrm{L}_{\mathrm{z}}$ $=(30-0.01431)(60-0.02862)(90-0.04293)]-(30 \times 60 \times 90)=161768-162000$ $=\mathbf{- 2 3 2} \mathrm{mm}^{3}$
1.8. $L_{x}=4$ in, $L_{y}=4$ in, $L_{z}=4$ in
$\sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}=\sigma_{\mathrm{z}}=\sigma=15,000 \mathrm{psi}$
$\mathrm{E}=1000 \mathrm{ksi}$
$v=0.49$
$\varepsilon_{x}=\left[\sigma_{x}-v\left(\sigma_{y}+\sigma_{z}\right)\right] / E$
$\varepsilon_{\mathrm{x}}=[15-0.49(15+15)] / 1000=0.0003=\varepsilon_{y}=\varepsilon_{z}=\varepsilon$
$\Delta \mathrm{L}_{\mathrm{x}}=\varepsilon \times \mathrm{L}_{\mathrm{x}}=0.0003 \times 15=0.0045$ in
$\Delta \mathrm{L}_{\mathrm{y}}=\varepsilon \times \mathrm{L}_{\mathrm{y}}=0.0003 \times 15=0.0045$ in
$\Delta \mathrm{L}_{\mathrm{z}}=\varepsilon \times \mathrm{L}_{\mathrm{z}}=0.0003 \times 15=0.0045$ in
$\Delta V=$ New volume - Original volume $=\left[\left(L_{x}-\Delta L_{x}\right)\left(L_{y}-\Delta L_{y}\right)\left(L_{z}-\Delta L_{z}\right)\right]-L_{x} L_{y} L_{z}$ $=(15-0.0045)(15-0.0045)(15-0.0045)]-(15 \times 15 \times 15)=3371.963-3375$ $=-3.037 \mathrm{in}^{3}$
1.9. $\varepsilon=0.3 \times 10^{-16} \sigma^{3}$

At $\sigma=50,000 \mathrm{psi}, \varepsilon=0.3 \times 10^{-16}(50,000)^{3}=3.75 \times 10^{-3} \mathrm{in} . / \mathrm{in}$.
Secant Modulus $=\frac{\Delta \sigma}{\Delta \varepsilon}=\frac{50,000}{3.75 \times 10^{-3}}=\mathbf{1 . 3 3 \times 1 0} \mathbf{~}{ }^{\mathbf{7}} \mathbf{~ p s i}$
$\frac{d \varepsilon}{d \sigma}=0.9 \times 10^{-16} \sigma^{2}$
At $\sigma=50,000 \mathrm{psi}, \frac{d \varepsilon}{d \sigma}=0.9 \times 10^{-16}(50,000)^{2}=2.25 \times 10^{-7} \mathrm{in} .^{2} / \mathrm{lb}$
Tangent modulus $=\frac{d \sigma}{d \varepsilon}=\frac{1}{2.25 \times 10^{-7}}=\mathbf{4 . 4 4 \times 1 0 ^ { 6 }} \mathbf{~ p s i}$
1.11. $\varepsilon_{\text {lateral }}=\frac{-3.25 \times 10^{-4}}{1}=-3.25 \times 10^{-4} \mathrm{in} . / \mathrm{in}$.
$\varepsilon_{\text {axial }}=\frac{2 \times 10^{-3}}{2}=1 \times 10^{-3} \mathrm{in} . / \mathrm{in}$.
$v=-\frac{\varepsilon_{\text {lateral }}}{\varepsilon_{\text {axial }}}=-\frac{-3.25 \times 10^{-4}}{1 \times 10^{-3}}=\mathbf{0 . 3 2 5}$
1.12. $\varepsilon_{\text {lateral }}=0.05 / 50=0.001 \mathrm{in} . / \mathrm{in}$.
$\varepsilon_{\text {axial }}=v \times \varepsilon_{\text {lateral }}=0.33 \times 0.001=0.00303 \mathrm{in}$.
$\Delta \mathrm{d}=\varepsilon_{\text {axial }} \mathrm{Xd}_{0}=-0.00825 \mathrm{in}$. (Contraction)
1.13. $\mathrm{L}=380 \mathrm{~mm}$
$\mathrm{D}=10 \mathrm{~mm}$
$\mathrm{P}=24.5 \mathrm{kN}$
$\sigma=\mathrm{P} / \mathrm{A}=\mathrm{P} / \pi \mathrm{r}^{2}$
$\sigma=24,500 \mathrm{~N} / \pi(5 \mathrm{~mm})^{2}=312,000 \mathrm{~N} / \mathrm{mm}^{2}=312 \mathrm{MPa}$
$\delta=\frac{P L}{A E}=\frac{24,500 \mathrm{lb} \times 380 \mathrm{~mm}}{\pi(5 \mathrm{~mm})^{2} E(\mathrm{kPa})}=\frac{118,539}{E(M P a)} \mathrm{mm}$

Material	Elastic Modulus (MPa)	Yield Strength (MPa)	Tensile Strength (MPa)	Stress (MPa)	δ (mm)
Copper	110,000	248	289	312	1.078
Al. alloy	70,000	255	420	312	1.693
Steel	207,000	448	551	312	0.573
Brass	101,000	345	420	312	1.174
alloy					

The problem requires the following two conditions:
a) No plastic deformation \Rightarrow Stress < Yield Strength
b) Increase in length, $\delta<0.9 \mathrm{~mm}$

The only material that satisfies both conditions is steel.
1.14. a. $\mathrm{E}=\sigma / \varepsilon=40,000 / 0.004=10 \times \mathbf{1 0}^{\mathbf{6}} \mathbf{~ p s i}$
b. Tangent modulus at a stress of $45,000 \mathrm{psi}$ is the slope of the tangent at that stress $=\mathbf{4 . 7} \mathbf{x}$ $10^{6} \mathrm{psi}$
c. Yield stress using an offset of 0.002 strain $=\mathbf{4 9 , 0 0 0} \mathbf{~ p s i}$
d. Maximum working stress $=$ Failure stress $/$ Factor of safety $=49,000 / 1.5=\mathbf{3 2 , 6 7 0} \mathbf{~ p s i}$
1.15.a. Modulus of elasticity within the linear portion $=20,000 \mathrm{ksi}$.
b. Yield stress at an offset strain of $0.002 \mathrm{in} . / \mathrm{in} . \approx 70.0 \mathrm{ksi}$
c. Yield stress at an extension strain of $0.005 \mathrm{in} / \mathrm{in} . \approx 69.5 \mathrm{ksi}$
d. Secant modulus at a stress of $62 \mathrm{ksi} . \approx 18,000 \mathrm{ksi}$
e. Tangent modulus at a stress of $65 \mathrm{ksi} \approx 6,000 \mathrm{ksi}$
1.16.a. Modulus of resilience $=$ the area under the elastic portion of the stress strain curve $=1 / 2(50 \times 0.0025) \approx 0.0625 \mathrm{ksi}$
b. Toughness $=$ the area under the stress strain curve (using the trapezoidal integration technique) $\approx 0.69 \mathrm{ksi}$
c. $\sigma=40 \mathrm{ksi}$, this stress is within the elastic range, therefore, $\mathrm{E}=\mathbf{2 0 , 0 0 0} \mathbf{~ k s i}$
$\varepsilon_{\text {axial }}=40 / 20,000=0.002 \mathrm{in} . / \mathrm{in}$.
$v=-\frac{\varepsilon_{\text {lateral }}}{\varepsilon_{\text {axial }}}=-\frac{-0.00057}{0.002}=\mathbf{0 . 2 8 5}$
d. The permanent strain at $70 \mathrm{ksi}=0.0018 \mathrm{in} . / \mathrm{in}$.
1.17.

	Material A	Material B
a. Proportional limit	$\mathbf{5 1} \mathbf{~ k s i}$	$\mathbf{4 0} \mathbf{~ k s i}$
b. Yield stress at an offset strain of 0.002 in./in.	$\mathbf{6 3} \mathbf{~ k s i}$	$\mathbf{5 2} \mathbf{~ k s i}$
c. Ultimate strength	$\mathbf{1 3 2} \mathbf{~ k s i}$	$\mathbf{7 3} \mathbf{~ k s i}$
d. Modulus of resilience	$\mathbf{0 . 0 6 5} \mathbf{~ k s i}$	$\mathbf{0 . 0 7} \mathbf{~ k s i}$
e. Toughness	$\mathbf{8 . 2} \mathbf{~ k s i}$	$\mathbf{7 . 5} \mathbf{~ k s i}$
f.	Material B is more ductile as it undergoes more deformation before failure	

1.18. Assume that the stress is within the linear elastic range.
$\sigma=\varepsilon \cdot E=\frac{\delta \cdot E}{l}=\frac{0.3 \times 16,000}{10}=480 \mathrm{ksi}$
Thus $\sigma>\sigma_{\text {yield }}$
Therefore, the applied stress is not within the linear elastic region and it is not possible to compute the magnitude of the load that is necessary to produce the change in length based on the given information.
1.19. Assume that the stress is within the linear elastic range.

$$
\sigma=\varepsilon \cdot E=\frac{\delta \cdot E}{l}=\frac{7.6 \times 105,000}{250}=3,192 \mathrm{MPa}
$$

Thus $\sigma>\sigma_{\text {yield }}$
Therefore, the applied stress is not within the linear elastic region and it is not possible to compute the magnitude of the load that is necessary to produce the change in length based on the given information.
1.20. At $\sigma=60,000 \mathrm{psi}, \varepsilon=\sigma / \mathrm{E}=60,000 /\left(30 \times 10^{6}\right)=0.002 \mathrm{in} . / \mathrm{in}$. a. For a strain of 0.001 in ./in.:
$\sigma=\varepsilon \mathrm{E}=0.001 \times 30 \times 10^{6}=\mathbf{3 0 , 0 0 0} \mathbf{~ p s i}$ (for both i and ii)
b. For a strain of $0.004 \mathrm{in} . / \mathrm{in}$.:

$$
\begin{aligned}
-\sigma & =\mathbf{6 0 , 0 0 0} \mathbf{~ p s i}(\text { for i) } \\
\sigma & =60,000+2 \times 10^{6}(0.004-0.002)=\mathbf{6 4 , 0 0 0} \mathbf{~ p s i} \text { (for ii) }
\end{aligned}
$$

1.21. . Slope of the elastic portion $=600 / 0.003=2 \times 10^{5} \mathrm{MPa}$

Slope of the plastic portion $=(800-600) /(0.07-0.003)=2,985 \mathrm{MPa}$
Strain at $650 \mathrm{MPa}=0.003+(650-600) / 2,985=0.0198 \mathrm{~m} / \mathrm{m}$
Permanent strain at $650 \mathrm{MPa}=0.0198-650 /\left(2 \times 10^{5}\right)=\mathbf{0 . 0 1 6 5} \mathbf{~ m} / \mathbf{m}$
b. Percent increase in yield strength $==100(650-600) / 600=\mathbf{8 . 3 \%}$
c. The strain at $625 \mathrm{MPa}=625 /\left(2 \times 10^{5}\right)=\mathbf{0 . 0 0 3 1 2 5} \mathbf{~ m} / \mathbf{m}$

This strain is elastic.
1.22. See Sections 1.2.3, 1.2.4 and 1.2.5.

This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission(s), write to: Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.
1.23. The stresses and strains can be calculated as follows:
$\sigma=\mathrm{P} / \mathrm{A}_{0}=150 /\left(\pi \times 2^{2}\right)=11.94 \mathrm{psi}$
$\varepsilon=\left(\mathrm{H}_{0}-\mathrm{H}\right) / \mathrm{H}_{\mathrm{o}}=(6-\mathrm{H}) / 6$
The stresses and strains are shown in the following table:

Time (min.)	H (in.)	Strain (in./in.)	Stress (psi)
0	6	0.00000	11.9366
0.01	5.9916	0.00140	11.9366
2	5.987	0.00217	11.9366
5	5.9833	0.00278	11.9366
10	5.9796	0.00340	11.9366
20	5.9753	0.00412	11.9366
30	5.9725	0.00458	11.9366
40	5.9708	0.00487	11.9366
50	5.9696	0.00507	11.9366
60	5.9688	0.00520	11.9366
60.01	5.9772	0.00380	0.0000
62	5.9807	0.00322	0.0000
65	5.9841	0.00265	0.0000
70	5.9879	0.00202	0.0000
80	5.9926	0.00123	0.0000
90	5.9942	0.00097	0.0000
100	5.9954	0.00077	0.0000
110	5.9959	0.00068	0.0000
120	5.9964	0.00060	0.0000

a. Stress versus time plot for the asphalt concrete sample

Strain versus time plot for the asphalt concrete sample

b. Elastic strain $=\mathbf{0 . 0 0 1 4} \mathbf{i n} . / \mathrm{in}$.
c. The permanent strain at the end of the experiment $=\mathbf{0 . 0 0 0 6} \mathbf{~ i n} . / \mathbf{i n}$.
d. The phenomenon of the change of specimen height during static loading is called creep while the phenomenon of the change of specimen height during unloading called is called recovery.
1.24. See Figure 1.12(a).
1.25 See Section 1.2.7.
1.27. a. For $\mathrm{P}=5 \mathrm{kN}$

Stress $=P / A=5000 /\left(\pi \times 5^{2}\right)=63.7 \mathrm{~N} / \mathrm{mm}^{2}=63.7 \mathrm{MPa}$
Stress / Strength $=63.7 / 290=0.22$
From Figure 1.16, an unlimited number of repetitions can be applied without fatigue failure.
b. For $\mathrm{P}=11 \mathrm{kN}$

Stress $=P / A=11000 /\left(\pi \times 5^{2}\right)=140.1 \mathrm{~N} / \mathrm{mm}^{2}=140.1 \mathrm{MPa}$
Stress $/$ Strength $=140.1 / 290=0.48$
From Figure 1.16, N ≈ 700
1.28 See Section 1.2.8.
1.29.

Material	Specific Gravity
Steel	7.9
Aluminum	2.7
Aggregates	$2.6-2.7$
Concrete	2.4
Asphalt cement	$1-1.1$

1.30 See Section 1.3.2.

1.31. $\delta L=\alpha_{L} x \delta T x L=12.5 \mathrm{E}-06 \times(115-15) \times 200 / 1000=0.00025 \mathrm{~m}=250$ microns

Rod length $=\mathrm{L}+\delta L=200,000+250=\mathbf{2 0 0}, \mathbf{2 5 0}$ microns

Compute change in diameter linear method

$$
\delta d=\alpha_{d} x \delta T x d=12.5 \mathrm{E}-06 \times(115-15) \times 20=0.025 \mathrm{~mm}
$$

Final d=20.025 mm

Compute change in diameter volume method

$\delta V=\alpha_{V} \times \delta T \times V=(3 \times 12.5 \mathrm{E}-06) \times(115-15) x \pi(10 / 1000)^{2} \times 200 / 1000=2.3562 \times 10^{11}$ m^{3}
Rod final volume $=V+\delta V=\pi r^{2} L+\delta V=6.28319 \times 10^{13}+2.3562 \times 10^{11}=6.31 \times 10^{13} \mathrm{~m}^{3}$
Final d=20.025 mm

There is no stress acting on the rod because the rod is free to move.
1.32. Since the rod is snugly fitted against two immovable nonconducting walls, the length of the rod will not change, $\mathbf{L}=\mathbf{2 0 0} \mathbf{~ m m}$
From problem 1.25, $\delta L=0.00025 \mathrm{~m}$
$\varepsilon=\delta L / \mathrm{L}=0.00025 / 0.2=0.00125 \mathrm{~m} / \mathrm{m}$
$\sigma=\varepsilon \mathrm{E}=0.00125 \times 207,000=\mathbf{2 5 8 . 7 5} \mathbf{~ M P a}$
The stress induced in the bar will be compression.
1.33. a. The change in length can be calculated using Equation 1.9 as follows:

$$
\delta L=\alpha_{L} \times \delta T \times L=1.1 \mathrm{E}-5 \times(5-40) \times 4=\mathbf{- 0 . 0 0 1 5 4} \mathbf{m}
$$

b. The tension load needed to return the length to the original value of 4 meters can be calculated as follows:
$\varepsilon=\delta L / L=-0.00154 / 4=-0.000358 \mathrm{~m} / \mathrm{m}$
$\sigma=\varepsilon \mathrm{E}=-0.000358 \times 200,000=-77 \mathrm{MPa}$
$\mathrm{P}=\sigma \times \mathrm{A}=-77 \times(100 \times 50)=-385,000 \mathrm{~N}=\mathbf{- 3 8 5} \mathbf{k N}$ (tension)
c. Longitudinal strain under this load $=\mathbf{0 . 0 0 0 3 5 8} \mathbf{~ m} / \mathbf{m}$
1.34. If the bar was fixed at one end and free at the other end, the bar would have contracted and no stresses would have developed. In that case, the change in length can be calculated using Equation 1.9 as follows.
$\delta L=\alpha_{L} \times \delta T \times L=0.000005 \times(0-100) \times 50=-0.025 \mathrm{in}$.
$\varepsilon=\delta L / \mathrm{L}=0.025 / 50=0.0005 \mathrm{in} . / \mathrm{in}$.

Since the bar is fixed at both ends, the length of the bar will not change. Therefore, a tensile stress will develop in the bar as follows.
$\sigma=\varepsilon \mathrm{E}=-0.0005 \times 5,000,000=-2,500 \mathrm{psi}$
Thus, the tensile strength should be larger than $\mathbf{2 , 5 0 0} \mathbf{~ p s i}$ in order to prevent cracking.
1.36 See Section 1.7.

1.37 See Section 1.7.1

1.38. $\mathrm{H}_{0}: \mu \geq 32.4 \mathrm{MPa}$
$\mathrm{H}_{1}: \mu<32.4 \mathrm{MPa}$
$\alpha=0.05$
$\mathrm{T}_{\mathrm{o}}=\frac{\bar{x}-\mu}{(\sigma / \sqrt{n})}=-3$
Degree of freedom $=v=\mathrm{n}-1=15$
From the statistical t-distribution table, $\mathrm{T}_{\alpha, v}=\mathrm{T}_{0.05,15}=-1.753$
$\mathrm{T}_{\mathrm{o}}<\mathrm{T}_{\alpha, \mathrm{v}}$
Therefore, reject the hypothesis. The contractor's claim is not valid.
1.39. $\mathrm{H}_{0}: \mu \geq 5,000 \mathrm{psi}$
$\mathrm{H}_{1}: \mu<5,000 \mathrm{psi}$
$\alpha=0.05$
$\mathrm{T}_{\mathrm{o}}=\frac{\bar{x}-\mu}{(\sigma / \sqrt{n})}=-2.236$
Degree of freedom $=v=\mathrm{n}-1=19$
From the statistical t-distribution table, $\mathrm{T}_{\alpha, v}=\mathrm{T}_{0.05,19}=-1.729$
$\mathrm{T}_{\mathrm{o}}<\mathrm{T}_{\alpha, \mathrm{v}}$
Therefore, reject the hypothesis. The contractor's claim is not valid.
1.40. $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum_{i=1}^{20} x_{i}}{20}=\frac{113,965}{20}=5,698.25 \mathrm{psi}$

$$
s=\left(\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}\right)^{1 / 2}=\left(\frac{\sum_{i=1}^{20}\left(x_{i}-5698.25\right)^{2}}{20-1}\right)^{1 / 2}=571.35 \mathrm{psi}
$$

Coefficient of Variation $=100\left(\frac{s}{\bar{x}}\right)=100\left(\frac{571.35}{5698.25}\right)=10.03 \%$
b. The control chart is shown below.

The target value is any value above the specification limit of 5,000 psi. The plant production is meeting the specification requirement.

