


CHAPTER 2 
 

TEACHING NOTES 
 
This is the chapter where I expect students to follow most, if not all, of the algebraic derivations.  
In class I like to derive at least the unbiasedness of the OLS slope coefficient, and usually I   
derive the variance.  At a minimum, I talk about the factors affecting the variance.  To simplify 
the notation, after I emphasize the assumptions in the population model, and assume random 
sampling, I just condition on the values of the explanatory variables in the sample.  Technically, 
this is justified by random sampling because, for example, E(ui|x1,x2,…,xn) = E(ui|xi) by 
independent sampling.  I find that students are able to focus on the key assumption SLR.4 and 
subsequently take my word about how conditioning on the independent variables in the sample is 
harmless.  (If you prefer, the appendix to Chapter 3 does the conditioning argument carefully.)  
Because statistical inference is no more difficult in multiple regression than in simple regression, 
I postpone inference until Chapter 4.  (This reduces redundancy and allows you to focus on the 
interpretive differences between simple and multiple regression.) 
 
You might notice how, compared with most other texts, I use relatively few assumptions to 
derive the unbiasedness of the OLS slope estimator, followed by the formula for its variance.  
This is because I do not introduce redundant or unnecessary assumptions.  For example, once 
SLR.4 is assumed, nothing further about the relationship between u and x is needed to obtain the 
unbiasedness of OLS under random sampling. 
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SOLUTIONS TO PROBLEMS 
 
2.1 (i) Income, age, and family background (such as number of siblings) are just a few 
possibilities.  It seems that each of these could be correlated with years of education.  (Income 
and education are probably positively correlated; age and education may be negatively correlated 
because women in more recent cohorts have, on average, more education; and number of siblings 
and education are probably negatively correlated.) 
 
 (ii) Not if the factors we listed in part (i) are correlated with educ.  Because we would like to 
hold these factors fixed, they are part of the error term.  But if u is correlated with educ then 
E(u|educ) ≠ 0, and so SLR.4 fails. 
 
2.2 In the equation y = β0 + β1x + u, add and subtract α0 from the right hand side to get y = (α0 + 
β0) + β1x + (u − α0).  Call the new error e = u − α0, so that E(e) = 0.  The new intercept is α0 + 
β0, but the slope is still β1. 
 

2.3 (i) Let yi = GPAi, xi = ACTi, and n = 8.  Then  x = 25.875, y  = 3.2125, (xi – 
1

n

i=
∑ x )(yi – y ) = 

5.8125, and (xi – 
1

n

i=
∑ x )2 = 56.875.  From equation (2.9), we obtain the slope as 1̂β = 

5.8125/56.875  .1022, rounded to four places after the decimal.  From (2.17), ≈ 0β̂  = y  – 

1̂β x  ≈  3.2125 – (.1022)25.875 ≈  .5681.  So we can write 
 
 GPA   =  .5681 + .1022 ACT 

 n = 8. 
 

The intercept does not have a useful interpretation because ACT is not close to zero for the 
population of interest.  If ACT is 5 points higher,  increases by .1022(5) = .511. GPA
 
 (ii) The fitted values and residuals — rounded to four decimal places — are given along with 
the observation number i and GPA in the following table: 
 
 

i GPA GPA        û

1 2.8 2.7143 .0857 
2 3.4 3.0209 .3791 
3 3.0 3.2253 –.2253 
4 3.5 3.3275 .1725 
5 3.6 3.5319 .0681 
6 3.0 3.1231 –.1231 
7 2.7 3.1231 –.4231 
8 3.7 3.6341 .0659 

 
You can verify that the residuals, as reported in the table, sum to −.0002, which is pretty close to 
zero given the inherent rounding error. 
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 (iii) When ACT = 20, = .5681 + .1022(20) GPA ≈  2.61.   
 

 (iv) The sum of squared residuals, 2

1

ˆ
n

i
i

u
=
∑ , is about .4347 (rounded to four decimal places), 

and the total sum of squares, (yi – 
1

n

i=
∑ y )2, is about 1.0288.  So the R-squared from the 

regression is 
 

R2  =  1 – SSR/SST ≈  1 – (.4347/1.0288) ≈  .577. 
 
 

Therefore, about 57.7% of the variation in GPA is explained by ACT in this small sample of 
students. 
 
2.4 (i) When cigs = 0, predicted birth weight is 119.77 ounces. When cigs = 20, bwght  = 109.49.  
This is about an 8.6% drop. 
 
 (ii) Not necessarily.  There are many other factors that can affect birth weight, particularly 
overall health of the mother and quality of prenatal care.  These could be correlated with 
cigarette smoking during birth.  Also, something such as caffeine consumption can affect birth 
weight, and might also be correlated with cigarette smoking. 
 
 (iii) If we want a predicted bwght of 125, then cigs = (125 – 119.77)/( –.524) –10.18, or 
about –10 cigarettes!  This is nonsense, of course, and it shows what happens when we are trying 
to predict something as complicated as birth weight with only a single explanatory variable.  The 
largest predicted birth weight is necessarily 119.77.  Yet almost 700 of the births in the sample 
had a birth weight higher than 119.77. 

≈

 
 (iv) 1,176 out of 1,388 women did not smoke while pregnant, or about 84.7%.  Because we 
are using only cigs to explain birth weight, we have only one predicted birth weight at cigs = 0.  
The predicted birth weight is necessarily roughly in the middle of the observed birth weights at 
cigs = 0, and so we will under predict high birth rates. 
 
2.5 (i) The intercept implies that when inc = 0, cons is predicted to be negative $124.84.  This, of 
course, cannot be true, and reflects that fact that this consumption function might be a poor 
predictor of consumption at very low-income levels.  On the other hand, on an annual basis, 
$124.84 is not so far from zero. 
 
 (ii) Just plug 30,000 into the equation:  = –124.84 + .853(30,000) = 25,465.16 dollars. cons
 
 (iii) The MPC and the APC are shown in the following graph.  Even though the intercept is 
negative, the smallest APC in the sample is positive.  The graph starts at an annual income level 
of $1,000 (in 1970 dollars). 
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2.6 (i) Yes.  If living closer to an incinerator depresses housing prices, then being farther away 
increases housing prices. 
 
 (ii) If the city chose to locate the incinerator in an area away from more expensive 
neighborhoods, then log(dist) is positively correlated with housing quality.  This would violate 
SLR.4, and OLS estimation is biased. 
 
 (iii) Size of the house, number of bathrooms, size of the lot, age of the home, and quality of 
the neighborhood (including school quality), are just a handful of factors.  As mentioned in part 
(ii), these could certainly be correlated with dist [and log(dist)]. 
 
2.7 (i) When we condition on inc in computing an expectation, inc  becomes a constant.  So 
E(u|inc) = E( inc ⋅ e|inc) = inc ⋅E(e|inc) = inc ⋅0 because E(e|inc) = E(e) = 0. 
 
 (ii) Again, when we condition on inc in computing a variance, inc  becomes a constant.  So 
Var(u|inc) = Var( inc ⋅ e|inc) = ( inc )2Var(e|inc) = 2

eσ inc because Var(e|inc) = 2
eσ . 

 
 (iii) Families with low incomes do not have much discretion about spending; typically, a 
low-income family must spend on food, clothing, housing, and other necessities.  Higher income 
people have more discretion, and some might choose more consumption while others more 
saving.  This discretion suggests wider variability in saving among higher income families. 
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2.8 (i) From equation (2.66),  
 

1β  = 
1

n

i i
i

x y
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑  / 2

1

n

i
i

x
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ . 

 
Plugging in yi = β0 + β1xi + ui gives 
 

1β  = 0 1
1

(
n

i i
i

)ix x uβ β
=

⎛ ⎞+ +⎜ ⎟
⎝ ⎠
∑ / 2

1

n

i
i

x
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ . 

 
After standard algebra, the numerator can be written as 
 

2
0 1

1 1 1
i

n n n

i i
i i i

ix x xβ β
= = =

+ + u∑ ∑ ∑ . 
 

Putting this over the denominator shows we can write 1β  as 
 

1β   =  β0
1

n

i
i

x
=
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1

n
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i
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Conditional on the xi, we have 
 

E( 1β ) = β0
1

n

i
i

x
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ / 2

1

n

i
i

x
=

⎛
⎜
⎝ ⎠

⎞
⎟∑  + β1  

because E(ui) = 0 for all i.  Therefore, the bias in 1β  is given by the first term in this equation.  

This bias is obviously zero when β0 = 0.  It is also zero when 
1

n

i
i

x
=
∑  = 0, which is the same as 

x  = 0.  In the latter case, regression through the origin is identical to regression with an 
intercept. 
  (ii) From the last expression for 1β in part (i) we have, conditional on the xi, 
 

  Var( 1β ) = Var
2
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 (iii) From (2.57), Var( 1̂β ) = σ2/ 2

1

( )
n

i
i

x x
=

⎛ −⎜
⎝ ⎠
∑ ⎞

⎟ .  From the hint, 2

1

n

i
i

x
=
∑  ≥ 2

1
(

n

i
i

)x x
=

−∑ , and so 

Var( 1β ) ≤ Var( 1̂β ).  A more direct way to see this is to write 2

1

( )
n

i
i

x x
=

−∑  = 2

1

( )
n

i
i

2x n x
=

−∑ , which 

is less than 2
i

1

n

i
x

=
∑  unless x  = 0. 

 (iv) For a given sample size, the bias in 1β  increases as x  increases (holding the sum of the 
2
ix  fixed).  But as x  increases, the variance of 1̂β increases relative to Var( 1β ).  The bias in 1β  

is also small when 0β  is small.  Therefore, whether we prefer 1β  or 1̂β  on a mean squared error 

basis depends on the sizes of 0β , x , and n (in addition to the size of 2
i

1

n

i

x
=
∑ ). 

 
2.9 (i) We follow the hint, noting that 1c y  = 1c y  (the sample average of  is c1 times the 

sample average of yi) and 
1 ic y

2c x  = 2c x .  When we regress c1yi on c2xi (including an intercept) we 
use equation (2.19) to obtain the slope: 
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From (2.17), we obtain the intercept as 0β  = (c1 y ) – 1β (c2 x ) = (c1 y ) – [(c1/c2) 1̂β ](c2 x ) = 

c1( y  – 1̂β x ) = c1 0β̂ ) because the intercept from regressing yi on xi is ( y  – 1̂β x ). 
 
 (ii) We use the same approach from part (i) along with the fact that 1(c y+ )  = c1 + y  and 

2(c x+ )  = c2 + x .  Therefore,  1 1( ) (ic y c y+ − + )  = (c1  +  yi) – (c1 + y ) = yi – y  and (c2 + xi) – 

2(c x+ )  = xi – x .  So c1 and c2 entirely drop out of the slope formula for the regression of (c1 + 

yi) on (c2 + xi), and 1β  = 1̂β .  The intercept is 0β  = 1( )c y+  – 1β 2(c x)+  = (c1 + y ) – 1̂β (c2 + 

x ) = ( 1
ˆy xβ− ) + c1 – c2 1̂β  = 0β̂  + c1 – c2 1̂β , which is what we wanted  to show. 

 
 (iii) We can simply apply part (ii) because 1 1log( ) log( ) log( )ic y c yi= + .  In other words, 
replace c1 with log(c1), yi with log(yi), and set c2 = 0. 
 
 (iv) Again, we can apply part (ii) with c1 = 0 and replacing c2 with log(c2) and xi with log(xi).  
If 0 1

ˆ ˆ and β β  are the original intercept and slope, then 1 1
ˆβ β=  and 10 0 2

ˆ ˆlog( )cβ β β= − . 
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0 (i) This (2.52),2.1  derivation is essentially done in equation  once (1/ SST )x  is brought inside 

the summation (which is valid because SSTx  does not depend on i  define 

 (ii) Because 

). Then, just
/ SSTi i xw d= . 

 

1 1 1
ˆ ˆCov( , ) E[( ) ] ,u uβ β β= −  we show that the latter is zero.  But, from part (i), 

( )1 1E[( ) ] = ( ).iu w u u  Because the iu  are pairwise uncorrelated 
1 1

ˆ E En n
i i ii i
u u wβ β

= =
⎡ ⎤− =⎢ ⎥⎣ ⎦∑ ∑

(they are independent), 2 2E( ) E( / ) /i iu u u n nσ= =  (because E( ) 0,  i hu u i h= ≠ ). Therefore, 
2 2

1 1i i ii i= =

 
1

E( ) ( / ) ( / ) 0.n n n
ii

w u u w n n wσ σ
=

= = =∑ ∑ ∑  

 (iii) The formula for the OLS intercept is 0
ˆ ˆy xβ β= −  and, plugging in 0 1y x uβ β= + +  

gives 0 0 1 1 0 1 1
ˆ ˆ ˆ( ) ( ) .x u x u xβ β β β β β β= + + − = + − −  

) Because 
 
 (iv 1̂  and uβ  are uncorrelated, 

2 2 2 2 2 2 2
0 1

ˆ ˆVar( ) Var( ) Var( ) / ( / SST ) / / SSTx xu x n x n xβ β σ σ σ σ= + = + = + , 
nted t

 
on gives 

which is what we wa o show. 

 (v) Using the hint and substituti ( )2 2
0

ˆVar( ) [ SST / ] / SSTx xn xβ σ= +  

( ) ( )2 1 2 2 2 2 1 2
1

/ SSTi xi
n x x x n x

=⎢ ⎥⎣ ⎦∑ ∑ 1
/ SST .n n

i xi
σ σ− −

=
⎡ ⎤− + =  

 
 

 (i) We would want to randomly assign the number of hours in the preparation course so that 
ours is independent of other factors that affect performance on the SAT. Then, we would 

 
e day of the 
repare for 

e 

=

2.11
h
collect information on SAT score for each student in the experiment, yielding a data set 
{( , ) : 1,..., }i isat hours i n= , where n is the number of students we can afford to have in the study.  
From equation (2.7), we should try to get as much variation in ihours  as is feasible. 

 (ii) Here are three factors:  innate ability, family income, and general health on th
exam.  If we think students with higher native intelligence think they do not need to p
th SAT, then ability and hours will be negatively correlated.  Family income would probably be 
positively correlated with hours, because higher income families can more easily afford 
preparation courses.  Ruling out chronic health problems, health on the day of the exam should 
be roughly uncorrelated with hours spent in a preparation course. 
 
 (iii) If preparation courses are effective, 1β  should be positive: other factors equal, an 

crease in hours should increase sat. in
 
 (iv) The intercept, 0β , has a useful inter etation in this example: because E(u) = 0, pr 0β  is the 

hours = 0. average SAT score for students in the population with 
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SOLUTIONS TO COMPUTER EXERCISES 

average mrate is about .732. 
 
C2.1 (i) The average prate is about 87.36 and the 
 
 (ii) The estimated equation is 
 

prate = 83.05 + 5.86 mrate 

n = 1,
 

(iii)  The intercept implies that predicted participation rate is 83.05 
percent.  The coefficient on mrate implies that a one-dollar increase in the match rate – a fairly 

 

e plug mrate = 3.5 into the equation we get 

 534,  R2 = .075. 

 , even if mrate = 0, the 

large increase – is estimated to increase prate by 5.86 percentage points.  This assumes, of 
course, that this change prate is possible (if, say, prate is already at 98, this interpretation makes
no sense). 
 
 (iv)  If w ˆprate = 83.05 + 5.86(3.5) = 103.59.  

his
le reg

 about 7.5% of the variation in prate.  This is not much, and suggests that 
any other factors influence 401(k) plan participation rates. 

864 because salary is in thousands 
f dollars.  Average ceoten is about 7.95. 

 0.  The longest tenure is 37 years. 

T  is impossible, as we can have at most a 100 percent participation rate.  This illustrates that, 
especially when dependent variables are bounded, a simp ression model can give strange 
predictions for extreme values of the independent variable.  (In the sample of 1,534 firms, only 
34 have mrate ≥ 3.5.) 
 
 (v)  mrate explains
m
 
C2.2 (i) Average salary is about 865.864, which means $865,
o
 
 (ii) There are five CEOs with ceoten =
 
 (iii) The estimated equation is 
 

log( )salary = 6.51 + .0097 ceoten 

n = 177,  R2

e obtain the approximate perc ary given Δceoten = 1 by multiplying the 
coefficient on ceoten by 100, 100(.0097) = .97%.  Therefore, one more year as CEO is predicted 

  

  = .013. 
 

W entage change in sal

to increase salary by almost 1%. 
 
C2.3 (i) The estimated equation is
 

sl = eep  3,586.4 – .151 totwrk 

n = 70
 

he intercept implies that the estim  per week for someone who does not 
work is 3,586.4 minutes, or about 59.77 hours.  This comes to about 8.5 hours per night. 

 6,  R2 = .103. 

T ated amount of sleep
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 (ii) If someone works two more hours per week then Δtotwrk = 120 (because totwrk is 
measured in minutes), and so = –.151(120) = –18.12 minutes.  This is only a few minutes 

a night.  If someone were to work one more hour on each of five working days, 

sleepΔ

sleepΔ =  
–.151(300) = –45.3 minutes, or about five minutes a night. 
 
C2.4 (i) Average salary is about $957.95 and average IQ is about 101.28.  The sample standard 
deviation of IQ is about 15.05, which is pretty close to the population value of 15. 
 
 (ii) This calls for a level-level model: 
 
  = 116.99 + 8.30 IQ wage

 n = 935,  R2 = .096. 
 

An increase in IQ of 15 increases predicted monthly salary by 8.30(15) = $124.50 (in 1980 
dollars).  IQ score does not even explain 10% of the variation in wage. 
 
 (iii) This calls for a log-level model: 
 

log( )wage = 5.89 + .0088 IQ 

n = 935,  R2 = .099. 
 

If ΔIQ = 15 then log( )wageΔ  = .0088(15) = .132, which is the (approximate) proportionate 
change in predicted wage.  The percentage increase is therefore approximately 13.2. 
 
C2.5 (i) The constant elasticity model is a log-log model: 
 

log(rd) = 0β  + 1β log(sales) + u, 
 

where 1β  is the elasticity of rd with respect to sales. 
 
 (ii) The estimated equation is 
 
 log( )rd = –4.105 + 1.076 log(sales) 

 n  =  32,   R2  =  .910. 
 

The estimated elasticity of rd with respect to sales is 1.076, which is just above one.  A one 
percent increase in sales is estimated to increase rd by about 1.08%. 
 
C2.6 (i) It seems plausible that another dollar of spending has a larger effect for low-spending 
schools than for high-spending schools.  At low-spending schools, more money can go toward 
purchasing more books, computers, and for hiring better qualified teachers. At high levels of 
spending, we would expend little, if any, effect because the high-spending schools already have 
high-quality teachers, nice facilities, plenty of books, and so on. 
 
 (ii) If we take changes, as usual, we obtain 
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1 110 log( ) ( /100)(% ),math expend expendβ βΔ = Δ ≈ Δ  
 

just as in the second row of Table 2.3.  So, if % 1expend 0,Δ = 110 /10.math βΔ =  
 
 (iii) The regression results are 

2

10 69.34  11.16 log( )
408,   .0297

math expend
n R

= − +

= =
 

 
 (iv) If expend increases by 10 percent, 10math  increases by about 1.1 percentage points. 
This is not a huge effect, but it is not trivial for low-spending schools, where a 10 percent 
increase in spending might be a fairly small dollar amount. 
 
 (v) In this data set, the largest value of math10 is 66.7, which is not especially close to 100.  
In fact, the largest fitted values is only about 30.2. 
 
C2.7 (i) The average gift is about 7.44 Dutch guilders. Out of 4,268 respondents, 2,561 did not 
give a gift, or about 60 percent. 
 
 (ii) The average mailings per year is about 2.05. The minimum value is .25 (which 
presumably means that someone has been on the mailing list for at least four years) and the 
maximum value is 3.5. 
 
 (iii) The estimated equation is 
 

2

2.01  2.65 
4,268,   .0138

gift mailsyear
n R

= +

= =
 

 
 (iv) The slope coefficient from part (iii) means that each mailing per year is associated with – 
perhaps even “causes” – an estimated 2.65 additional guilders, on average. Therefore, if each 
mailing costs one guilder, the expected profit from each mailing is estimated to be 1.65 guilders. 
This is only the average, however. Some mailings generate no contributions, or a contribution 
less than the mailing cost; other mailings generated much more than the mailing cost. 
 
 (v) Because the smallest mailsyear in the sample is .25, the smallest predicted value of gifts 
is 2.01 + 2.65(.25) ≈ 2.67. Even if we look at the overall population, where some people have 
received no mailings, the smallest predicted value is about two. So, with this estimated equation, 
we never predict zero charitable gifts. 
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