SOLUTIONS MANUAL

Report Sheet - Lab 2

Date \qquad

Section \qquad
Name

Team \qquad
Instructor \qquad

Pre-Lab Study Questions

1. What property of oil makes it float on water?

The density of oil is less than the density of water.
2. Why would heating the gas in an air balloon make the balloon rise?

Heating the gas in an air balloon adds energy to the gas making the molecules move faster.
The faster movement increases the volume of the balloon and therefore decreases its density, allowing the balloon to rise.
3. What is the difference between density and specific gravity?

Density is expressed in g / mL. Specific gravity is the ratio of the density of a substance to the density of water ($1.00 \mathrm{~g} / \mathrm{mL}$) and has no units.
4. How does a graph help us interpret scientific data?

A graph is a visual representation of the relationship between two variables.

A. Density of a Solid

A. 1 Mass of the solid \qquad
A. 2 Volume of the solid by displacement

Initial water level (mL)
_ 20.0 mL \qquad

Final water level with solid (mL)
Volume of solid (mL)
\qquad
\qquad 3.1 mL \qquad
A. 3 Calculate the density of the solid \qquad 7.9 \qquad g / mL
(Show calculations.)
$24.64 \mathrm{~g} / 3.1 \mathrm{~mL}=7.9 \mathrm{~g} / \mathrm{mL}$
A. 4 Type of metal \qquad Iron $(7.86 \mathrm{~g} / \mathrm{mL})$

Questions and Problems (Show complete setups.)

Q. 1 An object made of aluminum has a mass of 8.37 g . When it was placed in a graduated cylinder containing 20.0 mL of water, the water level rose to 23.1 mL . Calculate the density and specific gravity of the object.

Volume of aluminum $=23.1 \mathbf{~ m L}-20.0 \mathrm{~mL}=3.1 \mathbf{~ m L}$
Density $=8.37 \mathrm{~g} / 3.1 \mathrm{~mL}=2.7 \mathrm{~g} / \mathrm{mL}$
Specific gravity $=\frac{2.7 \mathrm{~g} / \mathrm{mL}(\mathrm{Al})}{1.00 \mathrm{~g} / \mathrm{mL}\left(\mathrm{H}_{2} \mathrm{O}\right)}=2.7$

B. Density of a Liquid

B. $1 \quad$ Volume of liquid

Type of liquid
Volume (mL)

B. 2 Mass of liquid

Mass of beaker
Mass of beaker + liquid
Mass of liquid

B. 3 Density of liquid

Density
(Show calculations for density.)

$$
19.82 \mathrm{~g} / 20.0 \mathrm{~mL}=0.991 \mathrm{~g} / \mathrm{mL}
$$

$15.88 \mathrm{~g} / 20.1 \mathrm{~mL}=0.790 \mathrm{~g} / \mathrm{mL}$

C. Specific Gravity

C. 1 Specific gravity \qquad 0.991 \qquad
\qquad 0.790 \qquad
(Calculated using B.3. Show calculations.)
$0.991 \mathrm{~g} / \mathrm{mL}=0.991$
$1.00 \mathrm{~g} / \mathrm{mL}$
C. 2 Specific gravity
(Hydrometer reading) \square 0.995 \qquad
$0.790 \mathrm{~g} / \mathrm{mL}=0.790$
$1.00 \mathrm{~g} / \mathrm{mL}$

How does the calculated specific gravity compare to the hydrometer reading for each liquid?
They are both very close.

Questions and Problems (Show complete setups.)

Q. $2 \quad$ What is the mass of a solution that has a density of $0.775 \mathrm{~g} / \mathrm{mL}$ and a volume of 50.0 mL ? $50.0 \mathrm{~mL} \times 0.775 \mathrm{~g} / \mathrm{mL}=38.8 \mathrm{~g}$
Q. $3 \quad$ What is the volume of a solution that has a specific gravity of 1.2 and a mass of 185 g ?

If the specific gravity is 1.2 , the density is $1.2 \mathrm{~g} / \mathrm{mL}$.

```
185 g x 1 mL = 159 mL
    1.2g
```


D. Graphing Mass and Volume

D. 1	Type of metal
Initial volume of water (mL)	
D. $2 \quad$ Initial mass of cylinder + water (g)	

Brass \qquad
D. 3

Mass of Metal Pieces
Final Volume
Total Volume of Metal (mL)
\qquad _ 23.7 \qquad mL \qquad mL
\qquad 25.0 \qquad mL \qquad mL
\qquad _ 26.2 \qquad mL \qquad 3.5 \qquad mL
\qquad g
\qquad g
\qquad mL \qquad 5.5 \qquad mL
\qquad
29.7 \qquad mL \qquad 6.0 \qquad mL

D. 4 Graph

D. 5 Density of the metal $=\frac{\operatorname{Mass}(2)-\operatorname{Mass}(1)}{\text { Volume (2) }- \text { Volume (1) }}=$
$\underline{46.1-8.4}=8.4$
5.5-1.0
$=\quad$ 8.4_ g / mL

Questions and Problems

Q. 4 An IV pump delivers the following volume of saline solution over 4 hours.

Volume (mL)	Time (hours)
0	0
50	1.0
100	2.0
125	2.5
150	3.0
200	4.0

Prepare a graph to represent the data above.

