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PREFACE

This solutions manual is designed to accompany the sixth edition of Linear
Algebra with Applications by Steven J. Leon. The answers in this manual supple-
ment those given in the answer key in the text. In addition this manual contains
the complete solutions to all of the nonroutine exercises in the text.

At the end of each chapter of the textbook there is a Chapter Test and a sec-
tion of computer exercises to be solved using MATLAB. The chapter test questions
are to be answered as either true or false. Although the true-false answers are given
in the Answer Section of the textbook, students are required to explain or prove
their answers. This manual includes explanations, proofs, and counterexamples for
all chapter test questions.

In the MATLAB exercises most of the computations are straightforward. Con-
sequently they have not been included in this solutions manual. On the other hand,
the text also includes questions related to the computations. The purpose of the
questions is to emphasize the significance of the computations. The solutions man-
ual does provide the answers to most of these questions. There are some questions
for which it is not possible to provide a single answer. For example answers to
questions involving significant digits depend on the floating point arithmetic of the
particular computer that is used. Similarly if an exercise involves randomly gen-
erated matrices, the answer may depend on the particular random matrices that
were generated.

Steven J. Leon
sleon@umassd.edu
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CHAPTER
1

SECTION 1
1 1 1 1 1
0 2 1 -2 1
2@d|0o o 4 1 -2
0 0o o0 1 -3
0 0 o0 0 2

b. (a) 3z; +2x9 =8
T1+dx =7
(b) S¢; —~ 220+ x3=23
2z, +3z3 — 423 =0
(C) 2Ty + T+ 4dxz = ~1
4z, — 229+ 323 = 4
5T, + 229 + 623 = ~1
(d) 421 — 3z2 + 23424 =4
3214+ 3 —Brz+6xy=5
T1+ o+ 2344, =8
Sz1+ o+ 323 —224=17
9. Given the system

-z +z3 = b
—maeT) + Ty = be

one can eliminate the variable z, by subtracting the first row from the
second. One then obtains the equivalent system

—-miT1+ T3 = b
(my =mo)zy = by — by
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CHAPTER 1

10.
11.

(a) If my # mq, then one can solve the second equation for z;

by — by
T = ————
my — my
One can then plug this value of z; into the first equation and solve for
2. Thus, if m; # my, there will be a unique ordered pair (z;,x2) that
satisfies the two equations.
(b) If my = mg, then the z; term drops out in the second equation

0=b2—b1

This is possible if and only if b; = bs.

(c) If my # my, then the two equations represent lines in the plane with
different slopes. Two nonparallel lines intersect in a point. That point
will be the unique solution to the system. If m; = m; and b, = b,, then
both equations represent the same line and consequently every point on
that line will satisfy both equations. If m; = m3 and b; # by, then the
equations represent parallel lines. Since parallel lines do not intersect,
there is no point on both lines and hence no solution to the system.

The system must be consistent since (0,0) is a solution.

A linear equation in 3 unknowns represents a plane in three space. The
solution set to a 3 x 3 linear system would be the set of all points that lie
on all three planes. If the planes are parallel or one plane is parallel to the
line of intersection of the other two, then the solution set will be empty. The
three equations could represent the same plane or the three planes could
all intersect in a line. In either case the solution set will contain infinitely
many points. If the three planes intersect in a point then the solution set
will contain only that point.

SECTION 2

7'

A homogeneous linear equation in 3 unknowns corresponds to a plane that
passes through the origin in 3-space. Two such equations would correspond
to two planes through the origin. If one equation is a multiple of the other,
then both represent the same plane through the origin and every point on
that plane will be a solution to the system. If one equation is not a multiple of
the other, then we have two distinct planes that intersect in a line through the
origin. Every point on the line of intersection will be a solution to the linear
system. So in either case the system must have infinitely many solutions.
In the case of a nonhomogeneous 2 x 3 linear system, the equations cor-
respond to planes that do not both pass through the origin. If one equation
is a multiple of the other, then both represent the same plane and there are
infinitely many solutions. If the equations represent planes that are parallel,
then they do not intersect and hence the system will not have any solutions.
If the equations represent distinct planes that are not parallel, then they
must intersect in a line and hence there will be infinitely many solutions.
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So the only possibilities for a nonhomogeneous 2 x 3 linear system are 0 or
infinitely many solutions.
9. (a) Since the system is homogeneous it must be consistent.
15. If (¢;, ¢z) is a solution, then
a11¢; +age; = 0
az e +azcy; = 0
Multiplying both equations through by e, one obtains
anfacy) +ap(acy) = a-0=0
azi(aey) + axaey) = a-0=0

Thus (ac;, ac;) is also a solution,

SECTION 3
8 -15 11
1. (e)[ 0 -4 _3]
-1 -6 6
5 -10 15
() [5 -1 4]
8 -9 6
15 20
5. (a)5A=[ 5 5]
10 35
6 8 9 12 15 20
2A+3A=[2 2]+[3 3]z[5 5]
4 14 6 21 10 35
18 24
(b)6A=[ 6 6]
12 42
6 8 18 24
3(2A)=3[2 2]:[ 6 6]
4 14 12 42
31 2
() AT = [4 1 7]
e (3012 T_ 3 4 ~
(4%) "[4 1 7] ‘[é ;]—A
5 4 6
6. (a)A+B=[0 5 1]=-B+A

o (13 8)
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(12 3 18 3 9 0
3A+3B‘[6 9 15]+[-6 6 «-12]
(15 12 18
Lo 15 3
T 5 0
(© (+BT=[2 2% |45
05 1
6 1
4 2 1 -2) (5 0
AT+BT=11 3 |+|3 2)=|4 5
6 5 0 -4 6 1
5 14 15 42
7. (8) 3(AB)=3| 15 42 | =| 45 126
0 16 0 48
(6 3 9 4 15 42
(3A)B=| 18 9 [1 ﬁ]= 45 126
[ -6 12 0 48
(2 1 15 42
ABB)=| 6 3][2 ﬁ]“['ﬁ 126]
[ -2 4 0 48
T
(5 14
5 15 0
() (AB)T = | 15 42] =[ ]
L o0 16 14 42 16
rar_ [2 1 2 6 -2)_ (5 15 0
BA".«; 6][1 3 4]‘[14 42 16]
_ (0 5) 3 1) _(3 6
8. (a) (A+B)+C'—[1 7] +[2 1]~[3 8]
(2 4) 1 2)_(3 6
A+(B+C)-[l 3 +[2 5]-[3 3]
(-4 18)Y(3 1)_{2¢4 14)
(b)(AB)C*[#z 13‘[2 1]‘[20 11
2 4 -4 -1 (24 14
ABC) = | 3][ 8 4]=~20 11]
(2 4 1 2)Y_(10 24)
() AB+CO)= | | 3][2 5]‘[7 17 |
(-4 18 14 6)_(10 24
AB+AC=| 13]+[9 4}‘[7 17]
_ (0 5) (3 1)_(10 5
(@) (A+B)C = | { 7] [2 1]‘[17 8]
(14 6 -4 -1 10 5
AC+BC=| 7 4]+[8 4]=[17 8]
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9. Let

by +aizber  a11bi2 + ar2bg2 cn 12
(4B) [ ag1b11 +a20ba1  a21b12 + agb ca1  C22

It follows that

diy = (a11b11 + a12b21)c11 + (811612 + 612b22) 21
anbiicn + azbaicnn + anbizea + ar2baaen
(@11b11 + a12b21)e12 + (@11b12 + 61232)cor
ay1biiciz + ajabgrc12 + anibiacee + arabaaca
d1 = (a21d11 + az2b21)c11 + (a21b12 + a2zbaz)en
anbiici + azebaicnn + azbizcay + azabazen
(@21511 + a22b21)e12 + (a21b12 + az2boz)e22
= ag1bii1c12 + az2ba1c12 + a21b12¢22 + axbazcrs

[

di2

Il

It

da2

If we set
buienn +dizear  buiciz + biaer
E=A(BC)= | %1 912 1t +0
(BO) [ a;  6n baicnn +b22c21  barciz + bazcaz
then it follows that

enn = an(bnieny + biaear) + aga(barery + dageay)
anbiicii + anbisey + arzbarcnn + arabazen
e12 = ai1(biiciz + bracaz) + arz(barc12 + d22cs2)
anbiiciz + an1biacor + arzboicz + a19boaca
€21 = a1 (b + br2ca1) + aga(barcnn + bagean)
az1biicin + anbizean + azbarcrn + agebazen
a1 (briciz + bizeaz) + aga(barc12 + bagezr)
= anbiic12 + a21b12c22 + azzbg €12 + azbracar

il

]

€22

Thus
dy =eg; dip =€) dy; =ep dyg = e
and hence
(AB)C = D = E = A(BC)
12.
0 01 0 0 0 01
. _lo o001 s_lo o000
A= 0 00O A= 0 0 0 O
0 0 00 00 00

and A* = 0. If n > 4, then
A" = An—d.Ad - Aﬂ-—40 =0
15. If d = ay1a92 — ag1a12 # 0 then

l a22 —a12 a1l a12
d | —an a1 as azz
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0”022"'0]202] 0
= = I
[ an  ap | |1 a2 —app
an a2 d | —a2 a1y
0.”022—01202] 0
= = I
0 @118 — 61209
Therefore
1 [ azz  —a12 ] - A-1
d | —an ap
16. Since

17.

18.

19.

AT lA=AA =T
it follows from the definition that A~! is nonsingular and A is its inverse.
Since
AT(A+1)T = (A-—IA)T =17
(A—I)TAT = (AA—I)T =71
it follows that
(A—I)T = (AT)—].
Form=1,
(Al)—l = A-l — (A-l)l
Assume the result holds in the case m = k, that is,
(Ak)-l — (A——l)k
It follows that
(A—l)k+1Ak+1 = A—}.(A—l)kAkA = A-—IA =17
and
Ak+1(A—~l)k+1 — AAk(A——l)kA-l — AA_l =7
Therefore
(Aul)k-{-l — (Ak-H)—-l
and the result follows by mathematical induction.

(a) (A+B)? = (A+B)(A+B) = (A+B)A+(A+B)B = A’*+ BA+ AB+B?
In the case of real numbers ab + ba = 2ab, however, with matrices
AB + BA is generally not equal to 2AB.

(b)

= (A+B)(A-B)
(A+B)A-(A+ B)B
= A’+ BA- AB - B?

(A+ B)(A - B)
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In the case of real numbers ab—ba = 0, however, with matrices AB—BA
is generally not equal to O.

20. There are many possible choices for A and B. For example, one could choose

01 11
A= [ 0 0 ] and B = [ 00 ]
More generally if
a b d  eb
Awm [ ca cb ] B = [ —-de —ea
then AB = O for any choice of the scalars a, b, ¢, e.

21. To construct nonzero matrices A, B, C with the desired properties, first find
nonzero matrices C and D such that DC = O (see Exercise 20). Next, for
any nonzero matrix A, set B = A + D. It follows that

BC = (A+ D)C = AC + DC = AC + O = AC

22. A 2 x 2 symmetric matrix is one of the form
' a b
=52

Ag_ 02+b2 ab + be
“lab+bc b+c?

If A2 = O, then its diagonal entries must be 0.
a®?+b>=0 and b +c2=0
Thus a = b =c¢ =0 and hence A = O.

23. For most pairs of symmetric matrices A and B the product AB will not be
symmetric. For example

11 1 2) _ (3 3
1 2 2 1 " 5 4
See Exercise 25 for a characterization of the conditions under which the

product will be symmetric.

24. (a) AT is an n x m matrix. Since AT has m columns and A has m rows,
the multiplication AT A is possible. The multiplication AAT is possible
since A has n columns and AT has n rows.

(b) (ATA)T = AT(AT)T = ATA
(AAT)T — (AT)TAT = AAT
25. Let A and B be symmetric n x n matrices. If (AB)T = AB then
BA =BTAT = (AB)T = AB
Conversely if BA = AB then

(AB)T = BTAT = BA= AB

Thus
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27. (a)

BT = (A+ AT = AT+ AT = AT +A=B

T = (A- ATYT = AT - AT = AT - A=-C

(b) A=3(A+AT)+3(A-AT)

30. The search vector is x = (1,0,1,0,1,0)7. The search result is given by the

vector
y=ATx=(1,2,2,1,1,2,1)T

The ith entry of y is equal to the number of search words in the title of the

ith book.

82. (b) The (1,5) entry of A? represents the number of walks of length 2 from

Vi to V_:';.
33. Ifa= 021/1‘111, then

1 0 a1 a2 | _ apn a2 | o
a 1 0 b aa;;  aapp +b as
The product will equal A provided

aajg +b=ay
Thus we must choose
a21a12
a1

b= ag — aa12 = a2 —

SECTION 4

a2
aa;z +b

2. (a) [? 3')], type I

(b) The given matrix is not an elementary matrix. Its inverse is given by

0 0
1 0
-1 1

1 0
d o 1/5 , type III
0 0 1
5. (c) Since
C=FB=FFA
where F and E are elementary matrices it follows that C is row equivalent
to A.
1 0 0 1 0 0 1
6. WE'=|3 1 of,E'=|0 1 Of,E'=|0
o 0 1 2 0 1 0

)

|
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The product L = E7'E;'E3! is lower triangular.

1 0 1 1 2 -3
8.(a)[3 3 4][— 1 -1
2 2 3 0o -2 3

1

4

3

1 2 =3 1 O
- 1 -1 3 3
0 - -3 2 2

11. (b) XA+B=C
X = (C - B)A™!

_ 8 -14
=l -3 19

(d) XA+C=X

OoO=OoO OO
oo RO C
S—

XA-XI=-C
X(A-I)=-C
=~C(A-I)!

_ 2 -4

ol R
12. (a) If F is an elementary matrix of type I or type II then E is symmetric.
Thus ET = E is an elementary matrix of the same type. If E is the
elementary matrix of type III formed by adding o times the ith row of
the identity matrix to the jth row, then E7 is the elementary matrix
of type III formed from the identity matrix by adding o times the jth

row to the ith row.

(b) In general the product of two elementary matrices will not be an ele-
mentary matrix. Generally the product of two elementary matrices will
be a matrix formed from the identity matrix by the performance of two
row operations. For example, if

1 00 1 00
Ee=1210 and E,=1010
000 2 01

then F) and E; are elementary matrices, but

100
EiE,=}12 10

2 01

is not an elementary matrix.
13. If T = UR, then

n
tij = E UikThj
k=1
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Since U and R are upper triangular

Uiy = Ujg =+ =Uj i1 =0
Titl = Ti42,j =0~ Taj =0
If i > 7, then
i n
tij = Zuekf‘k_f + Z Uik Tkj
k=1 k=j+1
k] n
= o+ 3 a0
k=1 k=j+1
=0
Therefore T is upper triangular.
If i = j, then
i-1 n
tis =i = D uikThi +uiTii+ D UikThs
k=1 k=j+1
-1 n
= ZOf"i + ujiri; + Z uix0
k=1 k=j+1
= Uy5T55
Therefore

tjj =453 J=1...,n
14. If we set x = (2,1 — 4)T, then
Ax=2a; +1lag—4a3 =0

Thus x is a nonzero solution to the system Ax = 0. But if a homogeneous
system has a nonzero solution, then it must have infinitely many solutions.
In particular, if ¢ is any scalar, then ¢x is also a solution to the system since

Alex) =cAx=c0=0
Since Ax = 0 and x # 0 it follows that the matrix A must be singular. (See
Theorem 1.4.3)
15. If B is singular, then it follows from Theorem 1.4.3 that there exists a nonzero
vector x such that Bx = 0. If C = AB, then
Cx=ABx=A0=0

Thus, by Theorem 1.4.3, C' must also be singular.
16. (a) If U is upper triangular with nonzero diagonal entries, then using a row
operation I, U can be transformed into an upper triangular matrix with
1’s on the diagonal. Row operation III can then be used to eliminate
all of the entries above the diagonal. Thus U is row equivalent to I and
hence is nonsingular.




Section 4§ 11

(b) The same row operations that were used to reduce U to the identity
matrix will transform I into U~!. Row operation II applied to I will
just change the values of the diagonal entries. When the row operation
III steps referred to in part (a) are applied to a diagonal matrix, the
entries above the diagonal are filled in. The resulting matrix, U~?, will
be upper triangular.

17. Since A is nonsingular it is row equivalent to I. Hence there exist elementary

matrices Ey, Es,..., Ej such that

Ey - -E\A=1I
It follows that

A '=E,- E,
and

Ey---Ey\B=A"'B=C

The same row operations that reduce A to I, will transform B to C. There-
fore the reduced row echelon form of (A | B) will be (I | C).

18. (a) If the diagonal entries of D; are oy, aq,...,a, and the diagonal entries
of Dy are 31, 82,...,0n, then D; Dy will be a diagonal matrix with diag-
onal entries a3 81,a20s,...,0,0, and DD, will be a diagonal matrix
with diagonal entries 3y a3, 32009, . .., Bn0y,. Since the two have the same
diagonal entries it follows that Dy Ds = Dy Dy,

(b)
AB = A(aol + a1 A+ -+ +axA")
aoA + a1 A% + .« + apA*T
= (aol +a1A+ -+ +arA¥)A
= BA
19. If A is symmetric and nonsingular, then
(AT = (A7)T(447Y) = (A)TAT)A™ = A7

20. If A isrow equivalent to B then there exist elementary matrices Ey, Es,..., Ej
such that

A=E.E._,---FE\B
Each of the Ej's is invertible and E; ! is also an elementary matrix (Theorem
1.4.2). Thus
B=E'E;'...E;'A
and hence B is row equivalent to A.
21. (a) If Aisrow equivalent to B, then there exist elementary matrices Ey, Ey, ..., E
such that
A=EiEy_1+---E\B
Since B is row equivalent to C, there exist elementary matrices Hy, Ha,...,H;
such that
B = HjHj...; " ‘ch
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