
SOLUTIONS MANUAL

Chapter 2

Descriptive Analysis and Presentation of Single-Variable Data

2.1 Graphic Presentation of Data

A **circle graph**, or **pie diagram**, is used to summarize qualitative or categorical data. The circle graph is commonly used in business settings, newspapers, and magazines to illustrate parts of a whole. A circle is divided to show the amount of data that belong to each category as a proportional part of a circle. The calculator program CIRCLE¹ may be used to construct a circle graph.

Example 2-1: The following table lists the number of cases of each type of operation performed at General Hospital last year. Display this data using a circle graph.

	Type of Operation	Number
		of Cases
1	Thoracic	20
2	Bones and joints	45
3	Eye, ear, nose, and throat	58
4	General	98
5	Abdominal	115
6	Urologic	74
7	Proctologic	65
8	Neurosurgery	23

¹ Program by Chuck Vonder Embse, *Eightysomething*, Volume 3, Number 2, Spring 1994

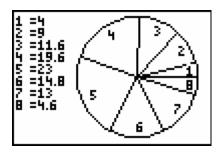
STAT ENTER

1

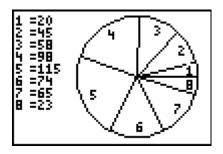
Step 2: Enter the number of cases into list L_1

2nd

Step 3: Press


Step 4: Press

Step 1: Press


Step 5: You will be prompted for 1: PERCENTAGES or 2: DATA. Since 1: PERCENTAGES is highlighted, press **ENTER**. The calculator returns the following pie chart

(down arrow) to select CIRCLE. Press

ENTER

The numbers at the left indicate the percentage of the total for each type of operation. You can also select 2: DATA in Step 5. This yields the following..

Here the numbers at the left are the frequency counts of each type of operation.

ASSIGNMENT: Do exercises 2.3, 2.4, 2.5 in your text

A **bar graph** is also used to graphically summarize categorical or attribute data. A rectangle is drawn corresponding to each category, or class, with height determined by the frequency. Bar charts are sometimes constructed so that the bars extend horizontally to the right. However, the TI-84+ displays bar charts with vertical bars.

Example 2-2: Using the Operations Data in the table above, let's construct a bar graph

Y= Your screen should look like this.. Step 1: Press

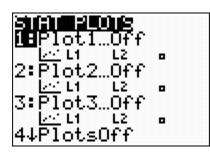
Plot1 Plot2	Plot3
<y1=∎< td=""><td></td></y1=∎<>	
∖Y₂=	
\Y3=	
<u>\Y</u> 4=	
∖Y5=	
∖Y6=	
\Y7=	

If there are any functions in Y_1 through Y_7 use (down arrow) and press

to delete them.

CLEAR

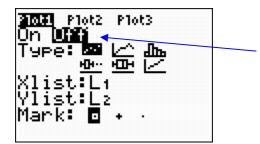
Y= Note: The TI-84+ will graph all of the functions that are listed in the menu. Since we don't want to confuse the graph of the bar chart it is best to omit them.


Note: Do not press Delete when the list name is highlighted. This command deletes the list from the stat list editor

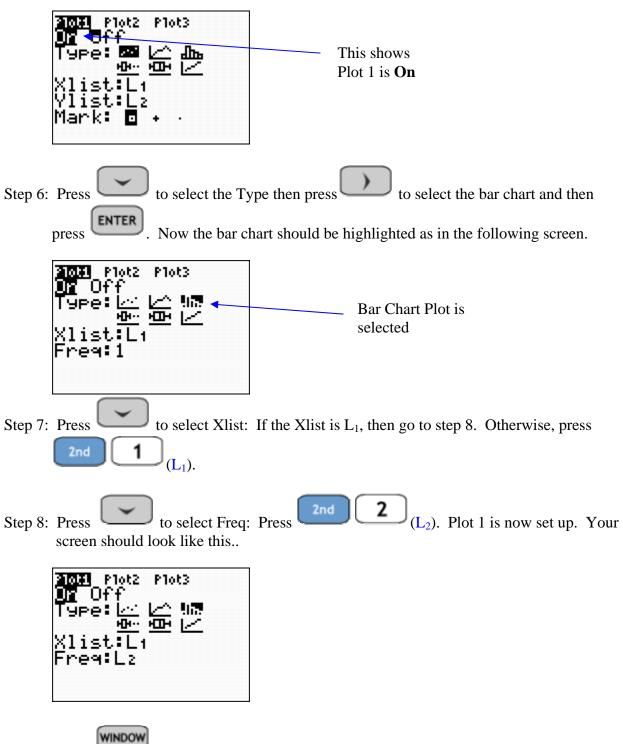
STAT ENTER Step 3: Press enter the Operations Data into L_1 and L_2 . (Refer to Chapter 1 for review if necessary) Your screen should look like this.

otice that the list only displays
ows. Rows 1 and 2 have scrolle ff the page. To view these row ress the up arrow key

Step 4: Press


(STAT PLOT). This brings you to the following screen

Y=


2nd

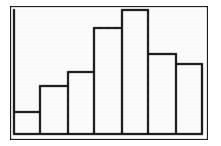
ENTER to access the Plot 1 setup menu. Step 5: Press

If **Off** is highlighted, this means that the plot is not turned On and will not graph If Off is highlighted, this means that the plot is not turned On.

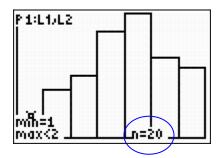
To turn it on press **ENTER**. This toggles Plot 1 to **On** as shown in the next screen..

Step 9: Press to bring you to the following screen..

WINDOW Xmin=-10 Xmax=10 Xscl=1 Ymin=-10	
Ymax=10 Yscl=1 Xres=1	


Using , change each of the settings to match the Operations Data. Your Window should look like this when you finish

The Xmin represents the smallest data value in L_1 and Xmax is the largest value in L_1 .


The Ymin is the minimum data value in L_2 and Ymax is the largest value in L_2

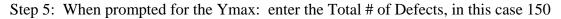
The Yscl doesn't really make a difference in the bar chart.

Step 10: Press GRAPH . Your calculator will return the following bar graph.

To read the frequencies of each of the bars press Trace . This will show you a frequency for the 1st bar corresponding to Thoracic Operations.

Use the appropriate right or left arrow keys to view the frequencies of each bar.

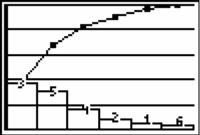
ASSIGNMENT: Do exercises 2.6 - 2.11 in your text


A **Pareto Diagram** is a bar graph with the bars arranged from the most numerous category to the least numerous category. The diagram includes a line graph displaying the cumulative percentages and counts for the bars. The Pareto diagram is used often in quality-control applications to identify the numbers and types of defects that happen within a product or service.

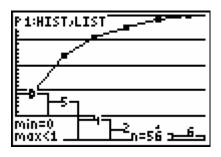
The calculator program PARETO may be used to display a Pareto diagram.

Example 2-3: The final daily inspection defect report for an assembly line at a local manufacturer is given in the table below. Construct a Pareto diagram for this defect report. Management has given the production line the goal of reducing their defects by 50%. What two defects should they give special attention to in working toward this goal?

Defect	Number
Dent	8
Bend	12
Blemish	56
Chip	23
Scratch	45
Others	6
Total	150



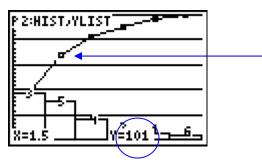
Step 6: When prompted for the Yscl: you can enter any number and it doesn't change the appearance of the graph from the screen below. Each of the horizontal lines represents


that scale. However, it is better to use to read the bar heights or cumulative frequencies on the line graph.

The program will draw the Pareto diagram as shown below

Press

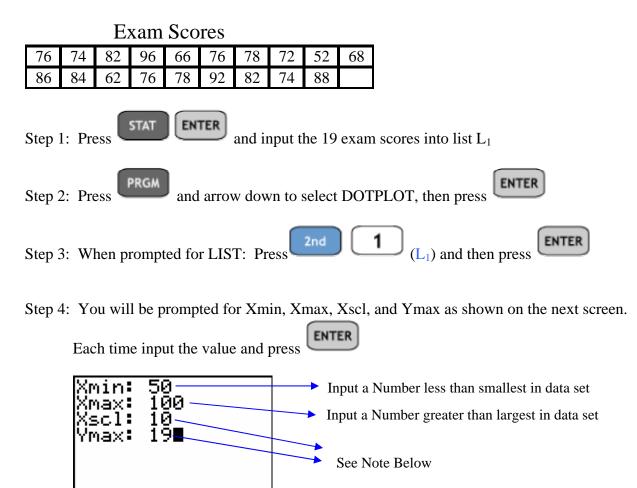
TRACE . The calculator displays this screen



The cursor is currently displaying the frequency in the first class - or the height of the

first bar of the bar graph. Since the line is cumulative, press (Up Arrow) then

(Right Arrow) to begin tracing the line.

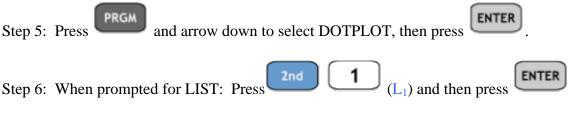


Since the Pareto Graph displays the Blemishes and Scratches in the first two bars, this is all we need to consider in answering the question. The cumulative total of the first two classes or bars corresponding to Blemishes and Scratches is $101/150 \approx .673$. Thus 67.3% of the reported defects are due to blemishes and scratches. The assembly line crew should work to reduce these two defects in order to reach their goal.

ASSIGNMENT: Do exercises 2.12-2.16 in your text


A **dotplot** is another type of graph used to display the distribution of a data set. The display represents each piece of data with a dot positioned along a measurement scale. The measurement scale may be horizontal or vertical. The frequency of values is represented along the other scale. The calculator program DOTPLOT may be used to construct a dotplot.

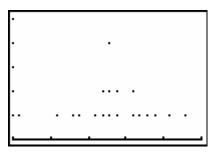
Example 2-4: A random sample of 19 exam scores was selected from a large introductory statistics class. Construct a dotplot for the data given in the following table.



Note: The Xscl is set to 10 and this represents the width of each class or column of the dotplot. The Ymax should be set to the largest frequency in any one column of the dotplot. As the total frequency of all exam scores in the plot is 19, this is an effective lower bound. We will adjust these settings by trial and error once we have run the program and know what to expect as far as output.

After inputting the Ymax of 19 and pressing **ENTER**, the following screen displays..

The Xscl of 10 seems appropriate, however, the Ymax setting should be changed.


Step 7: You will be prompted for Xmin, Xmax, Xscl, and Ymax as shown on the next screen.

ENTER

Xmin: 50 Xmax: 100 Xscl: 10 Ymax: 5∎	
---	--

Each time input the value and press

DOTPLOT will now return the following screen..

Note: You will have to run DOTPLOT several times to get the settings so that the window displays the data appropriately.

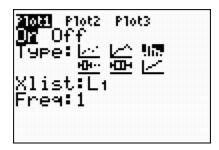
ASSIGNMENT: Do exercises 2.17-2.22 in your text

A **frequency distribution** is a table or graph that summarizes data by classes or class intervals. In a typical *grouped* frequency distribution, there are anywhere from 5 to 20 classes of equal width. The table may contain columns for class number, class interval, tally (if constructing by hand), frequency, relative frequency, cumulative relative frequency, and class mark. In an ungrouped frequency distribution each class consists of a single value.

The TI-84 is capable of constructing frequency distributions and graphing frequency histograms.

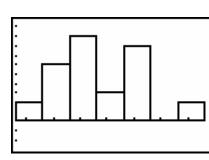
TRACE to construct the frequency distribution. Typically we graph the histogram and use

Example 2-5: The hemoglobin *A* test, a blood test given to diabetics during their periodic checkups, indicates the level of control of blood sugar during the past two to three months. The data in the following table was obtained from 40 different diabetics at a university clinic treating diabetic patients.


Blood Test Results

6.5	5.0	5.6	7.6	4.8	8.0	7.5	7.9	8.0	9.2
6.4	6.0	5.6	6.0	5.7	9.2	8.1	8.0	6.5	6.6
5.0	8.0	6.5	6.1	6.4	6.6	7.2	5.9	4.0	5.7
7.9	6.0	5.6	6.0	6.2	7.7	6.7	7.7	8.2	9.0

STAT ENTER and input the blood test data into list L_1 Step 1: Press


Step 3: Adjust the menu settings so that your screen looks like this

Step 4: We have two options for setting the window.

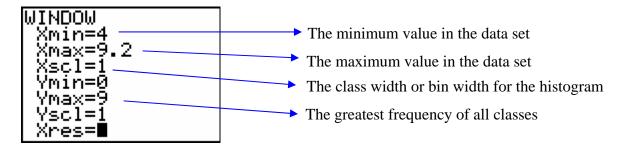
The first option is to let the calculator select the window and graph the histogram. Press

9 (ZOOM STAT). The calculator will display the following histogram..

ZOOM

Notice that there are 7 classes of equal width. If this is acceptable then we can use

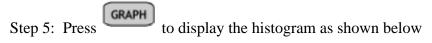
TRACE

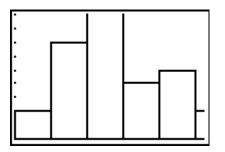

to construct the classes and to find the frequency in each class.

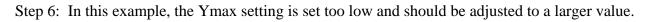
OR,

The second option is to set the window manually.

Press

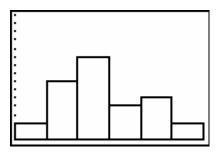

and adjust the settings so that the screen looks like this

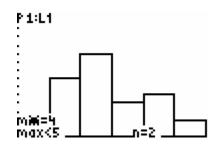



Note: To determine the Xscl or class width, find the range = Xmax - Xmin which is 5.2 in this case. Then decide on the number of classes and divide into the range. Finally, round this number up to get the Xscl. For this example. I choose six bars in the histogram or 6 classes.

Dividing $6 \xrightarrow{\approx .9167} 5.2$. Rounding up yields a Xscl of 1.

The Ymax is the highest frequency and is not known until the frequency histogram is graphed. Since there were 30 measurements in the original data set, this would be an effective upper bound for Ymax. However, since there will be 6 classes displayed, I chose 20 as a guess. This can be corrected quickly if the guess is too large or small.




Similarly, the Xmax setting needs to be adjusted also. Press and make the following corrections..

Step 7: Press GRAPH to display the histogram as shown below

To construct the grouped frequency distribution, continue with the following steps..

Step 8: Press TRACE . Your screen should look like this..

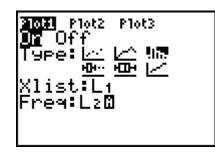
Step 9: Press (Right Arrow) to view the rest of the classes and the corresponding frequencies in each class. Complete the table as below.

Frequencies
2
7
10
4
5 2
2
30

ASSIGNMENT: Do exercises 2.29-2.23 in your text

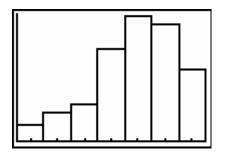
Class	Age	Frequencies
Midpoints	Classes	
25	20 up to 30	34
35	30 up to 40	58
45	40 up to 50	76
55	50 up to 60	187
65	60 up to 70	254
75	70 up to 80	241
85	80 up to 90	147

Example 2-6: Data from a recent survey of Roman Catholic nuns summarizes their ages as follows.


Construct a histogram for this data.

Step 1: Press tat ENTER and input the class midpoints in list L₁ and corresponding frequencies in list L₂. Your screen will look like this..

L1	L2	L3	2
5555555 6755 8755 8755 8755 8755 8755 87	5707517 571221		
L2(B) =			


Step 3: Adjust the menu settings so that your screen looks like this

Step 4: Press and adjust the settings so that the screen looks like this..

WINDOW Xmin=25 Xmax=95 Xscl=10 Ymin=0 Ymax=260 Yscl= <u>1</u>	
Xres=	

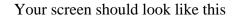
Step 5: Press GRAPH to display the histogram

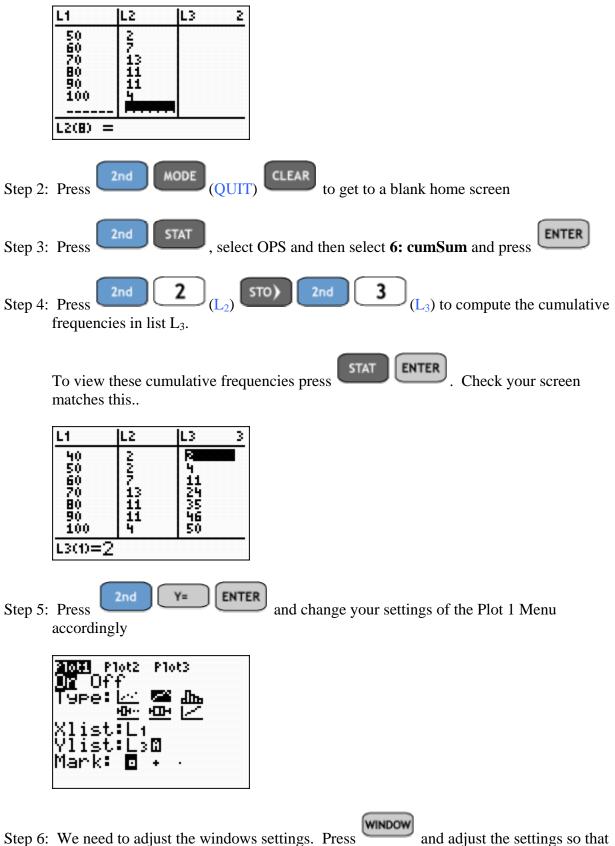
ASSIGNMENT: Do exercises 2.39, 2.41 in your text

An **ogive** is a plot of cumulative frequency or cumulative relative frequency versus class limit. A horizontal scale identifies the upper class boundaries. Every ogive starts on the left with a relative frequency or frequency of zero at the lower class boundary of the first class and ends on the right with a cumulative relative frequency of 1, or cumulative frequency of n (the number of observations in the data set).

Example 2-7: The final exam scores of 50 elementary statistics students were selected and the following grouped frequency distribution was obtained.

		Cumulative
Classes	Frequencies	Frequency
35-45	2	
45-55	2	
55-65	7	
65-75	13	
75-85	11	
85-95	11	
95-105	4	
Total	50	

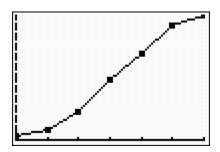

ENTER


STAT

Step 1: Press

Construct the cumulative frequency histogram or ogive for this distribution.

, input the class midpoints into list L_1 and frequencies into list L_2

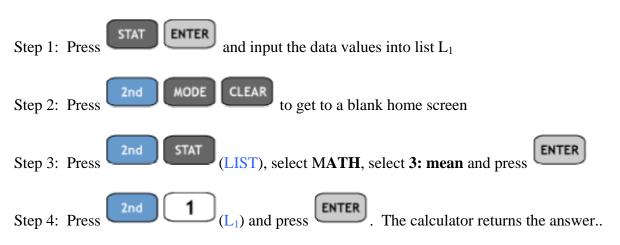


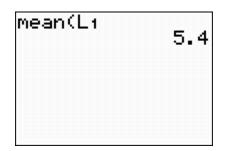
the screen looks like this..

and adjust the settings so that

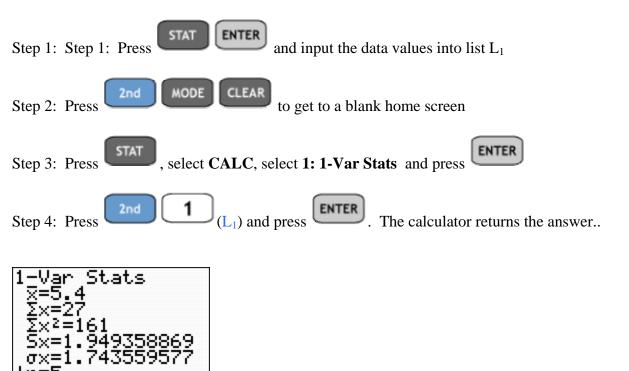
WINDOW	00000000
Xmin=40 Xmax=100	
Xscl=10	
Ymin=0 Ymax=50	
YMax-J0 Yscl=1	
Xres=	

Step 7: Finally, Press GRAPH to obtain the following ogive

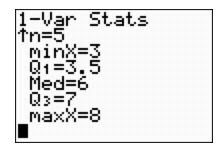

ASSIGNMENT: Do exercises 2.51, 2.53 in your text


Measures of Central Tendency

The Mean - The mean is the arithmetic average of the values of the data set. It is used to represent the "average" or center of the data as a representative value. There are several ways to find the mean on the TI-84. Consider the following example;


Example 2-8: A set of data consists of 6, 3, 8, 6 and 4. Find the mean

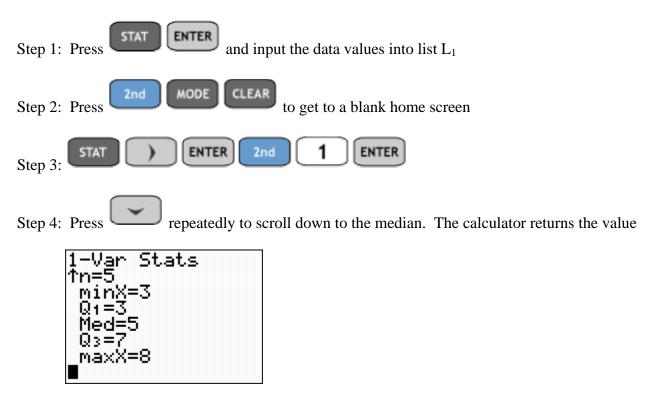
Method 1



Method 2

This second approach shows the mean, $\overline{x} = 5.4$. It also displays other measures as well. Notice S_x which represents the sample standard deviation, σ_x which represents the population standard deviation are also found on the same page.

Also note the down arrow in the bottom left hand part of the view screen. By pressing the down arrow a few times we obtain the rest of the 1-Var Stats summary..

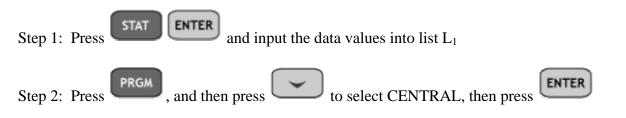

The Quartiles, Median and minimum and maximum values are all displayed

* We will use Method 2 for most of our calculations throughout the rest of this manual.

ASSIGNMENT: Do exercises 2.58, 2.60, 2.61 in your text

The Median - When the data set is sorted, the "middle" value is termed the median. In a data set with an odd number of values, there is a middle value. In a data set with an even number of values, the average of the two "middle-most" values is the median. The TI-84 displays the median in the 1-Var Stats summary.

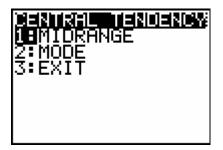
Example 2-9: Find the median for the data set 6, 3, 8, 5, 3



ASSIGNMENT: Do exercises 2.62, 2.63, 2.67 in your text

Mode & Midrange

The Mode & Midrange can be found using the program CENTRAL

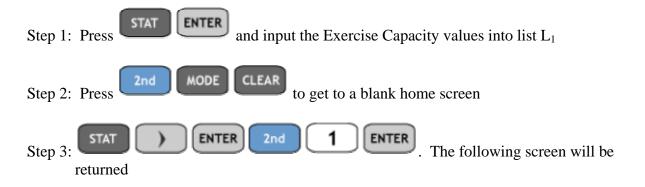

Example 2-10: Find the Mode & Midrange of the data set 3,3,5,6,8

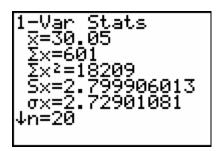
Step 3: When prompted for LIST, press

Step 4: Select 1: MIDRANGE, 2: MODE or 3: Exit as shown on the following screen

Depending on your selection, the calculator returns the following screens

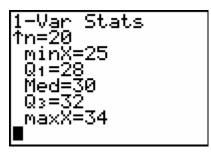
MIDRANGE =	70

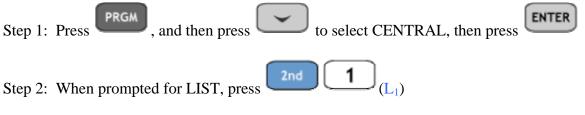

MODE =	40
COUNT =	40
	T


ASSIGNMENT: Do exercises 2.65-2.67 in your text

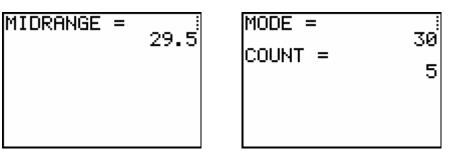
Example 2-11: Recruits for a police academy were required to undergo a test that measures exercise capacity. Exercise capacity (in minutes) was obtained for each of 20 recruits and is given in the following table. Find the mean, median, mode and the midrange of the data.

Exercise Capacity									
25	27	30	33	30	32	30	34	30	27
26	25	29	31	31	32	34	32	33	30


First, to find the mean and median use the 1-Var Stats summary

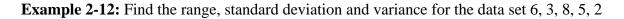

Thus the mean is $\overline{x} = 30.05$

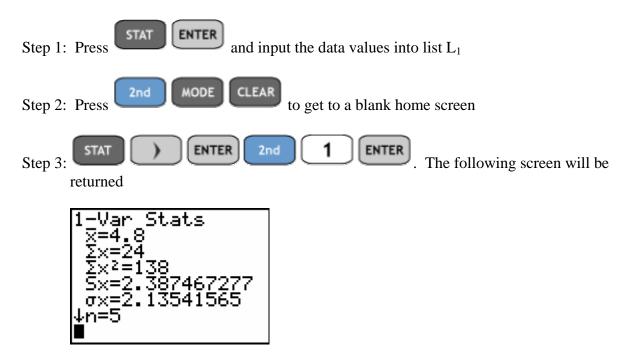
Step 4: Press several times to display the median



So, the median is 30

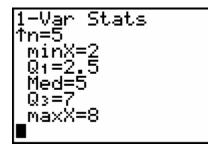
To find the midrange and mode use the CENTRAL Program


Step 3: Select 1: MIDRANGE, 2: MODE or 3: Exit as shown on the following screens



ASSIGNMENT: Do exercises 2.67-2.74 in your text

Measures of Dispersion


These measures indicate spread or variation of data. Data sets with identical means and medians can have different measures of spread. We will learn how to compute the range, standard deviation and variance on the TI-84+

The sample standard deviation, denoted s = 2.387. The sample variance is the square of the standard deviation or $s^2 = (2.387)^2 = 5.698$. Finally, the range of data set is the difference of the

maximum and minimum. Press repeatedly, the calculator will return the following screen.

Thus, the range is 8 - 2 = 6

ASSIGNMENT: Do exercises 2.85, 2.89-2.94 in your text


We may compute the estimated mean, standard deviation and variance of a grouped frequency distribution

Example 2-13: A farmer conducted an experiment in order to judge the value of a new diet for his animals. Using the weight gain (in grams) for chicks fed on a high-protein diet given in the

Weight Gain	Frequency
12.5	2
12.7	6
13.0	22
13.1	29
13.2	12
13.8	4

following table, find the mean, variance, and standard deviation.

Step 1: Press tat enter and input the Weight Gain data into list L₁ and the corresponding frequencies into list L₂

The mean, $\overline{x} = 13.076$

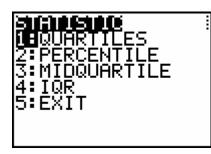
The sample standard deviation, s = .231

The sample variance is $s^2 = .231^2 = .053$

Measures of Position on the TI-84+

There are four measures of position that we will compute using the POSITION Program on the TI-84+. These are the quartiles, percentiles, midquartiles and innerquartile range (IQR).

Example 2-14: An experiment was conducted in order to test how quickly certain fabrics ignite when exposed to a flame. The following table lists the ignition times for a certain type of synthetic fabric. Find the quartiles, the midquartile, the interquartile range, and the 88th percentile.


	Ignition Times							
30.1	31.5	34.0	37.5	30.1	31.6	34.5	37.5	30.2
31.6	34.5	37.6	30.5	32.0	35.0	38.0	31.0	32.4
35.0	39.5	31.1	32.5	35.6	31.2	33.0	36.0	31.3
33.0	36.5	31.3	33.0	36.9	31.4	33.5	37.0	

Step 1: Press

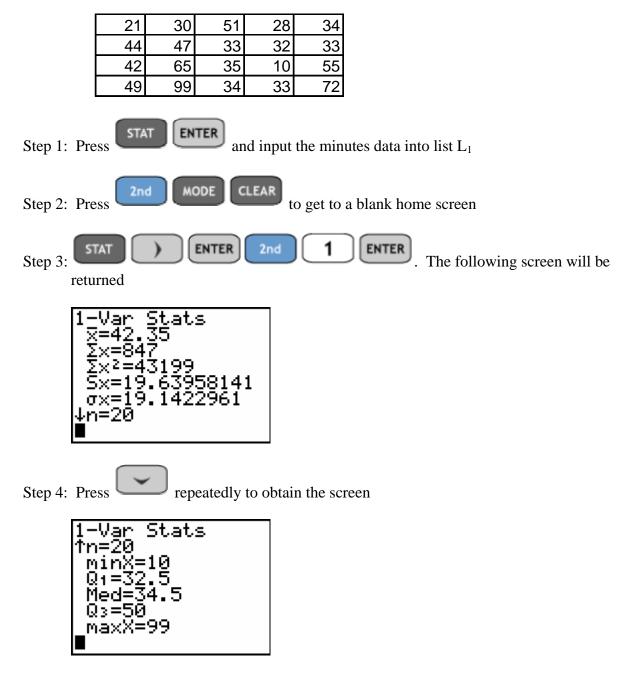
STAT

and input the Ignition Times data into list L₁

Step 2: Press and then select POSITION and press ENTER. You should have the following screen

Step 3: Select the option you want to compute and press **ENTER**. The 4 screens are shown below.

Q1 = 0	KTH PER	CENTILE ≅MIDQU 37.5	UARTILE = : IQR = 33.65	4.7
Q3 =	36			


ASSIGNMENT: Do exercises 2.105 - 2.109 in your text

A 5-number summary is sometimes used to describe a set of data and is composed of:

- (1) Min, the smallest value in the data set,
- (2) Q_1 , the first quartile (also called P_{25} , or the 25^{th} percentile),
- (3) Med, the median, Q_2 or 50^{th} percentile
- (4) Q_3 , the third quartile (also called P₇₅, or the 75th percentile), and
- (5) Max, the largest value in the data set.

The 5-number summary is displayed with the other measures of central tendency on the 1-Var Stat summary.

Example 2-15: A manual dexterity test was given to 20 intoxicated individuals. The times (in minutes) to complete the test are listed in the table below. Compute the 5-number summary for the data

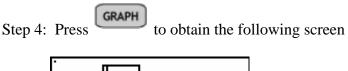
ASSIGNMENT: Do exercise 2.111 in your text

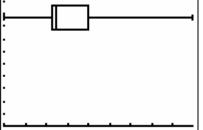
A **box-and-whisker display**, or boxplot, is a graphic representation of the 5-number summary. The five numerical values (Min, Q_1 , Med, Q_3 , Max) are located on a horizontal scale. A box is drawn with edges at the quartiles and a line is drawn at the median. A line segment (whisker) is drawn from Q_1 to the smallest value, and another line segment is drawn from Q_3 to the largest value. This regular box-and-whisker display is a built-in statistical plot.

Example 2-16: Using the Minutes data from the previous example construct a boxplot of the data.

Step 1: Press STAT ENTER and input the minutes data into list L₁. Step 2. Press 2nd Y= (STAT PLOT) and press to access the Plot1 menu.

Step 3: Set the menu as shown below

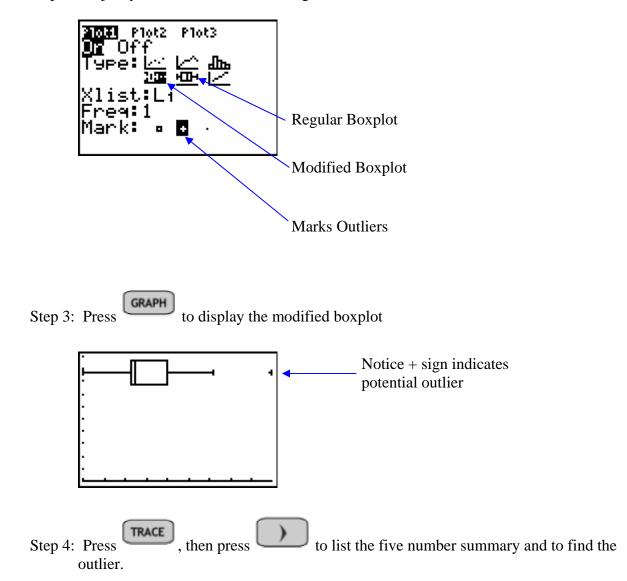

WINDOW


Step 4: Set the window. Press

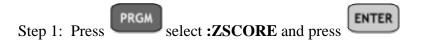
WINDOW Xmin=10 Xmax=99	
Xscl=10 Ymin=0	
Ymax=10	
Yscl=1 Xres=1	

and adjust the settings to look like the following..

Notice the Xmin is the minimum value and Xmax is the maximum value in the data set. The Xscl can be set at any convenient value for reading the boxplot. Boxplots only measure in the horizontal direction, thus you can always set Ymin = 0, Ymax = 10 and Yscl = 1

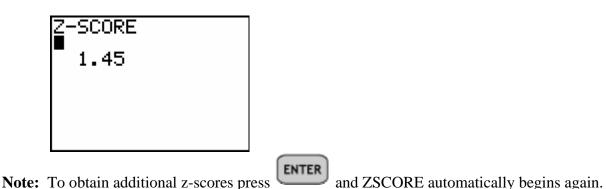


The TI-84+ Plus will also display a modified boxplot showing potential outliers.


Step 2: Adjust your screen to the following

ASSIGNMENT: Do exercises 2.111, 2.112, 2.114, 2.115, 2.118 in your text

The **z-score**, or **standard score**, for a specific value is a measure of relative standing in terms of the mean and standard deviation. The program ZSCORE on the TI-84 will convert X (raw scores) into Z scores.


Example 2-17: The mean score on a calculus midterm was 64 with a standard deviation of 11. Sally scored 80. What was her z-score? i.e. how many standard deviations above the mean did Sally score on her midterm?

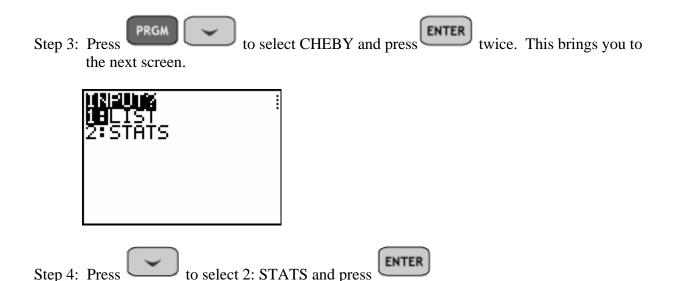
Step 2: The calculator will prompt you for the mean, standard deviation and raw score X. Input the values 64, 11 and 80 respectively as shown below..

Pr9mZSCORE MEAN? ?64 SD? ?11 X? ?80	
---	--

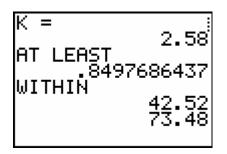
Step 3: Press **ENTER** to obtain the following z-score rounded to two decimal places

ASSIGNMENT: Do exercises 2.119-2.123, 2.125, 2.127-2.128 in your text

Chebyshev's Theorem on the TI-84+


The Program **CHEBY** can be used to find intervals and percentages using Chebyshev's Theorem.

Example 2-18: A certain brand of shoes have a mean cost of \$58 with a standard deviation of \$6. What minimum percentage is guaranteed by Chebyshev's Theorem to lie within \$42.52 to \$73.48?

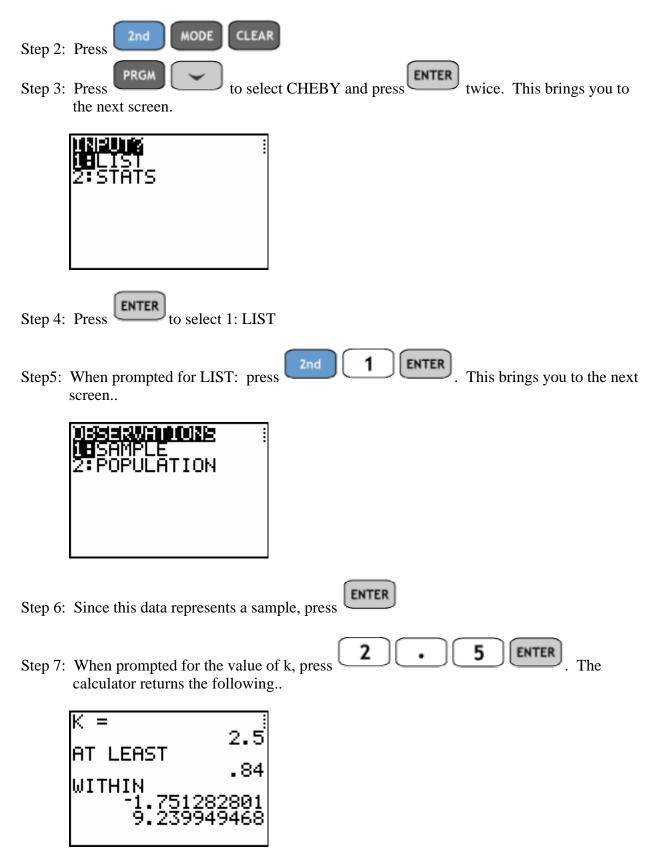

Solution:

Step 1: First determine if this interval is symmetric with respect to the mean of 58. Since 73.48 - 58 = 15.48 and 58 - 42.52 = 15.48, there is symmetry.

Step 2: We need to determine the value k. k = 15.48/6 = 2.58

Step 5: Input the appropriate values for the mean, standard deviation and k. The calculator returns the following..

Thus, at least 85% of this brand of shoe will lie in the price range (\$42.52, \$73.48)


ASSIGNMENT: Do exercises 2.192, 2.205, 2.206 in your text

Example 2-19: A sample of earnings per share data for 30 fortune 500 companies is listed below.

1.97	.60	4.02	3.20	1.15	6.06
4.44	2.02	3.37	3.65	1.74	2.75
3.81	9.70	8.29	5.63	5.21	4.55
7.60	3.16	3.77	5.36	1.06	1.71
2.47	4.25	1.93	5.15	2.06	1.65

Using Chebyshev's Theorem, calculate the range of the data that is within k = 2.5 standard deviations of the mean.

Solution:

Thus, the interval in which at least 84% of the data lies based on this sample is (-1.75, 9.24)

ASSIGNMENT: Do exercises 2.207-2.208 in your text

Using the TI-84+ to Test Data for Normality

Example 2-20: The final exam scores for an elementary statistics exam are listed in the table below. Test the data for normality.

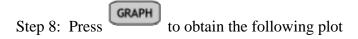
60	47	82	95	88	72	67	66	68	98
90	77	86	58	64	95	74	72	88	74
77	39	90	63	68	97	70	64	70	70
58	78	89	44	55	85	82	83	72	77
72	86	50	94	92	80	91	75	76	78

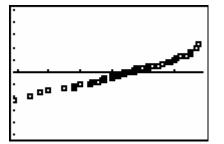
Step 1: Press

Step 2: Press to highlight listname L_1 and then press repeatedly until you come to a blank column as shown in the screen below.

L5	LG	ii
Name=		

Step 3: Notice the Alpha Character is locked (A in upper right corner). Thus we can type the list


name EXAM using the green alpha keys and then press your screen should look like this..


	L5	L6	बस्ताः	7	
				-	
	EXAN =				
Step 4:	Press	✓ and	l input t	ne ex	am scores into the list EXAM.
Step 5:	Press mode.	2nd MO	DDE (Q	uit)	cLEAR to get to a blank homescreen and to exit the edit
Step 6:	Press	2nd Y	= E	NTER	and adjust the Plot 1 settings accordingly

Step 7: Press and adjust your window settings to match those below

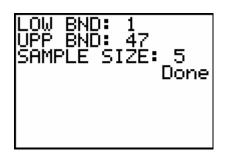
When the data appears to be linear, this indicates that the data is approximately normal.

ASSIGNMENT: Do exercise 2.207 in your text

Using the TI-84+ to generate random data

The program SAMPLE can be used to generate random numbers between two bounds with or without replacement.

Example 2-21: The California State Lottery Super Jackpot Plus® is a game in which players choose or let the computer randomly generate 5 numbers between 1-47. This random generation is sometimes called a "Quick-Pick". Simulate the random draw of a "Quick-Pick"


Step 2: When prompted for LOW BND: input 1 and press

Step 3: When prompted for UP BND: input 47 and press

Step 4: When prompted for SAMPLE SIZE: input 5 and press

The calculator will prompt you to select sampling with or without replacement

Step 5: Since 1: W/OUT REPLACE is highlighted, select . The following screen is obtained..

Step 6: Press **State Enter** to see the list. Since the numbers are randomly generated, the list that is obtained each time will be different.

L1	L2	L3	1
18 18 1 44 6			
L100=11			

ASSIGNMENT: Do exercises 2.213-2.216 in your text