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Chapter 2

Chapter 2
Section 2.1

2.1.1 Not a linear transformation, since yo = x2 + 2 is not linear in our sense.

2.1.2 Linear, with matrix

—_ o O
o O N
o w o

2.1.3 Not linear, since yo = x1x3 is nonlinear.

9 3 -3
2 -9 1
214 A=, o
5 1 5

2.1.5 By Theorem 2.1.2, the three columns of the 2 x 3 matrix A are T'(€}),T(€2), and T(€3), so that

a=[7 0 ).

11 9 17
1 4 1 4 . 1 4
2.1.6 Notethatz; [2| 422 |H| =12 5 {xl }, so that T' is indeed linear, with matrix |2 5
3 6 3 6|7 3 6
Z1
2.1.7 Note that x101 + -+ + TTm = [U1...Um] | --- |, so that T is indeed linear, with matrix [0} T -« Up,)].
T
. 1+ Txy =1 . T = —20y1 + Ty
2.1.8 Reducing the system , we obtain .
& Y {3361 + 20z = Z/z] [ 2 = 3y1 — Y2
. Y1 2 3 I .
2.1.9 We have to attempt to solve the equation y =16 o9l |z for 1 and z3. Reducing the system
2 2
207 4+ 3z = 1 . z1 + 1.529 = 0.5

{le Y 0p, = " we obtain 0 — St

No unique solution (z1,z3) can be found for a given (y1,y2); the matrix is noninvertible.
2.1.10 We have to attempt to solve the equation Bl] = [}1 S} {ﬁl} for 1 and x3. Reducing the system

2 2
r1 + 2z = €1 = 91 +  2ys xr1 9 -2 U1
we find that or = .
{41’1 + 91 = y2] [ r2 = Ay + Y2 T2 -4 1] |y

The inverse matrix is [_i _f] .
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Section 2.1

. 1 2 .
2.1.11 We have to attempt to solve the equation [91] = [ } [ml} for 1 and x3. Reducing the system

Y2 3 9] |22
— T 3y1 — 2 3 -2
o1+ 2m h we find that ! n 31y2 . The inverse matrix is i’
31 4+ 92 = Y2 T2 = —Y1+3Y2 - 3
. 1+ kres =1y T = 1y1 — ky . ..
2.1.12 Reducing the system we find that . The inverse matrix is
T2 = Y2 T2 = Y2

ol

2.1.13 a First suppose that a # 0. We have to attempt to solve the equation [zl} = [a b} {zl} for z; and zs.

2 c d| |z
[azy + bzy = n ~a | r + 312 = %y1 .
lcxy + dxy = Yo cry + dzy = ya | —c(I)
[z1 + Sy = 1y }_}
L (d_bf)@ = —Sy1 + Y2
[+ PR = n }
i (a=be)py = —Syp + oy

We can solve this system for z; and x5 if (and only if) ad — be # 0, as claimed.

If a = 0, then we have to consider the system

+ dry = Y2
bry = 'A%

bra = w1 . ) cry
cr1 4+ doo " swap : [ < I1

We can solve for 1 and zo provided that both b and ¢ are nonzero, that is if bc # 0. Since a = 0, this means

that ad — bc # 0, as claimed.

b First suppose that ad — be # 0 and a # 0. Let D = ad — be for simplicity. We continue our work in part (a):

_xl + gl'z = %yl :l
D _ . o =

L Tr2 = —Zyh1 + y2] D
R —tan
L T3 = -5+ By

Z1 = E+2)u - ng}

L 22 = —pn + B

_xl = %yl — [b)y2:|

L 22 = —Hy o+ Sy

(Notethat %4—‘%:%:%:%_)

-1
It follows that {Z Z} = ﬁ [_i _Z}, as claimed. If ad — bc # 0 and a = 0, then we have to solve the

system
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Chapter 2

[cx14+  dzo =1y2 | +cC
bry =1

1+ day :éyz —4(11)
L T2 = U1
E3 = —&y -I-iyz}
L T2 = %yl

1 . B
It follows that {Z b] = [ } =t [_d Z} (recall that a = 0), as claimed.

2.1.14 a By Exercise 13a, E 2} is invertible if (and only if) 2k — 15 #£ 0, or k # 7.5.

-1
b By Exercise 13b, [2 3} _Qki15|: k 3]'

5 k -5 2
If all entries of this inverse are integers, then %Ew — kaw = 2ki15 is a (nonzero) integer n, so that 2k—15 = %
ork="75+ % Since ﬁ =kn="7.5n+ % is an integer as well, n must be odd.

We have shown: If all entries of the inverse are integers, then k = 7.5 + ﬁ , where n is an odd integer. The

-1
converse is true as well: If k is chosen in this way, then the entries of [g k] will be integers.

2.1.15 By Exercise 13a, the matrix {Z _2] is invertible if (and only if) a® 4+ b2 # 0, which is the case unless

a b
b a

a

a=b=0. If[b

_Z} is invertible, then its inverse is ﬁ [ } , by Exercise 13b.

2.1.16 If A= {g g] , then AZ = 37 for all & in R?, so that A represents a scaling by a factor of 3. Its inverse is a

1
z 0
scaling by a factor of %: A7l = {8 i } (See Figure 2.1.)
3
2117 If A= {_(1) _ﬂ , then AZ = —Z for all & in R?, so that A represents a reflection about the origin.

This transformation is its own inverse: A=! = A. (See Figure 2.2.)

2.1.18 Compare with Exercise 16: This matrix represents a scaling by the factor of %; the inverse is a scaling by 2.
(See Figure 2.3.)

10

2119 If A= {0 0

],thenA[

zl] = {3501 } , so that A represents the orthogonal projection onto the €7 axis. (See
2
Figure 2.1.) This transformation is not invertible, since the equation AZ = [1} has infinitely many solutions .

0
(See Figure 2.4.)
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Section 2.1

Figure 2.1: for Problem 2.1.16.

o

Figure 2.3: for Problem 2.1.18.

1 0

2.1.20 If A = [0 1] , then A [il} = [52], so that A represents the reflection about the line x5 = z;. This
2 1
transformation is its own inverse: A=! =

A. (See Figure 2.5.)

2.1.21 Compare with Example 5.

0 1

If A = {_1 0

} , then A {il } = [ iz} . Note that the vectors ¥ and AX are perpendicular and have the same
2 —
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Chapter 2

Figure 2.5: for Problem 2.1.20.

length. If & is in the first quadrant, then AZ is in the fourth. Therefore, A represents the rotation through an

0

angle of 90° in the clockwise direction. (See Figure 2.6.) The inverse A~ = [1

-1 .
0] represents the rotation

through 90° in the counterclockwise direction.

Figure 2.6: for Problem 2.1.21.

1 0
0 -1

transformation is its own inverse: A~! = A. (See Figure 2.7.)

i) —I2

2.1.22 If A = [ ] , then A {xl] = [ xl}, so that A represents the reflection about the €; axis. This

2.1.23 Compare with Exercise 21.

1 . . . . .
Note that A = 2 _(1) O]’ so that A represents a rotation through an angle of 90° in the clockwise direction,

followed by a scaling by the factor of 2.
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Section 2.1

o

Figure 2.7: for Problem 2.1.22.

. 0 —3 : : e
The inverse A~ = [ 1 6} represents a rotation through an angle of 90° in the counterclockwise direction,
2

followed by a scaling by the factor of % (See Figure 2.8.)

O =
[

2 4 |

é

Figure 2.8: for Problem 2.1.23.

2.1.24 Compare with Example 5. (See Figure 2.9.)

an
NB%

Figure 2.9: for Problem 2.1.24.

2.1.25 The matrix represents a scaling by the factor of 2. (See Figure 2.10.)
2.1.26 This matrix represents a reflection about the line x5 = 1. (See Figure 2.11.)

2.1.27 This matrix represents a reflection about the & axis. (See Figure 2.12.)

53



Chapter 2

DY
N

Figure 2.10: for Problem 2.1.25.

circle

jl

P\
P

Figure 2.11: for Problem 2.1.26.

circle

A
NPy

Figure 2.12: for Problem 2.1.27.

0 2 2

remains unchanged. (See Figure 2.13.)

2128 TfA— {1 O] ,thenA{xl} _
T 2x9

[ 1 } , so that the x5 component is multiplied by 2, while the ;1 component

2

i
2

Figure 2.13: for Problem 2.1.28.
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Section 2.1

2.1.29 This matrix represents a reflection about the origin. Compare with Exercise 17. (See Figure 2.14.)

GE
L

Figure 2.14: for Problem 2.1.29.

2.1.30 If A = [0 0}, then A [il] = [xO }, so that A represents the projection onto the €5 axis. (See Figure
2

0 1 2
2.15.)

Figure 2.15: for Problem 2.1.30.

2.1.31 The image must be reflected about the € axis, that is {il
2 2

} must be transformed into [_il } : This can

—

be accomplished by means of the linear transformation T'(¥) = [_1 0] Z.

0 1
3 0 - 0
0o 3 -
2.1.32 Using Theorem 2.1.2, we find A= | . . . . |. This matrix has 3’s on the diagonal and 0’s everywhere
0 0 3

else.

2.1.33 By Theorem 2.1.2, A = [T [1} T 0

0 1” (See Figure 2.16.)

Therefore, A =

S s
S s

2.1.34 As in Exercise 2.1.33, we find T'(€1) and T'(e2); then by Theorem 2.1.2, A = [T'(€1) T(e2)]. (See Figure
2.17.)
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Chapter 2

~1N2

_ cos45°]  [1N2
Te)= [1/«/5 °] = [

Te) = [cos a5°| = Iz

Figure 2.16: for Problem 2.1.33.

— c050
ro-[50]

sin@

Figure 2.17: for Problem 2.1.34.

Therefore, A = €8 6 —sing .
sin 0 cos
. a b 5 89 6 88 .
2.1.35 We want to find a matrix A = [c d} such that A {42} = {52} and A [41} = {53} This amounts to

5a + 42b =89
g . 6a + 410 = 88
solving the system Se442d — 52
6c+41d =53

(Here we really have two systems with two unknowns each.)

The unique solution isa =1, b=2, ¢=2, and d =1, so that A = B ﬂ

2.1.36 First we draw o in terms of ¢} and U5 so that W = c¢17U7 + co¥s for some ¢; and ¢o. Then, we scale the
Ua-component by 3, so our new vector equals ¢ U + 3cots.

2.1.37 Since & = U+ k(W — ¥), we have T(Z) =T (0 + k(W — ¥)) = T(V) + k(T (W) — T(7)), by Theorem 2.1.3

Since k is between 0 and 1, the tip of this vector T(Z) is on the line segment connecting the tips of T'(¢) and
T(W). (See Figure 2.18.)
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Section 2.1

%) T(w) - T(¥), translated

k(T(w) — T(¥)), translated

™)

Figure 2.18: for Problem 2.1.37.

T - = Iy
2.1.39 By Theorem 2.1.2, we have T | ... | = T(é) ... T(em) |l =nT@E) + 2T (En).
Tm Tm
2.1.40 These linear transformations are of the form [y] = [a][z], or y = axz. The graph of such a function is a line
through the origin.
2.1.41 These linear transformations are of the form [y] = [a b] {il } , or y = axy + bxs. The graph of such a function
2

is a plane through the origin.

2.1.42 a See Figure 2.20.

b The image of the point is the origin, [8] .

NN =

o7



Chapter 2

image of x, axis

T(,)

image of x, axis

T(E,)
T@,)
image of x, axis
Figure 2.20: for Problem 2.1.42.
1 T _1 =
- 10 T+ @2 =0
¢ Solve the equation [ f } To | = {8], or f . (See Figure 2.16.)
-3 0 11|, —371 + z3 =0
X1 2t
The solutions are of the form | zo | = | ¢ , where t is an arbitrary real number. For example, for ¢ = %7 we
X3 t
1
find the point % considered in part b.These points are on the line through the origin and the observer’s eye.
2
2 €1 x1
2143 a T(@) = 3| - | a2 | =221 + 320+ 423 =1[2 3 4] | a2
4 X3 €3

The transformation is indeed linear, with matrix [2 3 4].

U1
b If = | vy |, then T is linear with matrix [v; ve v3], as in part (a).
U3
T I a I a
¢ Let [a b c] be the matrix of T. Then T | z3 | =[abc] |z2 | =ax1+bra+cxs= |b|-|z2|,sothat 0= | b
T3 T3 C I3 C
does the job.
X1 U1 T V2X3 — V3T2 0 —Vs3 (%] T
2144 T |xzo| = |vo| X 29| = | v321 — 123 | = V3 0 —u o |, so that T is linear, with matrix
T3 U3 T3 VT2 — V2T —Vs U1 0 T3
0 —Vs3 V2
V3 0 —U1
—Vg U1 0
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Section 2.1

2.1.45 Yes, 7= L(T(Z)) is also linear, which we will verify using Theorem 2.1.3. Part a holds, since L(T(7 + W)) =
L(T(¥) + T(w)) = L(T(¥)) + L(T(w)), and part b also works, because L(T(kv)) = L(kT(¥)) = kL(T(7)).

svso 53] 5 (a[2]) = [1] - [2:2]
)=rla)=nik)
st e i) oo (1) - ) 22

2.1.47 Write @ as a linear combination of U7 and ¥y : & = 19 + co¥s. (See Figure 2.21.)

Figure 2.21: for Problem 2.1.47.

Measurements show that we have roughly @ = 1.597 + 0.
Therefore, by linearity, T'(«w) = T'(1.5¢) + 02) = 1.5T(¢h) + T'(¥2). (See Figure 2.22.)

1.5T()

........ ()
TG,

Figure 2.22: for Problem 2.1.47.

2.1.48 Let Z be some vector in R?. Since #; and @, are not parallel, we can write & in terms of components of ¥
and . So, let ¢; and co be scalars such that & = ¢;9) + co¥y. Then, by Theorem 2.1.3, T(Z) = T'(c101 + cath) =
T(Cﬂ_ﬁ) + T(Czﬁz) = ClT(Q_)'l) + CQT(’[TQ) = ClL(’l_ﬁ) + CQL(’UQ) = L(Cﬂ_)'l + 62172) = L(f) So T(f) = L(f) for all #
in R2.

2r1 +bxe = 144

2.1.49 a Let z; be the number of 2 Franc coins, and x2 be the number of 5 Franc coins. Then . 4 —
1 2 =

59



Chapter 2

From this we easily find our solution vector to be [?Z] .

{ total value of coins } _ [21’1 +5£E2:| . [2 5} [:cl}

total number of coins 1 +To 1 1] |22
2 5
So, A = [1 J .

d b
. . .. . . _ 1
¢ By Exercise 13, matrix A is invertible (since ad — bc = —3 # 0), and A~ = ad—bc { } T

—c a
1 —51[144
_1 - _
Then 5|1 2][51}

!

—111 37 . .
[ 10 } = [14] , which was the vector we found in

Wl

28 5] -

W=
Wl

part a.

9150 a Let |P| = |mass of the pla'tmum alloy
S mass of the silver alloy

} Using the definition density = mass/volume, or volume =
mass/ density, we can set up the system:

, with the solution p = 2,600 and s = 2,400. We see that the platinum alloy makes up

|

} Applied to the case considered in part a, we find that [i} =

p +4+s = 5,000
&5 +tig = 370
only 52 percent of the crown; this gold smith is a crook!

b We seek the matrix A such that A | P | = total mass = pp * SS . Thus A = }
S total volume 75 T 16 >

S

2 =20
; -1 _
¢ Yes. By Exercise 13, A" = {_1 90

_1| totalmass | | 2 —=20]|[5,000| |2,600
total volume | ~ | =1 20 370 | | 2,400

][]

} , confirming our answer in part a.

(] -1 1 ¥)-|

_ 160
9 .

Ol

Ol

SOA=|: 1

b Using Exercise 13, we find 3(1) — (—=152)0 = 2 # 0, so A is invertible.

160 9
Al_g[é g}{g 312}.SO,F—§C+32.
9

300

2.1.52 a AZ = {27400

} , meaning that the total value of our money is C$300, or, equivalently, ZAR2400.

b From Exercise 13, we test the value ad — bc and find it to be zero. Thus A is not invertible. To determine when

A is consistent, we begin to compute rref [Afb}
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Section 2.2

1 4 by s by
8 1 by | 81 0 0 ° by—8b

Thus, the system is consistent only when by = 8b;. This makes sense, since by is the total value of our money
in terms of Rand, while b; is the value in terms of Canadian dollars. Consider the example in part a. If the
system AZX = bis consistent, then there will be infinitely many solutions &, representing various compositions of
our portfolio in terms of Rand and Canadian dollars, all representing the same total value.

2.1.53 All four entries along the diagonal must be 1: they represent the process of converting a currency to itself.
We also know that a;; = 1/a;; for all 4,j because converting from one currency i to currencty j is the inverse
1 5/8 1/170 =«

. . . . . 1 2
to converting currency j to currency ¢. This gives us 3 more entries: ?ég . T N Next, let’s
x  1/2 * 1

find the entry a4;, giving the value of one Euro expressed in Pounds. Now E1 = $(8/5) = $1.60 and $1 =
£(1/2) = £(0.50) so that E1 = £(1/2)(8/5) = £(4/5) = £0.80. We have found that as; = as2a21 = 4/5 and
1 5/8 1/170 5/4

8/5 1 * 2

170 * 1

45 1/2 1

gives asze = agra12 = 170%5/8 = 425/4 and ay3 = as1a13 = (4/5)(1/170) = 2/425. Using the fact that a;; = aj_il,
1 5/8 1/170 5/4

8/5 1  4/425 2

170 425/4 1 425/2

4/5 1/2  2/425 1

the matrix is . Similarly, we have a;; = a;pax; for all indices 7,7,k = 1,2,3,4. This

we can complete the matrix:

2.1.54 a 1: this represents converting a currency to itself.

b a;; is the reciprocal of aj;, meaning that a;ja;; = 1. This represents converting on currency to another, then
converting it back.

¢ Note that a;; is the conversion factor from currency k to currency ¢ meaning that
(1 unit of currency k) = (a; units of currency %)
Likewise,
(1 unit of currency j) = (ax; units of currency k).
It follows that
(1 unit of currency j) = (axja;, units of currency i) = (a,; units of currency i), so that a;rar; = a;;.
d The rank of A is only 1, because every row is simply a scalar multiple of the top row. More precisely, since

a;; = a;1a15, by part c, the it" row is a;; times the top row. When we compute the rref, every row but the top
will be removed in the first step. Thus, rref(A) is a matrix with the top row of A and zeroes for all other entries.

Section 2.2

2.2.1 The standard L is transformed into a distorted L whose foot is the vector T’ (Lﬂ) = ﬁ) ;] [H = [ﬂ .
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Chapter 2

Meanwhile, the back becomes the vector T' ([0]> = [3 1} [0} = [2} .

2 1 2(|2 4
. 1 V3
. .. |cos(60°) —sin(60°)| | 3 —7%
2.2.2 By Theorem 2.2.3, this matrix is [sin(60°) cos(60°) | = | va 1
2 2

2.2.3 If ¥ is in the unit square in R?, then & = 2,6, + x2€> with 0 < z;, x5 < 1, so that

T(Z) = T(x1€1 + x2€2) = 21T (€1) + 22T (€3).

The image of the unit square is a parallelogram in R3; two of its sides are T'(€7) and T'(€,), and the origin is one

of its vertices. (See Figure 2.23.)

TE,)

TG@)

Figure 2.23: for Problem 2.2.3.

2.2.4 By Theorem 2.2.4, this is a rotation combined with a scaling. The transformation rotates 45 degrees counter-

clockwise, and has a scaling factor of v/2.

2.2.5 Note that cos(f) = —0.8, so that § = arccos(—0.8) ~ 2.498.

1 1 2
2.2.6 By Theorem 2.2.1, proj;, | 1| =4 |1 i, where o is a unit vector on L. To get u, we normalize | 1
1 1 2
10
2 1 2 9
G@=%|1]|,sothatproj, [1|=3-1|1|=]2
2 1 2 10
9
1 1 1
2.2.7 According to the discussion in the text, refy, |1 | =2 @ |1 u— | 1|, where 4 is a unit vector on L. To
1 1 1
11
2 2 1 2 1 9
get @, we normalize | 1|: @ =34 |1|,sothatref, [1]| =2(3)3[1| - [1 =3
2 2 1 2 1 %
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2.2.8 From Definition 2.2.2, we can see that this is a reflection about the line 1 = —x».

2.2.9 By Theorem 2.2.5, this is a vertical shear.

2.2.10 By Theorem 2.2.1, proj@ = (4-Z)u, where @ is a unit vector on L. We can choose @ = % ;L = 8? . Then

el (087 [ai])[08] _ 08]  [0.64z; +0.48z2]  [064 048] [a1
projr [xz] - <[O.6} L;QD [0.6} = (0.8z1 + 0.622) [0.6} = [0.48x1+0.36x2} - [0.48 0.36} L«J
0.64 0.48
0.48 0.36 |

The matrix is A = [
0.64 0.48

2.2.11 In Exercise 10 we found the matrix A = {0.48 0.36

] of the projection onto the line L. By Theorem 2.2.2,

0.28 0.96}

refy @ = 2(proj; &) — & = 2A% — & = (2A — I) T, so that the matrix of the reflection is 24 — I = {0 96 —0.28

2.2.12 Let @ = (1/||w||)w be the unit vector in the direction of w. It has the components u; = wy/y/w? + w2 and
Ug . On Pages 57/58, we see that the matrix representing the projection is

u% Ui1U
U Us u% ’

1 w?  wiws
2 )
wi+ w3 | wiws w3

— Wa
= PER)
VWitw;

This can be written as

as claimed.
2.2.13 By Theorem 2.2.2,

e [2] =2 (] [ ) [e] 2]

_ up | x| _ (2u? — 1)xy + 2ujusas
= 2(u1x1 + ugws) [u2] |:ZL'2:| = {2u1u2x1 i (2’[1,% s |

Note that the sum of the diagonal entries is a + d =

2_ -
The matrix is A = {a b} — {2101 1 2ujus

c d 2uiUs 2u§fl_

2(u? +u3) —2 =0, since @ is a unit vector. It follows that d = —a. Since ¢ = b, A is of the form {a 2] Also,

bo—
a? +b% = (2u? — 1)? + 4u?u2 = 4uf — 4u? + 1+ 4u2 (1 — u?) = 1, as claimed.

2.2.14 a Proceeding as on Page 57/58 in the text, we find that A is the matrix whose ijth entry is w;u;:
U% U1 U9 ujus

A= | uuy u3  ugus

UpUl UpU2 ug

b The sum of the diagonal entries is u? + u3 + u% = 1, since @ is a unit vector.
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Ui Ko
= 2(1‘1’[1,1 —+ Touo + I3U3) (1%} — Zo
us z3
2z1u3  +2mouguy  +2r3u3u;  —T (2u? — 1)xy + 22Uy Ty +2uiu3Ts
= | 2zyugus  +210ud  H2w3usus —x0 | = U U T +(2u3 — 1)z +2usu3 T3
2ziuguz  +2rugus  +2z3ui 0 —3 2u1U3%1 +2uousxo +(2u? — 1)z3
(2u? — 1) 2uoty 2ujus
So A = 2u1 Us (2u3 — 1) 2uoUs
QU1U3 QUQU3 (21,6% — 1)

2.2.16 a See Figure 2.24.

V+w

TE +w)
=T{) + T(w)

ad )

0 77'(\7) T(kV) = kT(V)

Figure 2.24: for Problem 2.2.16a.

b By Theorem 2.1.2, the matrix of T is [T'(€1) T(€2)].

., _ |cos(20)
ey = [sin 26)

Figure 2.25: for Problem 2.2.16b.
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Section 2.2

cos(20)

T'(€s) is the unit vector in the fourth quadrant perpendicular to T'(€;) = [sin(29)

} , so that

oy sin(26) . . cos(20) sin(26)
T(er) = [_ cos(26) ] . The matrix of T is therefore [sin(?@) ~ cos(20) |

Alternatively, we can use the result of Exercise 13, with [Zl] = [i?ﬁg} to find the matrix
2

2cos?f@—1 2cosfsiné
2cosfsinf 2sin?0— 1|

You can use trigonometric identities to show that the two results agree. (See Figure 2.25.)

2.2.17 We want, [a b ] [Ul} _ [avl —|—bvz} _ [01}

b —al | v bvy  —avg Vg

Now, (a — 1)vy + bvg = 0 and bv; — (a + 1)ve, which is a system with solutions of the form {(1 bta)J , where t

is an arbitrary constant.

Let’s choose t = 1, making ¢ = [1 E a] .

Similarly, we want Aw = —w. We perform a computation as above to reveal @ = {a b

} as a possible choice.

A quick check of ¥+ @ = 0 reveals that they are indeed perpendicular.

Now, any vector & in R can be written in terms of components with respect to L = span(?) as @ = ZIl + &+ =
¢t 4 di. Then, T(Z) = AZ = A(ct + d) = A(ct) + A(dw) = cAT + dAG = v — d = #l — 7+ = refy (Z), by
Definition 2.2.2.

(The vectors ¥ and @ constructed above are both zero in the special case that a =1 and b = 0. In that case, we
can let ¥ = €7 and W = &, instead.)

2.2.18 From Exercise 17, we know that the reflection is about the line parallel to v = [1 E a} = [82} =04 [ﬂ .

. - . 2 . .
So, every point on this line can be described as [z} =k [1} .So,y=k = %x, and y = %x is the line we are

looking for.

1 00
2.219 T(&) = &, T(&) = &, and T(&) = 0, so that the matrixis [0 1 0
0 0 0
[1 0 0]
2.2.20 T(€1) =¢é1, T(€z) = —é,, and T(€3) = €3, so that the matrixis [0 —1 0
0 0 1)
0 1 o]
2.2.21 T(&1) =&, T(é;) = —¢é1, and T(é5) = €3, so that the matrixis |1 0 0. (See Figure 2.26.)
01
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Figure 2.26: for Problem 2.2.21.

2.2.22 Sketch the €; — €3 plane, as viewed from the positive €5 axis.

Bzl A1

',[

cos6
= 0
-sin 6

(=N

Figure 2.27: for Problem 2.2.22.

cosf 0 sinf
Since T'(€3) = €5, the matrix is 0 1 0 |. (SeeFigure 2.27.)
—sinf 0 cosé

2.2.23 T(e1) = e3, T(€3) = &, and T'(€3) = €1, so that the matrix is

_ o O
o~ O

1
0 |. (See Figure 2.28.)
0

T
El
Figure 2.28: for Problem 2.2.23.

2224a A =[7 W],s0 A {H =7 and A [ﬂ = . Since A preserves length, both ¢ and @ must be unit

. 1 . R -
vectors. Furthermore, since A preserves angles and [ 0} and [(1) are clearly perpendicular, v and w must also
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be perpendicular.

b Since W is a unit vector perpendicular to ¥, it can be obtained by rotating ¢ through 90 degrees, either in
the counterclockwise or in the clockwise direction. Using the corresponding rotation matrices, we see that

e T e T

¢ Following part b, A is either of the form [Z _a ] , representing a rotation, or A = {Z —a] , representing a
reflection.
. 1 k . o 1 1 -k
2.2.25 The matrix A = 0 1 represents a horizontal shear, and its inverse A~" = 0 1 represents such a

shear as well, but “the other way.”
k0 2 2k 8 4 0
2.2.26 a [O k] [_1}[_k]{_4].80k4andA{0 4}

b This is the orthogonal projection onto the horizontal axis, with matrix B = [1 0] .

0 0
[t 2] ] et 3

a rotation matrix.

(Sl
(SN {[JN]

] . Note that a? + b?> = 1, as required for

d Since the z; term is being modified, this must be a horizontal shear.

o [} ]3]} s 1]

a b1[7] [7a+b] [-5 g
fp L[5 [ e

for a reflection matrix.

[S2{[9¢)
SIS

7aude:[

(SIS
[S{IINGT[N)

} . Note that a? + b? = 1, as required

2.2.27 Matrix B clearly represents a scaling.
Matrix C represents a projection, by Definition 2.2.1, with u; = 0.6 and uy = 0.8.
Matrix F represents a shear, by Theorem 2.2.5.
Matrix A represents a reflection, by Definition 2.2.2.

Matrix D represents a rotation, by Definition 2.2.3.

2.2.28 a D is a scaling, being of the form {](C) 2} .

b FE is the shear, since it is the only matrix which has the proper form (Theorem 2.2.5).

¢ C'is the rotation, since it fits Theorem 2.2.3.
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d A is the projection, following the form given in Definition 2.2.1.
e F' is the reflection, using Definition 2.2.2.

2.2.29 To check that L is linear, we verify the two parts of Theorem 2.1.3:

a) Use the hint and apply L to both sides of the equation ¥ 4+ § = T'(L(Z) + L(%)):
L(Z+9) = L(T(L(Z) + L(y))) = L(Z) + L(y) as claimed.
b)L (k@) = L (kT (L (%)) = L (T (kL (%)) = kL (Z), as claimed

1 T
Z=T(L(Z)) T is linear

1

2.2.30 Write A = [’171 172]; then AT = [171 172] |:{IJ
2

} = 1171 + T2U2. We must choose ¢} and v in such a way that
L oo . 1 .. . . -
T1U1 + T2Us is a scalar multiple of the vector [2 , for all £1 and xo. This is the case if (and only if) both ¢} and

U are scalar multiples of B} .

For example, choose U] = B} and Uy = {8} o that A — {1 O}

2 0
Z1
2.2.31 Write A = [’(71 Vs ’l_)tg}, then AZ = [’(71 Vs 173] To | = U] + ToUs + 23U3.
T3
1
We must choose 7,73, and ¥3 in such a way that x1v7 + xoUs + x3U3 is perpendicular to @ = | 2| for all
3

21,2, and x3. This is the case if (and only if) all the vectors ¥, U, and U3 are perpendicular to @, that is, if
U - W =Uy W =3 -w=0.

-2 -2 0 0
For example, we can choose 7] = 1| and ¥ = @3 = 0, so that A = 1 0 0
0 0 0O
2.2.32 a See Figure 2.29.
b Compute Dif cosa  —sina | |cos I} _ | cosacos 0 —sina sin 16} .
sin «v cosa | | sin sin « cos 3 + cos asin 3

Comparing this result with our finding in part (a), we get the addition theorems
cos(a + 8) = cosacos 3 — sinasin 3

sin(a + ) = sina cos 8 — cos asin 3

68



Section 2.2

1
unit
circle __[cos (o +P)
bv= [sin (o +B)
: = _ |cosB
H V= [sin B
a :
a+fB
p :
1

Figure 2.29: for Problem 2.2.32a.

Figure 2.30: for Problem 2.2.33.

2.2.33 Geometrically, we can find the representation ¥ = ¢} 4+ v by means of a parallelogram, as shown in Figure
2.30.

To show the existence and uniqueness of this representation algebraically, choose a nonzero vector w; in L; and

a nonzero ws in Lo. Then the system xqw + xowy = 0 or [Wy Wa) il =0 has only the solution 1 = x5 =0
2
(if z1W + 29wy = 0 then 2,1, = —x9Ws is both in L; and in Lo, so that it must be the zero vector).
Therefore, the system x1wW; + 2oy = ¥ or (W Ws] il = ¥ has a unique solution 1,y for all 7 in R? (by
2

Theorem 1.3.4). Now set U] = x1wW; and s = xowWs to obtain the desired representation ¥ = v} + . (Compare
with Exercise 1.3.57.)

To show that the transformation T'(¢) = ¢ is linear, we will verify the two parts of Theorem 2.1.3.
Let ¥ = ¢ + U2, W = Wy + W, so that ¥+ & = (01 + W) + (2 + Wa) and kv = kU + k.

1T 1T 1 T T T 1

in Ll in L2 in Ll in L2 in L1 in L2 in Ll in L2
a. T(0+ @) = vy +wh = T(¥) + T(W), and

b. T(kv) = kv = kT(7), as claimed.
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—

2.2.34 Keep in mind that the columns of the matrix of a linear transformation 7 from R? to R? are T'(€1), T(€2),
and T'(€3).

If T is the orthogonal projection onto a line L, then T(Z) will be on L for all ¥ in R3; in particular, the three
columns of the matrix of 7" will be on L, and therefore pairwise parallel. This is the case only for matrix B: B
represents an orthogonal projection onto a line.

A reflection transforms orthogonal vectors into orthogonal vectors; therefore, the three columns of its matrix
must be pairwise orthogonal. This is the case only for matrix E: FE represents the reflection about a line.

2.2.35 1If the vectors ¢ and v are defined as shown in Figure 2.27, then the parallelogram P consists of all vectors
of the form ¥ = ¢171 + cotp, where 0 < ¢q, ¢ < 1.

The image of P consists of all vectors of the form T'(¥) = T'(c19) + coth) = 1T (01) + 2T (V2).
These vectors form the parallelogram shown in Figure 2.31 on the right.

P @)

1
~

image of P under T

T,

Figure 2.31: for Problem 2.2.35.

2.2.36 If the vectors 4y, v, and vy are defined as shown in Figure 2.28, then the parallelogram P consists of all
vectors ¥ of the form ¥ = vy + ¢171 + oz, where 0 < ¢1,c0 < 1.

The image of P consists of all vectors of the form T'(¥) = T'(¥y + c191 + coth) = T'(¥) + 1 T(01) + 2T (T2).
These vectors form the parallelogram shown in Figure 2.32 on the right.

T(Vz) (translated)

v, (translated)

TG \) (translated)

T,

VI (translated)

0 o

Figure 2.32: for Problem 2.2.36.

2
2.2.37 a By Definition 2.2.1, a projection has a matrix of the form {uu; “;72‘2} , where {Zl} is a unit vector.
1U2 5 2
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So the trace is u? + u = 1.

a

b By Definition 2.2.2, reflection matrices look like [b

_ba], so the trace is a —a = 0.

cos —sinf

snf  cosd |’ so the trace is cos 0 +cos = 2 cos

¢ According to Theorem 2.2.3, a rotation matrix has the form {

for some . Thus, the trace is in the interval [—2,2].

d By Theorem 2.2.5, the matrix of a shear appears as either {]16 ﬂ or [(1) llc , depending on whether it represents

a vertical or horizontal shear. In both cases, however, the trace is 1 + 1 = 2.

U% U1UQ 2 92
2238a A= wuy w2 |7 %° det(A) = ujus — uyuguiug = 0.
2
fa b 2 _ 12 2 12
b A= b —a ,s0det(A) = —a* —b* = —(a* + b%) = —1.
la —b 2 2 2 32
c A= b a],sodet(A):a—(—b):a +b*=1.

d A= 1 k} or [1 0] , both of which have determinant equal to 12 — 0 = 1.

10 1 k1
1 1 1 1 1 1
2.2.39 a Note that L 1] = 2|2 2|.The matrix | 2 2| represents an orthogonal projection (Definition
11 11
2 2 2 2
U1 ﬁ 1 1
2.2.1), with @ = w | = \% . So, 11 represents a projection combined with a scaling by a factor of 2.
2 V2
2
b This looks similar to a shear, with the one zero off the diagonal. Since the two diagonal entries are identical, we
can write 1 g} =3 [ 11 ﬂ , showing that this matrix represents a vertical shear combined with a scaling
- 3

by a factor of 3.

|
e

¢ We are asked to write [3 4} = l

4 -3
3
k
[4 _
k

(2)? +(

W I

1 , with our scaling factor k yet to be determined. This matrix,

Eal [N ST

] has the form of a reflection matrix ([Z Z}) This form further requires that 1 = a? + b? =

N GV S TN

)2, or k = 5. Thus, the matrix represents a reflection combined with a scaling by a factor of 5.

Eal[9Y)

2.2.40 T = projp + proj,7, as illustrated in Figure 2.33.

2.241 refoZ = —refpd since refg, refp, and & all have the same length, and refg# and refpZ enclose an angle of
200+ 20 =2(a+ B) = 7. (See Figure 2.34.)
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Figure 2.33: for Problem 2.2.40.

Figure 2.34: for Problem 2.2.41.

2.2.42 T(Z)

T(T(&)) since T(Z) is on L hence the projection of T'(Z) onto L is T'(¥) itself.

2.2.43 Since ¥ = AZ is obtained from Z by a rotation through 6 in the counterclockwise direction, & is obtained
from ¢ by a rotation through 6 in the clockwise direction, that is, a rotation through —f. (See Figure 2.35.)

)

y=AX

Figure 2.35: for Problem 2.2.43.

Therefore, the matrix of the inverse transformation is A= =

[cos(—0) —sin(—@)] _ [ cos 0 sin 0

| sin(—0)  cos(—0) —sind COSH]' You can

use the formula in Exercise 2.1.13b to check this result.

_1 -
. _ —b b
2.2.44 By Exercise 1.1.13b, A~1 = {Z a] = i {_Z -

If A represents a rotation through 6 followed by a scaling by 7, then A~! represents a rotation through —0
followed by a scaling by % (See Figure 2.36.)

. 11 —a —b| _ 1 —a —=b| _ . |-a =b|l _|a b
2.2.45 By Exercise 2.1.13, A7 = —5—> {—b u } =~ [—b u ] =-1 {—b u } = [b Bk

So A=! = A, which makes sense. Reflecting a vector twice about the same line will return it to its original state.
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Figure 2.36: for Problem 2.2.44.

b
k

2.2.46 We want to write A = k [ represents a reflection. It is required

b
k. } , where the matrix B = [
k

that (£)% + (2)? = 1, meaning that a? + b? = k2, or, k = Va2 + b%. Now A~! = ﬁ [Z _ba =5A=1B,

for the reflection matrix B and the scaling factor k introduced above. In summary: If A represents a reflection
combined with a scaling by k, then A~! represents the same reflection combined with a scaling by %

9.2.47 Write T Bl} - [“ b] [ml} - [““*bm].

oo
ESlISEESIIS]

e

2 c d| |z cry + dro
_ cost —sint [\ _ |acost+ bsint —asint + bcost
a. f(t) = (T Lint}) ' (T[ cost}) N [ccost+dsint] ' [—csint—i—dcost}
= (acost + bsint)(—asint + bcost) + (ccost + dsint)(—csint + dcost)

This function f(¢) is continuous, since cos(t), sin(t), and constant functions are continuous, and sums and
products of continuous functions are continuous.

b. f(3)=T {(1)] T [_H =— (T [ﬂ T [éD since T is linear.

s =1 0] =2 [9] 4] Thecim s

c. By part (b), the numbers f(0) and f (%) have different signs (one is positive and the other negative), or they
are both zero. Since f(t) is continuous, by part (a), we can apply the intermediate value theorem. (See Figure
2.37.)

P
.

13)=-0

Figure 2.37: for Problem 2.2.47c.

d. Note that {g?;((:)) ] and {—(s:m(t) } are perpendicular unit vectors, for any t. If we set

os(t)
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. [cos(c)} a [_Sin(c)

sin(c) COS(C)}, with the number ¢ we found in part (c), then f(c) = T(%;) - T(v2) = 0, so
that T'(v7) and T'(v5) are perpendicular, as claimed. Note that T'(¢) or T'(¥2) may be zero.

2.2.48 We find
ro=([s S)a0)- (5 =] =0])
- [5008é;if(§)sin(t)] ' [—SSinth:j)OS—(?cos(t)]

= 15(sin®t — cos®t) = 15(2sin?¢ — 1). See Figure 2.38.

Figure 2.38: for Problem 2.2.48.

The only zero of f(t) between 0 and 7 is at ¢ = 7.

T \/5 3 s \/5
coS( 5 — s 5 5

Therefore, ¥ = [ , (7‘:)] =| 2| and @ = (2) = 2 | work. Note that T(v)) = % {;1
SIH(Z) % COS(%) \éﬁ

and T'(vy) = % [—181} are indeed perpendicular. See Figure 2.39.

@)

<i

T(,)

Figure 2.39: for Problem 2.2.48.

2240 10— | 0 en 1) = | 5] [ )| = | Senll)] = costoy| | +smin) | |-
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These vectors form an ellipse; consider the characterization of an ellipse given in the footnote on Page 69, with

w1 = [(5)} and Wy = {g] (See Figure 2.40.)

- _[o
W2 = [2] 5 cos
. - ®
unit e [cos ® ) =[2 sin (1)
sin (¢)

U -

Figure 2.40: for Problem 2.2.49.

2.2.50 Use the hint: Since the vectors on the unit circle are of the form ¥ = cos(t)v; + sin(¢)vs, the image of the
unit circle consists of the vectors of the form T'(¥) = T'(cos(t)U; + sin(t)T2) = cos(t)T' (v ) + sin(t)T (V).

(0]
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2 V=cost¥, +sint¥, T, =w,

T(V) = cos tw, + sin n‘&z

TG)=w,

Figure 2.41: for Problem 2.2.50.

These vectors form an ellipse: Consider the characterization of an ellipse given in the footnote, with w; = T'(¢7)
and Wy = T'(¥). The key point is that T'(7;) and T'(02) are perpendicular. See Figure 2.41.

2.2.51 Consider the linear transformation 7" with matrix A = [@; ws], that is,

T X N N T . .
T |:x;:| =A |:{E;:| = [w1 'lUQ} |:£L';:| = T1W1 + ToWs.

The curve C' is the image of the unit circle under the transformation 7" if ¥ = {Z?I?((z)) ] is on the unit circle,

then T(¢) = cos(t)w; + sin(t)wy is on the curve C. Therefore, C' is an ellipse, by Exercise 50. (See Figure
2.42))

w. T(i):coslﬁ'zl+sin tv"v2
v_[cos (t)]

“|sin (0 w,

/ :

Figure 2.42: for Problem 2.2.51.

2.2.52 By definition, the vectors ¥ on an ellipse E are of the form ¥ = cos(t)v; + sin(t)v2, for some perpen-
dicular vectors ¥; and ¥5. Then the vectors on the image C of E are of the form T(¥) = cos(¢t)T(01) +
sin(¢)T'(U2). These vectors form an ellipse, by Exercise 51 (with @y = T(0;) and @y = T(02)). See Figure
2.43.
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E T(V,) = w,

Tv)=w,

Figure 2.43: for Problem 2.2.52.

Section 2.3

4 6
2.3.1 [3 4]

4 4
o2 [ 1]

2.3.3 Undefined

2 2
234 (2 0
_7 4_
b
235 |c¢ d
_O 0_
[ad — be 0
2.3.6 o ad_bc}
(-1 1 o0
2.3.7 5 3 4
|6 —2 —4
[0 0
2.3.8 0 o]
[0 0
2.3.9 0 0]
2.3.10 [0 1]
2.3.11 [10]

7
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1 2 3
2312 |2 4 6
3.6 9
2.3.13 [h]
5 o -2 -2 -2 0 12 3
2.3.14 A2=[2 2],30:[1482}, BD=1[6,C2=| 4 1 -2|,CD=|3|,DB={1 2 3|,
10 4 -2 6 1 2 3

5
DE = [5] , EB=[510 15], E? = [25]
5

vons | Lo 3] el SMolLalear| T 5]

1 0
R HEOE R
11 0 12+1000’1023+10712 [[1 27113 5 1 2 35
9316 0 1 3 4 0 1/[0 OJIlO 1][4 5 0 1]13 4| |13 417 9] |3 4 79
- [O 0} {1 2}{1 OHO OH{O OHQ 3%{1 O}'l 2} o [0 0} {1 2} 1001 2
L0 0] [3 4] [0 1J[0 OJI[0O OJ[4 5] [0 1]J[3 4 L0 0] [3 4 0 0 3 4
a b][1 0] _[1 0]fa b
2.3.17 We must find all S such that SA = AS, or L d] [0 2 = [0 2} B d]'
So | “ 21 _|a b meaning that b = 2b and ¢ = 2 b and c must be zer
O, a9q| = |2e 94| meaning that b=2band ¢ = 2c, so b and c must be zero.
. . a 0 . 1 0
We see that all diagonal matrices (those of the form [ 0 d}) commute with [ 0 2].
. . a b a b1 2 1 2|]a b
2.3.18 As in Exercise 2.3.17, we let A = L d]Now we want [c d} {0 1] = {0 1] [C d}
a 2a+b| |a+2c b+2d . . . . _ . _
So, L 20+d} [ . d },reveahng that ¢ =0 (since a + 2¢ = a) and a = d (since b+ 2d = 2a + b).

Thus B is any matrix of the form [g z] .

. a b a b0 =2 0 —2)ja b
2.3.19 Agaln,letA—L d].Wewant [c d} [2 0}—[2 0][0 d]

2b —Qa} B [—20 —2d

Thus, [Qd 2| =20 2

} , meaning that ¢ = —b and d = a.

We see that all matrices of the form [—ab

b . 0 -2
a] commute with [2 0 ]
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2.3.20 Following the form of Exercise 17, we let A = {CCL b] .

d
N tab 2 31 |2 3||a b
owwewaltle al|-3 2] 7|3 2] |e 4]

g 20 —3b 3a+2b| | 2a+3c 20+ 3d
"12¢—3d 3c+2d|  |-3a+2c —3b+2d
¢ (since 2a + 3¢ = 2a — 3b).

] , revealing that a = d (since 3a + 2b = 2b + 3d) and —b =
Thus B is any matrix of the form [ab Z] .

a b1 2 1 2 a b
2.3.21 Now we want [c d] {2 _1]_{2 —1} {c d].

Thus, {a—l—?b 2a — b _ {a—&—Qc b+ 2d

c+2d 2c—d 2a—c 2b—d
d = a —b. (The other two equations are redundant.)

]. Soa+2b=a+2c or c=>b,and 2a — b = b + 2d, revealing

] commute with {1 2 }

) a b
All matrices of the form [b a—>d 2 _1

. . a b a b||1 1 1 1|]a b
2.3.22 AsmExermsel?,weletA—[c d}.Nowwewant L d] [1 1}—[1 1} [c d]'

S0 [a—|—b a—|—b]

a+c b+d
c+d c+d

atc b+d} , revealing that a = d (since a +b=b+d) and b = ¢ (since a+c=a+b).

Thus B is any matrix of the form [Z Z] .

a b 1 3 1 3|fa b
2.3.23 We want L d] [2 6}:[2 6} [c d}

The a+2b 3a+6b| |a+3c b+3d
Wletrod 3c+6d|” |2a+6¢ 2b+6d

d=a+ %b. The other two equations are redundant.

]. Soa+2b=a+ 3¢, or c = %b, and 3a + 6b = b + 3d, revealing

. 1 3
commute with [2 6} .

a b
Thus all ices of the f 5
us all matrices of the form [ﬁb a—l—;b]

a b ¢

2.3.24 Following the form of Exercise 2.3.17, welet A= |d e f
Lg b i

a b cl[2 00 2 0 0] [a b c

Now we want |d e f 0 3 0|=1|0 320 d e f
g h 1 0 0 4 0 0 4] |g a
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2a 3b 4c 2a 2b 2c
So, |2d 3e 4f| = |3d 3e 3f |, which forces b,c,d, f,g and h to be zero. a,e and i, however, can be
2g 3h 4i 4g 4h 4i
chosen freely.
a 0 0
Thus B is any matrix of the form [0 e 0
0 0 ¢
a b c 2 00 2 0 0 a b c
2.3.25 Now wewant |d e f 0 3 0|=|0 320 d e f],
g h i 0 0 2 0 0 2 g h i
2a 3b 2c 2a 2b 2c
or, [2d 3e 2f| = |3d 3e 3f]|. So, 3b =2b,2d = 3d, 3f = 2f and 3h = 2h, meaning that b,d, f and h
2g 3h 2i 2g 2h 2i
must all be zero.
a 0 c 2 00
Thus all matrices of the form |0 e 0| commute with [0 3 0
g 0 13 0 0 2
a b ¢
2.3.26 Following the form of Exercise 2.3.17, welet A= |d e f
g h i
a b ¢ 2 00 2 00 a b ¢
Then we want |d e f 0 2 0|=1]|0 20 d e f
g h 1 0 0 3 0 0 3 g h 1
2a 2b 3¢ 2a 2b 2c
So, |2d 2e¢ 3f| =|2d 2e 2f|.Thusc, f,g and h must be zero, leaving B to be any matrix of the form
2g 2h  3i 3g 3h 3i

O Qe
o o o
= O O

2.3.27 We will prove that A(C' + D) = AC' + AD, repeatedly using Theorem 1.3.10a: A(Z + §) = AT + Ay.
Write B = [t} ... ¥U,,] and C = [y ... Wy,]. Then
A(C + D) = Alth + Wy -+ Uy, + W] = [AT) + AWy -+ AU, + A,y,], and
AC + AD = A[0y -+ U] + AW -+ W] = [AVL + AWy -+ - AT, + Al

The results agree.

2.3.28 The ijth entries of the three matrices are

p p p
> (kain)bnj, > ain(kby;), and k (Z aihbhj>

h=1 h=1 h=1
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The three results agree.

2.3.29 a D,Dg and DgD,, are the same transformation, namely, a rotation through a + g.

b DuDy = CoS & —smchosﬁ —s1nﬁ]

| sina cosa || sinf3 cos 3

[cosacos B —sinasinfS —cosasinf — sinacos g
| sinacos B+ cosasin  —sinasin 8+ cos acos 3

_Jcos(a+pB) —sin(a+p) }
| sin(a + () cos(a + 3)

DgD,, yields the same answer.

2.3.30 a See Figure 2.44.

o+ B =30°

Figure 2.44: for Problem 2.4.30.

The vectors & and T'(£) have the same length (since reflections leave the length unchanged), and they enclose an
angle of 2(ar 4+ 3) = 2 - 30° = 60°

b Based on the answer in part (a), we conclude that T is a rotation through 60°.

. 1 V3
. .| cos(60°) —sin(60°)| | 3 —2
¢ The matrix of T is in(60°) cos(60°) | = | va B
2 2
Wy
2.3.31 Write A in terms of its rows: A = w2 (suppose A is n x m).
W,
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We can think of this as a partition into n

W wh B
. I3 v B o .
1 x m matrices. Now AB = | 2 | B = w2 (a product of partitioned matrices).
Wy, W, B

We see that the ith row of AB is the product of the ith row of A and the matrix B.

23.32 Let X = [CCL b}. Then we want X[l 0} = [1 0} X, or [Ccl b} {1 0] = [1 0] [a b}, or

d 0 0 0 0 d| |0 0 0 Of||c d
. 0 0 b ' o 0 1] Jo 1 a O[]0 1| _
L 0] = {0 0],mean1ng that b = ¢ = 0. Also, we wantX{O 0] = [0 O} X, or [O d} {O 0] =
0 1][a 0 0 a 0 d a 0 i identi
{0 0] 0 d}’ or [0 0} = {0 0} so a =d. Thus, X = [0 a} = al, must be a multiple of the identity

matrix. (X will then commute with any 2 x 2 matrix M, since XM =aM = MX.)

2333 A2 =1, A% = A, A* = I,. The power A" alternates between A = —I, and I,. The matrix A describes
a reflection about the origin. Alternatively one can say A represents a rotation by 180° = 7. Since A? is the

identity, A9 is the identity and A0 = 4 = { _01 _01 } )

2.3.34 A2 =1,, A> = A, A* = I,. The power A" alternates between A and I. The matrix A describes a reflection
about the z axis. Because A2 is the identity, A'°%0 is the identity and A'00! = A = [ (1) _01 ] .

2.3.35 A2 =1,, A> = A, A* = I,. The power A" alternates between A and I. The matrix A describes a reflection

about the diagonal x = y. Because A? is the identity, A% is the identity and A9 = A = { (1) (1) } )

2.3.36 A% = [ 12 }, A3 = [ L3 } and A* = [ 14 ] The power A™ represents a horizontal shear along the

0 1 0 1 0 1
1 1001 }

z-axis. The shear strength increases linearly in n. We have A001 = { 0 1

2.3.37 A% = [ 10 ], A3 = [ L0 } and A* = [ L } The power A™ represents a vertical shear along

-2 1 -3 1 —4 1
the y axis. The shear magnitude increases linearly in n. We have A9 = [ —1%01 (1) ]
2.3.38 A? = [ _01 Pl }, A3 = —A, A* = I,. The matrix A represents the rotation through 7/2 in the

counterclockwise direction. Since A* is the identity matrix, we know that A'°% is the identity matrix and

0 -1
1001 _ 4 _
A —A—{l 0 ]

0 1 -1 1
42 43 1

clockwise direction. Because A® is the identity matrix, we know that

}, A* = —I,. The matrix A describes a rotation by 7/4 in the

AIOOO AlOOl —

is the identity matrix and
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a—ava| Y

-1 V3
-V3 -1
counterclockwise direction. Because A® is the identity matrix, we know that A% is the identity matrix and

-1 V3

1001 — 42 _ A—1 _ 1

A =A°=A —2[_\/3 _1}

2340 A% =1 [ ], A3 = I, A* = A. The matrix A describes a rotation by 120° = 27/3 in the

2341 A2 =1, A3 = A, A* = I,. The power A" alternates between I, for even n and A for odd n. Therefore
A0l — A The matrix represents a reflection about a line.

. oo . 1
2.3.42 A™ = A. The matrix A represents a projection on the line x = y spanned by the vector [ 1 } We have

A1001_A_(1/2)“ H

2.3.43 An example is A = { (1) _01 ], representing the reflection about the horizontal axis.

2.3.44 A rotation by 7/2 given by the matrix A = [ (1) _01 } .

-1 =3

2.3.45 For example, A = (1/2) [ /i -1

} , the rotation through 27/3. See Problem 2.3.40.

2.3.46 For example, A = % [ i 1 , the orthogonal projection onto the line spanned by [ } } .
1 1] . . 1
2.3.47 For example, A = 3 ERE the orthogonal projection onto the line spanned by N
2.3.48 For example, the shear A = (1) 1/110
(1 0 . . . -1 .
2.3.49 AF = 0 -1 represents the reflection about the z-axis, while FA = 0 1 represents the reflection
about the y-axis. (See Figure 2.45.)
2.3.50 CG = (1) (1) } represents a reflection about the line x = y, while GC' = { _01 _O ] represents a reflection
about the line x = —y. (See Figure 2.46.)
2351 FJ =JF = [ _11 :1 } both represent a rotation through 37/4 combined with a scaling by V2. (See

Figure 2.47.)
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AF

= ~

FA

Figure 2.45: for Problem 2.3.49.

2352 JH=HJ= [ (1)?1 _01;1 ] . Since H represents a rotation and J represents a rotation through /4 combined

with a scaling by v/2, the products in either order will be the same, representing a rotation combined with a
scaling by v/2. (See Figure 2.48.)

2.3.53 CD = (1) _01 } represents the rotation through 7/2, while DC = { _01 (1) ] represents the rotation

through —7/2. (See Figure 2.49.)

23.54 BE = [ BOéG :82 } represents the rotation through the angle § = arccos(—0.6) ~ 2.21, while EB =
—-06 0.8 . .
08 —06 represents the rotation through —6. (See Figure 2.50.)

2.3.55 We need to solve the matrix equation

1 2
2 4
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=7 L ~
— —GC 5 S

Figure 2.46: for Problem 2.3.50.

which amounts to solving the system a 4+ 2¢ = 0,2a + 4¢ = 0,b + 2d = 0 and 2b + 4d = 0. The solutions are of

the form a = —2¢ and b = —2d. Thus X = [ —2c —2d

c d ] , where ¢, d are arbitrary constants.

—-2b b

2.3.56 Proceeding as in Exercise 55, we find X = { _9d d

} , where b and d are arbitrary.
2.3.57 We need to solve the matrix equation
1 2 a b| |10
3 5 c d| |0 1]
which amounts to solving the system a + 2¢ = 1, 3a + 5¢ = 0,b 4+ 2d = 0 and 3b + 5d = 1. The solution is

-5 2
=34

2.3.58 Proceeding as in Exercise 57, we find X = { :))5 31 ]
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Figure 2.47: for Problem 2.3.51.

2 2][ ][40

has no solutions, since we have the inconsistent equations 2a +4b =1 and a + 2b = 0.

2.3.59 The matrix equation

2.3.60 Proceeding as in Exercise 59, we find that this equation has no solutions.

2.3.61 We need to solve the matrix equation

[123} ‘ég [10]
0 1 2 e f 0 1
which amounts to solving the system a + 2c+3e =0,c+2e =0,b+2d + 3f =0 and d+ 2f = 1. The solutions
e+1 f—2
are of the form X = | —2e 1—2f |, where e, f are arbitrary constants.
e f
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7
\37“

Figure 2.48: for Problem 2.3.52.

e—>5/3 f+2/3
2.3.62 Proceeding as in Exercise 61, we find X = | —2e+4/3 —2f —1/3 |, where e, f are arbitrary constants.
e f

2.3.63 The matrix equation

has no solutions, since we have the inconsistent equations a + 4d = 1,2a + 5d = 0, and 3a + 6d = 0.
2.3.64 The matrix equation
10 b 100
2 1 [ Z ; ] =10 10
3 2 c 001

has no solutions, since we have the inconsistent equations a = 1,2a + d = 0 and 3a + 2d = 0.
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DC

Figure 2.49: for Problem 2.3.53.

2
2.3.65 With X = [g lc)],we have to solve X? = [% ab:gbc} = [8 8} This means a = 0,¢ = 0 and b

can be arbitrary. The general solution is X = 8 g .

2.3.66 If X = then the diagonal entries of X2 will be a2, ¢, and f3. Since we want X3 = 0, we must

[SHES IS
o o O
-~ O O

havea =c= f=0. If X = , then a direct computation shows that X3 = 0. Thus the solutions

o O O
S O O

, where b,d, e are arbitrary.

12, O

o OO
o O O

0
are of the form X = | b
d

1k 0 k1> [0 0
2.3.67 For a horizontal shear, A = {O 1},we have (A — I)? = {0 0] = [O 0} Note that A¥ — & =
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P

BE

EB

Figure 2.50: for Problem 2.3.54.

A2F — AF for all vectors &, as illustrated in the accompanying figure. This equation means that A%F —2A% + % =
(A — 1,)%% = 0. Analogous results hold for vertical shears.

AT A

2.3.68 Let v1,...,9, be the columns of the matrix X. Solving the matrix equation AX = [,, amounts to solving the
linear systems Av; = €; fori =1,...,n. Since A is a n X m matrix of rank n, all these systems are consistent, so
that the matrix equation AX = I,, does have at least one solution. If n < m, then each of the systems Av; = €;
has infinitely many solutions, so that the matrix equation AX = I, has infinitely many solutions as well. See
the examples in Exercices 2.3.57,2.3.61 and 2.3.62.

2.3.69 Let v71,...,7, be the columns of the matrix X. Solving the matrix equation AX = [,, amounts to solving the
linear systems A#; = €; for i = 1,...,n. Since A is an n X n matrix of rank n, all these systems have a unique
solution, by Theorem 1.3.4, so that the matrix equation AX = I,, has a unique solution as well.
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Section 2.4

r 1 -1
2.4.1 rref 2 3 10 _110 8 3 , so that [g g} :{_2 _g}
L i 10 1 =5 2
2.4.2 rref 11101 10 1 , so that H H fails to be invertible.
L1 1: 0 1] [0 0 1 -1
[ T [1 00 -2 1 RN g S |
2.4.3 rref 0 21 0] _ . 2 , so that L ﬂ [ f }
1 10 1] o1t 1o 2 0
3 1
2 12
2.4.4 Use Theorem 2.4.5; the inverse is % 0 f%
_3 1 1
2 2
1 2 2 1 0 4
245 rref |1 3 1| =0 1 —1], sothat the matrix fails to be invertible, by Theorem 2.4.3.
1 1 3 00 O
1 =2 1
2.4.6 Use Theorem 2.4.5; the inverse is | 0 1 -2
0 0 1
1 2 3 1 2 0
247 rref |0 0 2| = |0 0 1/, sothat the matrix fails to be invertible, by Theorem 2.4.3.
0 0 3 0 0 O
0 0 1
2.4.8 Use Theorem 2.4.5; the inverseis [0 1 0
1 00
1 1 1 1 1 1
249 ref |1 1 1| =0 0 0]/, sothat the matrix fails to be invertible, by Theorem 2.4.3.
1 1 1 0 0 0
3 -3 1
2.4.10 Use Theorem 2.4.5; the inverse is | —3 5 =2
1 =2 1
(1 0 -1
2.4.11 Use Theorem 2.4.5; the inverse is |0 1 0
0 0 1
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24.12

24.13

24.14

2.4.15

2.4.16

1
x2

2.4.17 We make an attempt to solve for xy and x5 in terms of y; and ys:

z1+2x2 = n
4r1 +8x9 =

Use Theorem 2.4.5; the inverse is

Use Theorem 2.4.5; the inverse is

Use Theorem 2.4.5; the inverse is

Use Theorem 2.4.5; the inverse is

Solving for 1 and x2 in terms of y; and yo we find that

= —8y1 + 5y2
= 5y1 — 3y2

NE

1

x1 + 229
0

—-20 -2

-1 0

6 1

3 0
0 0
1 0
-2 1
1 -2
-5 0
2 0
0 5
0 -2
9 -5
-1 -5
-5 9
2 -3

=y

=—4dy1 +y2 |’

_ o O O

This system has no solutions (x1, ) for some (y1,y2), and infinitely many solutions for others; the transformation
fails to be invertible.

2.4.18 Solving for x1,x2, and z3 in terms of y1,y2, and y3 we find that

T1
€2
xs3

2.4.19

x1
T2

xs3

2.4.20

T
T2
xs3

2.4.21 f(x) = 2 fails to be invertible, since the equation f(z) = 22 = 1 has two solutions, z = 1.

= Y3
=W
= Y2

Solving for x1,z2, and x3 in terms of y;,yo, and y3, we find that

=3y1 — Sy2 + 303
= —3y1 +4y2 — y3
=Y — %yz + %y:s

Solving for x1,z2, and x3 in terms of y1, yo2, and y3 we find that

= —8y1 — 15y2 + 12y3
= 4y1 + 6y2 — 5y3
=—Y1—Y2+Y3
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2.4.22 f(z) =27 fails to be invertible, since the equation f(x) = 2* = 0 has no solution z.

2.4.23 Note that f/(r) = 322 + 1 is always positive; this implies that the function f(z) = 2® + z is increasing
throughout. Therefore, the equation f(x) = b has at most one solution x for all b. (See Figure 2.51.)

Now observe that lim, . f(x) = co and lim,_,_ f(x) = —oo; this implies that the equation f(x) = b has at
least one solution z for a given b (for a careful proof, use the intermediate value theorem; compare with Exercise
2.2.47c).

flx)= 3+x

Figure 2.51: for Problem 2.3.23.

2.4.24 We can write f(z) =23 —x =2(2? - 1) = z(z — 1)(x + 1).

The equation f(x) = 0 has three solutions, z = 0,1, —1, so that f(x) fails to be invertible.

2.4.25 Invertible, with inverse [ml] = {‘3/‘7?1}
T2 Y2

3/ —
2.4.26 Invertible, with inverse [Il] = { Y2 yl}

T2 Y1

xr1 +l‘2:| . |:0

} has no solution.
X1Tg 1

2.4.27 This transformation fails to be invertible, since the equation [

22 13 8 3
-16 -3 -2 =2
8 9 7T 2

5 4 3 1

2.4.28 We are asked to find the inverse of the matrix A =

1 -2 9 — 25
-2 5 —22 60
4 -9 41 —112
-9 17 80 222

We find that A~ =

T-1 is the transformation from R* to R* with matrix A1,

2.4.29 Use Theorem 2.4.3:

1 1 1 1 1 1 —II 1 0 2—k
1 2 k| -I—=10 1 k-1 — |0 1 k—1
1 4 k2| -1 0 3 k*2—1| =3(II) 0 0 k>—3k+2
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The matrix is invertible if (and only if) k% — 3k +2 = (k — 2)(k — 1) # 0, in which case we can further reduce it
to I3. Therefore, the matrix is invertible if k £ 1 and k # 2.

2.4.30 Use Theorem 2.4.3:

0 1

b -1 0 c| (-1 1 0 —c 1 0 —c
-1 0 c¢|T<Tl 0 1 0 0 1 b — [0 1 b
b — 0 b — 0 b —c¢ 0] +b(I)+ (1) 00 O

This matrix fails to be invertible, regarless of the values of b and c.

2.4.31 Use Theorem 2.4.3; first assume that a # 0.

0 a b ) —a 0 c¢]| +(-a) 10 —%

—a 0 ¢ ISV(VijI_) 0 a b — 0 a b —
| —b — 0 b —c 0 -b —c 0| +b(I)
(1 0 —¢ r 0 -£ 1o -<
0 a b| +a— |0 1 b —10 1 2
0 — -k 0 —c —bte|+cIl) o 0 0

0 0 -b —c O
0 0 swap o, 0 0 ¢ |: The second entry on the diagonal of rref will be 0.
I—III
| —-b —c 0 0 0 b
0 a b
It follows that the matrix | —a 0 c¢ | fails to be invertible, regardless of the values of a,b, and c.
b —c 0

2.4.32 Use Theorem 2.4.9.

If A= {CCL Z] is a matrix such that ad — bc =1 and A~! = A, then

—C a —C a

i B I B PSR

The condition ad — bc = a? = 1 now implies that a =d=1ora=d = —1.

This leaves only two matrices A, namely, Io and —I5. Check that these two matrices do indeed satisfy the given
requirements.

2.4.33 Use Theorem 2.4.9.

The requirement A~! = A means that f{lzlﬁ {Z 2] = {a 2} This is the case if (and only if)
a?+v? =1.
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2.4.34 a By Theorem 2.4.3, A is invertible if (and only if) a,b, and ¢ are all nonzero. In this case, A~! =

1

L0 0
1

0 ¢+ 0

o o0 !

b In general, a diagonal matrix is invertible if (and only if) all of its diagonal entries are nonzero.
2.4.35 a A is invertible if (and only if) all its diagonal entries, a, d, and f, are nonzero.

b As in part (a): if all the diagonal entries are nonzero.

¢ Yes, A~ will be upper triangular as well; as you construct rref[AfIn], you will perform only the following row
operations:

e divide rows by scalars

e subtract a multiple of the jth row from the ith row, where j > i.
Applying these operations to I,, you end up with an upper triangular matrix.

d As in part (b): if all diagonal entries are nonzero.

2.4.36 If a matrix A can be transformed into B by elementary row operations, then A is invertible if (and only if)
B is invertible. The claim now follows from Exercise 35, where we show that a triangular matrix is invertible if
(and only if) its diagonal entries are nonzero.

2.4.37 Make an attempt to solve the linear equation § = (cA)Z = ¢(AZX) for z:
AZ =17 sothat = A1 (1) = (147 7.

This shows that cA is indeed invertible, with (cA)~! = 1471,

-1 —k 1 k
.oA-1 1
2.4.38 Use Theorem 2.4.9; A~" = -~ [ 0 1] = {0 1} (=A).

2.4.39 Suppose the ijth entry of M is k, and all other entries are as in the identity matrix. Then we can find

rref[M EIn} by subtracting k times the jth row from the sth row. Therefore, M is indeed invertible, and M ~!
differs from the identity matrix only at the ijth entry; that entry is —k. (See Figure 2.52.)

2.4.40 1If you apply an elementary row operation to a matrix with two equal columns, then the resulting matrix
will also have two equal columns. Therefore, rref(A) has two equal columuns, so that rref(A) # I,,. Now use
Theorem 2.4.3.

2.4.41 a Invertible: the transformation is its own inverse.
b Not invertible: the equation T(Z) = b has infinitely many solutions if b is on the plane, and none otherwise.
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jh— 00 L0 0 -t
| k80 || 0 ek e |t
? i 1 b e y “1
jlh j(h

Mi6) U imM

Figure 2.52: for Problem 2.3.39.

¢ Invertible: The inverse is a scaling by % (that is, a contraction by 5). If ¢ = 5&, then ¥ = ég’
d Invertible: The inverse is a rotation about the same axis through the same angle in the opposite direction.

2.4.42 Permutation matrices are invertible since they row reduce to I, in an obvious way, just by row swaps. The
inverse of a permutation matrix A is also a permutation matrix since rref[A:I,] = [I,,:A~!] is obtained from

[A:I,] by a sequence of row swaps.

2.4.43 We make an attempt to solve the equation § = A(BZ) for &:

BZ = A71§, so that ¥ = B~1(A~1%).

1 0 -1 -2
2444 a mef(My) = | © 1 2 3|6 that rank(My) = 2
Adda rref(Ma) = | o g | so that rank(My) = 2.
0 0 0 0
b To simplify the notation, we introduce the row vectors ¥ =[11 ... lJand W =[0n 2n ... (n — 1)n] with n

components.

Then we can write M, in terms of its rows as M,, =

Applying the Gauss-Jordan algorithm to the first column we get -2
—(n— 1w
All the rows below the second are scalar multiples of the second; therefore, rank(M,,) = 2.

¢ By part (b), the matrix M, is invertible only if n = 1 or n = 2.

2.4.45 a Each of the three row divisions requires three multiplicative operations, and each of the six row subtractions
requires three multiplicative operations as well; altogether, we have 3-3+6-3 =93 = 3% = 27 operations.
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b Suppose we have already taken care of the first m columns: [AfIn] has been reduced the matrix in Figure 2.53.

SESE N

- —

- e

-
m n—-m m n-m

Figure 2.53: for Problem 2.3.45b.

Here, the stars represent arbitrary entries.

Suppose the (m+1)th entry on the diagonal is k. Dividing the (m+1)th row by k requires n operations: n—m—1
to the left of the dotted line (not counting the computation % = 1), and m + 1 to the right of the dotted line
(including %) Now the matrix has the form shown in Figure 2.54.

ENESE SR
0 % k|,

[ N— -’ o o 7 )
v v g

; n-m m n-m
Figure 2.54: for Problem 2.4.45b.

Eliminating each of the other n — 1 components of the (m + 1)th column now requires n multiplicative operations
(n —m — 1 to the left of the dotted line, and m + 1 to the right). Altogether, it requires n + (n — 1)n = n?

operations to process the mth column. To process all n columns requires n - n?> = n® operations.

¢ The inversion of a 12 x 12 matrix requires 123 = 4332 = 64 - 3% operations, that is, 64 times as much as the
inversion of a 3 x 3 matrix. If the inversion of a 3 x 3 matrix takes one second, then the inversion of a 12 x 12
matrix takes 64 seconds.

2

2.4.46 Computing A~'b requires n® + n2 operations: First, we need n? operations to find A=! (see Exercise 45b)

and then n? operations to compute A-1b (n multiplications for each component).

How many operations are required to perform Gauss-Jordan eliminations on [AEE]? Let us count these operations
“column by column.” If m columns of the coefficient matrix are left, then processing the next column requires
nm operations (compare with Exercise 45b). To process all the columns requires

n~n+n(n—1)+-~+n~2+n-1:n(n+n—1—|—~-~+2—|—1):n@:%operations.

96



Section 2.4

only half of what was required to compute A1,

We mention in passing that one can reduce the number of operations further (by about 50% for large matrices)
by performing the steps of the row reduction in a different order.

2.4.47 Let f(x) = x?%; the equation f(x) = 0 has the unique solution x = 0.

2.4.48 Consider the linear system AZ = 0. The equation AZ = 0 implies that BAZ = 0, so & = 0 since BA = I,,.
Thus the system AZ = 0 has the unique solution & = 0. This implies m < n, by Theorem 1.3,3. Likewise the
linear system By = 0 has the unique solution i = 0, implying that n < m. It follows that n = m, as claimed.

0.293 0 0 0.707 0 0
2449a A= |0.014 0.207 0.017 |, Is—A=|—-0.014 0.793 —0.017
0.044 0.01 0.216 —0.044 -0.01 0.784
1.41 0 0

(Is; — A)~' = [ 0.0267 126  0.0274
0.0797 0.0161 1.28

1 1.41
b We have b= | 0 |, so that & = (I5 — A)~'&, = first column of (I3 — A)~* ~ | 0.0267
0 0.0797

¢ As illustrated in part (b), the ith column of (I3 — A)~! gives the output vector required to satisfy a consumer
demand of 1 unit on industry i, in the absence of any other consumer demands. In particular, the ith diagonal
entry of (I3 — A)~! gives the output of industry i required to satisfy this demand. Since industry i has to satisfy
the consumer demand of 1 as well as the interindustry demand, its total output will be at least 1.

d Suppose the consumer demand increases from btob+ é> (that is, the demand on manufacturing increases by
one unit). Then the output must change from (I3 — A)~1b to

(I3 — AL T+ &) = (Is — A) b+ (Is — A)~1é, = (Is — A)~ b+ (second column of (I3 — A)~1).

The components of the second column of (I3 —A)~" tells us by how much each industry has to increase its output.

e The ijth entry of (I, — A)~! gives the required increase of the output x; of industry i to satisfy an increase of
the consumer demand b; on industry j by one unit. In the language of multivariable calculus, this quantity is

oz,
b, *
2.4.50 Recall that 1 +k+k? +--- = 11
The top left entry of I3 — A is I — k, and the top left entry of (I3 — A)~! will therefore be ﬁ, as claimed:
1—k 00 100 IR 0o0: 200
. e
* * %« 0 1 0 * k% 0 1 0
* « % - 0 0 1 x % % 1 0 0 1
— ... (first row will remain unchanged).
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In terms of economics, we can explain this fact as follows: The top left entry of (I3 — A)~! is the output of
industry 1 (Agriculture) required to satisfy a consumer demand of 1 unit on industry 1. Producting this one unit
to satisfy the consumer demand will generate an extra demand of k = 0.293 units on industry 1. Producting
these k units in turn will generate an extra demand of k-k = k? units, and so forth. We are faced with an infinite
series of (ever smaller) demands, 1+ k + k% + - -

2.4.51 a Since rank(A4)< n, the matrix E =rref(A) will not have a leading one in the last row, and all entries in the
last row of E will be zero.

0
0

Let ¢= | : |. Then the last equation of the system EZ = ¢ reads 0 = 1, so this system is inconsistent.

0
1

Now, we can “rebuild” b from & by performing the reverse row-operations in the opposite order on [EE’} until

—

we reach [A:b} Since EX = Cis inconsistent, AZ = b is inconsistent as well.

b Since rank(A)< min(n,m), and m < n, rank(A) < n also. Thus, by part a, there is a b such that AZ = b is
inconsistent.

-

2.452 Let b= . Then {Afb} . We find that rref [Al_))} =

0
(1) , which has
0

_ o O O
=W NN =
co O = N
o = O O
o O O =
o O = O
o O N O
o = O O

an inconsistency in the third row.

94538 A— M, — F“A 1 ]

3 5—A

This fails to be invertible when (3 —A\)(5 — A) —3 =0,
or 15— 8\ +\> -3 =0,

or 12—8X+X* =0

or (6—X)(2-X)=0.SoA=6or A=2.

b For A =6, A— Al = [_33 _11]

The system (A — 61,)& = 0 has the solutions [ t

3t } , for example.

] , where t is an arbitrary constant. Pick & = L{)

For A =2, A — AL, — B H
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The system (A — 205)% = 0 has the solutions [_tt}, where t is an arbitrary constant. Pick ¥ = [_11}, for

example.

10

2454 A— A = [1__; o

] . This fails to be invertible when det(A4 — AI3) = 0,

00=(1-XN)(12=X)+30=12— 13X+ A% +30 = A2 — 13X + 42 = (A — 6)(\ — 7). In order for this to be zero,
A must be 6 or 7.

IfA=6, then A—6I, = :g 160 . We solve the system (A — 615) Z = 0 and find that the solutions are of the
- 2t - 2

form & = { ; ] . For example, when t = 1, we find & = [1] .

If A\ =7, then A — 7l = {_g 150 . Here we solve the system (A —7I5)Z = 0, this time finding that our

solutions are of the form 7 = [gﬂ . For example, for t = 1, we find ¥ = {g] .

2.4.55 The determinant of A is equal to 4 and A~ = { 1(/)2 1(/)2 } The linear transformation defined by A is a
scaling by a factor 2 and A~ defines a scaling by 1/2. The determinant of A is the area of the square spanned

by ¥ = [ (2) and @ = [ g } The angle 6 from ¢ to o is /2. (See Figure 2.55.)

Figure 2.55: for Problem 2.4.55.

-37t 0
0 -37!
transformation defined by A is a reflection about the origin combined with a scaling by a factor 3. The inverse

2.4.56 The determinant of A is 9. The matrix is invertible with inverse A=1 = The linear
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defines a reflection about the origin combined with a scaling by a factor 1/3. The determinant is the area of the

0 } The angle 6 from ¢ to @ is 7/2. (See Figure 2.56.)

square spanned by ¥ = [ _03 } and W = [ _3

Figure 2.56: for Problem 2.4.56.

2.4.57 The determinant of A is —1. Matrix A is invertible, with A=! = A. Matrices A and A~! define reflection
cos(a/2)
sin(a/2)

. ~ | cos(a) S sin(a)
unit square spanned by ¥ = [ sin(a) } and W = { — cos(a

2.57.)

about the line spanned by the v = [ } . The absolute value of the determinant of A is the area of the

) } The angle 6 from ¥ to @ is —n/2. (See Figure

Figure 2.57: for Problem 2.4.57.

cos(a)  sin(«)
—sin(a) cos(a)
transformation defined by A is a rotation by angle « in the counterclockwise direction. The inverse represents a
rotation by the angle « in the clockwise direction. The determinant of A is the area of the unit square spanned

2.4.58 The determinant of A is 1. The matrix is invertible with inverse A~! = . The linear
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_ | cos(a) . | —sin(a) L. .
by v = [ sin(a) } and U = [ cos(a) } The angle 6 from ¢ to @ is /2. (See Figure 2.58.)

Figure 2.58: for Problem 2.4.58.

0.6 0.8
—-0.8 0.6
represents the rotation through the angle o = arccos(0.6). Its inverse represents a rotation by the same angle

0.6
0.8 ] and

2.4.59 The determinant of A is 1. The matrix A is invertible with inverse A™1 = { } The matrix A

in the clockwise direction. The determinant of A is the area of the unit square spanned by v = [

W= { _0068 ] The angle 6 from ¥ to @ is w/2. (See Figure 2.59.)

ey
Il

o]

AW
)

ST
Il
—

-0.8
0.6

Figure 2.59: for Problem 2.4.59.

2.4.60 The determinant of A is —1. The matrix A is invertible with inverse A~! = A. Matrices A and A~! define
cos(a/2)

. , where a@ = arccos(—0.8). The absolute value of the
sin(a/2)

the reflection about the line spanned by v =

0.6

determinant of A is the area of the unit square spanned by ¥ = [ _0068 } and W = { 0.8

} . The angle 6 from v
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to wis —m/2. (See Figure 2.60.)

Figure 2.60: for Problem 2.4.60.

2.4.61 The determinant of A is 2 and A~! =

= % [ 1 11 } The matrix A represents a rotation through the angle
—7/4 combined with scaling by v/2. describes a rotation through 7/4 and scaling by 1/v/2. The determinant of

A is the area of the square spanned by v = { _11 } and W = { 1 } with side length v/2. The angle 6 from 7 to
W is /2. (See Figure 2.61.)

Figure 2.61: for Problem 2.4.61.
2.4.62 The determinant of A is 25. The matrix A is a rotation dilation matrix with scaling factor 5 and rotation by
an angle arccos(0.6) in the clockwise direction. The inverse A1

— (1/25) { 3

is a rotation dilation too

—4
4 3
with a scaling factor 1/5 and rotation angle arccos(0.6). The determinant of A is the area of the parallelogram
spanned by ¥ = [ _34 ] and @ = [ ;1 } with side length 5. The angle from ¥ to @ is m/2. (See Figure 2.62.)
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g
I
| — |
o
—_

Figure 2.62: for Problem 2.4.62.

2.4.63 The determinant of A is —25 and A~! = (1/25) [ _43 ;1 } = 5= A. The matrix A represents a reflection
about a line combined with a scaling by 5 whilc A~! represents a reflection about the same line combined with
-3 }

a scaling by 1/5. The absolute value of the determinant of A is the area of the square spanned by ¢ = [ 4

and W = { ;l } with side length 5. The angle from ¥ to @ is —7/2. (See Figure 2.63.)

Figure 2.63: for Problem 2.4.63.

2.4.64 The determinant of A is 1 and A~! = [ (1) 1 ] Both A and A~' represent horizontal shears. The

determinant of A is the area of the parallelogram spanned by v = [ (1) ] and W = [ 11 ] The angle from
U to W is 3w/4. (See Figure 2.64.)

2.4.65 The determinant of Ais1and A= = { _11 (1) ] . Both A and A~ represent vertical shears. The determinant
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Figure 2.64: for Problem 2.4.64.

of A is the area of the parallelogram spanned by ¥ = [ } } and W = { (1) } . The angle from ¥ to o is w/4. (See
Figure 2.65.)

~ |0 oz S 1
w = 1 gz v = 1

Figure 2.65: for Problem 2.4.65.
2.4.66 We can write AB(AB)™! = A(B(AB)™!) =1, and (AB)"'AB = ((AB)"'A)B = I,.
By Theorem 2.4.8, A and B are invertible.
2.4.67 Not necessarily true; (A + B)? = (A+ B)(A+ B) = A2+ AB+ BA+ B>+ A? + 2AB + B? if AB # BA.
2.4.68 True; apply Theorem 2.4.7 to B = A.
2.4.69 Not necessarily true; consider the case A =1, and B = —1I,,.
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2.4.70 Not necessarily true; (A — B)(A+ B) = A> + AB — BA — B2 # A2 — B? if AB # BA.
2.471 True; ABB 1Al = AIL A7 = AA"1 =1,.

2.4.72 Not necessarily true; the equation ABA~! = B is equivalent to AB = BA (multiply by A from the right),
which is not true in general.

2.4.73 True; (ABA™')3 = ABA"'ABA"'ABA™! = AB3A~".
2.4.74 True; (I, + A)(I, + A ) =2+ A+ A+ AA ' =2], + A+ AL

2.4.75 True; (A71B)"! = B~ 1(A7Y)~! = B~ A (use Theorem 2.4.7).

~1
1 2 2 1 2 1|1 2 8 -3
2.4.76 We want A such that A [2 5} = [1 3}, so that A = L 3] [2 5} = {_ }

2.4.77 We want A such that AU; = w;, for i =1,2,...,m, or A[th Uy ... Typ) = [W) Wy ... Wy, or AS = B.

Multiplying by S~! from the right we find the unique solution A = BS~!.

71
2.4.78 Use the result of Exercise 2.4.77, with S = B ?] and B= |5 2/|;
3 3
33 —13
A=BS'=|21 -8
9 -3

2.4.79 Use the result of Exercise 2.4.77, with S = ﬁ ;] and B = [g 2],

9 3
— -1 _1
A=BS 5{2 16}

2480 Py P, PPy, P, Py, P32 Py

R N N A R
a. T is the rotation about the axis through 0 and P, that transforms Ps into P.
b. L7'=1L

c. T? =T~ (See part (a).)

d. Py Tok P P, LoT P The transformations T o L and L o T are not the same.

P1—>P2 P1—>P3
P, — P Py — P
P3—>P0 P3—>P0
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p "t p
Pl —)Pl
PQ —>P3
P3 —)PO

This is the rotation about the axis through 0 and P; that sends Py to Ps.

2.4.81 Let A be the matrix of T and C' the matrix of L. We want that APy = P, AP, = P3, and AP, = P,. We

1 1 -1 1 -1 -1
can use the result of Exercise 77, with S= |1 -1 1 and B=| -1 -1 1
1 -1 -1 -1 1 -1
0 01
Then A=BS™! = | -1 0 0
0 -1 0
010
Using an analogous approach, we find that C= |1 0 0
0 0 1
a b c
2482a FA=|d—3a e—3b f—3c
g h k
The matrix FA is obtained from A by an elementary row operation: subtract three times the first row from the
second.
a b ¢
_ |1 1, 1
g h k

1 00 1 00 a b c a b c
cIfweset E=]10 0 1| then [0 0 1 d e f|l=19g h k]|, asdesired.
010 0 1 0||g h k d e f

d An elementary n x n matrix E has the same form as I,, except that either
e ¢;; = k(5 0) for some ¢ # j [as in part (a)], or
e ¢;; = k(# 0,1) for some 7 [as in part (b)], or
ee;; =e; =1, e;; =ej; =0 for some 7 # j [as in part (c)].

2.4.83 Let E be an elementary n x n matrix (obtained from I,, by a certain elementary row operation), and let F'
be the elementary matrix obtained from I, by the reversed row operation. Our work in Exercise 2.4.82 [parts (a)
through (c)] shows that EF = I,,, so that E is indeed invertible, and E~! = F is an elementary matrix as well.

2.4.84 a The matrix rref(A) is obtained from A by performing a sequence of p elementary row operations. By
Exercise 2.4.82 [parts (a) through (c)] each of these operations can be represented by the left multiplication with
an elementary matrix, so that rref(A) = E1Ey ... E,A.
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b A= 0 2 swap rows 1 and 2, represented by 01

1 3 1 0
!

1 3 1 0

[0 2] e represented by [O %]

!

1 3] =3(11) represented b 1 =3

0 1 » T€p y 0 1
!

rref(A) = {(1) ﬂ

Therefore, rref(A) = Ll) (1)] = Ll) _ﬂ Ll) 9} [(1) (ﬂ {(1) g] = F1FEyFE3A.
2

2.4.85 a Let S = E1E,... E, in Exercise 2.4.84a.

By Exercise 2.4.83, the elementary matrices E; are invertible: now use Theorem 2.4.7 repeatedly to see that S is

invertible.
2 4] +2 Lo
_ 2
b A= [4 8} , represented by [0 1}

1 2 1
{4 8] _4(1),represented by {_4

rref(A) = {(1) (2)}

)
—_

Therefore, rref(A) = Ll) (2)] = {111

S ERIIHEER

(There are other correct answers.)

0((2 4
1:| |:4 8:| = E1E2A = SA, where

Ow=

— O
| |
1

[NCRSIE

2.4.86 a By Exercise 2.4.84a, I,, = rref(A) = E1Ey ... E, A, for some elementary matrices Ey,..., E,. By Exercise
2.4.83, the F; are invertible and their inverses are elementary as well. Therefore,

A= (E1By...E,)" ' = Ep_1 ... By B! expresses A as a product of elementary matrices.

b We can use out work in Exercise 2.4.84 b:
0 2] ([t =3][1t 070 1]\"" [o 1] "[1 0] '[1 —=3] [o 1][t o] [1 3
1 3] \|0 1)[0 3]|10O [t o 0 0 1] |1 0][02]|01
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2.4.87 [é 1] represents a horizontal shear, [ I 1} represents a vertical shear,
(k0 e e e . S
0 1 represents a “scaling in € direction” (leaving the €& component unchanged),
(1 0] e . .
0k represents a “scaling in & direction” (leaving the €; component unchanged), and
[0 1 : : 1
10 represents the reflection about the line spanned by e

2.4.88 Performing a sequence of p elementary row operations on a matrix A amounts to multiplying A with
EL\E, ... E, from the left, where the E; are elementary matrices. If I,, = E1Ey ... E A, then E\Ey ... E, = AL,
so that

a. B1FEy...E,AB = B, and
b. E1Ey...E,I, = A7
2.4.89 Let A and B be two lower triangular n x n matrices. We need to show that the ijth entry of AB is 0 whenever
i<j.
This entry is the dot product of the ith row of A and the jth column of B,

[ai1 az...a; 0...0]- b , which is indeed 0 if 7 < j.
33

1 2 3 1 0 0 1 00
2490a |2 6 7| —2I,representedby | 0 1 0 -2 1 0
2 2 4| —2I -2 0 1 0 0 1
!
(1 2 3 100
2 1 represented by |0 1 0
0 —2 -2 +II 0 1 1
!
[1 2 3]
0 2 1], sothat
0 0 —1]
(1 2 3] 100 1 00 1 0 0][1 2 3
02 1|=(010 01 0f[|-210|]2 06 7
0 0 —1] 01 1]|-2 01 00 1|2 2 4
T T T T T
U Es E, E; A
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1 0 0 1 0 0 1 0 0 1 2 3
b A= (E3sFEE) 'U=E'E;'E;'U=12 1 0|0 1 o]0 1 o[ |0 2 1
0 01 2 0 1|0 -1 110 0 -1
T 7 T T
M, My M; U
1 00
¢ Let L = My M>Mjs in part (b); we compute L = | 2 10
2 -1 1
1 2 3 1 0 0 1 2 3
Then |2 6 7| = |2 1 0 0 2 1
2 2 4 2 -1 1 0 0 -1
T 7 T
A L U
1 0 0
d We can use the matrix L we found in part (c), but U needs to be modified. Let D= [0 2 0
0 0 -1

(Take the diagonal entries of the matrix U in part (c)).

1 2 3 1 0 o0]fr o0 o0]f1 2 3
Then |2 6 7|=1{2 1 0| |0 2 0|0 1 3
2 2 4 2 =1 1]]0 0 -1][0 0 1

) T T T

A L D U

2.4.91 a Write the system L = b in components:

Y1 =-3
_giyl i ny22 + s z g |50 that y; = =3, yo = 144 3y; =5,
-y1 + 8y2 — Bys + wya = 33

Y3 =9 —y1 —2y2 =2, and ys = 33 + y1 — 8y + Sy3 = 0:
-3

. |5

Y= 2

0

b Proceeding as in part (a) we find that Z =

2.4.92 We try to find matrices L = [z 2} and U = {g ;] such that
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0 1| |a O||d e| |ad ae

1 0| |b c||0 f| |bd betef]|
Note that the equations ad = 0, ae = 1, and bd = 1 cannot be solved simultaneously: If ad = 0 then a or d is 0
so that ae or bd is zero.

Therefore, the matrix {(1) (1)] does not have an LU factorization.

Lm0

2.4.93 a Write L = [ Ly La

(m)
] andU:[U UQ].

0 Uy

Lm) y(m) LM,

Then A= LU = [ L3U™)  LsUy + LyUy

} , so that A(™) = LM (™) a5 claimed.

b By Exercise 2.4.66, the matrices L and U are both invertible. By Exercise 2.4.35, the diagonal entries of L and
U are all nonzero. For any m, the matrices L™ and U™ are triangular, with nonzero diagonal entries, so that
they are invertible. By Theorem 2.4.7, the matrix A = LU (™) is invertible as well.

. : . _[A=D g1 ool [U g
cUsmgthehmt,wewrlteA_{ i R Il 0 sl

We are looking for a column vector ¥, a row vector &, and scalars ¢ and s satisfying these equations. The following
equations need to be satisfied: ¢ = L'y, W = ZU’, and k = Ty + ts.

We find that § = (L')~'%, ¥ = @/(U’)"1, and ts = k — @(U’) (L)~ 17.

We can choose, for example, s = 1 and t = k — W(U’')"1(L")~'¥, proving that A does indeed have an LU
factorization.

Alternatively, one can show that if all principal submatrices are invertible then no row swaps are required in the
Gauss-Jordan Algorithm. In this case, we can find an LU-factorization as outlined in Exercise 2.4.90.

2494 a If A= LU is an LU factorization, then the diagonal entries of L and U are nonzero (compare with Exercise
2.4.93). Let D; and Dy be the diagonal matrices whose diagonal entries are the same as those of L and U,
respectively.

Then A = (LD;')(D1D2)(D5'U) is the desired factorization

T 7 T
new L D new U

(verify that LD " and D, 'U are of the required form).

b If A= LiDU; = LyDyUs and A is invertible, then Ly, Dq,U;, Ly, Do, Us are all invertible, so that we can
multiply the above equation by Dy ILE ! from the left and by Uy ! from the right:
Dy'Ly LDy = UsUp .

Since products and inverses of upper triangular matrices are upper triangular (and likewise for lower triangular
matrices), the matrix Dy 1L2_ 1D, = U,U; 1is both upper and lower triangular, that is, it is diagonal. Since
the diagonal entries of Us and U; are all 1, so are the diagonal entries of UgUl_l, that is U2U1_1 = I, and thus
UQ == Ul.
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Now LDy = LoD>, so that LglLl = Dngl is diagonal. As above, we have in fact L;lLl = I,, and therefore
Ly, = L.

2.4.95 Suppose Ai; is a pxp matrix and Ay is a ¢ X ¢ matrix. For B to be the inverse of A we must have AB = I, 1.
Let us partition B the same way as A:

B = {BH Bu}, where By is p X p and Bos is ¢ X q.
By B
_|Aunn 0 Bii Biz2| _ [AuBu AuBi| (I, O
Then AB = [ 0 AQJ {321 Bos| | AssBoi AseBox| ~ |0 1, means that

Ay By =1y, AypByy =1, A11B12 =0, AsxBy = 0.
This implies that A1 and Ass are invertible, and By, = Al_ll, By = A2_21.
This in turn implies that Bis = 0 and By = 0.
We summarize: A is invertible if (and only if) both A;; and Agy are invertible; in this case
AL 0
-1 _ 11
AT = { 0 Ay ]

2.4.96 This exercise is very similar to Example 7 in the text. We outline the solution:

All 0 Bll 312 _ Ip 0
|:A21 A22 :| |:BQI 322 - 0 Iq means that

Ay By =1y, A11Bi2 =0, A1 By + ApBoy =0, AgBio + AgBas = 1.

This implies that Aq is invertible, and By = Al_ll. Multiplying the second equation with Al_ll, we conclude that
Bis = 0. Then the last equation simplifies to AsaBay = Iy, so that By = A2_21.

Finally, Bgl = —AgglAngu = —A521A21AI11.
We summarize: A is invertible if (and only if) both A;; and Agy are invertible. In this case,

Al = 1141711 1 0 1
_Az_z A21A1_1 A2_2
Ip A12 *

0 0 rref(Aas) |’ so that

2.4.97 Suppose Aqp is a p X p matrix. Since A1, is invertible, rref(A) = [
rank(A) = p + rank(Asz) = rank(Aq1) 4 rank(As3).

2.4.98 Try to find a matrix B = {‘;ﬁ f

A~ |In F|[X & _[X+0) @+tw] _[L. 0
W 1| |g ot |WX+y wE+t| |0 1]

} (where X is n x n) such that

We want X + 0§ = I,,,Z+t0=0, WX +§=0, and @7+t = 1.

Substituting £ = —t¥ into the last equation we find —twWv 4+t =1 or t(1 — wv) = 1.
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This equation can be solved only if W¥ # 1, in which case t = . Now substituting X = I,, — ¥y into the
1

=W = —t.
—wv

third equation, we find @ — W7+ ¢ =0 or § = —

I, +tod —tv
—tw t

<yl

1—w

We summarize: A is invertible if (and only if) @ # 1. In this case, A~! = { } , where t = L

The same result can be found (perhaps more easily) by working with rref[AfInH]7 rather than partitioned
matrices.

2.4.99 Multiplying both sides with A~! we find that A = I,,: The identity matrix is the only invertible matrix with
this property.

2:

2.4.100 Suppose the entries of A are all a, where a # 0. Then the entries of A2 are all na®. The equation na a
11 1
n o n T n
1 1 1
is satisfied if @ = 1. Thus the solution is A = e "
11 1
n n T n

2.4.101 The ijth entry of AB is

n
E aikbk]‘.
k=1

Then

n n n
Zaikbkj < ZSbk]‘ =3 (Z bkj> < sr.
k=1 k=1 k=1

T T
since a;, < s thisis < r, as it is the
4P column sum of B.

2.4.102 a We proceed by induction on m. Since the column sums of A are < r, the entries of A! = A arealso < r! =17,
so that the claim holds for m = 1. Suppose the claim holds for some fixed m. Now write A™t! = A™A; since
the entries of A™ are < r™ and the column sums of A are < r, we can conclude that the entries of A™*! are
< r™Mp = ™+l by Exercise 101.

b For a fixed ¢ and j, let b, be the ijth entry of A™. In part (a) we have seen that 0 < b, < r™.

Note that lim,, . ™ = 0 (since r < 1), so that lim,, . by, = 0 as well (this follows from what some calculus
texts call the “squeeze theorem”).

¢ For a fixed i and j, let ¢, be the ijth entry of the matrix I,, + A + A% + ... + A™. By part (a),

e <1Hrdr24 o prm <t

1—r"

Since the ¢, form an increasing bounded sequence, lim,, . ¢, exists (this is a fundamental fact of calculus).
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d

(In = A)Iy + A+ A2 4o A™) =L A4 A2 AT = A= A2 — o= Am At
=, — Am+!

Now let m go to infinity; use parts (b) and (c). (I, — A)(I, + A+ A%+ ...+ A™ 4 ...) = I, so that
(I, - A =L, +A+A>+. -+ A™ +....

2.4.103 a The components of the jth column of the technology matrix A give the demands industry J; makes on

the other industries, per unit output of J;. The fact that the jth column sum is less than 1 means that industry
J; adds value to the products it produces.
A productive economy can satisfy any consumer demand l_;, since the equation

(I, — A)Z = b can be solved for the output vector # : & = (I, — A)~'b (compare with Exercise 2.4.49).

The output & required to satisfy a consumer demand bis
T=In—A) "=+ A+A2+ - + A" 4. ) b=b+ Ab+ A%+ -+ AMh+ - -,

To interpret the terms in this series, keep in mind that whatever output ' the industries produce generates an
interindustry demand of Av.

The industries first need to satisfy the consumer demand, b. Producing the output b will generate an interindustry
demand, Ab. Producing Ab in turn generates an extra interindustry demand, A(Ab) = A%b, and so forth.

For a simple example, see Exercise 2.4.50; also read the discussion of “chains of interindustry demands” in the
footnote to Exercise 2.4.49.

2.4.104 a We write our three equations below:

b

C

d

24105 a A~ =

I =iR+ 3G+ 3B i1
L =R-G , so that the matrix is P = 1 -1 0
S =-iR-1G+B |

R R 1 00

G | is transformed into | G |, with matrix A= |0 1 0

B 0 0 0 0

This matrix is PA = (we apply first A, then P.)

Nl= = Wl
Nl = Wl
o O O

O Wi

See Figure 2.66. A “diagram chase” shows that M = PAP~! =

o = O
Wi~ O ol

and B~ =

o = O
—_ o O
O O =
O O =
= o O
o = O
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Figure 2.66: for Problem 2.4.104d.

Matrix A~ transforms a wife’s clan into her husband’s clan, and B~ transforms a child’s clan into the mother’s
clan.

b B? transforms a women’s clan into the clan of a child of her daughter.

¢ AB transforms a woman’s clan into the clan of her daughter-in-law (her son’s wife), while BA transforms a man’s
clan into the clan of his children. The two transformations are different. (See Figure 2.67.)

T G o
I3 ;

p g

Figure 2.67: for Problem 2.4.105c.

d The matrices for the four given diagrams (in the same order) are BB~! = I3,

00 1 010
BAB='=|1 0 0|, BBA)™'=|0 0 1|, BA(BA)"!'=1I;.
010 100

e Yes; since BAB™! = A~! = , in the second case in part (d) the cousin belongs to Bueya’s husband’s

o = O
— o O
S O =

clan.
2.4.106 a We need 8 multiplications: 2 to compute each of the four entries of the product.
b We need n multiplications to compute each of the mp entries of the product, mnp multiplications altogether.

T if z is even

2.4.107 g(f(z)) =z, for all x, so that g o f is the identity, but f(g(x)) = {x 11 ifrisodd
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2.4.108 a The formula {z] = [

|

—eepmeeee-

1 _—]fk L +1R__]€§LR} [:ﬁ&} is given, which implies that
y=(1-Rk)x+ (L+ R—kLR)m.
In order for y to be independent of x it is required that 1 — Rk =0, or k = % = 40 (diopters).

% then equals R, which is the distance between the plane of the lens and the plane on which parallel incoming
rays focus at a point; thus the term “focal length” for %

Now we want y to be independent of the slope m (it must depend on z alone). In view of the formula above,
L+R 1 1 10

this is the case if L + R— kLR =0, or k = IJ/FT =% + 7= 40 + 3~ 43.3 (diopters).

Here the transformation is

y| 1 0|1 D 1 0| |z| 1—kD D T
n o 7]'{11 1 0 1 7]6'1 1 m o klng - kl - kg 1-— kQD m |’
We want the slope n of the outgoing rays to depend on the slope m of the incoming rays alone, and not on x;

this forces ki1koD — k1 — ko = 0, or, D = ’“,if;’? = 1?11 + 1712’ the sum of the focal lengths of the two lenses. See
Figure 2.68.

Nal

Ral

K

>
R A,

Figure 2.68: for Problem 2.4.108c.

True or False

Ch 2.TF.1 T, by Theorem 2.4.3.

Ch 2.TF.2 T; Let A= B in Theorem 2.4.7.

Ch 2.TF.3 T, by Theorem 2.3.3.

Ch 2.TF.4 T, by Theorem 2.4.8.

Ch 2.TF.5 F; Matrix AB will be 3 x 5, by Definition 2.3.1b.

Ch 2.TF.6 F; Note that T {0} = [

0

1

0 } . A linear transformation transforms 0 into 0.
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Ch 2.TF.7 T, by Theorem 2.2.4.

Ch 2.TF.8 T, by Theorem 2.4.6.

Ch 2.TF.9 T; The matrix is [_} _H

Ch 2.TF.10 F; The columns of a rotation matrix are unit vectors; see Theorem 2.2.3.
Ch 2.TF.11 F; Note that det(A) = (k — 2)? + 9 is always positive, so that A is invertible for all values of k.

Ch 2.TF.12 T; Note that the columns are unit vectors, since (—0.6)% 4+ (£0.8)2 = 1. The matrix has the form
presented in Theorem 2.2.3.

Ch 2.TF.13 F; Consider A = I, (or any other invertible 2 x 2 matrix).

-1 -1
1 2 1 1{(5 6 . . .
Ch 2.TF.14 T; Note that A = [3 4} [1 1} [7 8] is the unique solution.

Ch 2.TF.15 F, by Theorem 2.4.9. Note that the determinant is 0.

Ch 2.TF.16 T, by Theorem 2.4.3.

— ol

Ch 2.TF.17 T; The shear matrix A = {1

0 ] works.

s | 4y | 0 4| |z
Ch 2.TF.18 T; Simplify to see that T {y} = [—129&} = {_12 0} {y}

Ch 2.TF.19 T; The equation det(A) = k? — 6k + 10 = 0 has no real solution.

Ch 2.TF.20 T; The matrix fails to be invertible for k = 5 and k = —1, since the determinant det A = k?> —4k —5 =
(k—5)(k+1) is 0 for these values of k.

Ch 2.TF.21 T; The product is det(A4)I5.

0 0

0 0

Ch 2.TF.22 T; Writing an upper triangular matrix A = {8

lc)} and solving the equation A2 = [ } we find

that A = [O 0

0 b .
} , where b is any nonzero constant.

Ch 2.TF.23 T; Note that the matrix [0

1 O] represents a rotation through /2. Thus n = 4 (or any multiple
of 4) works.

Ch 2.TF.24 F; If a matrix A is invertible, then so is A~!. But H ” fails to be invertible.
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Ch 2.TF.25 F; If matrix A has two identical rows, then so does AB, for any matrix B. Thus AB cannot be I, so
that A fails to be invertible.

Ch 2.TF.26 T, by Theorem 2.4.8. Note that A=! = A in this case.

Ch 2.TF.27

Ch 2.TF.28

Ch 2.TF.29

Ch 2.TF.30

Ch 2.TF.31

Ch 2.TF.32

Ch 2.TF.33

Ch 2.TF.34

Ch 2.TF.35

F; For any 2 x 2 matrix A, the two columns of A [1

F; A reflection matrix is of the form {a

0 0
F; Consider matrix |0 1
10

1

1 1] will be identical.

0 0

T; One solution is A = [1 1} .

b _ba]7wherea2+b2:1. Here, a2 + b2 =1+1=2.

T; Just multiply it out.

, for example.

OO =

T; Apply Theorem 2.4.8 to the equation (A?)"1AA = I,,, with B = (A?)"1A.

F; Consider the matrix A that represents a rotation through the angle 27/17.

0 —1

F; Consider the reflection matrix A = {1 0} .

T; We have (54)~! = 1A~

5

Ch 2.TF.36 T; The equation Aé; = Bé; means that the ith columns of A and B are identical. This observation
applies to all the columns.

Ch 2.TF.37 T; Note that A2B = AAB = ABA = BAA = BA2.

Ch 2.TF.38

Ch 2.TF.39

Ch 2.TF.40

T; Multiply both sides of the equation 42 = A with A~!.
F; Consider A = I, and B = —1I>.

T; Since AZ is on the line onto which we project, the vector AZ remains unchanged when we project

again: A(AT) = AT, or A%F = A%, for all ¥. Thus A? = A.

Ch 2.TF.41 T; If you reflect twice in a row (about the same line), you will get the original vector back: A(AZ) = 7,
or, A22 =2 = 1I,% Thus A2=1, and A=! = A.

1
0 1

Ch 2.TF.42 F; Let A= [1 1} ,U = [O} , W = [(1)}, for example.
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1 00

Ch 2.TF.43 T; Let A= [O 10

10
} , B=10 1], for example.
0 0

Ch 2.TF.44 F; By Theorem 1.3.3, there is a nonzero vector @ such that BZ = 0, so that ABZ = 0 as well. But
I3Z = & # 0, so that AB # I3.

Ch 2.TF.45 T; We can rewrite the given equation as A? + 34 = —41I5 and fi(A + 3I3)A = I3. By Theorem 2.4.8,
the matrix A is invertible, with A~! = —1(A4 + 313).

Ch 2.TF.46 T; Note that (I, + A)(I,, — A) = I? — A®> = I,,, so that (I,, + A)~' =1, — A.

Ch 2.TF.47 F; A and C can be two matrices which fail to commute, and B could be I,,, which commutes with
anything.

Ch 2.TF.48 F; Consider T(%) = 2%, ¥ = &1, and & = é.

Ch 2.TF.49 F; Since there are only eight entries that are not 1, there will be at least two rows that contain only
ones. Having two identical rows, the matrix fails to be invertible.

0

Ch 2. TF.50 F;Let A=B= [0 |

} , for example.

Ch 2.TF.51 F; We will show that S—! 8 (1) S fails to be diagonal, for an arbitrary invertible matrix S = {Z Z} .
-1 0 1 _ 1 d _b C d _ 1 Cd d2 .
Now, S [0 0 S=— e a 0 0l Tawe |2 _edl Since ¢ and d cannot both be zero (as S

2

must be invertible), at least one of the off-diagonal entries (—c? and d?) is nonzero, proving the claim.

Ch 2.TF.52 T; Consider an Z such that A%% = 5, and let ¥y = AZ. Then AT = A(AT) = A%%F = b, as required.

Ch 2.TF.53 T; Let A = a b . Now we want A=! = —A, or —- d —b | -0 . This holds if
d ad=bc | —¢ ¢ —c —d
ad —bc = 1 and d = —a. These equations have many solutions: for example, a =d = 0,b = 1,¢ = —1. More
generally, we can choose an arbitrary a and an arbitrary nonzero b. Then, d = —a and ¢ = —HT“.
a b a’?+bc ab+bd]

Ch 2.TF.54 F; Consider a 2x2 matrix A =

a?+bc bla+d)
cla+d) d*+be

} . We make an attempt to solve the equation 42 = {

d ac+cd cb+ d?

= [(1) _01} . Now the equation b(a + d) = 0 implies that b =0 or d = —a.

If b = 0, then the equation d? + bc = —1 cannot be solved.

If d = —a, then the two diagonal entries of A2, a2 +bc and d? 4 be, will be equal, so that the equations a® +bc = 1
and d? + be = —1 cannot be solved simultaneously.

1

0
0 _1} cannot be solved.

In summary, the equation A2 = [
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2
Ch 2.TF.55 T; Recall from Definition 2.2.1 that a projection matrix has the form [uuqlt u;jf} , where [Zl} isa
1U2 2 2

unit vector. Thus, a? + b? + ¢ + d? = uj + (uyu2)? + (uqu2)? + uj = uf + 2(uguz)? +uj = (u3 +u3)?> =12 = 1.

Ch 2.TF.56 T; We observe that the systems ABZ = 0 and BZ = 0 have the same solutions (multiply with A~1
and A, respectively, to obtain one system from the other). Then, by True or False Exercise 45 in Chapter 1,
rref(AB) =rref(B).
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