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2.1.1 Not a linear transformation, since y2 = x2 + 2 is not linear in our sense.

2.1.2 Linear, with matrix





0 2 0
0 0 3
1 0 0





2.1.3 Not linear, since y2 = x1x3 is nonlinear.

2.1.4 A =







9 3 −3
2 −9 1
4 −9 −2
5 1 5







2.1.5 By Theorem 2.1.2, the three columns of the 2 × 3 matrix A are T (~e1), T (~e2), and T (~e3), so that

A =

[

7 6 −13
11 9 17

]

.

2.1.6 Note that x1





1
2
3



+ x2





4
5
6



 =





1 4
2 5
3 6





[

x1

x2

]

, so that T is indeed linear, with matrix





1 4
2 5
3 6



.

2.1.7 Note that x1~v1 + · · · + xm~vm = [~v1 . . . ~vm]





x1

· · ·
xm



, so that T is indeed linear, with matrix [~v1 ~v2 · · · ~vm].

2.1.8 Reducing the system

[

x1 + 7x2 = y1

3x1 + 20x2 = y2

]

, we obtain

[

x1 = −20y1 + 7y2

x2 = 3y1 − y2

]

.

2.1.9 We have to attempt to solve the equation

[

y1

y2

]

=

[

2 3
6 9

] [

x1

x2

]

for x1 and x2. Reducing the system

[

2x1 + 3x2 = y1

6x1 + 9x2 = y2

]

we obtain

[

x1 + 1.5x2 = 0.5y1

0 = −3y1 + y2

]

.

No unique solution (x1, x2) can be found for a given (y1, y2); the matrix is noninvertible.

2.1.10 We have to attempt to solve the equation

[

y1

y2

]

=

[

1 2
4 9

] [

x1

x2

]

for x1 and x2. Reducing the system

[

x1 + 2x2 = y1

4x1 + 9x2 = y2

]

we find that

[

x1 = 9y1 + 2y2

x2 = −4y1 + y2

]

or

[

x1

x2

]

=

[

9 −2
−4 1

] [

y1

y2

]

.

The inverse matrix is

[

9 −2
−4 1

]

.
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2.1.11 We have to attempt to solve the equation

[

y1

y2

]

=

[

1 2
3 9

] [

x1

x2

]

for x1 and x2. Reducing the system

[

x1 + 2x2 = y1

3x1 + 9x2 = y2

]

we find that

[

x1 = 3y1 − 2
3y2

x2 = −y1 + 1
3y2

]

. The inverse matrix is

[

3 − 2
3

−1 1
3

]

.

2.1.12 Reducing the system

[

x1 + kx2 = y1

x2 = y2

]

we find that

[

x1 = y1 − ky2

x2 = y2

]

. The inverse matrix is
[

1 −k
0 1

]

.

2.1.13 a First suppose that a 6= 0. We have to attempt to solve the equation

[

y1

y2

]

=

[

a b
c d

] [

x1

x2

]

for x1 and x2.

[

ax1 + bx2 = y1

cx1 + dx2 = y2

]

÷a →
[

x1 + b
a
x2 = 1

a
y1

cx1 + dx2 = y2

]

−c(I)
→

[

x1 + b
a
x2 = 1

a
y1

(d − bc
a

)x2 = − c
a
y1 + y2

]

→

[

x1 + b
a
x2 = 1

a
y1

(ad−bc
a

)x2 = − c
a
y1 + y2

]

We can solve this system for x1 and x2 if (and only if) ad − bc 6= 0, as claimed.

If a = 0, then we have to consider the system

[

bx2 = y1

cx1 + dx2 = y2

]

swap : I ↔ II

[

cx1 + dx2 = y2

bx2 = y1

]

We can solve for x1 and x2 provided that both b and c are nonzero, that is if bc 6= 0. Since a = 0, this means
that ad − bc 6= 0, as claimed.

b First suppose that ad − bc 6= 0 and a 6= 0. Let D = ad − bc for simplicity. We continue our work in part (a):

[

x1 + b
a
x2 = 1

a
y1

D
a

x2 = − c
a
y1 + y2

]

· a
D

→

[

x1 + b
a
x2 = 1

a
y1

x2 = − c
D

y1 + a
D

y2

]

− b
a
(II) →

[

x1 = ( 1
a

+ bc
aD

)y1 − b
D

y2

x2 = − c
D

y1 + a
D

y2

]

[

x1 = d
D

y1 − b
D

y2

x2 = − c
D

y1 + a
D

y2

]

(

Note that 1
a

+ bc
aD

= D+bc
aD

= ad
aD

= d
D

.
)

It follows that

[

a b
c d

]−1

= 1
ad−bc

[

d −b
−c a

]

, as claimed. If ad − bc 6= 0 and a = 0, then we have to solve the

system
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[

cx1+ dx2 = y2

bx2 = y1

]

÷c
÷b

[

x1+
d
c
x2 = 1

c
y2

x2 = 1
b
y1

]

−d
c
(II)

[

x1 = − d
bc

y1 + 1
c
y2

x2 = 1
b
y1

]

It follows that

[

a b
c d

]−1

=

[− d
bc

1
c

1
b

0

]

= 1
ad−bc

[

d −b
−c a

]

(recall that a = 0), as claimed.

2.1.14 a By Exercise 13a,

[

2 3
5 k

]

is invertible if (and only if) 2k − 15 6= 0, or k 6= 7.5.

b By Exercise 13b,

[

2 3
5 k

]−1

= 1
2k−15

[

k −3
−5 2

]

.

If all entries of this inverse are integers, then 3
2k−15 − 2

2k−15 = 1
2k−15 is a (nonzero) integer n, so that 2k−15 = 1

n

or k = 7.5 + 1
2n

. Since k
2k−15 = kn = 7.5n + 1

2 is an integer as well, n must be odd.

We have shown: If all entries of the inverse are integers, then k = 7.5 + 1
2n

, where n is an odd integer. The

converse is true as well: If k is chosen in this way, then the entries of

[

2 3
5 k

]−1

will be integers.

2.1.15 By Exercise 13a, the matrix

[

a −b
b a

]

is invertible if (and only if) a2 + b2 6= 0, which is the case unless

a = b = 0. If

[

a −b
b a

]

is invertible, then its inverse is 1
a2+b2

[

a b
−b a

]

, by Exercise 13b.

2.1.16 If A =

[

3 0
0 3

]

, then A~x = 3~x for all ~x in R
2, so that A represents a scaling by a factor of 3. Its inverse is a

scaling by a factor of 1
3 : A−1 =

[ 1
3 0

0 1
3

]

. (See Figure 2.1.)

2.1.17 If A =

[

−1 0
0 −1

]

, then A~x = −~x for all ~x in R
2, so that A represents a reflection about the origin.

This transformation is its own inverse: A−1 = A. (See Figure 2.2.)

2.1.18 Compare with Exercise 16: This matrix represents a scaling by the factor of 1
2 ; the inverse is a scaling by 2.

(See Figure 2.3.)

2.1.19 If A =

[

1 0
0 0

]

, then A

[

x1

x2

]

=

[

x1

0

]

, so that A represents the orthogonal projection onto the ~e1 axis. (See

Figure 2.1.) This transformation is not invertible, since the equation A~x =

[

1
0

]

has infinitely many solutions ~x.

(See Figure 2.4.)
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[

0

2

]

[

1

0

]

[

3 0

0 3

]

[

3

0

]

[

0

6

]

Figure 2.1: for Problem 2.1.16.

[

0

2

]

[

1

0

]

[

−1 0

0 −1

]
[

−1

0

]

[

0

−2

]

Figure 2.2: for Problem 2.1.17.

[

0

2

]

[

1

0

]

[

0.5 0

0 0.5

]

[

0.5

0

]

[

0

1

]

Figure 2.3: for Problem 2.1.18.

2.1.20 If A =

[

0 1
1 0

]

, then A

[

x1

x2

]

=

[

x2

x1

]

, so that A represents the reflection about the line x2 = x1. This

transformation is its own inverse: A−1 = A. (See Figure 2.5.)

2.1.21 Compare with Example 5.

If A =

[

0 1
−1 0

]

, then A

[

x1

x2

]

=

[

x2

−x1

]

. Note that the vectors ~x and A~x are perpendicular and have the same
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[

0

2

]

[

1

0

]

[

1 0

0 0

]

[

1

0

]

[

0

0

]

Figure 2.4: for Problem 2.1.19.

[

0

2

]

[

1

0

]

[

0 1

1 0

]

[

0

1

]

[

2

0

]

Figure 2.5: for Problem 2.1.20.

length. If ~x is in the first quadrant, then A~x is in the fourth. Therefore, A represents the rotation through an

angle of 90◦ in the clockwise direction. (See Figure 2.6.) The inverse A−1 =

[

0 −1
1 0

]

represents the rotation

through 90◦ in the counterclockwise direction.

[

0

2

]

[

1

0

]

[

0 1

−1 0

]

[

0

−1

]

[

2

0

]

Figure 2.6: for Problem 2.1.21.

2.1.22 If A =

[

1 0
0 −1

]

, then A

[

x1

x2

]

=

[

x1

−x2

]

, so that A represents the reflection about the ~e1 axis. This

transformation is its own inverse: A−1 = A. (See Figure 2.7.)

2.1.23 Compare with Exercise 21.

Note that A = 2

[

0 1
−1 0

]

, so that A represents a rotation through an angle of 90◦ in the clockwise direction,

followed by a scaling by the factor of 2.
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[

0

2

]

[

1

0

]

[

1 0

0 −1

]
[

1

0

]

[

0

−2

]

Figure 2.7: for Problem 2.1.22.

The inverse A−1 =

[

0 − 1
2

1
2 0

]

represents a rotation through an angle of 90◦ in the counterclockwise direction,

followed by a scaling by the factor of 1
2 . (See Figure 2.8.)

[

0

2

]

[

1

0

]

[

0 2

−2 0

]

[

0

−2

]

[

4

0

]

Figure 2.8: for Problem 2.1.23.

2.1.24 Compare with Example 5. (See Figure 2.9.)

Figure 2.9: for Problem 2.1.24.

2.1.25 The matrix represents a scaling by the factor of 2. (See Figure 2.10.)

2.1.26 This matrix represents a reflection about the line x2 = x1. (See Figure 2.11.)

2.1.27 This matrix represents a reflection about the ~e1 axis. (See Figure 2.12.)
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Figure 2.10: for Problem 2.1.25.

Figure 2.11: for Problem 2.1.26.

Figure 2.12: for Problem 2.1.27.

2.1.28 If A =

[

1 0
0 2

]

, then A

[

x1

x2

]

=

[

x1

2x2

]

, so that the x2 component is multiplied by 2, while the x1 component

remains unchanged. (See Figure 2.13.)

Figure 2.13: for Problem 2.1.28.
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2.1.29 This matrix represents a reflection about the origin. Compare with Exercise 17. (See Figure 2.14.)

Figure 2.14: for Problem 2.1.29.

2.1.30 If A =

[

0 0
0 1

]

, then A

[

x1

x2

]

=

[

0
x2

]

, so that A represents the projection onto the ~e2 axis. (See Figure

2.15.)

Figure 2.15: for Problem 2.1.30.

2.1.31 The image must be reflected about the ~e2 axis, that is

[

x1

x2

]

must be transformed into

[

−x1

x2

]

: This can

be accomplished by means of the linear transformation T (~x) =

[

−1 0
0 1

]

~x.

2.1.32 Using Theorem 2.1.2, we find A =









3 0 · 0
0 3 · 0
...

...
. . .

...
0 0 · · · 3









. This matrix has 3’s on the diagonal and 0’s everywhere

else.

2.1.33 By Theorem 2.1.2, A =

[

T

[

1
0

]

T

[

0
1

]]

. (See Figure 2.16.)

Therefore, A =





1√
2

− 1√
2

1√
2

1√
2



.

2.1.34 As in Exercise 2.1.33, we find T (~e1) and T (~e2); then by Theorem 2.1.2, A = [T (~e1) T (~e2)]. (See Figure
2.17.)
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Figure 2.16: for Problem 2.1.33.

Figure 2.17: for Problem 2.1.34.

Therefore, A =

[

cos θ − sin θ
sin θ cos θ

]

.

2.1.35 We want to find a matrix A =

[

a b
c d

]

such that A

[

5
42

]

=

[

89
52

]

and A

[

6
41

]

=

[

88
53

]

. This amounts to

solving the system







5a + 42b = 89
6a + 41b = 88

5c + 42d = 52
6c + 41d = 53






.

(Here we really have two systems with two unknowns each.)

The unique solution is a = 1, b = 2, c = 2, and d = 1, so that A =

[

1 2
2 1

]

.

2.1.36 First we draw ~w in terms of ~v1 and ~v2 so that ~w = c1~v1 + c2~v2 for some c1 and c2. Then, we scale the
~v2-component by 3, so our new vector equals c1~v1 + 3c2~v2.

2.1.37 Since ~x = ~v + k(~w − ~v), we have T (~x) = T (~v + k(~w − ~v)) = T (~v) + k(T (~w) − T (~v)), by Theorem 2.1.3

Since k is between 0 and 1, the tip of this vector T (~x) is on the line segment connecting the tips of T (~v) and
T (~w). (See Figure 2.18.)
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Figure 2.18: for Problem 2.1.37.

2.1.38 T

[

2
−1

]

= [~v1 ~v2]

[

2
−1

]

= 2~v1 − ~v2 = 2~v1 + (−~v2). (See Figure 2.19.)

Figure 2.19: for Problem 2.1.38.

2.1.39 By Theorem 2.1.2, we have T





x1

. . .
xm



 =







T (~e1) . . . T (~em)











x1

. . .
xm



 = x1T (~e1) + · · · + xmT (~em).

2.1.40 These linear transformations are of the form [y] = [a][x], or y = ax. The graph of such a function is a line
through the origin.

2.1.41 These linear transformations are of the form [y] = [a b]

[

x1

x2

]

, or y = ax1 + bx2. The graph of such a function

is a plane through the origin.

2.1.42 a See Figure 2.20.

b The image of the point





1
1
2
1
2



 is the origin,

[

0
0

]

.
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Figure 2.20: for Problem 2.1.42.

c Solve the equation

[− 1
2 1 0

− 1
2 0 1

]





x1

x2

x3



 =

[

0
0

]

, or

[

− 1
2x1 + x2 = 0

− 1
2x1 + x3 = 0

]

. (See Figure 2.16.)

The solutions are of the form





x1

x2

x3



 =





2t
t
t



 , where t is an arbitrary real number. For example, for t = 1
2 , we

find the point





1
1
2
1
2



 considered in part b.These points are on the line through the origin and the observer’s eye.

2.1.43 a T (~x) =





2
3
4



 ·





x1

x2

x3



 = 2x1 + 3x2 + 4x3 = [2 3 4]





x1

x2

x3





The transformation is indeed linear, with matrix [2 3 4].

b If ~v =





v1

v2

v3



, then T is linear with matrix [v1 v2 v3], as in part (a).

c Let [a b c] be the matrix of T . Then T





x1

x2

x3



 = [a b c]





x1

x2

x3



 = ax1 + bx2 + cx3 =





a
b
c



 ·





x1

x2

x3



, so that ~v =





a
b
c





does the job.

2.1.44 T





x1

x2

x3



 =





v1

v2

v3



 ×





x1

x2

x3



 =





v2x3 − v3x2

v3x1 − v1x3

v1x2 − v2x1



 =





0 −v3 v2

v3 0 −v1

−v2 v1 0









x1

x2

x3



, so that T is linear, with matrix





0 −v3 v2

v3 0 −v1

−v2 v1 0



.
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2.1.45 Yes, ~z = L(T (~x)) is also linear, which we will verify using Theorem 2.1.3. Part a holds, since L(T (~v + ~w)) =
L(T (~v) + T (~w)) = L(T (~v)) + L(T (~w)), and part b also works, because L(T (k~v)) = L(kT (~v)) = kL(T (~v)).

2.1.46 T

[

1
0

]

= B

(

A

[

1
0

])

= B

[

a
c

]

=

[

pa + qc
ra + sc

]

T

[

0
1

]

= B

(

A

[

0
1

])

= B

[

b
d

]

=

[

pb + qd
rb + sd

]

So, T

[

x1

x2

]

= x1

(

T

[

1
0

])

+ x2

(

T

[

0
1

])

=

[

b
d

]

=

[

pb + qd
rb + sd

]

2.1.47 Write ~w as a linear combination of ~v1 and ~v2 : ~w = c1~v1 + c2~v2. (See Figure 2.21.)

Figure 2.21: for Problem 2.1.47.

Measurements show that we have roughly ~w = 1.5~v1 + ~v2.

Therefore, by linearity, T (~w) = T (1.5~v1 + ~v2) = 1.5T (~v1) + T (~v2). (See Figure 2.22.)

Figure 2.22: for Problem 2.1.47.

2.1.48 Let ~x be some vector in R
2. Since ~v1 and ~v2 are not parallel, we can write ~x in terms of components of ~v1

and ~v2. So, let c1 and c2 be scalars such that ~x = c1~v1 + c2~v2. Then, by Theorem 2.1.3, T (~x) = T (c1~v1 + c2~v2) =
T (c1~v1) + T (c2~v2) = c1T (~v1) + c2T (~v2) = c1L(~v1) + c2L(~v2) = L(c1~v1 + c2~v2) = L(~x). So T (~x) = L(~x) for all ~x
in R

2.

2.1.49 a Let x1 be the number of 2 Franc coins, and x2 be the number of 5 Franc coins. Then

[

2x1 +5x2 = 144
x1 +x2 = 51

]

.

59



Chapter 2

From this we easily find our solution vector to be

[

37
14

]

.

b

[

total value of coins
total number of coins

]

=

[

2x1 +5x2

x1 +x2

]

=

[

2 5
1 1

] [

x1

x2

]

.

So, A =

[

2 5
1 1

]

.

c By Exercise 13, matrix A is invertible (since ad − bc = −3 6= 0), and A−1 = 1
ad−bc

[

d −b
−c a

]

= − 1
3

[

1 −5
−1 2

]

.

Then − 1
3

[

1 −5
−1 2

] [

144
51

]

= − 1
3

[

144 −5(51)
−144 +2(51)

]

= − 1
3

[

−111
−42

]

=

[

37
14

]

, which was the vector we found in

part a.

2.1.50 a Let

[

p
s

]

=

[

mass of the platinum alloy
mass of the silver alloy

]

. Using the definition density = mass/volume, or volume =

mass/density, we can set up the system:

[

p +s = 5, 000
p
20 + s

10 = 370

]

, with the solution p = 2, 600 and s = 2, 400. We see that the platinum alloy makes up

only 52 percent of the crown; this gold smith is a crook!

b We seek the matrix A such that A

[

p
s

]

=

[

total mass
total volume

]

=

[

p + s
p
20 + s

10

]

. Thus A =

[

1 1
1
20

1
10

]

.

c Yes. By Exercise 13, A−1 =

[

2 −20
−1 20

]

. Applied to the case considered in part a, we find that

[

p
s

]

=

A−1

[

total mass
total volume

]

=

[

2 −20
−1 20

] [

5, 000
370

]

=

[

2, 600
2, 400

]

, confirming our answer in part a.

2.1.51 a

[

C
1

]

=

[

5
9 (F − 32)

1

]

=

[

5
9F − 160

9
1

]

=

[

5
9 − 160

9
0 1

] [

F
1

]

.

So A =

[

5
9 − 160

9
0 1

]

.

b Using Exercise 13, we find 5
9 (1) − (− 160

9 )0 = 5
9 6= 0, so A is invertible.

A−1 = 9
5

[

1 160
9

0 5
9

]

=

[

9
5 32
0 1

]

. So, F = 9
5C + 32.

2.1.52 a A~x =

[

300
2, 400

]

, meaning that the total value of our money is C$300, or, equivalently, ZAR2400.

b From Exercise 13, we test the value ad − bc and find it to be zero. Thus A is not invertible. To determine when

A is consistent, we begin to compute rref

[

A
...~b

]

:
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



1 1
8

... b1

8 1
... b2





−8I
→





1 1
8

... b1

0 0
... b2 − 8b1



 .

Thus, the system is consistent only when b2 = 8b1. This makes sense, since b2 is the total value of our money
in terms of Rand, while b1 is the value in terms of Canadian dollars. Consider the example in part a. If the
system A~x = ~b is consistent, then there will be infinitely many solutions ~x, representing various compositions of
our portfolio in terms of Rand and Canadian dollars, all representing the same total value.

2.1.53 All four entries along the diagonal must be 1: they represent the process of converting a currency to itself.
We also know that aij = 1/aji for all i, j because converting from one currency i to currencty j is the inverse

to converting currency j to currency i. This gives us 3 more entries:









1 5/8 1/170 ∗
8/5 1 ∗ 2
170 ∗ 1 ∗
∗ 1/2 ∗ 1









. Next, let’s

find the entry a41, giving the value of one Euro expressed in Pounds. Now E1 = $(8/5) = $1.60 and $1 =
£(1/2) = £(0.50) so that E1 = £(1/2)(8/5) = £(4/5) = £0.80. We have found that a41 = a42a21 = 4/5 and

the matrix is









1 5/8 1/170 5/4
8/5 1 ∗ 2
170 ∗ 1 ∗
4/5 1/2 ∗ 1









. Similarly, we have aij = aikakj for all indices i, j, k = 1, 2, 3, 4. This

gives a32 = a31a12 = 170 ∗ 5/8 = 425/4 and a43 = a41a13 = (4/5)(1/170) = 2/425. Using the fact that aij = a−1
ji ,

we can complete the matrix:









1 5/8 1/170 5/4
8/5 1 4/425 2
170 425/4 1 425/2
4/5 1/2 2/425 1









.

2.1.54 a 1: this represents converting a currency to itself.

b aij is the reciprocal of aji, meaning that aijaji = 1. This represents converting on currency to another, then
converting it back.

c Note that aik is the conversion factor from currency k to currency i meaning that

(1 unit of currency k) = (aik units of currency i)

Likewise,

(1 unit of currency j) = (akj units of currency k).

It follows that

(1 unit of currency j) = (akjaik units of currency i) = (aij units of currency i), so that aikakj = aij .

d The rank of A is only 1, because every row is simply a scalar multiple of the top row. More precisely, since
aij = ai1a1j , by part c, the ith row is ai1 times the top row. When we compute the rref, every row but the top
will be removed in the first step. Thus, rref(A) is a matrix with the top row of A and zeroes for all other entries.

Section 2.2

2.2.1 The standard L is transformed into a distorted L whose foot is the vector T

([

1
0

])

=

[

3 1
1 2

] [

1
0

]

=

[

3
1

]

.
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Meanwhile, the back becomes the vector T

([

0
2

])

=

[

3 1
1 2

] [

0
2

]

=

[

2
4

]

.

2.2.2 By Theorem 2.2.3, this matrix is

[

cos(60◦) − sin(60◦)
sin(60◦) cos(60◦)

]

=





1
2 −

√
3

2√
3

2
1
2



.

2.2.3 If ~x is in the unit square in R
2, then ~x = x1~e1 + x2~e2 with 0 ≤ x1, x2 ≤ 1, so that

T (~x) = T (x1~e1 + x2~e2) = x1T (~e1) + x2T (~e2).

The image of the unit square is a parallelogram in R
3; two of its sides are T (~e1) and T (~e2), and the origin is one

of its vertices. (See Figure 2.23.)

Figure 2.23: for Problem 2.2.3.

2.2.4 By Theorem 2.2.4, this is a rotation combined with a scaling. The transformation rotates 45 degrees counter-
clockwise, and has a scaling factor of

√
2.

2.2.5 Note that cos(θ) = −0.8, so that θ = arccos(−0.8) ≈ 2.498.

2.2.6 By Theorem 2.2.1, projL





1
1
1



 =



~u ·





1
1
1







 ~u, where ~u is a unit vector on L. To get ~u, we normalize





2
1
2



:

~u = 1
3





2
1
2



, so that projL





1
1
1



 = 5
3 · 1

3





2
1
2



 =







10
9
5
9
10
9






.

2.2.7 According to the discussion in the text, refL





1
1
1



 = 2



~u ·





1
1
1







 ~u−





1
1
1



, where ~u is a unit vector on L. To

get ~u, we normalize





2
1
2



: ~u = 1
3





2
1
2



, so that refL





1
1
1



 = 2( 5
3 ) 1

3





2
1
2



−





1
1
1



 =







11
9
1
9
11
9






.
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2.2.8 From Definition 2.2.2, we can see that this is a reflection about the line x1 = −x2.

2.2.9 By Theorem 2.2.5, this is a vertical shear.

2.2.10 By Theorem 2.2.1, projL~x = (~u·~x)~u, where ~u is a unit vector on L. We can choose ~u = 1
5

[

4
3

]

=

[

0.8
0.6

]

. Then

projL

[

x1

x2

]

=

([

0.8
0.6

]

·
[

x1

x2

])[

0.8
0.6

]

= (0.8x1 + 0.6x2)

[

0.8
0.6

]

=

[

0.64x1 + 0.48x2

0.48x1 + 0.36x2

]

=

[

0.64 0.48
0.48 0.36

] [

x1

x2

]

.

The matrix is A =

[

0.64 0.48
0.48 0.36

]

.

2.2.11 In Exercise 10 we found the matrix A =

[

0.64 0.48
0.48 0.36

]

of the projection onto the line L. By Theorem 2.2.2,

refL~x = 2(projL~x)− ~x = 2A~x− ~x = (2A− I2)~x, so that the matrix of the reflection is 2A− I2 =

[

0.28 0.96
0.96 −0.28

]

.

2.2.12 Let ~u = (1/||~w||)~w be the unit vector in the direction of ~w. It has the components u1 = w1/
√

w2
1 + w2

2 and
u2 = w2√

w2

1
+w2

2

. On Pages 57/58, we see that the matrix representing the projection is

[

u2
1 u1u2

u1u2 u2
2

]

.

This can be written as
1

w2
1 + w2

2

[

w2
1 w1w2

w1w2 w2
2

]

,

as claimed.

2.2.13 By Theorem 2.2.2,

refL

[

x1

x2

]

= 2

([

u1

u2

]

·
[

x1

x2

])[

u1

u2

]

−
[

x1

x2

]

= 2(u1x1 + u2x2)

[

u1

u2

]

−
[

x1

x2

]

=

[

(2u2
1 − 1)x1 + 2u1u2x2

2u1u2x1 + (2u2
2 − 1)x2

]

.

.

The matrix is A =

[

a b
c d

]

=

[

2u2
1 − 1 2u1u2

2u1u2 2u2
2 − 1

]

. Note that the sum of the diagonal entries is a + d =

2(u2
1 +u2

2)− 2 = 0, since ~u is a unit vector. It follows that d = −a. Since c = b, A is of the form

[

a b
b −a

]

. Also,

a2 + b2 = (2u2
1 − 1)2 + 4u2

1u
2
2 = 4u4

1 − 4u2
1 + 1 + 4u2

1(1 − u2
1) = 1, as claimed.

2.2.14 a Proceeding as on Page 57/58 in the text, we find that A is the matrix whose ijth entry is uiuj :

A =





u2
1 u1u2 u1u3

u2u1 u2
2 u2u3

unu1 unu2 u2
3





b The sum of the diagonal entries is u2
1 + u2

2 + u2
3 = 1, since ~u is a unit vector.
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2.2.15 According to the discussion on Page 60 in the text, refL(~x) = 2(~x · ~u)~u − ~x

= 2(x1u1 + x2u2 + x3u3)





u1

u2

u3



−





x1

x2

x3





=





2x1u
2
1 +2x2u2u1 +2x3u3u1 −x1

2x1u1u2 +2x2u
2
2 +2x3u3u2 −x2

2x1u1u3 +2x2u2u3 +2x3u
2
3 −x3



 =





(2u2
1 − 1)x1 +2u2u1x2 +2u1u3x3

2u1u2x1 +(2u2
2 − 1)x2 +2u2u3x3

2u1u3x1 +2u2u3x2 +(2u2
3 − 1)x3



.

So A =





(2u2
1 − 1) 2u2u1 2u1u3

2u1u2 (2u2
2 − 1) 2u2u3

2u1u3 2u2u3 (2u2
3 − 1)



.

2.2.16 a See Figure 2.24.

Figure 2.24: for Problem 2.2.16a.

b By Theorem 2.1.2, the matrix of T is [T (~e1) T (~e2)].

Figure 2.25: for Problem 2.2.16b.
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T (~e2) is the unit vector in the fourth quadrant perpendicular to T (~e1) =

[

cos(2θ)
sin(2θ)

]

, so that

T (~e2) =

[

sin(2θ)
− cos(2θ)

]

. The matrix of T is therefore

[

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]

.

Alternatively, we can use the result of Exercise 13, with

[

u1

u2

]

=

[

cos θ
sin θ

]

to find the matrix

[

2 cos2 θ − 1 2 cos θ sin θ
2 cos θ sin θ 2 sin2 θ − 1

]

.

You can use trigonometric identities to show that the two results agree. (See Figure 2.25.)

2.2.17 We want,

[

a b
b −a

] [

v1

v2

]

=

[

av1 +bv2

bv1 −av2

]

=

[

v1

v2

]

.

Now, (a − 1)v1 + bv2 = 0 and bv1 − (a + 1)v2, which is a system with solutions of the form

[

bt
(1 − a)t

]

, where t

is an arbitrary constant.

Let’s choose t = 1, making ~v =

[

b
1 − a

]

.

Similarly, we want A~w = −~w. We perform a computation as above to reveal ~w =

[

a − 1
b

]

as a possible choice.

A quick check of ~v · ~w = 0 reveals that they are indeed perpendicular.

Now, any vector ~x in R can be written in terms of components with respect to L = span(~v) as ~x = ~x|| + ~x⊥ =
c~v + d~w. Then, T (~x) = A~x = A(c~v + d~w) = A(c~v) + A(d~w) = cA~v + dA~w = c~v − d~w = ~x|| − ~x⊥ = refL(~x), by
Definition 2.2.2.

(The vectors ~v and ~w constructed above are both zero in the special case that a = 1 and b = 0. In that case, we
can let ~v = ~e1 and ~w = ~e2 instead.)

2.2.18 From Exercise 17, we know that the reflection is about the line parallel to ~v =

[

b
1 − a

]

=

[

0.8
0.4

]

= 0.4

[

2
1

]

.

So, every point on this line can be described as

[

x
y

]

= k

[

2
1

]

. So, y = k = 1
2x, and y = 1

2x is the line we are

looking for.

2.2.19 T (~e1) = ~e1, T (~e2) = ~e2, and T (~e3) = ~0, so that the matrix is





1 0 0
0 1 0
0 0 0



.

2.2.20 T (~e1) = ~e1, T (~e2) = −~e2, and T (~e3) = ~e3, so that the matrix is





1 0 0
0 −1 0
0 0 1



.

2.2.21 T (~e1) = ~e2, T (~e2) = −~e1, and T (~e3) = ~e3, so that the matrix is





0 −1 0
1 0 0
0 0 1



. (See Figure 2.26.)
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Figure 2.26: for Problem 2.2.21.

2.2.22 Sketch the ~e1 − ~e3 plane, as viewed from the positive ~e2 axis.

Figure 2.27: for Problem 2.2.22.

Since T (~e2) = ~e2, the matrix is





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



. (See Figure 2.27.)

2.2.23 T (~e1) = ~e3, T (~e2) = ~e2, and T (~e3) = ~e1, so that the matrix is





0 0 1
0 1 0
1 0 0



. (See Figure 2.28.)

Figure 2.28: for Problem 2.2.23.

2.2.24 a A = [~v ~w ] , so A

[

1
0

]

= ~v and A

[

0
1

]

= ~w. Since A preserves length, both ~v and ~w must be unit

vectors. Furthermore, since A preserves angles and

[

1
0

]

and

[

0
1

]

are clearly perpendicular, ~v and ~w must also
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be perpendicular.

b Since ~w is a unit vector perpendicular to ~v, it can be obtained by rotating ~v through 90 degrees, either in
the counterclockwise or in the clockwise direction. Using the corresponding rotation matrices, we see that

~w =

[

0 −1
1 0

]

~v =

[

−b
a

]

or ~w =

[

0 1
−1 0

]

~v =

[

b
−a

]

.

c Following part b, A is either of the form

[

a −b
b a

]

, representing a rotation, or A =

[

a b
b −a

]

, representing a

reflection.

2.2.25 The matrix A =

[

1 k
0 1

]

represents a horizontal shear, and its inverse A−1 =

[

1 −k
0 1

]

represents such a

shear as well, but “the other way.”

2.2.26 a

[

k 0
0 k

] [

2
−1

]

=

[

2k
−k

]

=

[

8
−4

]

. So k = 4 and A =

[

4 0
0 4

]

.

b This is the orthogonal projection onto the horizontal axis, with matrix B =

[

1 0
0 0

]

.

c

[

a −b
b a

] [

0
5

]

=

[

−5b
5a

]

=

[

3
4

]

. So a = 4
5 , b = − 3

5 , and C =

[

4
5

3
5

− 3
5

4
5

]

. Note that a2 + b2 = 1, as required for

a rotation matrix.

d Since the x1 term is being modified, this must be a horizontal shear.

Then

[

1 k
0 1

] [

1
3

]

=

[

1 + 3k
3

]

=

[

7
3

]

. So k = 2 and D =

[

1 2
0 1

]

.

e

[

a b
b −a

] [

7
1

]

=

[

7a + b
7b − a

]

=

[

−5
5

]

. So a = − 4
5 , b = 3

5 , and E =

[

− 4
5

3
5

3
5

4
5

]

. Note that a2 + b2 = 1, as required

for a reflection matrix.

2.2.27 Matrix B clearly represents a scaling.

Matrix C represents a projection, by Definition 2.2.1, with u1 = 0.6 and u2 = 0.8.

Matrix E represents a shear, by Theorem 2.2.5.

Matrix A represents a reflection, by Definition 2.2.2.

Matrix D represents a rotation, by Definition 2.2.3.

2.2.28 a D is a scaling, being of the form

[

k 0
0 k

]

.

b E is the shear, since it is the only matrix which has the proper form (Theorem 2.2.5).

c C is the rotation, since it fits Theorem 2.2.3.
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d A is the projection, following the form given in Definition 2.2.1.

e F is the reflection, using Definition 2.2.2.

2.2.29 To check that L is linear, we verify the two parts of Theorem 2.1.3:

a) Use the hint and apply L to both sides of the equation ~x + ~y = T (L(~x) + L(~y)):

L(~x + ~y) = L(T (L(~x) + L(~y))) = L(~x) + L(~y) as claimed.

b)L (k~x) = L (kT (L (~x))) = L (T (kL (~x))) = kL (~x) , as claimed
↑ ↑

~x = T (L (~x)) T is linear

2.2.30 Write A = [~v1 ~v2 ]; then A~x = [~v1 ~v2]

[

x1

x2

]

= x1~v1 + x2~v2. We must choose ~v1 and ~v2 in such a way that

x1~v1 + x2~v2 is a scalar multiple of the vector

[

1
2

]

, for all x1 and x2. This is the case if (and only if) both ~v1 and

~v2 are scalar multiples of

[

1
2

]

.

For example, choose ~v1 =

[

1
2

]

and ~v2 =

[

0
0

]

, so that A =

[

1 0
2 0

]

.

2.2.31 Write A = [~v1 ~v2 ~v3]; then A~x = [~v1 ~v2 ~v3]





x1

x2

x3



 = x1~v1 + x2~v2 + x3~v3.

We must choose ~v1, ~v2, and ~v3 in such a way that x1~v1 + x2~v2 + x3~v3 is perpendicular to ~w =





1
2
3



 for all

x1, x2, and x3. This is the case if (and only if) all the vectors ~v1, ~v2, and ~v3 are perpendicular to ~w, that is, if
~v1 · ~w = ~v2 · ~w = ~v3 · ~w = 0.

For example, we can choose ~v1 =





−2
1
0



 and ~v2 = ~v3 = ~0, so that A =





−2 0 0
1 0 0
0 0 0



.

2.2.32 a See Figure 2.29.

b Compute D~v =

[

cos α − sin α
sin α cos α

] [

cos β
sin β

]

=

[

cos α cos β − sinα sin β
sin α cos β + cos α sin β

]

.

Comparing this result with our finding in part (a), we get the addition theorems

cos(α + β) = cos α cos β − sin α sin β

sin(α + β) = sinα cos β − cos α sin β
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Figure 2.29: for Problem 2.2.32a.

Figure 2.30: for Problem 2.2.33.

2.2.33 Geometrically, we can find the representation ~v = ~v1 + ~v2 by means of a parallelogram, as shown in Figure
2.30.

To show the existence and uniqueness of this representation algebraically, choose a nonzero vector ~w1 in L1 and

a nonzero ~w2 in L2. Then the system x1 ~w1 + x2 ~w2 = ~0 or [~w1 ~w2]

[

x1

x2

]

= ~0 has only the solution x1 = x2 = 0

(if x1 ~w1 + x2 ~w2 = ~0 then x1 ~w1 = −x2 ~w2 is both in L1 and in L2, so that it must be the zero vector).

Therefore, the system x1 ~w1 + x2 ~w2 = ~v or [~w1 ~w2]

[

x1

x2

]

= ~v has a unique solution x1, x2 for all ~v in R
2 (by

Theorem 1.3.4). Now set ~v1 = x1 ~w1 and ~v2 = x2 ~w2 to obtain the desired representation ~v = ~v1 + ~v2. (Compare
with Exercise 1.3.57.)

To show that the transformation T (~v) = ~v1 is linear, we will verify the two parts of Theorem 2.1.3.

Let ~v = ~v1 + ~v2, ~w = ~w1 + ~w2, so that ~v + ~w = (~v1 + ~w1) + (~v2 + ~w2) and k~v = k~v1 + k~v2.

↑
in L1

↑
in L2

↑
in L1

↑
in L2

↑
in L1

↑
in L2

↑
in L1

↑
in L2

a. T (~v + ~w) = ~v1 + ~w1 = T (~v) + T (~w), and

b. T (k~v) = k~v1 = kT (~v), as claimed.
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2.2.34 Keep in mind that the columns of the matrix of a linear transformation T from R
3 to R

3 are T (~e1), T (~e2),
and T (~e3).

If T is the orthogonal projection onto a line L, then T (~x) will be on L for all ~x in R
3; in particular, the three

columns of the matrix of T will be on L, and therefore pairwise parallel. This is the case only for matrix B: B
represents an orthogonal projection onto a line.

A reflection transforms orthogonal vectors into orthogonal vectors; therefore, the three columns of its matrix
must be pairwise orthogonal. This is the case only for matrix E: E represents the reflection about a line.

2.2.35 If the vectors ~v1 and ~v2 are defined as shown in Figure 2.27, then the parallelogram P consists of all vectors
of the form ~v = c1~v1 + c2~v2, where 0 ≤ c1, c2 ≤ 1.

The image of P consists of all vectors of the form T (~v) = T (c1~v1 + c2~v2) = c1T (~v1) + c2T (~v2).

These vectors form the parallelogram shown in Figure 2.31 on the right.

Figure 2.31: for Problem 2.2.35.

2.2.36 If the vectors ~v0, ~v1, and ~v2 are defined as shown in Figure 2.28, then the parallelogram P consists of all
vectors ~v of the form ~v = ~v0 + c1~v1 + c2~v2, where 0 ≤ c1, c2 ≤ 1.

The image of P consists of all vectors of the form T (~v) = T (~v0 + c1~v1 + c2~v2) = T (~v0) + c1T (~v1) + c2T (~v2).

These vectors form the parallelogram shown in Figure 2.32 on the right.

Figure 2.32: for Problem 2.2.36.

2.2.37 a By Definition 2.2.1, a projection has a matrix of the form

[

u2
1 u1u2

u1u2 u2
2

]

, where

[

u1

u2

]

is a unit vector.
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So the trace is u2
1 + u2

2 = 1.

b By Definition 2.2.2, reflection matrices look like

[

a b
b −a

]

, so the trace is a − a = 0.

c According to Theorem 2.2.3, a rotation matrix has the form

[

cos θ − sin θ
sin θ cos θ

]

, so the trace is cos θ+cos θ = 2 cos θ

for some θ. Thus, the trace is in the interval [−2, 2].

d By Theorem 2.2.5, the matrix of a shear appears as either

[

1 0
k 1

]

or

[

1 k
0 1

]

, depending on whether it represents

a vertical or horizontal shear. In both cases, however, the trace is 1 + 1 = 2.

2.2.38 a A =

[

u2
1 u1u2

u1u2 u2
2

]

, so det(A) = u2
1u

2
2 − u1u2u1u2 = 0.

b A =

[

a b
b −a

]

, so det(A) = −a2 − b2 = −(a2 + b2) = −1.

c A =

[

a −b
b a

]

, so det(A) = a2 − (−b2) = a2 + b2 = 1.

d A =

[

1 k
0 1

]

or

[

1 0
k 1

]

, both of which have determinant equal to 12 − 0 = 1.

2.2.39 a Note that

[

1 1
1 1

]

= 2





1
2

1
2

1
2

1
2



 . The matrix





1
2

1
2

1
2

1
2



 represents an orthogonal projection (Definition

2.2.1), with ~u =

[

u1

u2

]

=

[ √
2

2√
2

2

]

. So,

[

1 1
1 1

]

represents a projection combined with a scaling by a factor of 2.

b This looks similar to a shear, with the one zero off the diagonal. Since the two diagonal entries are identical, we

can write

[

3 0
−1 3

]

= 3

[

1 0
− 1

3 1

]

, showing that this matrix represents a vertical shear combined with a scaling

by a factor of 3.

c We are asked to write

[

3 4
4 −3

]

= k

[ 3
k

4
k

4
k

− 3
k

]

, with our scaling factor k yet to be determined. This matrix,

[ 3
k

4
k

4
k

− 3
k

]

has the form of a reflection matrix

([

a b
b −a

])

. This form further requires that 1 = a2 + b2 =

( 3
k
)2 + ( 4

k
)2, or k = 5. Thus, the matrix represents a reflection combined with a scaling by a factor of 5.

2.2.40 ~x = projP ~x + projQ~x, as illustrated in Figure 2.33.

2.2.41 refQ~x = −refP ~x since refQ~x, refP ~x, and ~x all have the same length, and refQ~x and refP ~x enclose an angle of
2α + 2β = 2(α + β) = π. (See Figure 2.34.)
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Figure 2.33: for Problem 2.2.40.

Figure 2.34: for Problem 2.2.41.

2.2.42 T (~x) = T (T (~x)) since T (~x) is on L hence the projection of T (~x) onto L is T (~x) itself.

2.2.43 Since ~y = A~x is obtained from ~x by a rotation through θ in the counterclockwise direction, ~x is obtained
from ~y by a rotation through θ in the clockwise direction, that is, a rotation through −θ. (See Figure 2.35.)

Figure 2.35: for Problem 2.2.43.

Therefore, the matrix of the inverse transformation is A−1 =

[

cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]

=

[

cos θ sin θ
− sin θ cos θ

]

. You can

use the formula in Exercise 2.1.13b to check this result.

2.2.44 By Exercise 1.1.13b, A−1 =

[

a −b
b a

]−1

= 1
a2+b2

[

a b
−b a

]

.

If A represents a rotation through θ followed by a scaling by r, then A−1 represents a rotation through −θ
followed by a scaling by 1

r
. (See Figure 2.36.)

2.2.45 By Exercise 2.1.13, A−1 = 1
−a2−b2

[

−a −b
−b a

]

= 1
−(a2+b2)

[

−a −b
−b a

]

= −1

[

−a −b
−b a

]

=

[

a b
b −a

]

.

So A−1 = A, which makes sense. Reflecting a vector twice about the same line will return it to its original state.
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Figure 2.36: for Problem 2.2.44.

2.2.46 We want to write A = k

[

a
k

b
k

b
k

−a
k

]

, where the matrix B =

[

a
k

b
k

b
k

−a
k

]

represents a reflection. It is required

that (a
k
)2 + ( b

k
)2 = 1, meaning that a2 + b2 = k2, or, k =

√
a2 + b2. Now A−1 = 1

a2+b2

[

a b
b −a

]

= 1
k2 A = 1

k
B,

for the reflection matrix B and the scaling factor k introduced above. In summary: If A represents a reflection
combined with a scaling by k, then A−1 represents the same reflection combined with a scaling by 1

k
.

2.2.47 Write T

[

x1

x2

]

=

[

a b
c d

] [

x1

x2

]

=

[

ax1 + bx2

cx1 + dx2

]

.

a. f(t) =

(

T

[

cos t
sin t

])

·
(

T

[

− sin t
cos t

])

=

[

a cos t + b sin t
c cos t + d sin t

]

·
[

−a sin t + b cos t
−c sin t + d cos t

]

= (a cos t + b sin t)(−a sin t + b cos t) + (c cos t + d sin t)(−c sin t + d cos t)

This function f(t) is continuous, since cos(t), sin(t), and constant functions are continuous, and sums and
products of continuous functions are continuous.

b. f
(

π
2

)

= T

[

0
1

]

· T
[

−1
0

]

= −
(

T

[

0
1

]

· T
[

1
0

])

, since T is linear.

f(0) = T

[

1
0

]

· T
[

0
1

]

= T

[

0
1

]

· T
[

1
0

]

. The claim follows.

c. By part (b), the numbers f(0) and f
(

π
2

)

have different signs (one is positive and the other negative), or they
are both zero. Since f(t) is continuous, by part (a), we can apply the intermediate value theorem. (See Figure
2.37.)

Figure 2.37: for Problem 2.2.47c.

d. Note that

[

cos(t)
sin(t)

]

and

[

− sin(t)
cos(t)

]

are perpendicular unit vectors, for any t. If we set
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~v1 =

[

cos(c)
sin(c)

]

, ~v2 =

[

− sin(c)
cos(c)

]

, with the number c we found in part (c), then f(c) = T (~v1) · T (~v2) = 0, so

that T (~v1) and T (~v2) are perpendicular, as claimed. Note that T (~v1) or T (~v2) may be zero.

2.2.48 We find

f(t) =

([

0 4
5 −3

] [

cos(t)
sin(t)

])

·
([

0 4
5 −3

][

− sin(t)
cos(t)

])

=

[

4 sin(t)
5 cos(t) − 3 sin(t)

]

·
[

4 cos(t)
−5 sin(t) − 3 cos(t)

]

= 15(sin2 t − cos2 t) = 15(2 sin2 t − 1). See Figure 2.38.

Figure 2.38: for Problem 2.2.48.

The only zero of f(t) between 0 and π
2 is at c = π

4 .

Therefore, ~v1 =

[

cos(π
4 )

sin(π
4 )

]

=





√
2

2√
2

2



 and ~v2 =

[

− sin(π
4 )

cos(π
4 )

]

=





−
√

2
2
√

2
2



 work. Note that T (~v1) = 1√
2

[

4
2

]

and T (~v2) = 1√
2

[

4
−8

]

are indeed perpendicular. See Figure 2.39.

Figure 2.39: for Problem 2.2.48.

2.2.49 If ~x =

[

cos(t)
sin(t)

]

then T (~x) =

[

5 0
0 2

] [

cos(t)
sin(t)

]

=

[

5 cos(t)
2 sin(t)

]

= cos(t)

[

5
0

]

+ sin(t)

[

0
2

]

.
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These vectors form an ellipse; consider the characterization of an ellipse given in the footnote on Page 69, with

~w1 =

[

5
0

]

and ~w2 =

[

0
2

]

. (See Figure 2.40.)

Figure 2.40: for Problem 2.2.49.

2.2.50 Use the hint: Since the vectors on the unit circle are of the form ~v = cos(t)~v1 + sin(t)~v2, the image of the
unit circle consists of the vectors of the form T (~v) = T (cos(t)~v1 + sin(t)~v2) = cos(t)T (~v1) + sin(t)T (~v2).
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Figure 2.41: for Problem 2.2.50.

These vectors form an ellipse: Consider the characterization of an ellipse given in the footnote, with ~w1 = T (~v1)
and ~w2 = T (~v2). The key point is that T (~v1) and T (~v2) are perpendicular. See Figure 2.41.

2.2.51 Consider the linear transformation T with matrix A = [~w1 ~w2], that is,

T

[

x1

x2

]

= A

[

x1

x2

]

= [~w1 ~w2]

[

x1

x2

]

= x1 ~w1 + x2 ~w2.

The curve C is the image of the unit circle under the transformation T : if ~v =

[

cos(t)
sin(t)

]

is on the unit circle,

then T (~v) = cos(t)~w1 + sin(t)~w2 is on the curve C. Therefore, C is an ellipse, by Exercise 50. (See Figure
2.42.)

Figure 2.42: for Problem 2.2.51.

2.2.52 By definition, the vectors ~v on an ellipse E are of the form ~v = cos(t)~v1 + sin(t)~v2, for some perpen-
dicular vectors ~v1 and ~v2. Then the vectors on the image C of E are of the form T (~v) = cos(t)T (~v1) +
sin(t)T (~v2). These vectors form an ellipse, by Exercise 51 (with ~w1 = T (~v1) and ~w2 = T (~v2)). See Figure
2.43.
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Figure 2.43: for Problem 2.2.52.

Section 2.3

2.3.1

[

4 6
3 4

]

2.3.2

[

4 4
−8 −8

]

2.3.3 Undefined

2.3.4





2 2
2 0
7 4





2.3.5





a b
c d
0 0





2.3.6

[

ad − bc 0
0 ad − bc

]

2.3.7





−1 1 0
5 3 4

−6 −2 −4





2.3.8

[

0 0
0 0

]

2.3.9

[

0 0
0 0

]

2.3.10 [0 1]

2.3.11 [10]
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2.3.12





1 2 3
2 4 6
3 6 9





2.3.13 [h]

2.3.14 A2 =

[

2 2
2 2

]

, BC = [14 8 2], BD = [6], C2 =





−2 −2 −2
4 1 −2

10 4 −2



 , CD =





0
3
6



 , DB =





1 2 3
1 2 3
1 2 3



,

DE =





5
5
5



, EB = [5 10 15], E2 = [25]

2.3.15









[

1 0
0 1

] [

1
2

]

+

[

0
0

]

[ 3 ]
∣

∣

∣

[

1 0
0 1

][

0
0

]

+

[

0
0

]

[ 4 ]

[ 1 3 ]

[

1
2

]

+[ 4 ][ 3 ]
∣

∣

∣[ 1 3 ]

[

0
0

]

+[ 4 ][ 4 ]









=







[

1
2

]∣

∣

∣

[

0
0

]

[ 19 ]
∣

∣

∣[ 16 ]






=





1 0
2 0

19 16





2.3.16









[

1 0
0 1

] [

1 2
3 4

]

+

[

1 0
0 1

][

0 0
0 0

]∣

∣

∣

[

1 0
0 1

][

2 3
4 5

]

+

[

1 0
0 1

][

1 2
3 4

]

[

0 0
0 0

] [

1 2
3 4

]

+

[

1 0
0 1

][

0 0
0 0

]∣

∣

∣

[

0 0
0 0

][

2 3
4 5

]

+

[

1 0
0 1

][

1 2
3 4

]









=









[

1 2
3 4

]

[

0 0
0 0

]

[

3 5
7 9

]

[

1 2
3 4

]









=







1 2 3 5
3 4 7 9
0 0 1 2
0 0 3 4







2.3.17 We must find all S such that SA = AS, or

[

a b
c d

] [

1 0
0 2

]

=

[

1 0
0 2

] [

a b
c d

]

.

So

[

a 2b
c 2d

]

=

[

a b
2c 2d

]

, meaning that b = 2b and c = 2c, so b and c must be zero.

We see that all diagonal matrices (those of the form

[

a 0
0 d

]

) commute with

[

1 0
0 2

]

.

2.3.18 As in Exercise 2.3.17, we let A =

[

a b
c d

]

. Now we want

[

a b
c d

] [

1 2
0 1

]

=

[

1 2
0 1

] [

a b
c d

]

.

So,

[

a 2a + b
c 2c + d

]

=

[

a + 2c b + 2d
c d

]

, revealing that c = 0 (since a + 2c = a) and a = d (since b + 2d = 2a + b).

Thus B is any matrix of the form

[

a b
0 a

]

.

2.3.19 Again, let A =

[

a b
c d

]

. We want

[

a b
c d

] [

0 −2
2 0

]

=

[

0 −2
2 0

] [

a b
c d

]

.

Thus,

[

2b −2a
2d −2c

]

=

[

−2c −2d
2a 2b

]

, meaning that c = −b and d = a.

We see that all matrices of the form

[

a b
−b a

]

commute with

[

0 −2
2 0

]

.
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2.3.20 Following the form of Exercise 17, we let A =

[

a b
c d

]

.

Now we want

[

a b
c d

] [

2 3
−3 2

]

=

[

2 3
−3 2

] [

a b
c d

]

.

So,

[

2a − 3b 3a + 2b
2c − 3d 3c + 2d

]

=

[

2a + 3c 2b + 3d
−3a + 2c −3b + 2d

]

, revealing that a = d (since 3a + 2b = 2b + 3d) and −b =

c (since 2a + 3c = 2a − 3b).

Thus B is any matrix of the form

[

a b
−b a

]

.

2.3.21 Now we want

[

a b
c d

] [

1 2
2 −1

]

=

[

1 2
2 −1

] [

a b
c d

]

.

Thus,

[

a + 2b 2a − b
c + 2d 2c − d

]

=

[

a + 2c b + 2d
2a − c 2b − d

]

. So a + 2b = a + 2c, or c = b, and 2a − b = b + 2d, revealing

d = a − b. (The other two equations are redundant.)

All matrices of the form

[

a b
b a − b

]

commute with

[

1 2
2 −1

]

.

2.3.22 As in Exercise 17, we let A =

[

a b
c d

]

. Now we want

[

a b
c d

] [

1 1
1 1

]

=

[

1 1
1 1

] [

a b
c d

]

.

So,

[

a + b a + b
c + d c + d

]

=

[

a + c b + d
a + c b + d

]

, revealing that a = d (since a + b = b + d) and b = c (since a + c = a + b).

Thus B is any matrix of the form

[

a b
b a

]

.

2.3.23 We want

[

a b
c d

] [

1 3
2 6

]

=

[

1 3
2 6

] [

a b
c d

]

.

Then,

[

a + 2b 3a + 6b
c + 2d 3c + 6d

]

=

[

a + 3c b + 3d
2a + 6c 2b + 6d

]

. So a + 2b = a + 3c, or c = 2
3b, and 3a + 6b = b + 3d, revealing

d = a + 5
3b. The other two equations are redundant.

Thus all matrices of the form

[

a b
2
3b a + 5

3b

]

commute with

[

1 3
2 6

]

.

2.3.24 Following the form of Exercise 2.3.17, we let A =





a b c
d e f
g h i



 .

Now we want





a b c
d e f
g h i









2 0 0
0 3 0
0 0 4



 =





2 0 0
0 3 0
0 0 4









a b c
d e f
g h i



.
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So,





2a 3b 4c
2d 3e 4f
2g 3h 4i



 =





2a 2b 2c
3d 3e 3f
4g 4h 4i



 , which forces b, c, d, f, g and h to be zero. a, e and i, however, can be

chosen freely.

Thus B is any matrix of the form





a 0 0
0 e 0
0 0 i



 .

2.3.25 Now we want





a b c
d e f
g h i









2 0 0
0 3 0
0 0 2



 =





2 0 0
0 3 0
0 0 2









a b c
d e f
g h i



,

or,





2a 3b 2c
2d 3e 2f
2g 3h 2i



 =





2a 2b 2c
3d 3e 3f
2g 2h 2i



. So, 3b = 2b, 2d = 3d, 3f = 2f and 3h = 2h, meaning that b, d, f and h

must all be zero.

Thus all matrices of the form





a 0 c
0 e 0
g 0 i



 commute with





2 0 0
0 3 0
0 0 2



.

2.3.26 Following the form of Exercise 2.3.17, we let A =





a b c
d e f
g h i



 .

Then we want





a b c
d e f
g h i









2 0 0
0 2 0
0 0 3



 =





2 0 0
0 2 0
0 0 3









a b c
d e f
g h i



.

So,





2a 2b 3c
2d 2e 3f
2g 2h 3i



 =





2a 2b 2c
2d 2e 2f
3g 3h 3i



 . Thus c, f, g and h must be zero, leaving B to be any matrix of the form





a b 0
d e 0
0 0 i



 .

2.3.27 We will prove that A(C + D) = AC + AD, repeatedly using Theorem 1.3.10a: A(~x + ~y) = A~x + A~y.

Write B = [~v1 . . . ~vm] and C = [~w1 . . . ~wm]. Then

A(C + D) = A[~v1 + ~w1 · · ·~vm + ~wm] = [A~v1 + A~w1 · · · A~vm + A~wm], and

AC + AD = A[~v1 · · · ~vm] + A[~w1 · · · ~wm] = [A~v1 + A~w1 · · ·A~vm + A~wm].

The results agree.

2.3.28 The ijth entries of the three matrices are

p
∑

h=1

(kaih)bhj ,

p
∑

h=1

aih(kbhj), and k

(

p
∑

h=1

aihbhj

)

.
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The three results agree.

2.3.29 a DαDβ and DβDα are the same transformation, namely, a rotation through α + β.

b DαDβ =

[

cos α − sin α
sin α cos α

][

cos β − sin β
sin β cos β

]

=

[

cos α cos β − sinα sin β − cos α sin β − sin α cos β
sin α cos β + cos α sin β − sin α sin β + cos α cos β

]

=

[

cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

]

DβDα yields the same answer.

2.3.30 a See Figure 2.44.

Figure 2.44: for Problem 2.4.30.

The vectors ~x and T (~x) have the same length (since reflections leave the length unchanged), and they enclose an
angle of 2(α + β) = 2 · 30◦ = 60◦

b Based on the answer in part (a), we conclude that T is a rotation through 60◦.

c The matrix of T is

[

cos(60◦) − sin(60◦)
sin(60◦) cos(60◦)

]

=





1
2 −

√
3

2√
3

2
1
2



.

2.3.31 Write A in terms of its rows: A =







~w1

~w2

· · ·
~wn






(suppose A is n × m).
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We can think of this as a partition into n

1 × m matrices. Now AB =







~w1

~w2

· · ·
~wn






B =







~w1B
~w2B
· · ·
~wnB






(a product of partitioned matrices).

We see that the ith row of AB is the product of the ith row of A and the matrix B.

2.3.32 Let X =

[

a b
c d

]

. Then we want X

[

1 0
0 0

]

=

[

1 0
0 0

]

X, or

[

a b
c d

] [

1 0
0 0

]

=

[

1 0
0 0

] [

a b
c d

]

, or
[

a 0
c 0

]

=

[

a b
0 0

]

, meaning that b = c = 0. Also, we want X

[

0 1
0 0

]

=

[

0 1
0 0

]

X, or

[

a 0
0 d

] [

0 1
0 0

]

=
[

0 1
0 0

] [

a 0
0 d

]

, or

[

0 a
0 0

]

=

[

0 d
0 0

]

so a = d. Thus, X =

[

a 0
0 a

]

= aI2 must be a multiple of the identity

matrix. (X will then commute with any 2 × 2 matrix M , since XM = aM = MX.)

2.3.33 A2 = I2, A3 = A,A4 = I2. The power An alternates between A = −I2 and I2. The matrix A describes
a reflection about the origin. Alternatively one can say A represents a rotation by 180◦ = π. Since A2 is the

identity, A1000 is the identity and A1001 = A =

[

−1 0
0 −1

]

.

2.3.34 A2 = I2, A3 = A,A4 = I2. The power An alternates between A and I2. The matrix A describes a reflection

about the x axis. Because A2 is the identity, A1000 is the identity and A1001 = A =

[

1 0
0 −1

]

.

2.3.35 A2 = I2, A3 = A,A4 = I2. The power An alternates between A and I2. The matrix A describes a reflection

about the diagonal x = y. Because A2 is the identity, A1000 is the identity and A1001 = A =

[

0 1
1 0

]

.

2.3.36 A2 =

[

1 2
0 1

]

, A3 =

[

1 3
0 1

]

and A4 =

[

1 4
0 1

]

. The power An represents a horizontal shear along the

x-axis. The shear strength increases linearly in n. We have A1001 =

[

1 1001
0 1

]

.

2.3.37 A2 =

[

1 0
−2 1

]

, A3 =

[

1 0
−3 1

]

and A4 =

[

1 0
−4 1

]

. The power An represents a vertical shear along

the y axis. The shear magnitude increases linearly in n. We have A1001 =

[

1 0
−1001 1

]

.

2.3.38 A2 =

[

−1 0
0 −1

]

, A3 = −A, A4 = I2. The matrix A represents the rotation through π/2 in the

counterclockwise direction. Since A4 is the identity matrix, we know that A1000 is the identity matrix and

A1001 = A =

[

0 −1
1 0

]

.

2.3.39 A2 =

[

0 1
−1 0

]

, A3 = 1√
2

[

−1 1
−1 1

]

, A4 = −I2. The matrix A describes a rotation by π/4 in the

clockwise direction. Because A8 is the identity matrix, we know that A1000 is the identity matrix and A1001 =
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A = (1/
√

2)

[

1 1
−1 1

]

.

2.3.40 A2 = 1
2

[

−1
√

3

−
√

3 −1

]

, A3 = I2, A4 = A. The matrix A describes a rotation by 120◦ = 2π/3 in the

counterclockwise direction. Because A3 is the identity matrix, we know that A999 is the identity matrix and

A1001 = A2 = A−1 = 1
2

[

−1
√

3

−
√

3 −1

]

.

2.3.41 A2 = I2, A3 = A, A4 = I2. The power An alternates between I2 for even n and A for odd n. Therefore
A1001 = A. The matrix represents a reflection about a line.

2.3.42 An = A. The matrix A represents a projection on the line x = y spanned by the vector

[

1
1

]

. We have

A1001 = A = (1/2)

[

1 1
1 1

]

.

2.3.43 An example is A =

[

1 0
0 −1

]

, representing the reflection about the horizontal axis.

2.3.44 A rotation by π/2 given by the matrix A =

[

0 −1
1 0

]

.

2.3.45 For example, A = (1/2)

[

−1 −
√

3√
3 −1

]

, the rotation through 2π/3. See Problem 2.3.40.

2.3.46 For example, A = 1
2

[

1 1
1 1

]

, the orthogonal projection onto the line spanned by

[

1
1

]

.

2.3.47 For example, A = 1
2

[

1 1
1 1

]

, the orthogonal projection onto the line spanned by

[

1
1

]

.

2.3.48 For example, the shear A =

[

1 1/10
0 1

]

.

2.3.49 AF =

[

1 0
0 −1

]

represents the reflection about the x-axis, while FA =

[

−1 0
0 1

]

represents the reflection

about the y-axis. (See Figure 2.45.)

2.3.50 CG =

[

0 1
1 0

]

represents a reflection about the line x = y, while GC =

[

0 −1
−1 0

]

represents a reflection

about the line x = −y. (See Figure 2.46.)

2.3.51 FJ = JF =

[

−1 −1
1 −1

]

both represent a rotation through 3π/4 combined with a scaling by
√

2. (See

Figure 2.47.)
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AF

F A

FA

A F

Figure 2.45: for Problem 2.3.49.

2.3.52 JH = HJ =

[

0.2 −1.4
1.4 0.2

]

. Since H represents a rotation and J represents a rotation through π/4 combined

with a scaling by
√

2, the products in either order will be the same, representing a rotation combined with a
scaling by

√
2. (See Figure 2.48.)

2.3.53 CD =

[

0 −1
1 0

]

represents the rotation through π/2, while DC =

[

0 1
−1 0

]

represents the rotation

through −π/2. (See Figure 2.49.)

2.3.54 BE =

[

−0.6 −0.8
0.8 −0.6

]

represents the rotation through the angle θ = arccos(−0.6) ≈ 2.21, while EB =
[

−0.6 0.8
−0.8 −0.6

]

represents the rotation through −θ. (See Figure 2.50.)

2.3.55 We need to solve the matrix equation

[

1 2
2 4

] [

a b
c d

]

=

[

0 0
0 0

]

,
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CG

G C

GC

C G

Figure 2.46: for Problem 2.3.50.

which amounts to solving the system a + 2c = 0, 2a + 4c = 0, b + 2d = 0 and 2b + 4d = 0. The solutions are of

the form a = −2c and b = −2d. Thus X =

[

−2c −2d
c d

]

, where c, d are arbitrary constants.

2.3.56 Proceeding as in Exercise 55, we find X =

[

−2b b
−2d d

]

, where b and d are arbitrary.

2.3.57 We need to solve the matrix equation

[

1 2
3 5

] [

a b
c d

]

=

[

1 0
0 1

]

,

which amounts to solving the system a + 2c = 1, 3a + 5c = 0, b + 2d = 0 and 3b + 5d = 1. The solution is

X =

[

−5 2
3 −1

]

.

2.3.58 Proceeding as in Exercise 57, we find X =

[

−5 2
3 −1

]

.
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FJ

J F

JF

F J

and

and

Figure 2.47: for Problem 2.3.51.

2.3.59 The matrix equation
[

a b
c d

] [

2 1
4 2

]

=

[

1 0
0 1

]

has no solutions, since we have the inconsistent equations 2a + 4b = 1 and a + 2b = 0.

2.3.60 Proceeding as in Exercise 59, we find that this equation has no solutions.

2.3.61 We need to solve the matrix equation

[

1 2 3
0 1 2

]





a b
c d
e f



 =

[

1 0
0 1

]

,

which amounts to solving the system a + 2c + 3e = 0, c + 2e = 0, b + 2d + 3f = 0 and d + 2f = 1. The solutions

are of the form X =





e + 1 f − 2
−2e 1 − 2f
e f



, where e, f are arbitrary constants.
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HJ

J H

JH

H J

and

and

37
◦

37
◦

Figure 2.48: for Problem 2.3.52.

2.3.62 Proceeding as in Exercise 61, we find X =





e − 5/3 f + 2/3
−2e + 4/3 −2f − 1/3

e f



, where e, f are arbitrary constants.

2.3.63 The matrix equation




1 4
2 5
3 6





[

a b c
d e f

]

=





1 0 0
0 1 0
0 0 1





has no solutions, since we have the inconsistent equations a + 4d = 1, 2a + 5d = 0, and 3a + 6d = 0.

2.3.64 The matrix equation




1 0
2 1
3 2





[

a b c
d e f

]

=





1 0 0
0 1 0
0 0 1





has no solutions, since we have the inconsistent equations a = 1, 2a + d = 0 and 3a + 2d = 0.
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CD

D C

DC

C D

Figure 2.49: for Problem 2.3.53.

2.3.65 With X =

[

a b
0 c

]

, we have to solve X2 =

[

a2 ab + bc
0 c2

]

=

[

0 0
0 0

]

. This means a = 0, c = 0 and b

can be arbitrary. The general solution is X =

[

0 b
0 0

]

.

2.3.66 If X =





a 0 0
b c 0
d e f



 then the diagonal entries of X3 will be a3, c3, and f3. Since we want X3 = 0, we must

have a = c = f = 0. If X =





0 0 0
b 0 0
d e 0



, then a direct computation shows that X3 = 0. Thus the solutions

are of the form X =





0 0 0
b 0 0
d e 0



, where b, d, e are arbitrary.

2.3.67 For a horizontal shear, A =

[

1 k
0 1

]

, we have (A − I2)
2 =

[

0 k
0 0

]2

=

[

0 0
0 0

]

. Note that A~x − ~x =
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EB

B E

BE

E B

Figure 2.50: for Problem 2.3.54.

A2~x−A~x for all vectors ~x, as illustrated in the accompanying figure. This equation means that A2~x−2A~x+~x =
(A − I2)

2~x = ~0. Analogous results hold for vertical shears.

x A2x

2.3.68 Let ~v1, . . . , ~vn be the columns of the matrix X. Solving the matrix equation AX = In amounts to solving the
linear systems A~vi = ~ei for i = 1, . . . , n. Since A is a n×m matrix of rank n, all these systems are consistent, so
that the matrix equation AX = In does have at least one solution. If n < m, then each of the systems A~vi = ~ei

has infinitely many solutions, so that the matrix equation AX = In has infinitely many solutions as well. See
the examples in Exercices 2.3.57,2.3.61 and 2.3.62.

2.3.69 Let ~v1, . . . , ~vn be the columns of the matrix X. Solving the matrix equation AX = In amounts to solving the
linear systems A~vi = ~ei for i = 1, . . . , n. Since A is an n × n matrix of rank n, all these systems have a unique
solution, by Theorem 1.3.4, so that the matrix equation AX = In has a unique solution as well.
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2.4.1 rref

[

2 3
... 1 0

5 8
... 0 1

]

=





1 0
... 8 −3

0 1
... −5 2



, so that

[

2 3
5 8

]−1

=

[

8 −3
−5 2

]

.

2.4.2 rref

[

1 1
... 1 0

1 1
... 0 1

]

=





1 1
... 0 1

0 0
... 1 −1



, so that

[

1 1
1 1

]

fails to be invertible.

2.4.3 rref

[

0 2
... 1 0

1 1
... 0 1

]

=





1 0
... − 1

2 1

0 1
... 1

2 0



, so that

[

0 2
1 1

]−1

=

[− 1
2 1
1
2 0

]

.

2.4.4 Use Theorem 2.4.5; the inverse is







3
2 −1 1

2
1
2 0 − 1

2

− 3
2 1 1

2






.

2.4.5 rref





1 2 2
1 3 1
1 1 3



 =





1 0 4
0 1 −1
0 0 0



, so that the matrix fails to be invertible, by Theorem 2.4.3.

2.4.6 Use Theorem 2.4.5; the inverse is





1 −2 1
0 1 −2
0 0 1



.

2.4.7 rref





1 2 3
0 0 2
0 0 3



 =





1 2 0
0 0 1
0 0 0



, so that the matrix fails to be invertible, by Theorem 2.4.3.

2.4.8 Use Theorem 2.4.5; the inverse is





0 0 1
0 1 0
1 0 0



.

2.4.9 rref





1 1 1
1 1 1
1 1 1



 =





1 1 1
0 0 0
0 0 0



, so that the matrix fails to be invertible, by Theorem 2.4.3.

2.4.10 Use Theorem 2.4.5; the inverse is





3 −3 1
−3 5 −2

1 −2 1



.

2.4.11 Use Theorem 2.4.5; the inverse is





1 0 −1
0 1 0
0 0 1



.
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2.4.12 Use Theorem 2.4.5; the inverse is







5 −20 −2 −7
0 −1 0 0

−2 6 1 2
0 3 0 1







2.4.13 Use Theorem 2.4.5; the inverse is







1 0 0 0
−2 1 0 0

1 −2 1 0
0 1 −2 1






.

2.4.14 Use Theorem 2.4.5; the inverse is







3 −5 0 0
−1 2 0 0

0 0 5 −2
0 0 −2 1






.

2.4.15 Use Theorem 2.4.5; the inverse is







−6 9 −5 1
9 −1 −5 2

−5 −5 9 −3
1 2 −3 1







2.4.16 Solving for x1 and x2 in terms of y1 and y2 we find that

x1 = −8y1 + 5y2

x2 = 5y1 − 3y2

2.4.17 We make an attempt to solve for x1 and x2 in terms of y1 and y2:
[

x1 + 2x2 = y1

4x1 + 8x2 = y2

]

−−−→−4(I)

[

x1 + 2x2 = y1

0 = −4y1 + y2

]

.

This system has no solutions (x1, x2) for some (y1, y2), and infinitely many solutions for others; the transformation
fails to be invertible.

2.4.18 Solving for x1, x2, and x3 in terms of y1, y2, and y3 we find that

x1 = y3

x2 = y1

x3 = y2

2.4.19 Solving for x1, x2, and x3 in terms of y1, y2, and y3, we find that

x1 = 3y1 − 5
2y2 + 1

2y3

x2 = −3y1 + 4y2 − y3

x3 = y1 − 3
2y2 + 1

2y3

2.4.20 Solving for x1, x2, and x3 in terms of y1, y2, and y3 we find that

x1 = −8y1 − 15y2 + 12y3

x2 = 4y1 + 6y2 − 5y3

x3 = −y1 − y2 + y3

2.4.21 f(x) = x2 fails to be invertible, since the equation f(x) = x2 = 1 has two solutions, x = ±1.
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2.4.22 f(x) = 2x fails to be invertible, since the equation f(x) = 2x = 0 has no solution x.

2.4.23 Note that f ′(x) = 3x2 + 1 is always positive; this implies that the function f(x) = x3 + x is increasing
throughout. Therefore, the equation f(x) = b has at most one solution x for all b. (See Figure 2.51.)

Now observe that limx→∞ f(x) = ∞ and limx→−∞ f(x) = −∞; this implies that the equation f(x) = b has at
least one solution x for a given b (for a careful proof, use the intermediate value theorem; compare with Exercise
2.2.47c).

Figure 2.51: for Problem 2.3.23.

2.4.24 We can write f(x) = x3 − x = x(x2 − 1) = x(x − 1)(x + 1).

The equation f(x) = 0 has three solutions, x = 0, 1,−1, so that f(x) fails to be invertible.

2.4.25 Invertible, with inverse

[

x1

x2

]

=

[

3
√

y1

y2

]

2.4.26 Invertible, with inverse

[

x1

x2

]

=

[

3
√

y2 − y1

y1

]

2.4.27 This transformation fails to be invertible, since the equation

[

x1 + x2

x1x2

]

=

[

0
1

]

has no solution.

2.4.28 We are asked to find the inverse of the matrix A =







22 13 8 3
−16 −3 −2 −2

8 9 7 2
5 4 3 1






.

We find that A−1 =







1 −2 9 − 25
−2 5 −22 60

4 −9 41 −112
−9 17 80 222






.

T−1 is the transformation from R
4 to R

4 with matrix A−1.

2.4.29 Use Theorem 2.4.3:




1 1 1
1 2 k
1 4 k2



 −I
−I

→





1 1 1
0 1 k − 1
0 3 k2 − 1





−II

−3(II)
→





1 0 2 − k
0 1 k − 1
0 0 k2 − 3k + 2




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The matrix is invertible if (and only if) k2 − 3k + 2 = (k − 2)(k − 1) 6= 0, in which case we can further reduce it
to I3. Therefore, the matrix is invertible if k 6= 1 and k 6= 2.

2.4.30 Use Theorem 2.4.3:




0 1 b
−1 0 c
−b −c 0





−−−−→
I ↔ II





−1 0 c
0 1 b

−b −c 0





−−−−→÷(−1)




1 0 −c
0 1 b

−b −c 0





+b(I) + c(II)
−→





1 0 −c
0 1 b
0 0 0





This matrix fails to be invertible, regarless of the values of b and c.

2.4.31 Use Theorem 2.4.3; first assume that a 6= 0.





0 a b
−a 0 c
−b −c 0





swap :
I ↔ II

→





−a 0 c
0 a b

−b −c 0





÷(−a)
→







1 0 − c
a

0 a b
−b −c 0







+b(I)
→







1 0 − c
a

0 a b

0 −c − bc
a






÷a →







1 0 − c
a

0 1 b
a

0 −c − bc
a







+c(II)

→







1 0 − c
a

0 1 b
a

0 0 0







Now consider the case when a = 0:




0 0 b
0 0 c

−b −c 0





swap :
I ↔ III

→





−b −c 0
0 0 c
0 0 b



: The second entry on the diagonal of rref will be 0.

It follows that the matrix





0 a b
−a 0 c
−b −c 0



 fails to be invertible, regardless of the values of a, b, and c.

2.4.32 Use Theorem 2.4.9.

If A =

[

a b
c d

]

is a matrix such that ad − bc = 1 and A−1 = A, then

A−1 = 1
ad−bc

[

d −b
−c a

]

=

[

d −b
−c a

]

=

[

a b
c d

]

, so that b = 0, c = 0, and a = d.

The condition ad − bc = a2 = 1 now implies that a = d = 1 or a = d = −1.

This leaves only two matrices A, namely, I2 and −I2. Check that these two matrices do indeed satisfy the given
requirements.

2.4.33 Use Theorem 2.4.9.

The requirement A−1 = A means that − 1
a2+b2

[

−a −b
−b a

]

=

[

a b
b −a

]

. This is the case if (and only if)

a2 + b2 = 1.
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2.4.34 a By Theorem 2.4.3, A is invertible if (and only if) a, b, and c are all nonzero. In this case, A−1 =






1
a

0 0

0 1
b

0

0 0 1
c






.

b In general, a diagonal matrix is invertible if (and only if) all of its diagonal entries are nonzero.

2.4.35 a A is invertible if (and only if) all its diagonal entries, a, d, and f , are nonzero.

b As in part (a): if all the diagonal entries are nonzero.

c Yes, A−1 will be upper triangular as well; as you construct rref[A
...In], you will perform only the following row

operations:

• divide rows by scalars

• subtract a multiple of the jth row from the ith row, where j > i.

Applying these operations to In, you end up with an upper triangular matrix.

d As in part (b): if all diagonal entries are nonzero.

2.4.36 If a matrix A can be transformed into B by elementary row operations, then A is invertible if (and only if)
B is invertible. The claim now follows from Exercise 35, where we show that a triangular matrix is invertible if
(and only if) its diagonal entries are nonzero.

2.4.37 Make an attempt to solve the linear equation ~y = (cA)~x = c(A~x) for ~x:

A~x = 1
c
~y, so that ~x = A−1

(

1
c
~y
)

=
(

1
c
A−1

)

~y.

This shows that cA is indeed invertible, with (cA)−1 = 1
c
A−1.

2.4.38 Use Theorem 2.4.9; A−1 = 1
−1

[

−1 −k
0 1

]

=

[

1 k
0 −1

]

(= A).

2.4.39 Suppose the ijth entry of M is k, and all other entries are as in the identity matrix. Then we can find

rref[M
...In] by subtracting k times the jth row from the ith row. Therefore, M is indeed invertible, and M−1

differs from the identity matrix only at the ijth entry; that entry is −k. (See Figure 2.52.)

2.4.40 If you apply an elementary row operation to a matrix with two equal columns, then the resulting matrix
will also have two equal columns. Therefore, rref(A) has two equal columns, so that rref(A) 6= In. Now use
Theorem 2.4.3.

2.4.41 a Invertible: the transformation is its own inverse.

b Not invertible: the equation T (~x) = ~b has infinitely many solutions if ~b is on the plane, and none otherwise.
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Figure 2.52: for Problem 2.3.39.

c Invertible: The inverse is a scaling by 1
5 (that is, a contraction by 5). If ~y = 5~x, then ~x = 1

5~y.

d Invertible: The inverse is a rotation about the same axis through the same angle in the opposite direction.

2.4.42 Permutation matrices are invertible since they row reduce to In in an obvious way, just by row swaps. The

inverse of a permutation matrix A is also a permutation matrix since rref[A
...In] = [In

...A−1] is obtained from

[A
...In] by a sequence of row swaps.

2.4.43 We make an attempt to solve the equation ~y = A(B~x) for ~x:

B~x = A−1~y, so that ~x = B−1(A−1~y).

2.4.44 a rref(M4) =







1 0 −1 −2
0 1 2 3
0 0 0 0
0 0 0 0






, so that rank(M4) = 2.

b To simplify the notation, we introduce the row vectors ~v = [1 1 . . . 1] and ~w = [0 n 2n . . . (n − 1)n] with n
components.

Then we can write Mn in terms of its rows as Mn =







~v + ~w
2~v + ~w

. . .
n~v + ~w







−2(I)
· · ·

−n(I)

.

Applying the Gauss-Jordan algorithm to the first column we get











~v + ~w
−~w
−2~w
. . .

−(n − 1)~w











.

All the rows below the second are scalar multiples of the second; therefore, rank(Mn) = 2.

c By part (b), the matrix Mn is invertible only if n = 1 or n = 2.

2.4.45 a Each of the three row divisions requires three multiplicative operations, and each of the six row subtractions
requires three multiplicative operations as well; altogether, we have 3 · 3 + 6 · 3 = 9 · 3 = 33 = 27 operations.
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b Suppose we have already taken care of the first m columns: [A
...In] has been reduced the matrix in Figure 2.53.

Figure 2.53: for Problem 2.3.45b.

Here, the stars represent arbitrary entries.

Suppose the (m+1)th entry on the diagonal is k. Dividing the (m+1)th row by k requires n operations: n−m−1
to the left of the dotted line

(

not counting the computation k
k

= 1
)

, and m + 1 to the right of the dotted line
(

including 1
k

)

. Now the matrix has the form shown in Figure 2.54.

Figure 2.54: for Problem 2.4.45b.

Eliminating each of the other n−1 components of the (m+1)th column now requires n multiplicative operations
(n − m − 1 to the left of the dotted line, and m + 1 to the right). Altogether, it requires n + (n − 1)n = n2

operations to process the mth column. To process all n columns requires n · n2 = n3 operations.

c The inversion of a 12 × 12 matrix requires 123 = 4333 = 64 · 33 operations, that is, 64 times as much as the
inversion of a 3 × 3 matrix. If the inversion of a 3 × 3 matrix takes one second, then the inversion of a 12 × 12
matrix takes 64 seconds.

2.4.46 Computing A−1~b requires n3 + n2 operations: First, we need n3 operations to find A−1 (see Exercise 45b)

and then n2 operations to compute A−1~b (n multiplications for each component).

How many operations are required to perform Gauss-Jordan eliminations on [A
...~b]? Let us count these operations

“column by column.” If m columns of the coefficient matrix are left, then processing the next column requires
nm operations (compare with Exercise 45b). To process all the columns requires

n · n + n(n − 1) + · · · + n · 2 + n · 1 = n(n + n − 1 + · · · + 2 + 1) = nn(n+1)
2 = n3+n2

2 operations.
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only half of what was required to compute A−1~b.

We mention in passing that one can reduce the number of operations further (by about 50% for large matrices)
by performing the steps of the row reduction in a different order.

2.4.47 Let f(x) = x2; the equation f(x) = 0 has the unique solution x = 0.

2.4.48 Consider the linear system A~x = ~0. The equation A~x = ~0 implies that BA~x = ~0, so ~x = ~0 since BA = Im.
Thus the system A~x = ~0 has the unique solution ~x = ~0. This implies m ≤ n, by Theorem 1.3,3. Likewise the
linear system B~y = ~0 has the unique solution ~y = ~0, implying that n ≤ m. It follows that n = m, as claimed.

2.4.49 a A =





0.293 0 0
0.014 0.207 0.017
0.044 0.01 0.216



 , I3 − A =





0.707 0 0
−0.014 0.793 −0.017
−0.044 −0.01 0.784





(I3 − A)−1 =





1.41 0 0
0.0267 1.26 0.0274
0.0797 0.0161 1.28





b We have ~b =





1
0
0



, so that ~x = (I3 − A)−1~e1 = first column of (I3 − A)−1 ≈





1.41
0.0267
0.0797



.

c As illustrated in part (b), the ith column of (I3 − A)−1 gives the output vector required to satisfy a consumer
demand of 1 unit on industry i, in the absence of any other consumer demands. In particular, the ith diagonal
entry of (I3 −A)−1 gives the output of industry i required to satisfy this demand. Since industry i has to satisfy
the consumer demand of 1 as well as the interindustry demand, its total output will be at least 1.

d Suppose the consumer demand increases from ~b to ~b + ~e2 (that is, the demand on manufacturing increases by

one unit). Then the output must change from (I3 − A)−1~b to

(I3 − A)−1(~v + ~e2) = (I3 − A)−1~b + (I3 − A)−1~e2 = (I3 − A)−1~b+ (second column of (I3 − A)−1).

The components of the second column of (I3−A)−1 tells us by how much each industry has to increase its output.

e The ijth entry of (In − A)−1 gives the required increase of the output xi of industry i to satisfy an increase of
the consumer demand bj on industry j by one unit. In the language of multivariable calculus, this quantity is
∂xi

∂bj
.

2.4.50 Recall that 1 + k + k2 + · · · = 1
1−k

.

The top left entry of I3 − A is I − k, and the top left entry of (I3 − A)−1 will therefore be 1
1−k

, as claimed:









1 − k 0 0
... 1 0 0

∗ ∗ ∗
... 0 1 0

∗ ∗ ∗
... 0 0 1









÷(1 − k)
−→









1 0 0
... 1

1−k
0 0

∗ ∗ ∗
... 0 1 0

∗ ∗ ∗
... 0 0 1









→ . . . (first row will remain unchanged).
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In terms of economics, we can explain this fact as follows: The top left entry of (I3 − A)−1 is the output of
industry 1 (Agriculture) required to satisfy a consumer demand of 1 unit on industry 1. Producting this one unit
to satisfy the consumer demand will generate an extra demand of k = 0.293 units on industry 1. Producting
these k units in turn will generate an extra demand of k ·k = k2 units, and so forth. We are faced with an infinite
series of (ever smaller) demands, 1 + k + k2 + · · · .

2.4.51 a Since rank(A)< n, the matrix E =rref(A) will not have a leading one in the last row, and all entries in the
last row of E will be zero.

Let ~c =













0
0
...
0
1













. Then the last equation of the system E~x = ~c reads 0 = 1, so this system is inconsistent.

Now, we can “rebuild” ~b from ~c by performing the reverse row-operations in the opposite order on

[

E
...~c

]

until

we reach

[

A
...~b

]

. Since E~x = ~c is inconsistent, A~x = ~b is inconsistent as well.

b Since rank(A)≤ min(n,m), and m < n, rank(A) < n also. Thus, by part a, there is a ~b such that A~x = ~b is
inconsistent.

2.4.52 Let ~b =







0
0
1
0






. Then

[

A
...~b

]

=













0 1 2
... 0

0 2 4
... 0

0 3 6
... 1

1 4 8
... 0













. We find that rref

[

A
...~b

]

=













1 0 0
... 0

0 1 2
... 0

0 0 0
... 1

0 0 0
... 0













, which has

an inconsistency in the third row.

2.4.53 a A − λI2 =

[

3 − λ 1
3 5 − λ

]

.

This fails to be invertible when (3 − λ)(5 − λ) − 3 = 0,

or 15 − 8λ + λ2 − 3 = 0,

or 12 − 8λ + λ2 = 0

or (6 − λ)(2 − λ) = 0. So λ = 6 or λ = 2.

b For λ = 6, A − λI2 =

[

−3 1
3 −1

]

.

The system (A− 6I2)~x = ~0 has the solutions

[

t
3t

]

, where t is an arbitrary constant. Pick ~x =

[

1
3

]

, for example.

For λ = 2, A − λI2 =

[

1 1
3 3

]

.
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The system (A − 2I2)~x = ~0 has the solutions

[

t
−t

]

, where t is an arbitrary constant. Pick ~x =

[

1
−1

]

, for

example.

c For λ = 6, A~x =

[

3 1
3 5

] [

1
3

]

=

[

6
18

]

= 6

[

1
3

]

.

For λ = 2, A~x =

[

3 1
3 5

] [

1
−1

]

=

[

2
−2

]

= 2

[

1
−1

]

.

2.4.54 A − λI2 =

[

1 − λ 10
−3 12 − λ

]

. This fails to be invertible when det(A − λI2) = 0,

so 0 = (1 − λ)(12 − λ) + 30 = 12 − 13λ + λ2 + 30 = λ2 − 13λ + 42 = (λ − 6)(λ − 7). In order for this to be zero,
λ must be 6 or 7.

If λ = 6, then A− 6I2 =

[

−5 10
−3 6

]

. We solve the system (A − 6I2) ~x = ~0 and find that the solutions are of the

form ~x =

[

2t
t

]

. For example, when t = 1, we find ~x =

[

2
1

]

.

If λ = 7, then A − 7I2 =

[

−6 10
−3 5

]

. Here we solve the system (A − 7I2) ~x = ~0, this time finding that our

solutions are of the form ~x =

[

5t
3t

]

. For example, for t = 1, we find ~x =

[

5
3

]

.

2.4.55 The determinant of A is equal to 4 and A−1 =

[

1/2 0
0 1/2

]

. The linear transformation defined by A is a

scaling by a factor 2 and A−1 defines a scaling by 1/2. The determinant of A is the area of the square spanned

by ~v =

[

2
0

]

and ~w =

[

0
2

]

. The angle θ from ~v to ~w is π/2. (See Figure 2.55.)

w =
0

2

v =
2

0

θ=
π

2

Figure 2.55: for Problem 2.4.55.

2.4.56 The determinant of A is 9. The matrix is invertible with inverse A−1 =

[

−3−1 0
0 −3−1

]

. The linear

transformation defined by A is a reflection about the origin combined with a scaling by a factor 3. The inverse
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defines a reflection about the origin combined with a scaling by a factor 1/3. The determinant is the area of the

square spanned by ~v =

[

−3
0

]

and ~w =

[

0
−3

]

. The angle θ from ~v to ~w is π/2. (See Figure 2.56.)

v =
−3

0

w =
0

−3

θ=
π

2

Figure 2.56: for Problem 2.4.56.

2.4.57 The determinant of A is −1. Matrix A is invertible, with A−1 = A. Matrices A and A−1 define reflection

about the line spanned by the ~v =

[

cos(α/2)
sin(α/2)

]

. The absolute value of the determinant of A is the area of the

unit square spanned by ~v =

[

cos(α)
sin(α)

]

and ~w =

[

sin(α)
− cos(α)

]

. The angle θ from ~v to ~w is −π/2. (See Figure

2.57.)

w =
sinα

− cosα

v =
cosα

sinα

θ=−

π

2

Figure 2.57: for Problem 2.4.57.

2.4.58 The determinant of A is 1. The matrix is invertible with inverse A−1 =

[

cos(α) sin(α)
− sin(α) cos(α)

]

. The linear

transformation defined by A is a rotation by angle α in the counterclockwise direction. The inverse represents a
rotation by the angle α in the clockwise direction. The determinant of A is the area of the unit square spanned
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by ~v =

[

cos(α)
sin(α)

]

and ~v =

[

− sin(α)
cos(α)

]

. The angle θ from ~v to ~w is π/2. (See Figure 2.58.)

w =
− sinα

cosα

v =
cosα

sinα

θ=
π

2

α

Figure 2.58: for Problem 2.4.58.

2.4.59 The determinant of A is 1. The matrix A is invertible with inverse A−1 =

[

0.6 0.8
−0.8 0.6

]

. The matrix A

represents the rotation through the angle α = arccos(0.6). Its inverse represents a rotation by the same angle

in the clockwise direction. The determinant of A is the area of the unit square spanned by ~v =

[

0.6
0.8

]

and

~w =

[

−0.8
0.6

]

. The angle θ from ~v to ~w is π/2. (See Figure 2.59.)

w =
−0.8

0.6

v =
0.6

0.8

θ=
π

2

Figure 2.59: for Problem 2.4.59.

2.4.60 The determinant of A is −1. The matrix A is invertible with inverse A−1 = A. Matrices A and A−1 define

the reflection about the line spanned by ~v =

[

cos(α/2)
sin(α/2)

]

, where α = arccos(−0.8). The absolute value of the

determinant of A is the area of the unit square spanned by ~v =

[

−0.8
0.6

]

and ~w =

[

0.6
0.8

]

. The angle θ from v
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to w is −π/2. (See Figure 2.60.)

v =
−0.8

0.6

w =
0.6

0.8

θ=−

π

2

Figure 2.60: for Problem 2.4.60.

2.4.61 The determinant of A is 2 and A−1 = 1
2

[

1 −1
1 1

]

. The matrix A represents a rotation through the angle

−π/4 combined with scaling by
√

2. describes a rotation through π/4 and scaling by 1/
√

2. The determinant of

A is the area of the square spanned by ~v =

[

1
−1

]

and ~w =

[

1
1

]

with side length
√

2. The angle θ from ~v to

~w is π/2. (See Figure 2.61.)

v =
1

−1

w =
1

1

θ=
π

2

Figure 2.61: for Problem 2.4.61.

2.4.62 The determinant of A is 25. The matrix A is a rotation dilation matrix with scaling factor 5 and rotation by

an angle arccos(0.6) in the clockwise direction. The inverse A−1 = (1/25)

[

3 −4
4 3

]

is a rotation dilation too

with a scaling factor 1/5 and rotation angle arccos(0.6). The determinant of A is the area of the parallelogram

spanned by ~v =

[

3
−4

]

and ~w =

[

4
3

]

with side length 5. The angle from ~v to ~w is π/2. (See Figure 2.62.)
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v =
3

−4

w =
4

3

θ=
π

2

Figure 2.62: for Problem 2.4.62.

2.4.63 The determinant of A is −25 and A−1 = (1/25)

[

−3 4
4 3

]

= 1
25A. The matrix A represents a reflection

about a line combined with a scaling by 5 whilc A−1 represents a reflection about the same line combined with

a scaling by 1/5. The absolute value of the determinant of A is the area of the square spanned by ~v =

[

−3
4

]

and ~w =

[

4
3

]

with side length 5. The angle from ~v to ~w is −π/2. (See Figure 2.63.)

v =
−3

4
w =

4

3

θ=−

π

2

Figure 2.63: for Problem 2.4.63.

2.4.64 The determinant of A is 1 and A−1 =

[

1 1
0 1

]

. Both A and A−1 represent horizontal shears. The

determinant of A is the area of the parallelogram spanned by ~v =

[

1
0

]

and ~w =

[

−1
1

]

. The angle from

~v to ~w is 3π/4. (See Figure 2.64.)

2.4.65 The determinant of A is 1 and A−1 =

[

1 0
−1 1

]

. Both A and A−1 represent vertical shears. The determinant
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w =
−1

1

v =
1

0

θ=
3π

4

Figure 2.64: for Problem 2.4.64.

of A is the area of the parallelogram spanned by ~v =

[

1
1

]

and ~w =

[

0
1

]

. The angle from ~v to ~w is π/4. (See

Figure 2.65.)

w =
0

1
v =

1

1
θ=

π

4

Figure 2.65: for Problem 2.4.65.

2.4.66 We can write AB(AB)−1 = A(B(AB)−1) = In and (AB)−1AB = ((AB)−1A)B = In.

By Theorem 2.4.8, A and B are invertible.

2.4.67 Not necessarily true; (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 6= A2 + 2AB + B2 if AB 6= BA.

2.4.68 True; apply Theorem 2.4.7 to B = A.

2.4.69 Not necessarily true; consider the case A = In and B = −In.
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2.4.70 Not necessarily true; (A − B)(A + B) = A2 + AB − BA − B2 6= A2 − B2 if AB 6= BA.

2.4.71 True; ABB−1A−1 = AInA−1 = AA−1 = In.

2.4.72 Not necessarily true; the equation ABA−1 = B is equivalent to AB = BA (multiply by A from the right),
which is not true in general.

2.4.73 True; (ABA−1)3 = ABA−1ABA−1ABA−1 = AB3A−1.

2.4.74 True; (In + A)(In + A−1) = I2
n + A + A−1 + AA−1 = 2In + A + A−1.

2.4.75 True; (A−1B)−1 = B−1(A−1)−1 = B−1A (use Theorem 2.4.7).

2.4.76 We want A such that A

[

1 2
2 5

]

=

[

2 1
1 3

]

, so that A =

[

2 1
1 3

] [

1 2
2 5

]−1

=

[

8 −3
−1 1

]

.

2.4.77 We want A such that A~vi = ~wi, for i = 1, 2, . . . ,m, or A[~v1 ~v2 . . . ~vm] = [~w1 ~w2 . . . ~wm], or AS = B.

Multiplying by S−1 from the right we find the unique solution A = BS−1.

2.4.78 Use the result of Exercise 2.4.77, with S =

[

1 2
2 5

]

and B =





7 1
5 2
3 3



;

A = BS−1 =





33 −13
21 − 8
9 − 3





2.4.79 Use the result of Exercise 2.4.77, with S =

[

3 1
1 2

]

and B =

[

6 3
2 6

]

;

A = BS−1 = 1
5

[

9 3
−2 16

]

.

2.4.80 P0
T−→ P1, P1

T−→ P3, P2
T−→ P2, P3

T−→ P0

P0
L−→ P0, P1

L−→ P2, P2
L−→ P1, P3

L−→ P3

a. T−1 is the rotation about the axis through 0 and P2 that transforms P3 into P1.

b. L−1 = L

c. T 2 = T−1 (See part (a).)

d. P0
T ◦L−→ P1 P0

L ◦T−→ P2 The transformations T ◦ L and L ◦ T are not the same.

P1 −→ P2 P1 −→ P3

P2 −→ P3 P2 −→ P1

P3 −→ P0 P3 −→ P0

e.
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P0
L ◦T ◦L−→ P2

P1 −→ P1

P2 −→ P3

P3 −→ P0

This is the rotation about the axis through 0 and P1 that sends P0 to P2.

2.4.81 Let A be the matrix of T and C the matrix of L. We want that AP0 = P1, AP1 = P3, and AP2 = P2. We

can use the result of Exercise 77, with S =





1 1 −1
1 −1 1
1 −1 −1



 and B =





1 −1 −1
−1 −1 1
−1 1 −1



.

Then A = BS−1 =





0 0 1
−1 0 0

0 −1 0



.

Using an analogous approach, we find that C =





0 1 0
1 0 0
0 0 1



.

2.4.82 a EA =





a b c
d − 3a e − 3b f − 3c

g h k





The matrix EA is obtained from A by an elementary row operation: subtract three times the first row from the
second.

b EA =







a b c
1
4d 1

4e 1
4f

g h k







The matrix EA is obtained from A by dividing the second row of A by 4 (an elementary row operation).

c If we set E =





1 0 0
0 0 1
0 1 0



 then





1 0 0
0 0 1
0 1 0









a b c
d e f
g h k



 =





a b c
g h k
d e f



, as desired.

d An elementary n × n matrix E has the same form as In except that either

• eij = k(6= 0) for some i 6= j [as in part (a)], or
• eii = k(6= 0, 1) for some i [as in part (b)], or
• eij = eji = 1, eii = ejj = 0 for some i 6= j [as in part (c)].

2.4.83 Let E be an elementary n × n matrix (obtained from In by a certain elementary row operation), and let F
be the elementary matrix obtained from In by the reversed row operation. Our work in Exercise 2.4.82 [parts (a)
through (c)] shows that EF = In, so that E is indeed invertible, and E−1 = F is an elementary matrix as well.

2.4.84 a The matrix rref(A) is obtained from A by performing a sequence of p elementary row operations. By
Exercise 2.4.82 [parts (a) through (c)] each of these operations can be represented by the left multiplication with
an elementary matrix, so that rref(A) = E1E2 . . . EpA.

106



Section 2.4

b A =

[

0 2
1 3

]

swap rows 1 and 2, represented by

[

0 1
1 0

]

↓
[

1 3
0 2

]

÷2
, represented by

[

1 0
0 1

2

]

↓
[

1 3
0 1

]

−3(II)
, represented by

[

1 −3
0 1

]

↓

rref(A) =

[

1 0
0 1

]

Therefore, rref(A) =

[

1 0
0 1

]

=

[

1 −3
0 1

] [

1 0
0 1

2

] [

0 1
1 0

] [

0 2
1 3

]

= E1E2E3A.

2.4.85 a Let S = E1E2 . . . Ep in Exercise 2.4.84a.

By Exercise 2.4.83, the elementary matrices Ei are invertible: now use Theorem 2.4.7 repeatedly to see that S is
invertible.

b A =

[

2 4
4 8

]

÷2
, represented by

[

1
2 0
0 1

]

[

1 2
4 8

]

−4(I)
, represented by

[

1 0
−4 1

]

rref(A) =

[

1 2
0 0

]

Therefore, rref(A) =

[

1 2
0 0

]

=

[

1 0
−4 1

] [

1
2 0
0 1

] [

2 4
4 8

]

= E1E2A = SA, where

S =

[

1 0
−4 1

] [

1
2 0
0 1

]

=

[

1
2 0

−2 1

]

.

(There are other correct answers.)

2.4.86 a By Exercise 2.4.84a, In = rref(A) = E1E2 . . . EpA, for some elementary matrices E1, . . . , Ep. By Exercise
2.4.83, the Ei are invertible and their inverses are elementary as well. Therefore,

A = (E1E2 . . . Ep)
−1 = E−1

p . . . E−1
2 E−1

1 expresses A as a product of elementary matrices.

b We can use out work in Exercise 2.4.84 b:
[

0 2
1 3

]

=

([

1 −3
0 1

] [

1 0
0 1

2

] [

0 1
1 0

])−1

=

[

0 1
1 0

]−1 [
1 0
0 1

2

]−1 [
1 −3
0 1

]

=

[

0 1
1 0

] [

1 0
0 2

] [

1 3
0 1

]
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2.4.87

[

1 k
0 1

]

represents a horizontal shear,

[

1 0
k 1

]

represents a vertical shear,

[

k 0
0 1

]

represents a “scaling in ~e1 direction” (leaving the ~e2 component unchanged),

[

1 0
0 k

]

represents a “scaling in ~e2 direction” (leaving the ~e1 component unchanged), and

[

0 1
1 0

]

represents the reflection about the line spanned by

[

1
1

]

.

2.4.88 Performing a sequence of p elementary row operations on a matrix A amounts to multiplying A with
E1E2 . . . Ep from the left, where the Ei are elementary matrices. If In = E1E2 . . . EpA, then E1E2 . . . Ep = A−1,
so that

a. E1E2 . . . EpAB = B, and

b. E1E2 . . . EpIn = A−1.

2.4.89 Let A and B be two lower triangular n×n matrices. We need to show that the ijth entry of AB is 0 whenever
i < j.

This entry is the dot product of the ith row of A and the jth column of B,

[ai1 ai2 . . . aii 0 . . . 0] ·





















0
...
0

bjj

...
bnj





















, which is indeed 0 if i < j.

2.4.90 a





1 2 3
2 6 7
2 2 4



 −2I
−2I

, represented by





1 0 0
0 1 0

−2 0 1









1 0 0
−2 1 0

0 0 1





↓




1 2 3
0 2 1
0 −2 −2





+II
represented by





1 0 0
0 1 0
0 1 1





↓




1 2 3
0 2 1
0 0 −1



 , so that





1 2 3
0 2 1
0 0 −1



 =





1 0 0
0 1 0
0 1 1









1 0 0
0 1 0

−2 0 1









1 0 0
−2 1 0

0 0 1









1 2 3
2 6 7
2 2 4





↑
U

↑
E3

↑
E2

↑
E1

↑
A
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b A = (E3E2E1)
−1U = E−1

1 E−1
2 E−1

3 U =





1 0 0
2 1 0
0 0 1









1 0 0
0 1 0
2 0 1









1 0 0
0 1 0
0 −1 1









1 2 3
0 2 1
0 0 −1





↑
M1

↑
M2

↑
M3

↑
U

c Let L = M1M2M3 in part (b); we compute L =





1 0 0
2 1 0
2 −1 1



.

Then





1 2 3
2 6 7
2 2 4



 =





1 0 0
2 1 0
2 −1 1









1 2 3
0 2 1
0 0 −1





↑
A

↑
L

↑
U

d We can use the matrix L we found in part (c), but U needs to be modified. Let D =





1 0 0
0 2 0
0 0 −1



.

(Take the diagonal entries of the matrix U in part (c)).

Then





1 2 3
2 6 7
2 2 4



 =





1 0 0
2 1 0
2 −1 1









1 0 0
0 2 0
0 0 −1









1 2 3
0 1 1

2
0 0 1



.

↑
A

↑
L

↑
D

↑
U

2.4.91 a Write the system L~y = ~b in components:







y1 = −3
−3y1 + y2 = 14
y1 + 2y2 + y3 = 9
−y1 + 8y2 − 5y3 + y4 = 33






, so that y1 = −3, y2 = 14 + 3y1 = 5,

y3 = 9 − y1 − 2y2 = 2, and y4 = 33 + y1 − 8y2 + 5y3 = 0:

~y =







−3
5
2
0






.

b Proceeding as in part (a) we find that ~x =







1
−1

2
0






.

2.4.92 We try to find matrices L =

[

a 0
b c

]

and U =

[

d e
0 f

]

such that
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[

0 1
1 0

]

=

[

a 0
b c

] [

d e
0 f

]

=

[

ad ae
bd be + cf

]

.

Note that the equations ad = 0, ae = 1, and bd = 1 cannot be solved simultaneously: If ad = 0 then a or d is 0
so that ae or bd is zero.

Therefore, the matrix

[

0 1
1 0

]

does not have an LU factorization.

2.4.93 a Write L =

[

L(m) 0
L3 L4

]

and U =

[

U (m) U2

0 U4

]

.

Then A = LU =

[

L(m)U (m) L(m)U2

L3U
(m) L3U2 + L4U4

]

, so that A(m) = L(m)U (m), as claimed.

b By Exercise 2.4.66, the matrices L and U are both invertible. By Exercise 2.4.35, the diagonal entries of L and
U are all nonzero. For any m, the matrices L(m) and U (m) are triangular, with nonzero diagonal entries, so that
they are invertible. By Theorem 2.4.7, the matrix A(m) = L(m)U (m) is invertible as well.

c Using the hint, we write A =

[

A(n−1) ~v
~w k

]

=

[

L′ 0
~x t

] [

U ′ ~y
0 s

]

.

We are looking for a column vector ~y, a row vector ~x, and scalars t and s satisfying these equations. The following
equations need to be satisfied: ~v = L′~y, ~w = ~xU ′, and k = ~x~y + ts.

We find that ~y = (L′)−1~v, ~x = ~w(U ′)−1, and ts = k − ~w(U ′)−1(L′)−1~v.

We can choose, for example, s = 1 and t = k − ~w(U ′)−1(L′)−1~v, proving that A does indeed have an LU
factorization.

Alternatively, one can show that if all principal submatrices are invertible then no row swaps are required in the
Gauss-Jordan Algorithm. In this case, we can find an LU -factorization as outlined in Exercise 2.4.90.

2.4.94 a If A = LU is an LU factorization, then the diagonal entries of L and U are nonzero (compare with Exercise
2.4.93). Let D1 and D2 be the diagonal matrices whose diagonal entries are the same as those of L and U ,
respectively.

Then A = (LD−1
1 )(D1D2)(D

−1
2 U) is the desired factorization

↑
new L

↑
D

↑
new U

(verify that LD−1
1 and D−1

2 U are of the required form).

b If A = L1D1U1 = L2D2U2 and A is invertible, then L1,D1, U1, L2,D2, U2 are all invertible, so that we can
multiply the above equation by D−1

2 L−1
2 from the left and by U−1

1 from the right:

D−1
2 L−1

2 L1D1 = U2U
−1
1 .

Since products and inverses of upper triangular matrices are upper triangular (and likewise for lower triangular
matrices), the matrix D−1

2 L−1
2 L1D1 = U2U

−1
1 is both upper and lower triangular, that is, it is diagonal. Since

the diagonal entries of U2 and U1 are all 1, so are the diagonal entries of U2U
−1
1 , that is U2U

−1
1 = In, and thus

U2 = U1.
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Now L1D1 = L2D2, so that L−1
2 L1 = D2D

−1
1 is diagonal. As above, we have in fact L−1

2 L1 = In and therefore
L2 = L1.

2.4.95 Suppose A11 is a p×p matrix and A22 is a q×q matrix. For B to be the inverse of A we must have AB = Ip+q.
Let us partition B the same way as A:

B =

[

B11 B12

B21 B22

]

, where B11 is p × p and B22 is q × q.

Then AB =

[

A11 0
0 A22

] [

B11 B12

B21 B22

]

=

[

A11B11 A11B12

A22B21 A22B22

]

=

[

Ip 0
0 Iq

]

means that

A11B11 = Ip, A22B22 = Iq, A11B12 = 0, A22B21 = 0.

This implies that A11 and A22 are invertible, and B11 = A−1
11 , B22 = A−1

22 .

This in turn implies that B12 = 0 and B21 = 0.

We summarize: A is invertible if (and only if) both A11 and A22 are invertible; in this case

A−1 =

[

A−1
11 0
0 A−1

22

]

.

2.4.96 This exercise is very similar to Example 7 in the text. We outline the solution:
[

A11 0
A21 A22

] [

B11 B12

B21 B22

]

=

[

Ip 0
0 Iq

]

means that

A11B11 = Iq, A11B12 = 0, A21B11 + A22B21 = 0, A21B12 + A22B22 = Iq.

This implies that A11 is invertible, and B11 = A−1
11 . Multiplying the second equation with A−1

11 , we conclude that
B12 = 0. Then the last equation simplifies to A22B22 = Iq, so that B22 = A−1

22 .

Finally, B21 = −A−1
22 A21B11 = −A−1

22 A21A
−1
11 .

We summarize: A is invertible if (and only if) both A11 and A22 are invertible. In this case,

A−1 =

[

A−1
11 0

−A−1
22 A21A

−1
11 A−1

22

]

.

2.4.97 Suppose A11 is a p × p matrix. Since A11 is invertible, rref(A) =

[

Ip A12 ∗
0 0 rref(A23)

]

, so that

rank(A) = p + rank(A23) = rank(A11) + rank(A23).

2.4.98 Try to find a matrix B =

[

X ~x
~y t

]

(where X is n × n) such that

AB =

[

In ~v
~w 1

] [

X ~x
~y t

]

=

[

X + ~v~y ~x + t~v
~wX + ~y ~w~x + t

]

=

[

In 0
0 1

]

.

We want X + ~v~y = In, ~x + t~v = ~0, ~wX + ~y = ~0, and ~w~x + t = 1.

Substituting ~x = −t~v into the last equation we find −t~w~v + t = 1 or t(1 − ~w~v) = 1.
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This equation can be solved only if ~w~v 6= 1, in which case t = 1
1−~w~v

. Now substituting X = In − ~v~y into the

third equation, we find ~w − ~w~v~y + ~y = ~0 or ~y = − 1
1−~w~v

~w = −t~w.

We summarize: A is invertible if (and only if) ~w~v 6= 1. In this case, A−1 =

[

In + t~v ~w −t~v
−t~w t

]

, where t = 1
1−~w~v

.

The same result can be found (perhaps more easily) by working with rref[A
...In+1], rather than partitioned

matrices.

2.4.99 Multiplying both sides with A−1 we find that A = In: The identity matrix is the only invertible matrix with
this property.

2.4.100 Suppose the entries of A are all a, where a 6= 0. Then the entries of A2 are all na2. The equation na2 = a

is satisfied if a = 1
n
. Thus the solution is A =













1
n

1
n

· · · 1
n

1
n

1
n

· · · 1
n

. . .
1
n

1
n

· · · 1
n













.

2.4.101 The ijth entry of AB is

n
∑

k=1

aikbkj .

Then
n
∑

k=1

aikbkj ≤
n
∑

k=1

sbkj = s

(

n
∑

k=1

bkj

)

≤ sr.

↑ ↑
since aik ≤ s this is ≤ r, as it is the

jth column sum of B.

2.4.102 a We proceed by induction on m. Since the column sums of A are ≤ r, the entries of A1 = A are also ≤ r1 = r,
so that the claim holds for m = 1. Suppose the claim holds for some fixed m. Now write Am+1 = AmA; since
the entries of Am are ≤ rm and the column sums of A are ≤ r, we can conclude that the entries of Am+1 are
≤ rmr = rm+1, by Exercise 101.

b For a fixed i and j, let bm be the ijth entry of Am. In part (a) we have seen that 0 ≤ bm ≤ rm.

Note that limm→∞ rm = 0 (since r < 1), so that limm→∞ bm = 0 as well (this follows from what some calculus
texts call the “squeeze theorem”).

c For a fixed i and j, let cm be the ijth entry of the matrix In + A + A2 + · · · + Am. By part (a),

cm ≤ 1 + r + r2 + · · · + rm < 1
1−r

.

Since the cm form an increasing bounded sequence, limm→∞ cm exists (this is a fundamental fact of calculus).

112



Section 2.4

d (In − A)(In + A + A2 + · · · + Am) = In + A + A2 + · · ·Am − A − A2 − · · · − Am − Am+1

= In − Am+1

Now let m go to infinity; use parts (b) and (c). (In − A)(In + A + A2 + · · · + Am + · · ·) = In, so that

(In − A)−1 = In + A + A2 + · · · + Am + · · ·.

2.4.103 a The components of the jth column of the technology matrix A give the demands industry Jj makes on
the other industries, per unit output of Jj . The fact that the jth column sum is less than 1 means that industry
Jj adds value to the products it produces.

b A productive economy can satisfy any consumer demand ~b, since the equation

(In − A)~x = ~b can be solved for the output vector ~x : ~x = (In − A)−1~b (compare with Exercise 2.4.49).

c The output ~x required to satisfy a consumer demand ~b is

~x = (In − A)−1~b = (In + A + A2 + · · · + Am + · · ·) ~b = ~b + A~b + A2~b + · · · + Am~b + · · ·.

To interpret the terms in this series, keep in mind that whatever output ~v the industries produce generates an
interindustry demand of A~v.

The industries first need to satisfy the consumer demand, ~b. Producing the output~b will generate an interindustry
demand, A~b. Producing A~b in turn generates an extra interindustry demand, A(A~b) = A2~b, and so forth.

For a simple example, see Exercise 2.4.50; also read the discussion of “chains of interindustry demands” in the
footnote to Exercise 2.4.49.

2.4.104 a We write our three equations below:

I = 1
3R + 1

3G + 1
3B

L = R − G

S = − 1
2R − 1

2G + B

, so that the matrix is P =







1
3

1
3

1
3

1 −1 0

− 1
2 − 1

2 1






.

b





R
G
B



 is transformed into





R
G
0



, with matrix A =





1 0 0
0 1 0
0 0 0



.

c This matrix is PA =







1
3

1
3 0

1 −1 0

− 1
2 − 1

2 0






(we apply first A, then P .)

d See Figure 2.66. A “diagram chase” shows that M = PAP−1 =







2
3 0 − 2

9

0 1 0

−1 0 1
3






.

2.4.105 a A−1 =





0 0 1
1 0 0
0 1 0



 and B−1 =





1 0 0
0 0 1
0 1 0



.
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Figure 2.66: for Problem 2.4.104d.

Matrix A−1 transforms a wife’s clan into her husband’s clan, and B−1 transforms a child’s clan into the mother’s
clan.

b B2 transforms a women’s clan into the clan of a child of her daughter.

c AB transforms a woman’s clan into the clan of her daughter-in-law (her son’s wife), while BA transforms a man’s
clan into the clan of his children. The two transformations are different. (See Figure 2.67.)

Figure 2.67: for Problem 2.4.105c.

d The matrices for the four given diagrams (in the same order) are BB−1 = I3,

BAB−1 =





0 0 1
1 0 0
0 1 0



 , B(BA)−1 =





0 1 0
0 0 1
1 0 0



 , BA(BA)−1 = I3.

e Yes; since BAB−1 = A−1 =





0 0 1
1 0 0
0 1 0



, in the second case in part (d) the cousin belongs to Bueya’s husband’s

clan.

2.4.106 a We need 8 multiplications: 2 to compute each of the four entries of the product.

b We need n multiplications to compute each of the mp entries of the product, mnp multiplications altogether.

2.4.107 g(f(x)) = x, for all x, so that g ◦ f is the identity, but f(g(x)) =

{

x if x is even
x + 1 if x is odd

.
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2.4.108 a The formula

[

y
n

]

=

[

1 − Rk L + R − kLR
−k 1 − kL

] [

x
m

]

is given, which implies that

y = (1 − Rk)x + (L + R − kLR)m.

In order for y to be independent of x it is required that 1 − Rk = 0, or k = 1
R

= 40 (diopters).

1
k

then equals R, which is the distance between the plane of the lens and the plane on which parallel incoming
rays focus at a point; thus the term “focal length” for 1

k
.

b Now we want y to be independent of the slope m (it must depend on x alone). In view of the formula above,

this is the case if L + R − kLR = 0, or k =
L + R

LR
=

1

R
+

1

L
= 40 +

10

3
≈ 43.3 (diopters).

c Here the transformation is
[

y
n

]

=

[

1 0
−k1 1

] [

1 D
0 1

] [

1 0
−k1 1

] [

x
m

]

=

[

1 − k1D D
k1k2D − k1 − k2 1 − k2D

] [

x
m

]

.

We want the slope n of the outgoing rays to depend on the slope m of the incoming rays alone, and not on x;
this forces k1k2D − k1 − k2 = 0, or, D = k1+k2

k1k2

= 1
k1

+ 1
k2

, the sum of the focal lengths of the two lenses. See
Figure 2.68.

Figure 2.68: for Problem 2.4.108c.

True or False

Ch 2.TF.1 T, by Theorem 2.4.3.

Ch 2.TF.2 T; Let A = B in Theorem 2.4.7.

Ch 2.TF.3 F, by Theorem 2.3.3.

Ch 2.TF.4 T, by Theorem 2.4.8.

Ch 2.TF.5 F; Matrix AB will be 3 × 5, by Definition 2.3.1b.

Ch 2.TF.6 F; Note that T

[

0
0

]

=

[

0
1

]

. A linear transformation transforms ~0 into ~0.
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Ch 2.TF.7 T, by Theorem 2.2.4.

Ch 2.TF.8 T, by Theorem 2.4.6.

Ch 2.TF.9 T; The matrix is

[

1 −1
−1 1

]

.

Ch 2.TF.10 F; The columns of a rotation matrix are unit vectors; see Theorem 2.2.3.

Ch 2.TF.11 F; Note that det(A) = (k − 2)2 + 9 is always positive, so that A is invertible for all values of k.

Ch 2.TF.12 T; Note that the columns are unit vectors, since (−0.6)2 + (±0.8)2 = 1. The matrix has the form
presented in Theorem 2.2.3.

Ch 2.TF.13 F; Consider A = I2 (or any other invertible 2 × 2 matrix).

Ch 2.TF.14 T; Note that A =

[

1 2
3 4

]−1 [
1 1
1 1

] [

5 6
7 8

]−1

is the unique solution.

Ch 2.TF.15 F, by Theorem 2.4.9. Note that the determinant is 0.

Ch 2.TF.16 T, by Theorem 2.4.3.

Ch 2.TF.17 T; The shear matrix A =

[

1 1
2

0 1

]

works.

Ch 2.TF.18 T; Simplify to see that T

[

x
y

]

=

[

4y
−12x

]

=

[

0 4
−12 0

] [

x
y

]

.

Ch 2.TF.19 T; The equation det(A) = k2 − 6k + 10 = 0 has no real solution.

Ch 2.TF.20 T; The matrix fails to be invertible for k = 5 and k = −1, since the determinant detA = k2 − 4k− 5 =
(k − 5)(k + 1) is 0 for these values of k.

Ch 2.TF.21 T; The product is det(A)I2.

Ch 2.TF.22 T; Writing an upper triangular matrix A =

[

a b
0 c

]

and solving the equation A2 =

[

0 0
0 0

]

we find

that A =

[

0 b
0 0

]

, where b is any nonzero constant.

Ch 2.TF.23 T; Note that the matrix

[

0 −1
1 0

]

represents a rotation through π/2. Thus n = 4 (or any multiple

of 4) works.

Ch 2.TF.24 F; If a matrix A is invertible, then so is A−1. But

[

1 1
1 1

]

fails to be invertible.
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Ch 2.TF.25 F; If matrix A has two identical rows, then so does AB, for any matrix B. Thus AB cannot be In, so
that A fails to be invertible.

Ch 2.TF.26 T, by Theorem 2.4.8. Note that A−1 = A in this case.

Ch 2.TF.27 F; For any 2 × 2 matrix A, the two columns of A

[

1 1
1 1

]

will be identical.

Ch 2.TF.28 T; One solution is A =

[

1 1
0 0

]

.

Ch 2.TF.29 F; A reflection matrix is of the form

[

a b
b −a

]

, where a2 + b2 = 1. Here, a2 + b2 = 1 + 1 = 2.

Ch 2.TF.30 T; Just multiply it out.

Ch 2.TF.31 F; Consider matrix





0 0 1
0 1 0
1 0 0



, for example.

Ch 2.TF.32 T; Apply Theorem 2.4.8 to the equation (A2)−1AA = In, with B = (A2)−1A.

Ch 2.TF.33 F; Consider the matrix A that represents a rotation through the angle 2π/17.

Ch 2.TF.34 F; Consider the reflection matrix A =

[

1 0
0 −1

]

.

Ch 2.TF.35 T; We have (5A)−1 = 1
5A−1.

Ch 2.TF.36 T; The equation A~ei = B~ei means that the ith columns of A and B are identical. This observation
applies to all the columns.

Ch 2.TF.37 T; Note that A2B = AAB = ABA = BAA = BA2.

Ch 2.TF.38 T; Multiply both sides of the equation A2 = A with A−1.

Ch 2.TF.39 F; Consider A = I2 and B = −I2.

Ch 2.TF.40 T; Since A~x is on the line onto which we project, the vector A~x remains unchanged when we project
again: A(A~x) = A~x, or A2~x = A~x, for all ~x. Thus A2 = A.

Ch 2.TF.41 T; If you reflect twice in a row (about the same line), you will get the original vector back: A(A~x) = ~x,
or, A2~x = ~x = I2~x. Thus A2 = I2 and A−1 = A.

Ch 2.TF.42 F; Let A =

[

1 1
0 1

]

, ~v =

[

1
0

]

, ~w =

[

0
1

]

, for example.
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Ch 2.TF.43 T; Let A =

[

1 0 0
0 1 0

]

, B =





1 0
0 1
0 0



, for example.

Ch 2.TF.44 F; By Theorem 1.3.3, there is a nonzero vector ~x such that B~x = ~0, so that AB~x = ~0 as well. But
I3~x = ~x 6= ~0, so that AB 6= I3.

Ch 2.TF.45 T; We can rewrite the given equation as A2 + 3A = −4I3 and − 1
4 (A + 3I3)A = I3. By Theorem 2.4.8,

the matrix A is invertible, with A−1 = − 1
4 (A + 3I3).

Ch 2.TF.46 T; Note that (In + A)(In − A) = I2
n − A2 = In, so that (In + A)−1 = In − A.

Ch 2.TF.47 F; A and C can be two matrices which fail to commute, and B could be In, which commutes with
anything.

Ch 2.TF.48 F; Consider T (~x) = 2~x, ~v = ~e1, and ~w = ~e2.

Ch 2.TF.49 F; Since there are only eight entries that are not 1, there will be at least two rows that contain only
ones. Having two identical rows, the matrix fails to be invertible.

Ch 2.TF.50 F; Let A = B =

[

0 0
0 1

]

, for example.

Ch 2.TF.51 F; We will show that S−1

[

0 1
0 0

]

S fails to be diagonal, for an arbitrary invertible matrix S =

[

a b
c d

]

.

Now, S−1

[

0 1
0 0

]

S = 1
ad−bc

[

d −b
−c a

] [

c d
0 0

]

= 1
ad−bc

[

cd d2

−c2 −cd

]

. Since c and d cannot both be zero (as S

must be invertible), at least one of the off-diagonal entries (−c2 and d2) is nonzero, proving the claim.

Ch 2.TF.52 T; Consider an ~x such that A2~x = ~b, and let ~x0 = A~x. Then A~x0 = A(A~x) = A2~x = ~b, as required.

Ch 2.TF.53 T; Let A =

[

a b
c d

]

. Now we want A−1 = −A, or 1
ad−bc

[

d −b
−c a

]

=

[

−a −b
−c −d

]

. This holds if

ad − bc = 1 and d = −a. These equations have many solutions: for example, a = d = 0, b = 1, c = −1. More

generally, we can choose an arbitrary a and an arbitrary nonzero b. Then, d = −a and c = − 1+a2

b
.

Ch 2.TF.54 F; Consider a 2×2 matrix A =

[

a b
c d

]

. We make an attempt to solve the equation A2 =

[

a2 + bc ab + bd
ac + cd cb + d2

]

=
[

a2 + bc b(a + d)
c(a + d) d2 + bc

]

=

[

1 0
0 −1

]

. Now the equation b(a + d) = 0 implies that b = 0 or d = −a.

If b = 0, then the equation d2 + bc = −1 cannot be solved.

If d = −a, then the two diagonal entries of A2, a2 + bc and d2 + bc, will be equal, so that the equations a2 + bc = 1
and d2 + bc = −1 cannot be solved simultaneously.

In summary, the equation A2 =

[

1 0
0 −1

]

cannot be solved.
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Ch 2.TF.55 T; Recall from Definition 2.2.1 that a projection matrix has the form

[

u2
1 u1u2

u1u2 u2
2

]

, where

[

u1

u2

]

is a

unit vector. Thus, a2 + b2 + c2 + d2 = u4
1 + (u1u2)

2 + (u1u2)
2 + u4

2 = u4
1 + 2(u1u2)

2 + u4
2 = (u2

1 + u2
2)

2 = 12 = 1.

Ch 2.TF.56 T; We observe that the systems AB~x = 0 and B~x = 0 have the same solutions (multiply with A−1

and A, respectively, to obtain one system from the other). Then, by True or False Exercise 45 in Chapter 1,
rref(AB) =rref(B).
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