## SOLUTIONS MANUAL



## Chapter 2

## Descriptive Analysis and Presentation of Single-Variable Data

### 2.1 Graphic Presentation of Data

A circle graph, or pie diagram, is used to summarize qualitative or categorical data. The circle graph is commonly used in business settings, newspapers, and magazines to illustrate parts of a whole. A circle is divided to show the amount of data that belong to each category as a proportional part of a circle. The calculator program CIRCLE $^{1}$ may be used to construct a circle graph.

Example 2-1: The following table lists the number of cases of each type of operation performed at General Hospital last year. Display this data using a circle graph.

|  | Type of Operation | Number <br> of Cases |
| :--- | :--- | :---: |
| 1 | Thoracic | 20 |
| 2 | Bones and joints | 45 |
| 3 | Eye, ear, nose, and throat | 58 |
| 4 | General | 98 |
| 5 | Abdominal | 115 |
| 6 | Urologic | 74 |
| 7 | Proctologic | 65 |
| 8 | Neurosurgery | 23 |

${ }^{1}$ Program by Chuck Vonder Embse, Eightysomething, Volume 3, Number 2, Spring 1994

## STAT ENTER

Step 1: Press
Step 2: Enter the number of cases into list $\mathrm{L}_{1}$
Step 3: Press
PRGM
 (down arrow) to select CIRCLE. Press

ENTER

Step 4: Press
2nd


ENTER

Step 5: You will be prompted for 1: PERCENTAGES or 2: DATA. Since 1: PERCENTAGES
ENTER is highlighted, press . The calculator returns the following pie chart


The numbers at the left indicate the percentage of the total for each type of operation. You can also select 2: DATA in Step 5. This yields the following.


Here the numbers at the left are the frequency counts of each type of operation.

ASSIGNMENT: Do exercises 2.3, 2.4, 2.5 in your text
A bar graph is also used to graphically summarize categorical or attribute data. A rectangle is drawn corresponding to each category, or class, with height determined by the frequency. Bar charts are sometimes constructed so that the bars extend horizontally to the right. However, the TI-84+ displays bar charts with vertical bars.

Example 2-2: Using the Operations Data in the table above, let's construct a bar graph

Step 1: Press
$\square$
Floti Flote Flots
$\forall V_{1}=\square$
$\forall \varepsilon=$
V3=
$\vee 4=$
Y5=
, $\mathrm{V}_{6}=$
ソ7=

If there are are any functions in $\mathrm{Y}_{1}$ through $\mathrm{Y}_{7}$ use


CLEAR
to delete them.

Note: The TI-84+ will graph all of the functions that are listed in the
menu. Since we don't want to confuse the graph of the bar chart it is best to omit them.

Step 2: Clear the lists $\mathrm{L}_{1}$ and $\mathrm{L}_{2}$. Press $\sim$ CLEAR $\checkmark$ to clear $\mathrm{L}_{1}$. Use the right arrow to move over to $L_{2}$ and repeat to clear $L_{2}$.

Note: Do not press Delete when the list name is highlighted. This command deletes the list from the stat list editor

## STAT ENTER <br> Step 3: Press for review if necessary) Your screen should look like this.



Step 4: Press 2 nd $Y=\quad$ (STAT PLOT). This brings you to the following screen


ENTER
Step 5: Press to access the Plot 1 setup menu.


If Off is highlighted, this means that the plot is not turned On.
To turn it on press

. This toggles Plot 1 to On as shown in the next screen..


Step 6: Press
 to select the Type then press to select the bar chart and then ENTER Now the bar chart should be highlighted as in the following screen.


Step 7: Press to select Xlist: If the Xlist is $\mathrm{L}_{1}$, then go to step 8. Otherwise, press


Step 8: Press $\quad$ to select Freq: Press

## 2nd

 screen should look like this..

Step 9: Press
WINDOW
to bring you to the following screen..

```
WIF[\IDN
    XMir=-10
    x交=16
    X드=1
    Gmiro=-10
    YMx=16
    YE=1=1
    Xres=1
```

Using , change each of the settings to match the Operations Data. Your Window should look like this when you finish


The Xscl determines the width of each bar of the chart

The Xmin represents the smallest data value in $\mathrm{L}_{1}$ and Xmax is the largest value in $\mathrm{L}_{1}$.
The Ymin is the minimum data value in $L_{2}$ and Ymax is the largest value in $L_{2}$
The Yscl doesn't really make a difference in the bar chart.

GRAPH
Step 10: Press


To read the frequencies of each of the bars press frequency for the $1^{\text {st }}$ bar corresponding to Thoracic Operations.


Use the appropriate right or left arrow keys to view the frequencies of each bar.
ASSIGNMENT: Do exercises 2.6-2.11 in your text

A Pareto Diagram is a bar graph with the bars arranged from the most numerous category to the least numerous category. The diagram includes a line graph displaying the cumulative percentages and counts for the bars. The Pareto diagram is used often in quality-control applications to identify the numbers and types of defects that happen within a product or service.

The calculator program PARETO may be used to display a Pareto diagram.

Example 2-3: The final daily inspection defect report for an assembly line at a local manufacturer is given in the table below. Construct a Pareto diagram for this defect report. Management has given the production line the goal of reducing their defects by $50 \%$. What two defects should they give special attention to in working toward this goal?

| Defect | Number |
| :---: | :---: |
| Dent | 8 |
| Bend | 12 |
| Blemish | 56 |
| Chip | 23 |
| Scratch | 45 |
| Others | 6 |
| Total | $\mathbf{1 5 0}$ |

Step 1: Press STAT ENTER and clear lists $\mathrm{L}_{1}$ and $\mathrm{L}_{2}$
Step 2: Enter the data into list $\mathrm{L}_{1}$
PRGM
Step 3: Press and select PARETO
Step 4: When prompted for the list, press


Step 5: When prompted for the Ymax: enter the Total \# of Defects, in this case 150

Step 6: When prompted for the Yscl: you can enter any number and it doesn't change the appearance of the graph from the screen below. Each of the horizontal lines represents

TRACE
that scale. However, it is better to use to read the bar heights or cumulative frequencies on the line graph.

The program will draw the Pareto diagram as shown below


TRACE
Press
. The calculator displays this screen


The cursor is currently displaying the frequency in the first class - or the height of the first bar of the bar graph. Since the line is cumulative, press (Up Arrow) then (Right Arrow) to begin tracing the line.


Since the Pareto Graph displays the Blemishes and Scratches in the first two bars, this is all we need to consider in answering the question. The cumulative total of the first two classes or bars corresponding to Blemishes and Scratches is $101 / 150 \approx .673$. Thus $67.3 \%$ of the reported defects are due to blemishes and scratches. The assembly line crew should work to reduce these two defects in order to reach their goal.

A dotplot is another type of graph used to display the distribution of a data set. The display represents each piece of data with a dot positioned along a measurement scale. The measurement scale may be horizontal or vertical. The frequency of values is represented along the other scale. The calculator program DOTPLOT may be used to construct a dotplot.

Example 2-4: A random sample of 19 exam scores was selected from a large introductory statistics class. Construct a dotplot for the data given in the following table.

## Exam Scores

| 76 | 74 | 82 | 96 | 66 | 76 | 78 | 72 | 52 | 68 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 86 | 84 | 62 | 76 | 78 | 92 | 82 | 74 | 88 |  |

Step 1: Press STAT ENTER and input the 19 exam scores into list $\mathrm{L}_{1}$
PRGM
ENTER
Step 2: Press
and arrow down to select DOTPLOT, then press



The Xscl of 10 seems appropriate, however, the Ymax setting should be changed.

## PRGM <br> Step 5: Press

and arrow down to select DOTPLOT, then press

## ENTER

Step 6: When prompta for LIST: Pres
2nd 1 ( $\left.\mathrm{L}_{1}\right)$ and then press
ENTER

Step 7: You will be prompted for Xmin, Xmax, Xscl, and Ymax as shown on the next screen.
ENTER
Each time input the value and press
ENTER


DOTPLOT will now return the following screen..


Note: You will have to run DOTPLOT several times to get the settings so that the window displays the data appropriately.

ASSIGNMENT: Do exercises 2.17-2.22 in your text
A frequency distribution is a table or graph that summarizes data by classes or class intervals. In a typical grouped frequency distribution, there are anywhere from 5 to 20 classes of equal width. The table may contain columns for class number, class interval, tally (if constructing by hand), frequency, relative frequency, cumulative relative frequency, and class mark. In an
ungrouped frequency distribution each class consists of a single value.

The TI-84 is capable of constructing frequency distributions and graphing frequency histograms.
Typically we graph the histogram and use to construct the frequency distribution.
Example 2-5: The hemoglobin A test, a blood test given to diabetics during their periodic checkups, indicates the level of control of blood sugar during the past two to three months. The data in the following table was obtained from 40 different diabetics at a university clinic treating diabetic patients.

Blood Test Results

| 6.5 | 5.0 | 5.6 | 7.6 | 4.8 | 8.0 | 7.5 | 7.9 | 8.0 | 9.2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6.4 | 6.0 | 5.6 | 6.0 | 5.7 | 9.2 | 8.1 | 8.0 | 6.5 | 6.6 |
| 5.0 | 8.0 | 6.5 | 6.1 | 6.4 | 6.6 | 7.2 | 5.9 | 4.0 | 5.7 |
| 7.9 | 6.0 | 5.6 | 6.0 | 6.2 | 7.7 | 6.7 | 7.7 | 8.2 | 9.0 |

STAT ENTER
Step 1: Press STAT ENTER and input the blood test data into list $\mathrm{L}_{1}$
Step 2: Press 2nd $Y=$ (STAT PLOT) and then press ENTER to access the Plot 1
Step 3: Adjust the menu settings so that your screen looks like this


Step 4: We have two options for setting the window.
The first option is to let the calculator select the window and graph the histogram. Press histogram..


Notice that there are 7 classes of equal width. If this is acceptable then we can use
TRACE
to construct the classes and to find the frequency in each class.
OR,
The second option is to set the window manually.
WINDOW
Press and adjust the settings so that the screen looks like this


Note: To determine the Xscl or class width, find the range $=$ Xmax - Xmin which is 5.2 in this case. Then decide on the number of classes and divide into the range. Finally, round this number up to get the Xscl. For this example. I choose six bars in the histogram or 6 classes.
Dividing $6 \longdiv { \approx } \frac { . 9 1 6 7 } { 5 . 2 }$. Rounding up yields a Xscl of 1.
The Ymax is the highest frequency and is not known until the frequency histogram is graphed. Since there were 30 measurements in the original data set, this would be an effective upper bound for Ymax. However, since there will be 6 classes displayed, I chose 20 as a guess. This can be corrected quickly if the guess is too large or small.

## GRAPH

Step 5: Press
to display the histogram as shown below


Step 6: In this example, the Ymax setting is set too low and should be adjusted to a larger value.
Similarly, the Xmax setting needs to be adjusted also. Press wiNDow and make the following corrections..

```
WINT[IDW
    XMiF=4
    <MGx=1日
    Xᄃ.1=1
    Ymir=G
    Ym.Gx=15
    YEG1=1
    Xres=1
```

Step 7: Press GRAPH to display the histogram as shown below


To construct the grouped frequency distribution, continue with the following steps..
Step 8: Press TRACE. Your screen should look like this..


Step 9: Press (Right Arrow) to view the rest of the classes and the corresponding frequencies in each class. Complete the table as below.

| Classes | Frequencies |
| :---: | ---: |
| $4-5$ | 2 |
| $5-6$ | 7 |
| $6-7$ | 10 |
| $7-8$ | 4 |
| $8-9$ | 5 |
| $9-10$ | 2 |
|  | 30 |
| Total |  |

ASSIGNMENT: Do exercises 2.29-2.23 in your text

Example 2－6：Data from a recent survey of Roman Catholic nuns summarizes their ages as follows．

| Class <br> Midpoints | Age <br> Classes | Frequencies |
| :---: | :---: | :---: |
| 25 | 20 up to 30 | 34 |
| 35 | 30 up to 40 | 58 |
| 45 | 40 up to 50 | 76 |
| 55 | 50 up to 60 | 187 |
| 65 | 60 up to 70 | 254 |
| 75 | 70 up to 80 | 241 |
| 85 | 80 up to 90 | 147 |

Construct a histogram for this data．

STAT ENTER
Step 1：Press and input the class midpoints in list $\mathrm{L}_{1}$ and corresponding frequencies in list $\mathrm{L}_{2}$ ．Your screen will look like this．．

| L1 | L2 | L2 | 2 |
| :---: | :---: | :---: | :---: |
| 35 |  |  |  |
| 55 | ${ }_{1}$ |  |  |
| 雨 | E54 |  |  |
| 85 | 147 |  |  |
| － | ＋ |  |  |
| LE゙时）＝ |  |  |  |



Step 3：Adjust the menu settings so that your screen looks like this


Step 4：Press
WINDOW
and adjust the settings so that the screen looks like this．．

```
WIF\[IOW
    XMir=25
    \M. 人=95
    XECl=1回
    Ymir=G
    YBx=260
    YEGl=1
    Xres=
```

GRAPH
Step 5: Press to display the histogram


ASSIGNMENT: Do exercises 2.39, 2.41 in your text
An ogive is a plot of cumulative frequency or cumulative relative frequency versus class limit. A horizontal scale identifies the upper class boundaries. Every ogive starts on the left with a relative frequency or frequency of zero at the lower class boundary of the first class and ends on the right with a cumulative relative frequency of 1 , or cumulative frequency of $n$ (the number of observations in the data set).

Example 2-7: The final exam scores of 50 elementary statistics students were selected and the following grouped frequency distribution was obtained.

| Classes | Frequencies | Cumulative <br> Frequency |  |
| :---: | :---: | :--- | :---: |
| $35-45$ | 2 |  |  |
| $45-55$ | 2 |  |  |
| $55-65$ | 7 |  |  |
| $65-75$ | 13 |  |  |
| $75-85$ | 11 |  |  |
| $85-95$ | 11 |  |  |
| $95-105$ | 4 |  |  |
|  |  |  |  |
| Total | 50 |  |  |
|  |  |  |  |

Construct the cumulative frequency histogram or ogive for this distribution.

## STAT ENTER

Step 1: Press , input the class midpoints into list $\mathrm{L}_{1}$ and frequencies into list $\mathrm{L}_{2}$

Your screen should look like this

| L1 | L2 | L3 | 2 |
| :---: | :---: | :---: | :---: |
| 50 | $\frac{2}{7}$ |  |  |
| 8 | ${ }^{7}$ |  |  |
| 时 | 11 |  |  |
| 1000 | ${ }_{4} 1$ |  |  |
| --- |  |  |  |



Step 3: Press 2nd STAT , select OPS and then select 6: cumSum and press
ENTER

Step 4: Press 2 nd 2 STO) 2 ( $\left.L_{2}\right)$ frequencies in list $\mathrm{L}_{3}$.

## STAT ENTER

To view these cumulative frequencies press STAT ENTER. Check your screen matches this..

| L1 | L2 | L3 | 3 |
| :---: | :---: | :---: | :---: |
| 40 | 2 | F |  |
| 50 | $\frac{5}{7}$ | 4 |  |
| 80 | 13 | 11 |  |
| 晾 | 11 | 35 |  |
| 90 | 11 | 45 |  |
| 100 | 4 | 50 |  |
| L3C1)=2 |  |  |  |



WINDOW
Step 6: We need to adjust the windows settings. Press the screen looks like this..

```
WINTOW
    Xmin=40
    xM余=100
    XECl=10
    Ymin=0
    YM沓=50
    YECl=1
    Mres=
```

Step 7: Finally, Press GRAPH to obtain the following ogive


ASSIGNMENT: Do exercises 2.51, 2.53 in your text

## Measures of Central Tendency

The Mean - The mean is the arithmetic average of the values of the data set. It is used to represent the "average" or center of the data as a representative value. There are several ways to find the mean on the TI-84. Consider the following example;

Example 2-8: A set of data consists of 6, 3, 8, 6 and 4. Find the mean

## Method 1

STAT ENTER
Step 1: Press
$\square$ and input the data values into list $\mathrm{L}_{1}$


## Method 2

STAT ENTER
Step 1: Step 1: Press

2nd MODE CLEAR
to get to a blank home screen
Step 2: Press

Step 3: Press STAT , select CALC, select 1: 1-Var Stats and press
ENTER

Step 4: Press 2 nd 1 ENTER. The calculator returns the answer..

```
1-var st.ats
    \(\bar{x}=5.4\)
    \(\sum \times 2=161\)
    \(5 \times=1.949358869\)
\(+7=5\)
```

This second approach shows the mean, $\bar{x}=5.4$. It also displays other measures as well. Notice $\mathrm{S}_{\mathrm{x}}$ which represents the sample standard deviation, $\sigma_{X}$ which represents the population standard deviation are also found on the same page.

Also note the down arrow in the bottom left hand part of the view screen. By pressing the down arrow a few times we obtain the rest of the 1-Var Stats summary..

```
1-Var* Stats
Tr=5
    min<<=3
    01=3.5
    Med=6
    Q = F
    m.\Xi人X=8
```

* We will use Method 2 for most of our calculations throughout the rest of this manual.

ASSIGNMENT: Do exercises 2.58, 2.60, 2.61 in your text
The Median - When the data set is sorted, the "middle" value is termed the median. In a data set with an odd number of values, there is a middle value. In a data set with an even number of values, the average of the two "middle-most" values is the median. The TI-84 displays the median in the 1 -Var Stats summary.

Example 2-9: Find the median for the data set 6, 3, 8, 5, 3


Step 4: Press repeatedly to scroll down to the median. The calculator returns the value

```
1-var` St.gts
7に=5
    mir昷=3
    Q1=3
    MEd=5
    Q = 7
    m
```

ASSIGNMENT: Do exercises 2.62, 2.63, 2.67 in your text

## Mode \& Midrange

The Mode \& Midrange can be found using the program CENTRAL

Example 2-10: Find the Mode \& Midrange of the data set 3,3,5,6,8

STAT ENTER
Step 1: Press and input the data values into list $\mathrm{L}_{1}$

PRGM
Step 2: Press , and then press


Step 3: When prompted for LIST, press

$$
\text { 2nd } 1
$$

Step 4: Select 1: MIDRANGE, 2: MODE or 3: Exit as shown on the following screen


Depending on your selection, the calculator returns the following screens


ASSIGNMENT: Do exercises 2.65-2.67 in your text
Example 2-11: Recruits for a police academy were required to undergo a test that measures exercise capacity. Exercise capacity (in minutes) was obtained for each of 20 recruits and is given in the following table. Find the mean, median, mode and the midrange of the data.

| Exercise Capacity |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 25 | 27 | 30 | 33 | 30 | 32 | 30 | 34 | 30 | 27 |
| 26 | 25 | 29 | 31 | 31 | 32 | 34 | 32 | 33 | 30 |

First, to find the mean and median use the $1-\mathrm{Var}$ Stats summary

STAT ENTER
Step 1: Press and input the Exercise Capacity values into list $\mathrm{L}_{1}$
2nd MODE CLEAR
Step 2: Press
2nd
to get to a blank home screen
Step 3:

. The following screen will be returned


Thus the mean is $\bar{x}=30.05$

Step 4: Press
 several times to display the median


So, the median is 30

To find the midrange and mode use the CENTRAL Program
Step 1: Press PRGM , and then press
 to select CENTRAL, then press

ENTER

Step 2: When prompted for LIST, press 2 nd 1
Step 3: Select 1: MIDRANGE, 2: MODE or 3: Exit as shown on the following screens
MICRPFGE $=29.5$


ASSIGNMENT: Do exercises 2.67-2.74 in your text

## Measures of Dispersion

These measures indicate spread or variation of data. Data sets with identical means and medians can have different measures of spread. We will learn how to compute the range, standard deviation and variance on the TI-84+

Example 2-12: Find the range, standard deviation and variance for the data set 6, 3, 8, 5, 2

Step 1: Press

STAT ENTER

2nd MODE CLEAR
Step 2: Press
and input the data values into list $\mathrm{L}_{1}$
to get to a blank home screen
Step 3: STAT $\rightarrow$ returned $\rightarrow$ ENTER 2nd 1 ENTER . The following screen will be


The sample standard deviation, denoted $s=2.387$. The sample variance is the square of the standard deviation or $s^{2}=(2.387)^{2}=5.698$. Finally, the range of data set is the difference of the maximum and minimum. Press
 repeatedly, the calculator will return the following screen.


Thus, the range is $8-2=6$
ASSIGNMENT: Do exercises 2.85, 2.89-2.94 in your text
We may compute the estimated mean, standard deviation and variance of a grouped frequency distribution

Example 2-13: A farmer conducted an experiment in order to judge the value of a new diet for his animals. Using the weight gain (in grams) for chicks fed on a high-protein diet given in the
following table, find the mean, variance, and standard deviation.

| Weight Gain | Frequency |
| :---: | :---: |
| 12.5 | 2 |
| 12.7 | 6 |
| 13.0 | 22 |
| 13.1 | 29 |
| 13.2 | 12 |
| 13.8 | 4 |

Step 1: Press STAT ENTER and input the Weight Gain data into list $\mathrm{L}_{1}$ and the corresponding frequencies into list $\mathrm{L}_{2}$
 obtain the following screen.


The mean, $\bar{x}=13.076$
The sample standard deviation, $\mathrm{s}=.231$
The sample variance is $\mathrm{s}^{2}=.231^{2}=.053$

## Measures of Position on the TI-84+

There are four measures of position that we will compute using the POSITION Program on the TI-84+. These are the quartiles, percentiles, midquartiles and innerquartile range (IQR).

Example 2-14: An experiment was conducted in order to test how quickly certain fabrics ignite when exposed to a flame. The following table lists the ignition times for a certain type of synthetic fabric. Find the quartiles, the midquartile, the interquartile range, and the 88th percentile.

| Ignition Times |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30.1 | 31.5 | 34.0 | 37.5 | 30.1 | 31.6 | 34.5 | 37.5 | 30.2 |  |
| 31.6 | 34.5 | 37.6 | 30.5 | 32.0 | 35.0 | 38.0 | 31.0 | 32.4 |  |
| 35.0 | 39.5 | 31.1 | 32.5 | 35.6 | 31.2 | 33.0 | 36.0 | 31.3 |  |
| 33.0 | 36.5 | 31.3 | 33.0 | 36.9 | 31.4 | 33.5 | 37.0 |  |  |

## STAT ENTER

Step 1: Press

## PRGM

## ENTER

Step 2: Press and input the Ignition Times data into list $\mathrm{L}_{1}$ following screen


ENTER
Step 3: Select the option you want to compute and press enter. The 4 screens are shown below.


ASSIGNMENT: Do exercises 2.105-2.109 in your text
A 5-number summary is sometimes used to describe a set of data and is composed of:
(1) Min, the smallest value in the data set,
(2) $\mathrm{Q}_{1}$, the first quartile (also called $\mathrm{P}_{25}$, or the $25^{\text {th }}$ percentile),
(3) Med, the median, $\mathrm{Q}_{2}$ or $50^{\text {th }}$ percentile
(4) $Q_{3}$, the third quartile (also called $\mathrm{P}_{75}$, or the $75^{\text {th }}$ percentile), and
(5) Max, the largest value in the data set.

The 5-number summary is displayed with the other measures of central tendency on the 1-Var Stat summary.

Example 2-15: A manual dexterity test was given to 20 intoxicated individuals. The times (in minutes) to complete the test are listed in the table below. Compute the 5 -number summary for the data

| 21 | 30 | 51 | 28 | 34 |
| ---: | ---: | ---: | ---: | ---: |
| 44 | 47 | 33 | 32 | 33 |
| 42 | 65 | 35 | 10 | 55 |
| 49 | 99 | 34 | 33 | 72 |

Step 1: Press STAT ENTER and input the minutes data into list $\mathrm{L}_{1}$

Step 2: Press 2nd MODE CLEAR to get to a blank home screen


Step 4: Press $\quad$ repeatedly to obtain the screen


ASSIGNMENT: Do exercise 2.111 in your text

A box-and-whisker display, or boxplot, is a graphic representation of the 5-number summary. The five numerical values (Min, $\mathrm{Q}_{1}, \mathrm{Med}, \mathrm{Q}_{3}, \mathrm{Max}$ ) are located on a horizontal scale. A box is drawn with edges at the quartiles and a line is drawn at the median. A line segment (whisker) is drawn from $\mathrm{Q}_{1}$ to the smallest value, and another line segment is drawn from $\mathrm{Q}_{3}$ to the largest value. This regular box-and-whisker display is a built-in statistical plot.

Example 2-16: Using the Minutes data from the previous example construct a boxplot of the data.


Step 3: Set the menu as shown below


WINDOW
Step 4: Set the window. Press and adjust the settings to look like the following..


Notice the Xmin is the minimum value and Xmax is the maximum value in the data set. The Xscl can be set at any convenient value for reading the boxplot. Boxplots only measure in the horizontal direction, thus you can always set $\mathrm{Ymin}=0, \mathrm{Ymax}=10$ and $\mathrm{Yscl}=1$

GRAPH
Step 4: Press to obtain the following screen


The TI-84+ Plus will also display a modified boxplot showing potential outliers.
Step 1: Press 2 nd $Y=$ ENTER to enter the Plot 1 menu
Step 2: Adjust your screen to the following


Step 3: Press GRAPH to display the modified boxplot


TRACE
Step 4: Press outlier.

ASSIGNMENT: Do exercises 2.111, 2.112, 2.114, 2.115, 2.118 in your text
The z-score, or standard score, for a specific value is a measure of relative standing in terms of the mean and standard deviation. The program ZSCORE on the TI-84 will convert X (raw scores) into Z scores.
Example 2-17: The mean score on a calculus midterm was 64 with a standard deviation of 11. Sally scored 80. What was her z-score? i.e. how many standard deviations above the mean did Sally score on her midterm?

Step 2: The calculator will prompt you for the mean, standard deviation and raw score X. Input the values 64,11 and 80 respectively as shown below..


ENTER
Step 3: Press to obtain the following z-score rounded to two decimal places


ENTER
Note: To obtain additional z-scores press and ZSCORE automatically begins again.
ASSIGNMENT: Do exercises 2.119-2.123, 2.125, 2.127-2.128 in your text

## Chebyshev's Theorem on the TI-84+

The Program CHEBY can be used to find intervals and percentages using Chebyshev's Theorem.

Example 2-18: A certain brand of shoes have a mean cost of $\$ 58$ with a standard deviation of $\$ 6$. What minimum percentage is guaranteed by Chebyshev's Theorem to lie within $\$ 42.52$ to \$73.48?

Solution:
Step 1: First determine if this interval is symmetric with respect to the mean of 58 . Since $73.48-58=15.48$ and $58-42.52=15.48$, there is symmetry.

Step 2: We need to determine the value $\mathrm{k} . \mathrm{k}=15.48 / 6=2.58$

Step 3: Press $\operatorname{\text {PRGM}} \backsim$

the next screen.


Step 4: Press $\checkmark$ to select 2: STATS and press
ENTER

Step 5: Input the appropriate values for the mean, standard deviation and k. The calculator returns the following..


Thus, at least $85 \%$ of this brand of shoe will lie in the price range (\$42.52, \$73.48)
ASSIGNMENT: Do exercises 2.192, 2.205, 2.206 in your text

Example 2-19: A sample of earnings per share data for 30 fortune 500 companies is listed below.

| 1.97 | .60 | 4.02 | 3.20 | 1.15 | 6.06 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4.44 | 2.02 | 3.37 | 3.65 | 1.74 | 2.75 |
| 3.81 | 9.70 | 8.29 | 5.63 | 5.21 | 4.55 |
| 7.60 | 3.16 | 3.77 | 5.36 | 1.06 | 1.71 |
| 2.47 | 4.25 | 1.93 | 5.15 | 2.06 | 1.65 |

Using Chebyshev's Theorem, calculate the range of the data that is within $\mathrm{k}=2.5$ standard deviations of the mean.

Solution:

ENTER
Step 1: Press and input the earnings data into list $\mathrm{L}_{1}$
 the next screen.


ENTER
Step 4: Press to select 1: LIST
Step5: When prompted for LIST: press 2nd 1 ENTER. This brings you to the next screen..


ENTER
Step 6: Since this data represents a sample, press

Step 7: When prompted for the value of $k$, press
 calculator returns the following..


Thus, the interval in which at least $84 \%$ of the data lies based on this sample is ( $-1.75,9.24$ )
ASSIGNMENT: Do exercises 2.207-2.208 in your text

## Using the TI-84+ to Test Data for Normality

Example 2-20: The final exam scores for an elementary statistics exam are listed in the table below. Test the data for normality.

| 60 | 47 | 82 | 95 | 88 | 72 | 67 | 66 | 68 | 98 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 90 | 77 | 86 | 58 | 64 | 95 | 74 | 72 | 88 | 74 |
| 77 | 39 | 90 | 63 | 68 | 97 | 70 | 64 | 70 | 70 |
| 58 | 78 | 89 | 44 | 55 | 85 | 82 | 83 | 72 | 77 |
| 72 | 86 | 50 | 94 | 92 | 80 | 91 | 75 | 76 | 78 |

## STAT ENTER <br> Step 1: Press

Step 2: Press $\rightarrow$ to highlight listname $\mathrm{L}_{1}$ and then press $\rightarrow$ repeatedly until you come to a blank column as shown in the screen below.


Step 3: Notice the Alpha Character is locked (A in upper right corner). Thus we can type the list
ENTER
name EXAM using the green alpha keys and then press like this..


Step 4: Press $\sim$ and input the exam scores into the list EXAM.


WINDOW
Step 7: Press and adjust your window settings to match those below

```
WIF[IOW
    XMir=3'=
    XM是=99
    <EGl=1E
    YMir=-5
    YMS=5
    YEGl=1
    4res=
```

GRAPH
Step 8: Press
to obtain the following plot


When the data appears to be linear, this indicates that the data is approximately normal.
ASSIGNMENT: Do exercise 2.207 in your text

## Using the TI-84+ to generate random data

The program SAMPLE can be used to generate random numbers between two bounds with or without replacement.

Example 2-21: The California State Lottery Super Jackpot Plus ${ }^{\circledR}$ is a game in which players choose or let the computer randomly generate 5 numbers between 1-47. This random generation is sometimes called a "Quick-Pick". Simulate the random draw of a "Quick-Pick"

## ENTER

Step 2: When prompted for LOW BND: input 1 and press

## ENTER

Step 3: When prompted for UP BND: input 47 and press

## -

## ENTER

Step 4: When prompted for SAMPLE SIZE: input 5 and press

The calculator will prompt you to select sampling with or without replacement

ENTER
Step 5: Since 1: W/OUT REPLACE is highlighted, select ENTER. The following screen is obtained..


STAT ENTER
Step 6: Press STAT ENTER to see the list. Since the numbers are randomly generated, the list that is obtained each time will be different.


ASSIGNMENT: Do exercises 2.213-2.216 in your text

