


Chapter 2

Fundamentals of the Mechanical
Behavior of Materials

Questions

2.1 Can you calculate the percent elongation of ma-
terials based only on the information given in
Fig. 2.6? Explain.

Recall that the percent elongation is defined by
Eq. (2.6) on p. 33 and depends on the original
gage length (lo) of the specimen. From Fig. 2.6
on p. 37 only the necking strain (true and engi-
neering) and true fracture strain can be deter-
mined. Thus, we cannot calculate the percent
elongation of the specimen; also, note that the
elongation is a function of gage length and in-
creases with gage length.

2.2 Explain if it is possible for the curves in Fig. 2.4
to reach 0% elongation as the gage length is in-
creased further.

The percent elongation of the specimen is a
function of the initial and final gage lengths.
When the specimen is being pulled, regardless
of the original gage length, it will elongate uni-
formly (and permanently) until necking begins.
Therefore, the specimen will always have a cer-
tain finite elongation. However, note that as the
specimen’s gage length is increased, the contri-
bution of localized elongation (that is, necking)
will decrease, but the total elongation will not
approach zero.

2.3 Explain why the difference between engineering
strain and true strain becomes larger as strain

increases. Is this phenomenon true for both ten-
sile and compressive strains? Explain.

The difference between the engineering and true
strains becomes larger because of the way the
strains are defined, respectively, as can be seen
by inspecting Eqs. (2.1) on p. 30 and (2.9) on
p. 35. This is true for both tensile and com-
pressive strains.

2.4 Using the same scale for stress, we note that the
tensile true-stress-true-strain curve is higher
than the engineering stress-strain curve. Ex-
plain whether this condition also holds for a
compression test.

During a compression test, the cross-sectional
area of the specimen increases as the specimen
height decreases (because of volume constancy)
as the load is increased. Since true stress is de-
fined as ratio of the load to the instantaneous
cross-sectional area of the specimen, the true
stress in compression will be lower than the en-
gineering stress for a given load, assuming that
friction between the platens and the specimen
is negligible.

2.5 Which of the two tests, tension or compression,
requires a higher capacity testing machine than
the other? Explain.

The compression test requires a higher capacity
machine because the cross-sectional area of the

1

© 2008 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.
This material is protected by Copyright and written permission should be obtained from the publisher prior to any prohibited

reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permission(s), write to:

Rights and Permissions Department, Pearson Education, Inc., Upper Saddle River, NJ 07458.



specimen increases during the test, which is the
opposite of a tension test. The increase in area
requires a load higher than that for the ten-
sion test to achieve the same stress level. Fur-
thermore, note that compression-test specimens
generally have a larger original cross-sectional
area than those for tension tests, thus requiring
higher forces.

2.6 Explain how the modulus of resilience of a ma-
terial changes, if at all, as it is strained: (1) for
an elastic, perfectly plastic material, and (2) for
an elastic, linearly strain-hardening material.

2.7 If you pull and break a tension-test specimen
rapidly, where would the temperature be the
highest? Explain why.

Since temperature rise is due to the work input,
the temperature will be highest in the necked
region because that is where the strain, hence
the energy dissipated per unit volume in plastic
deformation, is highest.

2.8 Comment on the temperature distribution if the
specimen in Question 2.7 is pulled very slowly.

If the specimen is pulled very slowly, the tem-
perature generated will be dissipated through-
out the specimen and to the environment.
Thus, there will be no appreciable temperature
rise anywhere, particularly with materials with
high thermal conductivity.

2.9 In a tension test, the area under the true-stress-
true-strain curve is the work done per unit vol-
ume (the specific work). We also know that
the area under the load-elongation curve rep-
resents the work done on the specimen. If you
divide this latter work by the volume of the
specimen between the gage marks, you will de-
termine the work done per unit volume (assum-
ing that all deformation is confined between
the gage marks). Will this specific work be
the same as the area under the true-stress-true-
strain curve? Explain. Will your answer be the
same for any value of strain? Explain.

If we divide the work done by the total volume
of the specimen between the gage lengths, we
obtain the average specific work throughout the
specimen. However, the area under the true

stress-true strain curve represents the specific
work done at the necked (and fractured) region
in the specimen where the strain is a maximum.
Thus, the answers will be different. However,
up to the onset of necking (instability), the spe-
cific work calculated will be the same. This is
because the strain is uniform throughout the
specimen until necking begins.

2.10 The note at the bottom of Table 2.5 states that
as temperature increases, C decreases and m
increases. Explain why.

The value of C in Table 2.5 on p. 43 decreases
with temperature because it is a measure of the
strength of the material. The value of m in-
creases with temperature because the material
becomes more strain-rate sensitive, due to the
fact that the higher the strain rate, the less time
the material has to recover and recrystallize,
hence its strength increases.

2.11 You are given the K and n values of two dif-
ferent materials. Is this information sufficient
to determine which material is tougher? If not,
what additional information do you need, and
why?

Although the K and n values may give a good
estimate of toughness, the true fracture stress
and the true strain at fracture are required for
accurate calculation of toughness. The modu-
lus of elasticity and yield stress would provide
information about the area under the elastic re-
gion; however, this region is very small and is
thus usually negligible with respect to the rest
of the stress-strain curve.

2.12 Modify the curves in Fig. 2.7 to indicate the
effects of temperature. Explain the reasons for
your changes.

These modifications can be made by lowering
the slope of the elastic region and lowering the
general height of the curves. See, for example,
Fig. 2.10 on p. 42.

2.13 Using a specific example, show why the defor-
mation rate, say in m/s, and the true strain rate
are not the same.

The deformation rate is the quantity v in
Eqs. (2.14), (2.15), (2.17), and (2.18) on pp. 41-
46. Thus, when v is held constant during de-
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formation (hence a constant deformation rate),
the true strain rate will vary, whereas the engi-
neering strain rate will remain constant. Hence,
the two quantities are not the same.

2.14 It has been stated that the higher the value of
m, the more diffuse the neck is, and likewise,
the lower the value of m, the more localized the
neck is. Explain the reason for this behavior.

As discussed in Section 2.2.7 starting on p. 41,
with high m values, the material stretches to
a greater length before it fails; this behavior
is an indication that necking is delayed with
increasing m. When necking is about to be-
gin, the necking region’s strength with respect
to the rest of the specimen increases, due to
strain hardening. However, the strain rate in
the necking region is also higher than in the rest
of the specimen, because the material is elon-
gating faster there. Since the material in the
necked region becomes stronger as it is strained
at a higher rate, the region exhibits a greater re-
sistance to necking. The increase in resistance
to necking thus depends on the magnitude of
m. As the tension test progresses, necking be-
comes more diffuse, and the specimen becomes
longer before fracture; hence, total elongation
increases with increasing values of m (Fig. 2.13
on p. 45). As expected, the elongation after
necking (postuniform elongation) also increases
with increasing m. It has been observed that
the value of m decreases with metals of increas-
ing strength.

2.15 Explain why materials with highm values (such
as hot glass and silly putty) when stretched
slowly, undergo large elongations before failure.
Consider events taking place in the necked re-
gion of the specimen.

The answer is similar to Answer 2.14 above.

2.16 Assume that you are running four-point bend-
ing tests on a number of identical specimens of
the same length and cross-section, but with in-
creasing distance between the upper points of
loading (see Fig. 2.21b). What changes, if any,
would you expect in the test results? Explain.

As the distance between the upper points of
loading in Fig. 2.21b on p. 51 increases, the
magnitude of the bending moment decreases.

However, the volume of material subjected to
the maximum bending moment (hence to max-
imum stress) increases. Thus, the probability
of failure in the four-point test increases as this
distance increases.

2.17 Would Eq. (2.10) hold true in the elastic range?
Explain.

Note that this equation is based on volume con-
stancy, i.e., Aolo = Al. We know, however, that
because the Poisson’s ratio ν is less than 0.5 in
the elastic range, the volume is not constant in
a tension test; see Eq. (2.47) on p. 69. There-
fore, the expression is not valid in the elastic
range.

2.18 Why have different types of hardness tests been
developed? How would you measure the hard-
ness of a very large object?

There are several basic reasons: (a) The overall
hardness range of the materials; (b) the hard-
ness of their constituents; see Chapter 3; (c) the
thickness of the specimen, such as bulk versus
foil; (d) the size of the specimen with respect to
that of the indenter; and (e) the surface finish
of the part being tested.

2.19 Which hardness tests and scales would you use
for very thin strips of material, such as alu-
minum foil? Why?

Because aluminum foil is very thin, the indenta-
tions on the surface must be very small so as not
to affect test results. Suitable tests would be a
microhardness test such as Knoop or Vickers
under very light loads (see Fig. 2.22 on p. 52).
The accuracy of the test can be validated by ob-
serving any changes in the surface appearance
opposite to the indented side.

2.20 List and explain the factors that you would con-
sider in selecting an appropriate hardness test
and scale for a particular application.

Hardness tests mainly have three differences:

(a) type of indenter,

(b) applied load, and

(c) method of indentation measurement
(depth or surface area of indentation, or
rebound of indenter).
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The hardness test selected would depend on the
estimated hardness of the workpiece, its size
and thickness, and if an average hardness or the
hardness of individual microstructural compo-
nents is desired. For instance, the scleroscope,
which is portable, is capable of measuring the
hardness of large pieces which otherwise would
be difficult or impossible to measure by other
techniques.

The Brinell hardness measurement leaves a
fairly large indentation which provides a good
measure of average hardness, while the Knoop
test leaves a small indentation that allows, for
example, the determination of the hardness of
individual phases in a two-phase alloy, as well as
inclusions. The small indentation of the Knoop
test also allows it to be useful in measuring the
hardness of very thin layers on parts, such as
plating or coatings. Recall that the depth of in-
dentation should be small relative to part thick-
ness, and that any change on the bottom sur-
face appearance makes the test results invalid.

2.21 In a Brinell hardness test, the resulting impres-
sion is found to be an ellipse. Give possible
explanations for this phenomenon.

There are several possible reasons for this
phenomenon, but the two most likely are
anisotropy in the material and the presence of
surface residual stresses in the material.

2.21 Referring to Fig. 2.22 on p. 52, note that the
material for indenters are either steel, tungsten
carbide, or diamond. Why isn’t diamond used
for all of the tests?

While diamond is the hardest material known,
it would not, for example, be practical to make
and use a 10-mm diamond indenter because the
costs would be prohibitive. Consequently, a
hard material such as those listed are sufficient
for most hardness tests.

2.22 What effect, if any, does friction have in a hard-
ness test? Explain.

The effect of friction has been found to be mini-
mal. In a hardness test, most of the indentation
occurs through plastic deformation, and there
is very little sliding at the indenter-workpiece
interface; see Fig. 2.25 on p. 55.

2.23 Describe the difference between creep and
stress-relaxation phenomena, giving two exam-
ples for each as they relate to engineering ap-
plications.

Creep is the permanent deformation of a part
that is under a load over a period of time, usu-
ally occurring at elevated temperatures. Stress
relaxation is the decrease in the stress level in
a part under a constant strain. Examples of
creep include:

(a) turbine blades operating at high tempera-
tures, and

(b) high-temperature steam linesand furnace
components.

Stress relaxation is observed when, for example,
a rubber band or a thermoplastic is pulled to
a specific length and held at that length for a
period of time. This phenomenon is commonly
observed in rivets, bolts, and guy wires, as well
as thermoplastic components.

2.24 Referring to the two impact tests shown in
Fig. 2.31, explain how different the results
would be if the specimens were impacted from
the opposite directions.

Note that impacting the specimens shown in
Fig. 2.31 on p. 60 from the opposite directions
would subject the roots of the notches to com-
pressive stresses, and thus they would not act
as stress raisers. Thus, cracks would not propa-
gate as they would when under tensile stresses.
Consequently, the specimens would basically
behave as if they were not notched.

2.25 If you remove layer ad from the part shown in
Fig. 2.30d, such as by machining or grinding,
which way will the specimen curve? (Hint: As-
sume that the part in diagram (d) can be mod-
eled as consisting of four horizontal springs held
at the ends. Thus, from the top down, we have
compression, tension, compression, and tension
springs.)

Since the internal forces will have to achieve a
state of static equilibrium, the new part has to
bow downward (i.e., it will hold water). Such
residual-stress patterns can be modeled with
a set of horizontal tension and compression
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springs. Note that the top layer of the mate-
rial ad in Fig. 2.30d on p. 60, which is under
compression, has the tendency to bend the bar
upward. When this stress is relieved (such as
by removing a layer), the bar will compensate
for it by bending downward.

2.26 Is it possible to completely remove residual
stresses in a piece of material by the technique
described in Fig. 2.32 if the material is elastic,
linearly strain hardening? Explain.

By following the sequence of events depicted
in Fig. 2.32 on p. 61, it can be seen that it is
not possible to completely remove the residual
stresses. Note that for an elastic, linearly strain
hardening material, σ′c will never catch up with
σ′t.

2.27 Referring to Fig. 2.32, would it be possible to
eliminate residual stresses by compression in-
stead of tension? Assume that the piece of ma-
terial will not buckle under the uniaxial com-
pressive force.

Yes, by the same mechanism described in
Fig. 2.32 on p. 61.

2.28 List and explain the desirable mechanical prop-
erties for the following: (1) elevator cable, (2)
bandage, (3) shoe sole, (4) fish hook, (5) au-
tomotive piston, (6) boat propeller, (7) gas-
turbine blade, and (8) staple.

The following are some basic considerations:

(a) Elevator cable: The cable should not elon-
gate elastically to a large extent or un-
dergo yielding as the load is increased.
These requirements thus call for a mate-
rial with a high elastic modulus and yield
stress.

(b) Bandage: The bandage material must be
compliant, that is, have a low stiffness, but
have high strength in the membrane direc-
tion. Its inner surface must be permeable
and outer surface resistant to environmen-
tal effects.

(c) Shoe sole: The sole should be compliant
for comfort, with a high resilience. It
should be tough so that it absorbs shock
and should have high friction and wear re-
sistance.

(d) Fish hook: A fish hook needs to have high
strength so that it doesn’t deform perma-
nently under load, and thus maintain its
shape. It should be stiff (for better con-
trol during its use) and should be resistant
the environment it is used in (such as salt
water).

(e) Automotive piston: This product must
have high strength at elevated tempera-
tures, high physical and thermal shock re-
sistance, and low mass.

(f) Boat propeller: The material must be
stiff (to maintain its shape) and resistant
to corrosion, and also have abrasion re-
sistance because the propeller encounters
sand and other abrasive particles when op-
erated close to shore.

(g) Gas turbine blade: A gas turbine blade op-
erates at high temperatures (depending on
its location in the turbine); thus it should
have high-temperature strength and resis-
tance to creep, as well as to oxidation and
corrosion due to combustion products dur-
ing its use.

(h) Staple: The properties should be closely
parallel to that of a paper clip. The staple
should have high ductility to allow it to be
deformed without fracture, and also have
low yield stress so that it can be bent (as
well as unbent when removing it) easily
without requiring excessive force.

2.29 Make a sketch showing the nature and distribu-
tion of the residual stresses in Figs. 2.31a and b
before the parts were split (cut). Assume that
the split parts are free from any stresses. (Hint:
Force these parts back to the shape they were
in before they were cut.)

As the question states, when we force back the
split portions in the specimen in Fig. 2.31a
on p. 60, we induce tensile stresses on the
outer surfaces and compressive on the inner.
Thus the original part would, along its total
cross section, have a residual stress distribu-
tion of tension-compression-tension. Using the
same technique, we find that the specimen in
Fig. 2.31b would have a similar residual stress
distribution prior to cutting.

2.30 It is possible to calculate the work of plastic
deformation by measuring the temperature rise
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in a workpiece, assuming that there is no heat
loss and that the temperature distribution is
uniform throughout. If the specific heat of the
material decreases with increasing temperature,
will the work of deformation calculated using
the specific heat at room temperature be higher
or lower than the actual work done? Explain.

If we calculate the heat using a constant specific
heat value in Eq. (2.65) on p. 73, the work will
be higher than it actually is. This is because,
by definition, as the specific heat decreases, less
work is required to raise the workpiece temper-
ature by one degree. Consequently, the calcu-
lated work will be higher than the actual work
done.

2.31 Explain whether or not the volume of a metal
specimen changes when the specimen is sub-
jected to a state of (a) uniaxial compressive
stress and (b) uniaxial tensile stress, all in the
elastic range.

For case (a), the quantity in parentheses in
Eq. (2.47) on p. 69 will be negative, because
of the compressive stress. Since the rest of the
terms are positive, the product of these terms is
negative and, hence, there will be a decrease in
volume (This can also be deduced intuitively.)
For case (b), it will be noted that the volume
will increase.

2.32 We know that it is relatively easy to subject
a specimen to hydrostatic compression, such as
by using a chamber filled with a liquid. Devise a
means whereby the specimen (say, in the shape
of a cube or a thin round disk) can be subjected
to hydrostatic tension, or one approaching this
state of stress. (Note that a thin-walled, inter-
nally pressurized spherical shell is not a correct
answer, because it is subjected only to a state
of plane stress.)

Two possible answers are the following:

(a) A solid cube made of a soft metal has all its
six faces brazed to long square bars (of the
same cross section as the specimen); the
bars are made of a stronger metal. The six
arms are then subjected to equal tension
forces, thus subjecting the cube to equal
tensile stresses.

(b) A thin, solid round disk (such as a coin)
and made of a soft material is brazed be-
tween the ends of two solid round bars
of the same diameter as that of the disk.
When subjected to longitudinal tension,
the disk will tend to shrink radially. But
because it is thin and its flat surfaces are
restrained by the two rods from moving,
the disk will be subjected to tensile radial
stresses. Thus, a state of triaxial (though
not exactly hydrostatic) tension will exist
within the thin disk.

2.33 Referring to Fig. 2.19, make sketches of the
state of stress for an element in the reduced
section of the tube when it is subjected to (1)
torsion only, (2) torsion while the tube is in-
ternally pressurized, and (3) torsion while the
tube is externally pressurized. Assume that the
tube is closed end.

These states of stress can be represented simply
by referring to the contents of this chapter as
well as the relevant materials covered in texts
on mechanics of solids.

2.34 A penny-shaped piece of soft metal is brazed
to the ends of two flat, round steel rods of the
same diameter as the piece. The assembly is
then subjected to uniaxial tension. What is the
state of stress to which the soft metal is sub-
jected? Explain.

The penny-shaped soft metal piece will tend
to contract radially due to the Poisson’s ratio;
however, the solid rods to which it attached will
prevent this from happening. Consequently, the
state of stress will tend to approach that of hy-
drostatic tension.

2.35 A circular disk of soft metal is being com-
pressed between two flat, hardened circular
steel punches having the same diameter as the
disk. Assume that the disk material is perfectly
plastic and that there is no friction or any tem-
perature effects. Explain the change, if any, in
the magnitude of the punch force as the disk is
being compressed plastically to, say, a fraction
of its original thickness.

Note that as it is compressed plastically, the
disk will expand radially, because of volume
constancy. An approximately donut-shaped
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material will then be pushed radially out-
ward, which will then exert radial compressive
stresses on the disk volume under the punches.
The volume of material directly between the
punches will now subjected to a triaxial com-
pressive state of stress. According to yield cri-
teria (see Section 2.11), the compressive stress
exerted by the punches will thus increase, even
though the material is not strain hardening.
Therefore, the punch force will increase as de-
formation increases.

2.36 A perfectly plastic metal is yielding under the
stress state σ1, σ2, σ3, where σ1 > σ2 > σ3.
Explain what happens if σ1 is increased.

Consider Fig. 2.36 on p. 67. Points in the in-
terior of the yield locus are in an elastic state,
whereas those on the yield locus are in a plas-
tic state. Points outside the yield locus are not
admissible. Therefore, an increase in σ1 while
the other stresses remain unchanged would re-
quire an increase in yield stress. This can also
be deduced by inspecting either Eq. (2.36) or
Eq. (2.37) on p. 64.

2.37 What is the dilatation of a material with a Pois-
son’s ratio of 0.5? Is it possible for a material to
have a Poisson’s ratio of 0.7? Give a rationale
for your answer.

It can be seen from Eq. (2.47) on p. 69 that the
dilatation of a material with ν = 0.5 is always
zero, regardless of the stress state. To examine
the case of ν = 0.7, consider the situation where
the stress state is hydrostatic tension. Equation
(2.47) would then predict contraction under a
tensile stress, a situation that cannot occur.

2.38 Can a material have a negative Poisson’s ratio?
Explain.

Solid material do not have a negative Poisson’s
ratio, with the exception of some composite ma-
terials (see Chapter 10), where there can be a
negative Poisson’s ratio in a given direction.

2.39 As clearly as possible, define plane stress and
plane strain.

Plane stress is the situation where the stresses
in one of the direction on an element are zero;
plane strain is the situation where the strains
in one of the direction are zero.

2.40 What test would you use to evaluate the hard-
ness of a coating on a metal surface? Would it
matter if the coating was harder or softer than
the substrate? Explain.

The answer depends on whether the coating is
relatively thin or thick. For a relatively thick
coating, conventional hardness tests can be con-
ducted, as long as the deformed region under
the indenter is less than about one-tenth of
the coating thickness. If the coating thickness
is less than this threshold, then one must ei-
ther rely on nontraditional hardness tests, or
else use fairly complicated indentation models
to extract the material behavior. As an exam-
ple of the former, atomic force microscopes us-
ing diamond-tipped pyramids have been used to
measure the hardness of coatings less than 100
nanometers thick. As an example of the lat-
ter, finite-element models of a coated substrate
being indented by an indenter of a known ge-
ometry can be developed and then correlated
to experiments.

2.41 List the advantages and limitations of the
stress-strain relationships given in Fig. 2.7.

Several answers that are acceptable, and the
student is encouraged to develop as many as
possible. Two possible answers are: (1) there
is a tradeoff between mathematical complex-
ity and accuracy in modeling material behavior
and (2) some materials may be better suited for
certain constitutive laws than others.

2.42 Plot the data in Table 2.1 on a bar chart, show-
ing the range of values, and comment on the
results.

By the student. An example of a bar chart for
the elastic modulus is shown below.
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Typical comments regarding such a chart are:

(a) There is a smaller range for metals than
for non-metals;

(b) Thermoplastics, thermosets and rubbers
are orders of magnitude lower than met-
als and other non-metals;

(c) Diamond and ceramics can be superior to
others, but ceramics have a large range of
values.

2.43 A hardness test is conducted on as-received
metal as a quality check. The results indicate

that the hardness is too high, thus the mate-
rial may not have sufficient ductility for the in-
tended application. The supplier is reluctant to
accept the return of the material, instead claim-
ing that the diamond cone used in the Rockwell
testing was worn and blunt, and hence the test
needed to be recalibrated. Is this explanation
plausible? Explain.

Refer to Fig. 2.22 on p. 52 and note that if an
indenter is blunt, then the penetration, t, un-
der a given load will be smaller than that using
a sharp indenter. This then translates into a
higher hardness. The explanation is plausible,
but in practice, hardness tests are fairly reliable
and measurements are consistent if the testing
equipment is properly calibrated and routinely
serviced.

2.44 Explain why a 0.2% offset is used to determine
the yield strength in a tension test.

The value of 0.2% is somewhat arbitrary and is
used to set some standard. A yield stress, repre-
senting the transition point from elastic to plas-
tic deformation, is difficult to measure. This
is because the stress-strain curve is not linearly
proportional after the proportional limit, which
can be as high as one-half the yield strength in
some metals. Therefore, a transition from elas-
tic to plastic behavior in a stress-strain curve is
difficult to discern. The use of a 0.2% offset is
a convenient way of consistently interpreting a
yield point from stress-strain curves.

2.45 Referring to Question 2.44, would the off-
set method be necessary for a highly-strained-
hardened material? Explain.

The 0.2% offset is still advisable whenever it
can be used, because it is a standardized ap-
proach for determining yield stress, and thus
one should not arbitrarily abandon standards.
However, if the material is highly cold worked,
there will be a more noticeable ‘kink’ in the
stress-strain curve, and thus the yield stress is
far more easily discernable than for the same
material in the annealed condition.
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Problems

2.46 A strip of metal is originally 1.5 m long. It is
stretched in three steps: first to a length of 1.75
m, then to 2.0 m, and finally to 3.0 m. Show
that the total true strain is the sum of the true
strains in each step, that is, that the strains are
additive. Show that, using engineering strains,
the strain for each step cannot be added to ob-
tain the total strain.

The true strain is given by Eq. (2.9) on p. 35 as

ε = ln
(
l

lo

)
Therefore, the true strains for the three steps
are:

ε1 = ln
(

1.75
1.5

)
= 0.1541

ε2 = ln
(

2.0
1.75

)
= 0.1335

ε3 = ln
(

3.0
2.0

)
= 0.4055

The sum of these true strains is ε = 0.1541 +
0.1335 + 0.4055 = 0.6931. The true strain from
step 1 to 3 is

ε = ln
(

3
1.5

)
= 0.6931

Therefore the true strains are additive. Us-
ing the same approach for engineering strain
as defined by Eq. (2.1), we obtain e1 = 0.1667,
e2 = 0.1429, and e3 = 0.5. The sum of these
strains is e1+e2+e3 = 0.8096. The engineering
strain from step 1 to 3 is

e =
l − lo
lo

=
3− 1.5

1.5
=

1.5
1.5

= 1

Note that this is not equal to the sum of the
engineering strains for the individual steps.

2.47 A paper clip is made of wire 1.20-mm in di-
ameter. If the original material from which the
wire is made is a rod 15-mm in diameter, calcu-
late the longitudinal and diametrical engineer-
ing and true strains that the wire has under-
gone.

Assuming volume constancy, we may write

lf
lo

=
(
do

df

)2

=
(

15
1.20

)2

= 156.25 ≈ 156

Letting l0 be unity, the longitudinal engineering
strain is e1 = (156−1)/1 = 155. The diametral
engineering strain is calculated as

ed =
1.2− 15

15
= −0.92

The longitudinal true strain is given by
Eq. (2.9) on p. 35 as

ε = ln
(
l

lo

)
= ln (155) = 5.043

The diametral true strain is

εd = ln
(

1.20
15

)
= −2.526

Note the large difference between the engineer-
ing and true strains, even though both describe
the same phenomenon. Note also that the sum
of the true strains (recognizing that the radial
strain is εr = ln

(
0.60
7.5

)
= −2.526) in the three

principal directions is zero, indicating volume
constancy in plastic deformation.

2.48 A material has the following properties: UTS =
50, 000 psi and n = 0.25 Calculate its strength
coefficient K.

Let us first note that the true UTS of this ma-
terial is given by UTStrue = Knn (because at
necking ε = n). We can then determine the
value of this stress from the UTS by follow-
ing a procedure similar to Example 2.1. Since
n = 0.25, we can write

UTStrue = UTS
(

Ao

Aneck

)
= UTS

(
e0.25

)
= (50, 000)(1.28) = 64, 200 psi

Therefore, since UTStrue = Knn,

K =
UTStrue

nn
=

64, 200
0.250.25

= 90, 800 psi
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2.49 Based on the information given in Fig. 2.6, cal-
culate the ultimate tensile strength of annealed
70-30 brass.

From Fig. 2.6 on p. 37, the true stress for an-
nealed 70-30 brass at necking (where the slope
becomes constant; see Fig. 2.7a on p. 40) is
found to be about 60,000 psi, while the true
strain is about 0.2. We also know that the ratio
of the original to necked areas of the specimen
is given by

ln
(

Ao

Aneck

)
= 0.20

or
Aneck

Ao
= e−0.20 = 0.819

Thus,

UTS = (60, 000)(0.819) = 49, 100 psi

2.50 Calculate the ultimate tensile strength (engi-
neering) of a material whose strength coefficient
is 400 MPa and of a tensile-test specimen that
necks at a true strain of 0.20.

In this problem we have K = 400 MPa and
n = 0.20. Following the same procedure as in
Example 2.1, we find the true ultimate tensile
strength is

σ = (400)(0.20)0.20 = 290 MPa

and
Aneck = Aoe

−0.20 = 0.81Ao

Consequently,

UTS = (290)(0.81) = 237 MPa

2.51 A cable is made of four parallel strands of dif-
ferent materials, all behaving according to the
equation σ = Kεn, where n = 0.3 The materi-
als, strength coefficients, and cross sections are
as follows:

Material A: K = 450 MPa, Ao = 7 mm2;

Material B: K = 600 MPa, Ao = 2.5 mm2;

Material C: K = 300 MPa, Ao = 3 mm2;

Material D: K = 760 MPa, Ao = 2 mm2;

(a) Calculate the maximum tensile load that
this cable can withstand prior to necking.

(b) Explain how you would arrive at an an-
swer if the n values of the three strands
were different from each other.

(a) Necking will occur when ε = n = 0.3. At
this point the true stresses in each cable
are (from σ = Kεn), respectively,

σA = (450)0.30.3 = 314 MPa

σB = (600)0.30.3 = 418 MPa

σC = (300)0.30.3 = 209 MPa

σD = (760)0.30.3 = 530 MPa

The areas at necking are calculated as fol-
lows (from Aneck = Aoe

−n):

AA = (7)e−0.3 = 5.18 mm2

AB = (2.5)e−0.3 = 1.85 mm2

AC = (3)e−0.3 = 2.22 mm2

AD = (2)e−0.3 = 1.48 mm2

Hence the total load that the cable can
support is

P = (314)(5.18) + (418)(1.85)
+(209)(2.22) + (530)(1.48)

= 3650 N

(b) If the n values of the four strands were dif-
ferent, the procedure would consist of plot-
ting the load-elongation curves of the four
strands on the same chart, then obtain-
ing graphically the maximum load. Alter-
nately, a computer program can be written
to determine the maximum load.

2.52 Using only Fig. 2.6, calculate the maximum
load in tension testing of a 304 stainless-steel
round specimen with an original diameter of 0.5
in.

We observe from Fig. 2.6 on p. 37 that necking
begins at a true strain of about 0.1, and that
the true UTS is about 110,000 psi. The origi-
nal cross-sectional area is Ao = π(0.25 in)2 =
0.196 in2. Since n = 0.1, we follow a procedure
similar to Example 2.1 and show that

Ao

Aneck
= e0.1 = 1.1
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Thus

UTS =
110, 000

1.1
= 100, 000 psi

Hence the maximum load is

F = (UTS)(Ao) = (100, 000)(0.196)

or F = 19, 600 lb.

2.53 Using the data given in Table 2.1, calculate the
values of the shear modulus G for the metals
listed in the table.

The important equation is Eq. (2.24) on p. 49
which gives the shear modulus as

G =
E

2(1 + ν)

The following values can be calculated (mid-
range values of ν are taken as appropriate):

Material E (GPa) ν G (GPa)
Al & alloys 69-79 0.32 26-30
Cu & alloys 105-150 0.34 39-56
Pb & alloys 14 0.43 4.9
Mg & alloys 41-45 0.32 15.5-17.0
Mo & alloys 330-360 0.32 125-136
Ni & alloys 180-214 0.31 69-82
Steels 190-200 0.30 73-77
Stainless steels 190-200 0.29 74-77
Ti & alloys 80-130 0.32 30-49
W & alloys 350-400 0.27 138-157
Ceramics 70-1000 0.2 29-417
Glass 70-80 0.24 28-32
Rubbers 0.01-0.1 0.5 0.0033-0.033
Thermoplastics 1.4-3.4 0.36 0.51-1.25
Thermosets 3.5-17 0.34 1.3-6.34

2.54 Derive an expression for the toughness of a
material whose behavior is represented by the
equation σ = K (ε+ 0.2)n and whose fracture
strain is denoted as εf .

Recall that toughness is the area under the
stress-strain curve, hence the toughness for this
material would be given by

Toughness =
∫ εf

0

σ dε

=
∫ εf

0

K (ε+ 0.2)n
dε

=
K

n+ 1

[
(εf + 0.2)n+1 − 0.2n+1

]

2.55 A cylindrical specimen made of a brittle mate-
rial 1 in. high and with a diameter of 1 in. is
subjected to a compressive force along its axis.
It is found that fracture takes place at an angle
of 45◦ under a load of 30,000 lb. Calculate the
shear stress and the normal stress acting on the
fracture surface.

Assuming that compression takes place without
friction, note that two of the principal stresses
will be zero. The third principal stress acting
on this specimen is normal to the specimen and
its magnitude is

σ3 =
30, 000
π(0.5)2

= 38, 200 psi

The Mohr’s circle for this situation is shown
below.





2=90°

The fracture plane is oriented at an angle of
45◦, corresponding to a rotation of 90◦ on the
Mohr’s circle. This corresponds to a stress state
on the fracture plane of σ = −19, 100 psi and
τ = 19, 100 psi.

2.56 What is the modulus of resilience of a highly
cold-worked piece of steel with a hardness of
300 HB? Of a piece of highly cold-worked cop-
per with a hardness of 150 HB?

Referring to Fig. 2.24 on p. 55, the value of
c in Eq. (2.29) on p. 54 is approximately 3.2
for highly cold-worked steels and around 3.4
for cold-worked aluminum. Therefore, we can
approximate c = 3.3 for cold-worked copper.
However, since the Brinell hardness is in units
of kg/mm2, from Eq. (2.29) we can write

Tsteel =
H

3.2
=

300
3.2

= 93.75 kg/mm2 = 133 ksi

TCu =
H

3.3
=

150
3.3

= 45.5 kg/mm2 = 64.6 ksi
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From Table 2.1, Esteel = 30 × 106 psi and
ECu = 15 × 106 psi. The modulus of resilience
is calculated from Eq. (2.5). For steel:

Modulus of Resilience =
Y 2

2E
=

(133, 000)2

2(30× 106)

or a modulus of resilience for steel of 295 in-
lb/in3. For copper,

Modulus of Resilience =
Y 2

2E
=

(62, 200)2

2(15× 106)

or a modulus of resilience for copper of 129 in-
lb/in3.

Note that these values are slightly different than
the values given in the text; this is due to the
fact that (a) highly cold-worked metals such as
these have a much higher yield stress than the
annealed materials described in the text, and
(b) arbitrary property values are given in the
statement of the problem.

2.57 Calculate the work done in frictionless compres-
sion of a solid cylinder 40 mm high and 15 mm
in diameter to a reduction in height of 75% for
the following materials: (1) 1100-O aluminum,
(2) annealed copper, (3) annealed 304 stainless
steel, and (4) 70-30 brass, annealed.

The work done is calculated from Eq. (2.62) on
p. 71 where the specific energy, u, is obtained
from Eq. (2.60). Since the reduction in height is
75%, the final height is 10 mm and the absolute
value of the true strain is

ε = ln
(

40
10

)
= 1.386

K and n are obtained from Table 2.3 as follows:

Material K (MPa) n
1100-O Al 180 0.20
Cu, annealed 315 0.54
304 Stainless, annealed 1300 0.30
70-30 brass, annealed 895 0.49

The u values are then calculated from
Eq. (2.60). For example, for 1100-O aluminum,
where K is 180 MPa and n is 0.20, u is calcu-
lated as

u =
Kεn+1

n+ 1
=

(180)(1.386)1.2

1.2
= 222 MN/m3

The volume is calculated as V = πr2l =
π(0.0075)2(0.04) = 7.069× 10−6 m3. The work
done is the product of the specific work, u, and
the volume, V . Therefore, the results can be
tabulated as follows.

u Work
Material (MN/m3) (Nm)
1100-O Al 222 1562
Cu, annealed 338 2391
304 Stainless, annealed 1529 10,808
70-30 brass, annealed 977 6908

2.58 A material has a strength coefficient K =
100, 000 psi Assuming that a tensile-test spec-
imen made from this material begins to neck
at a true strain of 0.17, show that the ultimate
tensile strength of this material is 62,400 psi.

The approach is the same as in Example 2.1.
Since the necking strain corresponds to the
maximum load and the necking strain for this
material is given as ε = n = 0.17, we have, as
the true ultimate tensile strength:

UTStrue = (100, 000)(0.17)0.17 = 74, 000 psi.

The cross-sectional area at the onset of necking
is obtained from

ln
(

Ao

Aneck

)
= n = 0.17.

Consequently,

Aneck = Aoe
−0.17

and the maximum load, P , is

P = σA = (UTStrue)Aoe
−0.17

= (74, 000)(0.844)(Ao) = 62, 400Ao lb.

Since UTS= P/Ao, we have UTS = 62,400 psi.

2.59 A tensile-test specimen is made of a material
represented by the equation σ = K (ε+ n)n.
(a) Determine the true strain at which necking
will begin. (b) Show that it is possible for an
engineering material to exhibit this behavior.
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(a) In Section 2.2.4 on p. 38 we noted that
instability, hence necking, requires the fol-
lowing condition to be fulfilled:

dσ

dε
= σ

Consequently, for this material we have

Kn (ε+ n)n−1 = K (ε+ n)n

This is solved as n = 0; thus necking be-
gins as soon as the specimen is subjected
to tension.

(b) Yes, this behavior is possible. Consider
a tension-test specimen that has been
strained to necking and then unloaded.
Upon loading it again in tension, it will
immediately begin to neck.

2.60 Take two solid cylindrical specimens of equal di-
ameter but different heights. Assume that both
specimens are compressed (frictionless) by the
same percent reduction, say 50%. Prove that
the final diameters will be the same.

Let’s identify the shorter cylindrical specimen
with the subscript s and the taller one as t, and
their original diameter as D. Subscripts f and
o indicate final and original, respectively. Be-
cause both specimens undergo the same percent
reduction in height, we can write

htf

hto
=
hsf

hso

and from volume constancy,

htf

hto
=
(
Dto

Dtf

)2

and
hsf

hso
=
(
Dso

Dsf

)2

Because Dto = Dso, we note from these rela-
tionships that Dtf = Dsf .

2.61 A horizontal rigid bar c-c is subjecting specimen
a to tension and specimen b to frictionless com-
pression such that the bar remains horizontal.
(See the accompanying figure.) The force F is
located at a distance ratio of 2:1. Both speci-
mens have an original cross-sectional area of 1

in2 and the original lengths are a = 8 in. and
b = 4.5 in. The material for specimen a has a
true-stress-true-strain curve of σ = 100, 000ε0.5.
Plot the true-stress-true-strain curve that the
material for specimen b should have for the bar
to remain horizontal during the experiment.

F

2 1

a

b

cc

x

From the equilibrium of vertical forces and to
keep the bar horizontal, we note that 2Fa = Fb.
Hence, in terms of true stresses and instanta-
neous areas, we have

2σaAa = σbAb

From volume constancy we also have, in terms
of original and final dimensions

AoaLoa = AaLa

and
AobLob = AbLb

where Loa = (8/4.5)Lob = 1.78Lob. From these
relationships we can show that

σb = 2
(

8
4.5

)
Kσa

(
Lb

La

)
Since σa = Kε0.5

a where K = 100, 000 psi, we
can now write

σb =
(

16K
4.5

)(
Lb

La

)
√
εa

Hence, for a deflection of x,

σb =
(

16K
4.5

)(
4.5− x

8 + x

)√
ln
(

8 + x

8

)
The true strain in specimen b is given by

εb = ln
(

4.5− x

4.5

)
By inspecting the figure in the problem state-
ment, we note that while specimen a gets
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longer, it will continue exerting some force Fa.
However, specimen b will eventually acquire a
cross-sectional area that will become infinite as
x approaches 4.5 in., thus its strength must
approach zero. This observation suggests that
specimen b cannot have a true stress-true strain
curve typical of metals, and that it will have a
maximum at some strain. This is seen in the
plot of σb shown below.

50,000

40,000

30,000

20,000

10,000

0
0 0.5 1.0 1.5 2.0 2.5

Tr
ue

 s
tr
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s 

(p
si

)
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2.62 Inspect the curve that you obtained in Problem
2.61. Does a typical strain-hardening material
behave in that manner? Explain.

Based on the discussions in Section 2.2.3 start-
ing on p. 35, it is obvious that ordinary met-
als would not normally behave in this manner.
However, under certain conditions, the follow-
ing could explain such behavior:

• When specimen b is heated to higher and
higher temperatures as deformation pro-
gresses, with its strength decreasing as x is
increased further after the maximum value
of stress.

• In compression testing of brittle materials,
such as ceramics, when the specimen be-
gins to fracture.

• If the material is susceptible to thermal
softening, then it can display such behav-
ior with a sufficiently high strain rate.

2.63 In a disk test performed on a specimen 40-mm
in diameter and 5 m thick, the specimen frac-
tures at a stress of 500 MPa. What was the
load on the disk at fracture?

Equation (2.20) is used to solve this problem.
Noting that σ = 500 MPa, d = 40 mm = 0.04
m, and t = 5 mm = 0.005 m, we can write

σ =
2P
πdt

→ P =
σπdt

2

Therefore

P =
(500× 106)π(0.04)(0.005)

2
= 157 kN.

2.64 In Fig. 2.32a, let the tensile and compressive
residual stresses both be 10,000 psi and the
modulus of elasticity of the material be 30×106

psi, with a modulus of resilience of 30 in.-lb/in3.
If the original length in diagram (a) is 20 in.,
what should be the stretched length in diagram
(b) so that, when unloaded, the strip will be
free of residual stresses?

Note that the yield stress can be obtained from
Eq. (2.5) on p. 31 as

Mod. of Resilience = MR =
Y 2

2E

Thus,

Y =
√

2(MR)E =
√

2(30)(30× 106)

or Y = 42, 430 psi. Using Eq. (2.32), the strain
required to relieve the residual stress is:

ε =
σc

E
+
Y

E
=

10, 000
30× 106

+
42, 430

30× 106
= 0.00175

Therefore,

ε = ln
(
lf
lo

)
= ln

(
lf

20 in.

)
= 0.00175

Therefore, lf = 20.035 in.

2.65 Show that you can take a bent bar made of an
elastic, perfectly plastic material and straighten
it by stretching it into the plastic range. (Hint:
Observe the events shown in Fig. 2.32.)

The series of events that takes place in straight-
ening a bent bar by stretching it can be visu-
alized by starting with a stress distribution as
in Fig. 2.32a on p. 61, which would represent
the unbending of a bent section. As we apply
tension, we algebraically add a uniform tensile
stress to this stress distribution. Note that the
change in the stresses is the same as that de-
picted in Fig. 2.32d, namely, the tensile stress
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increases and reaches the yield stress, Y . The
compressive stress is first reduced in magnitude,
then becomes tensile. Eventually, the whole
cross section reaches the constant yield stress,
Y . Because we now have a uniform stress dis-
tribution throughout its thickness, the bar be-
comes straight and remains straight upon un-
loading.

2.66 A bar 1 m long is bent and then stress re-
lieved. The radius of curvature to the neutral
axis is 0.50 m. The bar is 30 mm thick and
is made of an elastic, perfectly plastic material
with Y = 600 MPa and E = 200 GPa. Cal-
culate the length to which this bar should be
stretched so that, after unloading, it will be-
come and remain straight.

When the curved bar becomes straight, the en-
gineering strain it undergoes is given by the ex-
pression

e =
t

2ρ

where t is the thickness and ρ is the radius to
the neutral axis. Hence in this case,

e =
(0.030)
2(0.50)

= 0.03

Since Y = 600 MPa and E = 200 GPa, we find
that the elastic limit for this material is at an
elastic strain of

e =
Y

E
=

600 MPa
200 GPa

= 0.003

which is much smaller than 0.05. Following the
description in Answer 2.65 above, we find that
the strain required to straighten the bar is

e = (2)(0.003) = 0.006

or

lf − lo
lo

= 0.006 → lf = 0.006lo + lo

or lf = 1.006 m.

2.67 Assume that a material with a uniaxial yield
stress Y yields under a stress state of principal
stresses σ1, σ2, σ3, where σ1 > σ2 > σ3. Show
that the superposition of a hydrostatic stress, p,
on this system (such as placing the specimen in
a chamber pressurized with a liquid) does not

affect yielding. In other words, the material will
still yield according to yield criteria.

Let’s consider the distortion-energy criterion,
although the same derivation could be per-
formed with the maximum shear stress criterion
as well. Equation (2.37) on p. 64 gives

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2Y 2

Now consider a new stress state where the prin-
cipal stresses are

σ′1 = σ1 + p

σ′2 = σ2 + p

σ′3 = σ3 + p

which represents a new loading with an addi-
tional hydrostatic pressure, p. The distortion-
energy criterion for this stress state is

(σ′1 − σ′2)
2 + (σ′2 − σ′3)

2 + (σ′3 − σ′1)
2 = 2Y 2

or

2Y 2 = [(σ1 + p)− (σ2 + p)]2

+ [(σ2 + p)− (σ3 + p)]2

+ [(σ3 + p)− (σ1 + p)]2

which can be simplified as

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2Y 2

which is the original yield criterion. Hence, the
yield criterion is unaffected by the superposi-
tion of a hydrostatic pressure.

2.68 Give two different and specific examples
in which the maximum-shear-stress and the
distortion-energy criteria give the same answer.

In order to obtain the same answer for the two
yield criteria, we refer to Fig. 2.36 on p. 67 for
plane stress and note the coordinates at which
the two diagrams meet. Examples are: simple
tension, simple compression, equal biaxial ten-
sion, and equal biaxial compression. Thus, ac-
ceptable answers would include (a) wire rope, as
used on a crane to lift loads; (b) spherical pres-
sure vessels, including balloons and gas storage
tanks, and (c) shrink fits.
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2.69 A thin-walled spherical shell with a yield stress
Y is subjected to an internal pressure p. With
appropriate equations, show whether or not the
pressure required to yield this shell depends on
the particular yield criterion used.

Here we have a state of plane stress with equal
biaxial tension. The answer to Problem 2.68
leads one to immediately conclude that both
the maximum shear stress and distortion energy
criteria will give the same results. We will now
demonstrate this more rigorously. The princi-
pal membrane stresses are given by

σ1 = σ2 =
pr

2t

and
σ3 = 0

Using the maximum shear-stress criterion, we
find that

σ1 − 0 = Y

hence
p =

2tY
r

Using the distortion-energy criterion, we have

(0− 0)2 + (σ2 − 0)2 + (0− σ1)2 = 2Y 2

Since σ1 = σ2, then this gives σ1 = σ2 = Y , and
the same expression is obtained for pressure.

2.70 Show that, according to the distortion-energy
criterion, the yield stress in plane strain is
1.15Y where Y is the uniaxial yield stress of the
material.

A plane-strain condition is shown in Fig. 2.35d
on p. 67, where σ1 is the yield stress of the
material in plane strain (Y ′), σ3 is zero, and
ε2 = 0. From Eq. 2.43b on p. 68, we find
that σ2 = σ1/2. Substituting these into the
distortion-energy criterion given by Eq. (2.37)
on p.64,(
σ1 −

σ1

2

)2

+
(σ1

2
− 0
)2

+ (0− σ1)2 = 2Y 2

and
3σ2

1

2
= 2Y 2

hence
σ1 =

2√
3
Y ≈ 1.15Y

2.71 What would be the answer to Problem 2.70 if
the maximum-shear-stress criterion were used?

Because σ2 is an intermediate stress and using
Eq. (2.36), the answer would be

σ1 − 0 = Y

hence the yield stress in plane strain will be
equal to the uniaxial yield stress, Y .

2.72 A closed-end, thin-walled cylinder of original
length l, thickness t, and internal radius r is
subjected to an internal pressure p. Using the
generalized Hooke’s law equations, show the
change, if any, that occurs in the length of this
cylinder when it is pressurized. Let ν = 0.33.

A closed-end, thin-walled cylinder under inter-
nal pressure is subjected to the following prin-
cipal stresses:

σ1 =
pr

2t
; σ2 =

pr

t
; σ3 = 0

where the subscript 1 is the longitudinal di-
rection, 2 is the hoop direction, and 3 is the
thickness direction. From Hooke’s law given by
Eq. (2.33) on p. 63,

ε1 =
1
E

[σ1 − ν (σ2 + σ3)]

=
1
E

[
pr

2t
− 1

3

(pr
t

+ 0
)]

=
pr

6tE
Since all the quantities are positive (note that
in order to produce a tensile membrane stress,
the pressure is positive as well), the longitudinal
strain is finite and positive. Thus the cylinder
becomes longer when pressurized, as it can also
be deduced intuitively.

2.73 A round, thin-walled tube is subjected to ten-
sion in the elastic range. Show that both the
thickness and the diameter of the tube decrease
as tension increases.

The stress state in this case is σ1, σ2 = σ3 = 0.
From the generalized Hooke’s law equations
given by Eq. (2.33) on p. 63, and denoting the
axial direction as 1, the hoop direction as 2, and
the radial direction as 3, we have for the hoop
strain:

ε2 =
1
E

[σ2 − ν (σ1 + σ3)] = −νσ1

E
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Therefore, the diameter is negative for a tensile
(positive) value of σ1. For the radial strain, the
generalized Hooke’s law gives

ε3 =
1
E

[σ3 − ν (σ1 + σ2)] = −νσ1

E

Therefore, the radial strain is also negative and
the wall becomes thinner for a positive value of
σ1.

2.74 Take a long cylindrical balloon and, with a thin
felt-tip pen, mark a small square on it. What
will be the shape of this square after you blow
up the balloon: (1) a larger square, (2) a rectan-
gle, with its long axis in the circumferential di-
rections, (3) a rectangle, with its long axis in the
longitudinal direction, or (4) an ellipse? Per-
form this experiment and, based on your obser-
vations, explain the results, using appropriate
equations. Assume that the material the bal-
loon is made of is perfectly elastic and isotropic,
and that this situation represents a thin-walled
closed-end cylinder under internal pressure.

This is a simple graphic way of illustrating the
generalized Hooke’s law equations. A balloon
is a readily available and economical method of
demonstrating these stress states. It is also en-
couraged to assign the students the task of pre-
dicting the shape numerically; an example of a
valuable experiment involves partially inflating
the balloon, drawing the square, then expand-
ing it further and having the students predict
the dimensions of the square.

Although not as readily available, a rubber tube
can be used to demonstrate the effects of tor-
sion in a similar manner.

2.75 Take a cubic piece of metal with a side length
lo and deform it plastically to the shape of a
rectangular parallelepiped of dimensions l1, l2,
and l3. Assuming that the material is rigid and
perfectly plastic, show that volume constancy
requires that the following expression be satis-
fied: ε1 + ε2 + ε3 = 0.

The initial volume and the final volume are con-
stant, so that

lololo = l1l2l3 → l1l2l3
lololo

= 1

Taking the natural log of both sides,

ln
(
l1l2l3
lololo

)
= ln(1) = 0

since ln(AB) = ln(A) + ln(B),

ln
(
l1
lo

)
+ ln

(
l2
lo

)
+ ln

(
l3
lo

)
= 0

From the definition of true strain given by

Eq. (2.9) on p. 35, ln
(
l1
l0

)
= ε1, etc., so that

ε1 + ε2 + ε3 = 0.

2.76 What is the diameter of an originally 30-mm-
diameter solid steel ball when it is subjected to
a hydrostatic pressure of 5 GPa?

From Eq. (2.46) on p. 68 and noting that, for
this case, all three strains are equal and all three
stresses are equal in magnitude,

3ε =
(

1− 2ν
E

)
(−3p)

where p is the hydrostatic pressure. Thus, from
Table 2.1 on p. 32 we take values for steel of
ν = 0.3 and E = 200 GPa, so that

ε =
(

1− 2ν
E

)
(−p) =

(
1− 0.6

200

)
(−5)

or ε = −0.01. Therefore

ln
(
Df

Do

)
= −0.01

Solving for Df ,

Df = Doe
−0.01 = (20)e−0.01 = 19.8 mm

2.77 Determine the effective stress and effective
strain in plane-strain compression according to
the distortion-energy criterion.

Referring to Fig. 2.35d on p. 67 we note that,
for this case, σ3 = 0 and σ2 = σ1/2, as can
be seen from Eq. (2.44) on p. 68. According to
the distortion-energy criterion and referring to
Eq. (2.52) on p. 69 for effective stress, we find
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that

σ̄ =
1√
2

[(
σ1 −

σ1

2

)2

+
(σ1

2

)2

+ (σ1)
2

]1/2

=
1√
2

(
1
4

+
1
4

+ 1
)1/2

σ1

=
1√
2

(√
3√
2

)
σ1 =

√
3

2
σ1

Note that for this case ε3 = 0. Since volume
constancy is maintained during plastic defor-
mation, we also have ε3 = −ε1. Substitut-
ing these into Eq. (2.54), the effective strain
is found to be

ε̄ =
(

2√
3

)
ε1

2.78 (a) Calculate the work done in expanding a 2-
mm-thick spherical shell from a diameter of 100
mm to 140 mm, where the shell is made of a ma-
terial for which σ = 200+50ε0.5 MPa. (b) Does
your answer depend on the particular yield cri-
terion used? Explain.

For this case, the membrane stresses are given
by

σ1 = σ2 =
pt

2t
and the strains are

ε1 = ε2 = ln
(
fr

fo

)
Note that we have a balanced (or equal) biaxial
state of plane stress. Thus, the specific energy
(for a perfectly-plastic material) will, according
to either yield criteria, be

u = 2σ1ε1 = 2Y ln
(
rf
ro

)
The work done will be

W = (Volume)(u)

=
(
4πr2oto

) [
2Y ln

(
rf
ro

)]
= 8πY r2oto ln

(
rf
ro

)
Using the pressure-volume method of work, we
begin with the formula

W =
∫
p dV

where V is the volume of the sphere. We inte-
grate this equation between the limits Vo and
Vf , noting that

p =
2tY
r

and

V =
4πr3

3
so that

dV = 4πr2 dr

Also, from volume constancy, we have

t =
r2oto
r2

Combining these expressions, we obtain

W = 8πY r2oto
∫ rf

ro

dr

r
= 8πY r2oto ln

(
rf
ro

)
which is the same expression obtained earlier.
To obtain a numerical answer to this prob-
lem, note that Y should be replaced with an
average value Ȳ . Also note that ε1 = ε2 =
ln(140/100) = 0.336. Thus,

Ȳ = 200 +
50(0.336)1.5

1.5
= 206 MPa

Hence the work done is

W = 8πȲ r2oto ln
(
rf
ro

)
= 8π(206× 106)(0.1)2(0.001) ln(70/50)
= 17.4kN-m

The yield criterion used does not matter be-
cause this is equal biaxial tension; see the an-
swer to Problem 2.68.

2.79 A cylindrical slug that has a diameter of 1
in. and is 1 in. high is placed at the center of
a 2-in.-diameter cavity in a rigid die. (See the
accompanying figure.) The slug is surrounded
by a compressible matrix, the pressure of which
is given by the relation

pm = 40, 000
∆V
Vom

psi

wherem denotes the matrix and Vom is the orig-
inal volume of the compressible matrix. Both
the slug and the matrix are being compressed
by a piston and without any friction. The ini-
tial pressure on the matrix is zero, and the slug
material has the true-stress-true-strain curve of
σ = 15, 000ε0.4.
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Compressible
matrix

F

d
1"

1"
2"

Obtain an expression for the force F versus pis-
ton travel d up to d = 0.5 in.

The total force, F , on the piston will be

F = Fw + Fm,

where the subscript w denotes the workpiece
and m the matrix. As d increases, the matrix
pressure increases, thus subjecting the slug to
transverse compressive stresses on its circum-
ference. Hence the slug will be subjected to tri-
axial compressive stresses, with σ2 = σ3. Using
the maximum shear-stress criterion for simplic-
ity, we have

σ1 = σ + σ2

where σ1 is the required compressive stress on
the slug, σ is the flow stress of the slug mate-
rial corresponding to a given strain, and given
as σ = 15, 000ε0.4, and σ2 is the compressive
stress due to matrix pressure. Lets now deter-
mine the matrix pressure in terms of d.

The volume of the slug is equal to π/4 and the
volume of the cavity when d = 0 is π. Hence
the original volume of the matrix is Vom = 3

4π.
The volume of the matrix at any value of d is
then

Vm = π(1− d)− π

4
= π

(
3
4
− d

)
in3,

from which we obtain
∆V
Vom

=
Vom − Vm

Vom
=

4
3
d.

Note that when d = 3
4 in., the volume of the ma-

trix becomes zero. The matrix pressure, hence
σ2, is now given by

σ2 =
4(40, 000)

3
d =

160, 000
3

d (psi)

The absolute value of the true strain in the slug
is given by

ε = ln
1

1− d
,

with which we can determine the value of σ for
any d. The cross-sectional area of the workpiece
at any d is

Aw =
π

4(1− d)
in2

and that of the matrix is

Am = π − π

4(1− d)
in2

The required compressive stress on the slug is

σ1 = σ + σ2 = σ +
160, 000

3
d.

We may now write the total force on the piston
as

F = Aw

(
σ +

160, 000
3

d

)
+Am

160, 000
3

d lb.

The following data gives some numerical re-
sults:

d Aw ε σ F
(in.) (in2) (psi) (lb)
0.1 0.872 0.105 6089 22,070
0.2 0.98 0.223 8230 41,590
0.3 1.121 0.357 9934 61,410
0.4 1.31 0.510 11,460 82,030
0.5 1.571 0.692 12,950 104,200

And the following plot shows the desired re-
sults.

Fo
rc

e 
(k

ip
)

0

40

80

120

Displacement (in.)
0 0.1 0.2 0.3 0.4 0.5
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2.80 A specimen in the shape of a cube 20 mm on
each side is being compressed without friction
in a die cavity, as shown in Fig. 2.35d, where the
width of the groove is 15 mm. Assume that the
linearly strain-hardening material has the true-
stress-true-strain curve given by σ = 70 + 30ε
MPa. Calculate the compressive force required
when the height of the specimen is at 3 mm,
according to both yield criteria.

We note that the volume of the specimen is con-
stant and can be expressed as

(20)(20)(20) = (h)(x)(x)

where x is the lateral dimensions assuming the
specimen expands uniformly during compres-
sion. Since h = 3 mm, we have x = 51.6
mm. Thus, the specimen touches the walls and
hence this becomes a plane-strain problem (see
Fig. 2.35d on p. 67). The absolute value of the
true strain is

ε = ln
(

20
3

)
= 1.90

We can now determine the flow stress, Yf , of
the material at this strain as

Yf = 70 + 30(1.90) = 127 MPa

The cross-sectional area on which the force is
acting is

Area = (20)(20)(20)/3 = 2667 mm2

According to the maximum shear-stress crite-
rion, we have σ1 = Yf , and thus

Force = (127)(2667) = 338 kN

According to the distortion energy criterion, we
have σ1 = 1.15Yf , or

Force = (1.15)(338) = 389 kN.

2.81 Obtain expressions for the specific energy for
a material for each of the stress-strain curves
shown in Fig. 2.7, similar to those shown in
Section 2.12.

Equation (2.59) on p. 71 gives the specific en-
ergy as

u =
∫ ε1

0

σ dε

(a) For a perfectly-elastic material as shown in
Fig 2.7a on p. 40, this expression becomes

u =
∫ ε1

0

Eε dε = E

(
ε2

2

)ε1

0

=
Eε21
2

(b) For a rigid, perfectly-plastic material as
shown in Fig. 2.7b, this is

u =
∫ ε1

0

Y dε = Y (ε)ε1
0 = Y ε1

(c) For an elastic, perfectly plastic material,
this is identical to an elastic material for
ε1 < Y/E, and for ε1 > Y/E it is

u =
∫ ε1

0

σ dε =
∫ Y/E

0

Eε dε+
∫ ε1

Y/E

Y dε

=
E

2

(
Y

E

)2

+ Y

(
ε1 −

Y

E

)
=

Y 2

2E
+ Y ε1 −

Y 2

E
= Y

(
ε1 −

Y

2E

)
(d) For a rigid, linearly strain hardening ma-

terial, the specific energy is

u =
∫ ε1

0

(Y + Epε) dε = Y ε1 +
Epε

2
1

2

(e) For an elastic, linear strain hardening ma-
terial, the specific energy is identical to
an elastic material for ε1 < Y/E and for
ε1 > Y/E it is

u =
∫ ε1

0

[
Y + Ep

(
ε− Y

E

)]
dε

=
∫ ε1

0

[
Y

(
1− Ep

E

)
+ Epε

]
dε

= Y

(
1− Ep

E

)
ε1 +

Epε
2
1

2

2.82 A material with a yield stress of 70 MPa is sub-
jected to three principal (normal) stresses of σ1,
σ2 = 0, and σ3 = −σ1/2. What is the value of
σ1 when the metal yields according to the von
Mises criterion? What if σ2 = σ1/3?

The distortion-energy criterion, given by
Eq. (2.37) on p. 64, is

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2Y 2
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Substituting Y = 70 MPa and σ1, σ2 = 0 and
σ3 = −σ1/2, we have

2(70)2 = (σ1)
2 +

(
−σ1

2

)2

+
(
−σ1

2
− σ1

)2

thus,
σ1 = 52.9 MPa

If Y = 70 MPa and σ1, σ2 = σ1/3 and σ3 =
−σ1/2 is the stress state, then

2(70)2 =
(
σ1 −

σ1

3

)2

+
(σ1

3
− σ1

2

)2

+
(
−σ1

2
− σ1

)2

= 2.72σ2
1

Thus, σ1 = 60.0 MPa. Therefore, the stress
level to initiate yielding actually increases when
σ2 is increased.

2.83 A steel plate has the dimensions 100 mm × 100
mm × 5 mm thick. It is subjected to biaxial
tension of σ1 = σ2, with the stress in the thick-
ness direction of σ3 = 0. What is the largest
possible change in volume at yielding, using the
von Mises criterion? What would this change
in volume be if the plate were made of copper?

From Table 2.1 on p. 32, it is noted that for
steel we can use E = 200 GPa and ν = 0.30.
For a stress state of σ1 = σ2 and σ3 = 0, the
von Mises criterion predicts that at yielding,

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2Y 2

or

(σ1 − σ1)
2 + (σ1 − 0)2 + (0− σ1)

2 = 2Y 2

Resulting in σ1 = Y . Equation (2.47) gives:

∆ =
1− 2ν
E

(σx + σy + σz)

=
1− 2(0.3)
200 GPa

[(350 MPa) + (350 MPa]

= = 0.0014

Since the original volume is (100)(100)(5) =
50,000 mm3, the stressed volume is 50,070
mm3, or the volume change is 70 mm3.

For copper, we have E = 125 GPa and ν = 0.34.
Following the same derivation, the dilatation
for copper is 0.0006144; the stressed volume is
50,031 mm3 and thus the change in volume is
31 mm3.

2.84 A 50-mm-wide, 1-mm-thick strip is rolled to a
final thickness of 0.5 mm. It is noted that the
strip has increased in width to 52 mm. What
is the strain in the rolling direction?

The thickness strain is

εt = ln
(
l

lo

)
= ln

(
0.5 mm
1 mm

)
= −0.693

The width strain is

εw = ln
(
l

lo

)
= ln

(
52 mm
50 mm

)
= 0.0392

Therefore, from Eq. (2.48), the strain in the
rolling (or longitudinal) direction is εl = 0 −
0.0392 + 0.693 = 0.654.

2.85 An aluminum alloy yields at a stress of 50 MPa
in uniaxial tension. If this material is subjected
to the stresses σ1 = 25 MPa, σ2 = 15 MPa and
σ3 = −26 MPa, will it yield? Explain.

According to the maximum shear-stress crite-
rion, the effective stress is given by Eq. (2.51)
on p. 69 as:

σ̄ = σ1 − σ3 = 25− (−26) = 51 MPa

However, according to the distortion-energy cri-
terion, the effective stress is given by Eq. (2.52)
on p. 69 as:

σ̄ =
1√
2

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2

or

σ̄ =

√
(25− 15)2 + (15 + 26)2 + (−26− 25)2

2

or σ̄ = 46.8 MPa. Therefore, the effective stress
is higher than the yield stress for the maximum
shear-stress criterion, and lower than the yield
stress for the distortion-energy criterion. It is
impossible to state whether or not the mate-
rial will yield at this stress state. An accurate
statement would be that yielding is imminent,
if it is not already occurring.

2.86 A cylindrical specimen 1-in. in diameter and
1-in. high is being compressed by dropping a
weight of 200 lb on it from a certain height.
After deformation, it is found that the temper-
ature rise in the specimen is 300 ◦F. Assuming
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no heat loss and no friction, calculate the fi-
nal height of the specimen, using the following
data for the material: K = 30, 000 psi, n = 0.5,
density = 0.1 lb/in3, and specific heat = 0.3
BTU/lb·◦F.

This problem uses the same approach as in Ex-
ample 2.8. The volume of the specimen is

V =
πd2h

4
=
π(1)2(1)

4
= 0.785 in3

The expression for heat is given by

Heat = cpρV∆T
= (0.3)(0.1)(0.785)(300)(778)
= 5500ft-lb = 66, 000 in-lb.

where the unit conversion 778 ft-lb = 1 BTU
has been applied. Since, ideally,

Heat = Work = V u = V
Kεn+1

n+ 1

= (0.785)
(30, 000)ε1.5

1.5

Solving for ε,

ε1.5 =
1.5(66, 000)

(0.785)(30, 000)
= 4.20

Therefore, ε = 2.60. Using absolute values, we
have

ln
(
ho

hf

)
= ln

(
1 in.
hf

)
= 2.60

Solving for hf gives hf = 0.074 in.

2.87 A solid cylindrical specimen 100-mm high is
compressed to a final height of 40 mm in two
steps between frictionless platens; after the first
step the cylinder is 70 mm high. Calculate the
engineering strain and the true strain for both
steps, compare them, and comment on your ob-
servations.

In the first step, we note that ho = 100 mm and
h1 = 70 mm, so that from Eq. (2.1) on p. 30,

e1 =
h1 − ho

ho
=

70− 100
100

= −0.300

and from Eq. (2.9) on p. 35,

ε1 = ln
(
h1

ho

)
= ln

(
70
100

)
= −0.357

Similarly, for the second step where h1 = 70
mm and h2 = 40 mm,

e2 =
h2 − h1

h1
=

40− 70
70

= −0.429

ε2 = ln
(
h2

h1

)
= ln

(
40
70

)
= −0.560

Note that if the operation were conducted in
one step, the following would result:

e =
h2 − ho

ho
=

40− 100
100

= −0.6

ε = ln
(
h2

ho

)
= ln

(
40
100

)
= −0.916

As was shown in Problem 2.46, this indicates
that the true strains are additive while the en-
gineering strains are not.

2.88 Assume that the specimen in Problem 2.87 has
an initial diameter of 80 mm and is made of
1100-O aluminum. Determine the load required
for each step.

From volume constancy, we calculate

d1 = do

√
ho

h1
= 80

√
100
70

= 95.6 mm

d2 = do

√
ho

h2
= 80

√
100
40

= 126.5 mm

Based on these diameters the cross-sectional
area at the steps is calculated as:

A1 =
π

4
d2
1 = 7181 mm2

A2 =
π

4
d2
2 = 12, 566 mm2

As calculated in Problem 2.87, ε1 = 0.357 and
εtotal = 0.916. Note that for 1100-O aluminum,
K = 180 MPa and n = 0.20 (see Table 2.3 on
p. 37) so that Eq. (2.11) on p. 35 yields

σ1 = 180(0.357)0.20 = 146.5 MPa

σ2 = 180(0.916)0.20 = 176.9 Mpa

Therefore, the loads are calculated as:

P1 = σ1A1 = (146.5)(7181) = 1050 kN

P2 = (176.9)(12, 566) = 2223 kN
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2.89 Determine the specific energy and actual energy
expended for the entire process described in the
preceding two problems.

From Eq. (2.60) on p. 71 and using εtotal =
0.916, K = 180 MPa and n = 0.20, we have

u =
Kεn+1

n+ 1
=

(180)(0.916)1.2

1.2
= 135 MPa

2.90 A metal has a strain hardening exponent of
0.22. At a true strain of 0.2, the true stress
is 20,000 psi. (a) Determine the stress-strain
relationship for this material. (b) Determine
the ultimate tensile strength for this material.

This solution follows the same approach as in
Example 2.1. From Eq. (2.11) on p. 35, and
recognizing that n = 0.22 and σ = 20, 000 psi
for ε = 0.20,

σ = Kεn → 20, 000 = K(0.20)0.22

or K = 28, 500 psi. Therefore, the stress-strain
relationship for this material is

σ = 28, 500ε0.22 psi

To determine the ultimate tensile strength for
the material, realize that the strain at necking
is equal to the strain hardening exponent, or
ε = n. Therefore,

σult = K(n)n = 28, 500(0.22)0.22 = 20, 400 psi

The cross-sectional area at the onset of necking
is obtained from

ln
(

Ao

Aneck

)
= n = 0.22

Consequently,

Aneck = Aoe
−0.22

and the maximum load is

P = σA = σultAneck.

Hence,

P = (20, 400)(Ao)e−0.22 = 16, 370Ao

Since UTS= P/Ao, we have

UTS =
16, 370Ao

Ao
= 16, 370 psi

2.91 The area of each face of a metal cube is 400 m2,
and the metal has a shear yield stress, k, of 140
MPa. Compressive loads of 40 kN and 80 kN
are applied at different faces (say in the x- and
y-directions). What must be the compressive
load applied to the z-direction to cause yield-
ing according to the Tresca criterion? Assume
a frictionless condition.

Since the area of each face is 400 mm2, the
stresses in the x- and y- directions are

σx = −40, 000
400

= −100 MPa

σy = −80, 000
400

= −200 MPa

where the negative sign indicates that the
stresses are compressive. If the Tresca criterion
is used, then Eq. (2.36) on p. 64 gives

σmax − σmin = Y = 2k = 280 MPa

It is stated that σ3 is compressive, and is there-
fore negative. Note that if σ3 is zero, then the
material does not yield because σmax − σmin =
0 − (−200) = 200 MPa < 280 MPa. There-
fore, σ3 must be lower than σ2, and is calculated
from:

σmax − σmin = σ1 − σ3 = 280 MPa

or

σ3 = σ1 − 280 = −100− 280 = −380 MPa

2.92 A tensile force of 9 kN is applied to the ends of
a solid bar of 6.35 mm diameter. Under load,
the diameter reduces to 5.00 mm. Assuming
uniform deformation and volume constancy, (a)
determine the engineering stress and strain, (b)
determine the true stress and strain, (c) if the
original bar had been subjected to a true stress
of 345 MPa and the resulting diameter was 5.60
mm, what are the engineering stress and engi-
neering strain for this condition?

First note that, in this case, do = 6.35 mm, df

= 5.00 mm, P=9000 N, and from volume con-
stancy,

lod
2
o = lfd

2
f → lf

lo
=
d2

o

d2
f

=
6.352

5.002
= 1.613
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(a) The engineering stress is calculated from
Eq. (2.3) on p. 30 as:

σ =
P

Ao
=

9000
π
4 (6.35)2

= 284 MPa

and the engineering strain is calculated
from Eq. (2.1) on p. 30 as:

e =
l − lo
lo

=
lf
lo
− 1 = 1.613− 1 = 0.613

(b) The true stress is calculated from Eq. (2.8)
on p. 34 as:

σ =
P

A
=

9000
π
4 (5.00)2

= 458 MPa

and the true strain is calculated from
Eq. (2.9) on p. 35 as:

ε = ln
(
lf
lo

)
= ln 1.613 = 0.478

(c) If the final diameter is df = 5.60 mm, then
the final area is Af = π

4 d
2
f = 24.63 mm2.

If the true stress is 345 MPa, then

P = σA = (345)(24.63) = 8497 ≈ 8500 N

Therefore, the engineering stress is calcu-
lated as before as

σ =
P

Ao
=

8500
π
4 (6.35)2

= 268 MPa

Similarly, from volume constancy,

lf
lo

=
d2

o

d2
f

=
6.352

5.602
= 1.286

Therefore, the engineering strain is

e =
lf
lo
− 1 = 1.286− 1 = 0.286

2.93 Two identical specimens 10-mm in diameter
and with test sections 25 mm long are made
of 1112 steel. One is in the as-received condi-
tion and the other is annealed. What will be
the true strain when necking begins, and what
will be the elongation of these samples at that
instant? What is the ultimate tensile strength
for these samples?

This problem uses a similar approach as for Ex-
ample 2.1. First, we note from Table 2.3 on
p. 37 that for cold-rolled 1112 steel, K = 760
MPa and n = 0.08. Also, the initial cross-
sectional area is Ao = π

4 (10)2 = 78.5 mm2.
For annealed 1112 steel, K = 760 MPa and
n = 0.19. At necking, ε = n, so that the strain
will be ε = 0.08 for the cold-rolled steel and
ε = 0.19 for the annealed steel. For the cold-
rolled steel, the final length is given by Eq. (2.9)
on p. 35 as

ε = n = ln
(
l

lo

)
Solving for l,

l = enlo = e0.08(25) = 27.08 mm

The elongation is, from Eq. (2.6),

Elongation =
lf − lo
lo

× 100 =
27.08− 25

25
× 100

or 8.32 %. To calculate the ultimate strength,
we can write, for the cold-rolled steel,

UTStrue = Knn = 760(0.08)0.08 = 621 MPa

As in Example 2.1, we calculate the load at
necking as:

P = UTStrueAoe
−n

So that

UTS =
P

Ao
=

UTStrueAoe
−n

Ao
= UTStruee

−n

This expression is evaluated as

UTS = (621)e−0.08 = 573 MPa

Repeating these calculations for the annealed
specimen yields l = 30.23 mm, elongation =
20.9%, and UTS= 458 MPa.

2.94 During the production of a part, a metal with
a yield strength of 110 MPa is subjected to a
stress state σ1, σ2 = σ1/3, σ3 = 0. Sketch the
Mohr’s circle diagram for this stress state. De-
termine the stress σ1 necessary to cause yielding
by the maximum shear stress and the von Mises
criteria.

For the stress state of σ1, σ1/3, 0 the following
figure the three-dimensional Mohr’s circle:
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For the von Mises criterion, Eq. (2.37) on p. 64
gives:

2Y 2 = (σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2

=
(
σ1 −

σ1

3

)2

+
(σ1

3
− 0
)2

+ (0− σ1)
2

=
4
9
σ2

1 +
1
9
σ2

1 + σ2
1 =

14
9
σ2

1

Solving for σ1 gives σ1 = 125 MPa. According
to the Tresca criterion, Eq. (2.36) on p. 64 on
p. 64 gives

σ1 − σ3 = σ1 = 0 = Y

or σ1 = 110 MPa.

2.95 Estimate the depth of penetration in a Brinell
hardness test using 500-kg load, when the sam-
ple is a cold-worked aluminum with a yield
stress of 200 MPa.

Note from Fig. 2.24 on p. 55 that for cold-
worked aluminum with a yield stress of 200
MPa, the Brinell hardness is around 65
kg/mm2. From Fig. 2.22 on p. 52, we can esti-
mate the diameter of the indentation from the
expression:

HB =
2P

(πD)(D −
√
D2 − d2)

from which we find that d = 3.091 mm for
D = 10mm. To calculate the depth of pene-
tration, consider the following sketch:

5 mm

3 mm

Because the radius is 5 mm and one-half the
penetration diameter is 1.5 mm, we can obtain
α as

α = sin−1

(
1.5
5

)
= 17.5◦

The depth of penetration, t, can be obtained
from

t = 5− 5 cosα = 5− 5 cos 17.5◦ = 0.23 mm

2.96 The following data are taken from a stainless
steel tension-test specimen:

Load, P (lb) Extension, ∆l (in.)
1600 0
2500 0.02
3000 0.08
3600 0.20
4200 0.40
4500 0.60
4600 (max) 0.86
4586 (fracture) 0.98

Also, Ao = 0.056 in2, Af = 0.016 in2, lo = 2
in. Plot the true stress-true strain curve for the
material.

The following are calculated from Eqs. (2.6),
(2.9), (2.10), and (2.8) on pp. 33-35:

A σ
∆l l ε (in2) (ksi)
0 2.0 0 0.056 28.5
0.02 2.02 0.00995 0.0554 45.1
0.08 2.08 0.0392 0.0538 55.7
0.2 2.2 0.0953 0.0509 70.7
0.4 2.4 0.182 0.0467 90.
0.6 2.6 0.262 0.0431 104
0.86 2.86 0.357 0.0392 117
0.98 2.98 0.399 0.0376 120

The true stress-true strain curve is then plotted
as follows:
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2.97 A metal is yielding plastically under the stress
state shown in the accompanying figure.

50 MPa

40 MPa

20 MPa

(a) Label the principal axes according to their
proper numerical convention (1, 2, 3).

(b) What is the yield stress using the Tresca
criterion?

(c) What if the von Mises criterion is used?
(d) The stress state causes measured strains

of ε1 = 0.4 and ε2 = 0.2, with ε3 not being
measured. What is the value of ε3?

(a) Since σ1 ≥ σ2 ≥ σ3, then from the figure
σ1 = 50 MPa, σ2 = 20 MPa and σ3 = −40
MPa.

(b) The yield stress using the Tresca criterion
is given by Eq. (2.36) as

σmax − σmin = Y

So that

Y = 50 MPa− (−40 MPa) = 90 MPa

(c) If the von Mises criterion is used, then
Eq. (2.37) on p. 64 gives

(σ1−σ2)2 +(σ2−σ3)2 +(σ3−σ1)2 = 2Y 2

or

2Y 2 = (50− 20)2 +(20+40)2 +(50+40)2

or
2Y 2 = 12, 600

which is solved as Y = 79.4 MPa.
(d) If the material is deforming plastically,

then from Eq. (2.48) on p. 69,

ε1 + ε2 + ε3 = 0.4 + 0.2 + ε3 = 0

or ε3 = −0.6.

2.98 It has been proposed to modify the von Mises
yield criterion as:

(σ1 − σ2)
a + (σ2 − σ3)

a + (σ3 − σ1)
a = C

where C is a constant and a is an even inte-
ger larger than 2. Plot this yield criterion for
a = 4 and a = 12, along with the Tresca and
von Mises criteria, in plane stress. (Hint: See
Fig. 2.36 on p. 67).

For plane stress, one of the stresses, say σ3, is
zero, and the other stresses are σA and σB . The
yield criterion is then

(σA − σB)a + (σB)a + (σA)a = C

For uniaxial tension, σA = Y and σB = 0 so
that C = 2Y a. These equations are difficult
to solve by hand; the following solution was
obtained using a mathematical programming
package:

Y

Y

B

A

Tresca

von Mises

a=12
a=4

Note that the solution for a = 2 (von Mises)
and a = 4 are so close that they cannot be
distinguished in the plot. When zoomed into
a portion of the curve, one would see that the
a = 4 curve lies between the von Mises curve
and the a = 12 curve.

2.99 Assume that you are asked to give a quiz to stu-
dents on the contents of this chapter. Prepare
three quantitative problems and three qualita-
tive questions, and supply the answers.

By the student. This is a challenging, open-
ended question that requires considerable focus
and understanding on the part of the student,
and has been found to be a very valuable home-
work problem.
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