## SOLUTIONS MANUAL



## Chapter 2

2.1

(a)

(b)

(c)

$2.2 x(t)=\cos 10 \pi t,-1 \leq t \leq 1$ has 10 cycles of sinusoid.

$$
\begin{aligned}
& x_{1}(t)=x(2 t), \text { range }-0.5 \leq t \leq 0.5 \\
& x_{2}(t)=x(0.5 t), \text { range: }-2 \leq t \leq 2
\end{aligned}
$$

Since the time-compressed $x_{1}(t)=\cos 20 \pi t$, it also has 10 cycles in the compressed time interval $-0.5 \leq t \leq 0.5$. Similarly, $x_{2}(t)=x(0.5 t)=\cos 5 \pi t$, has 10 cycles in the expanded interval $-2 \leq t \leq 2$. In general, if the time scale (compression/expansion) ratio is an integer, it results in scaled (compressed/expanded) period for each cycle and the same number of cycles appears in the scaled (compressed/expanded) interval.



2.3




2.4 (a)



2.4 (b)


2.5 (a)



2.5 (b)




2.6 (a)



2.6 (b)


2.6 (c)


2.6 (d)



$2.7 \quad x_{3}(t)=x_{1}(t) x_{2}(t) ; x_{1}(t)=x_{1}(-t) ; x_{2}(-t)=-x_{2}(t)$

$$
x_{3}(-t)=x_{1}(-t) x_{2}(-t)=x_{1}(t)\left(-x_{2}(t)\right)=-x_{1}(t) x_{2}(t)
$$

$$
=-x_{3}(t) \Rightarrow x_{3}(t) \text { is an odd signal }
$$

2.8 (a) $x(t)=2 \sin \left(10 \pi t-30^{\circ}\right) \Rightarrow$ periodic

$$
10 \pi T=2 \pi k \Rightarrow T=\frac{1}{5} s
$$

(b) $x(t)=2 \cos \sqrt{2} \pi t \Rightarrow$ periodic $\Rightarrow T=\sqrt{2} s$
(irrational value for $T$ )
(c) periodic $\Rightarrow T=2 \sqrt{\pi} s$ (irrational)
(d) $x(t)=\sin ^{-1}(10 \pi t) \Rightarrow$ aperiodic
(e) $x(t)=2 \cos \left(t+60^{\circ}\right)=2 \cos \left((t+T)+60^{\circ}\right) \Rightarrow T=2 \pi s$ (irrational)
(f) $x(t)=2 \cos \left(6 \pi t+60^{\circ}\right)+j \sin \left(6 \pi t+30^{\circ}\right)=2 e^{j 6 \pi t} e^{j 60^{\circ}}$
$x(t+T)=2 e^{j 6 \pi(t+T)} e^{j 60^{\circ}}=x(t)$ for $6 \pi T=2 \pi k$
or $T=\frac{1}{3} s$; periodic
(g) $3 e^{j 20 t} e^{j \theta} \Rightarrow T=\frac{\pi}{10} s ;$ (irrational)
(h) $3 e^{j(20 \pi t+\pi / 3)} \Rightarrow$ periodic, $T=\frac{1}{10} s$
(i) $3 \cos \pi t \Rightarrow T_{1}=2 s ; 2 \cos t \Rightarrow T_{2}=2 \pi s$
$3 \cos \pi t+2 \cos t:$ No rational value for $\frac{T_{1}}{T_{2}} \Rightarrow$ aperiodic
(j) $\cos 100 \pi t \Rightarrow T_{1}=\frac{1}{50} s ; \sin 200 \pi t \Rightarrow T_{2}=\frac{1}{100} s$
$\frac{T_{1}}{T_{2}}=2 \Rightarrow T=\frac{1}{50} s$ for $\cos 100 \pi t+\sin 200 \pi t$
2.9 (a) $x[n]=2 \cos n \pi=x[n+N]=2 \cos ((n+N) \pi)$ periodic, $N=2$
(b) $3 n \cos n \pi \neq 3(n+N) \cos ((n+N) \pi)$ for any integer $N$.
$\therefore$ nonperiodic
(c) $2 \cos 10 n \neq 2 \cos (10(n+N))$ for any integer $N$.
$\therefore$ nonperiodic
(d) $3 \sin 0.2 n \pi \Rightarrow$ periodic, $N=10$
(e) $3 \sin 1.2 n \pi \Rightarrow$ periodic, $N=\frac{2 k}{1.2} \Rightarrow N=5$ (smallest)
(f) $4 e^{j n \pi}=4 e^{j(n+N) \pi} \Rightarrow$ periodic, $N=2$
(g) $e^{j \frac{n \pi}{2}}=e^{j(n+N) \frac{\pi}{2}} \Rightarrow$ periodic, $N=4$
(h) $4 e^{j\left(n \pi+60^{\circ}\right)}=4 e^{j\left((n+N) \pi+60^{\circ}\right)} \quad \Rightarrow$ periodic, $N=2$
2.10 (a) $2 \cos \left(t+60^{\circ}\right)$ : periodic, power signal, $T=2 \pi$
$P=\frac{1}{2 \pi} \int_{0}^{2 \pi} 4 \cos ^{2}\left(t+60^{\circ}\right) d t=\frac{1}{\pi} \int_{0}^{2 \pi}\left[1+\cos \left(2\left(t+60^{\circ}\right)\right)\right] d t$
$P=2$
(b) $x(t)=3 e^{j 20 \pi t} \Rightarrow$ periodic; $T=\frac{1}{10} s$

$$
\begin{aligned}
& P=\frac{1}{T} \int_{0}^{T} x(t) x^{*}(t) d t=10 \int_{0}^{\frac{1}{10}} 9 d t \\
& P=9
\end{aligned}
$$

(c) Energy signal
$E=2 \int_{0}^{5} t^{2} d t=\frac{250}{3}$

(d) $x(t)=\cos \pi t,|t| \leq 0.2$, repeats every $0.4 s$ period $=0.2 s \Rightarrow$ power signal
$P=\frac{1}{0.2} \int_{0}^{0.2} \cos ^{2} \pi t d t=\frac{1}{0.4} \int_{0}^{0.2}(1+\cos 2 \pi t) d t$ $P=\frac{1}{2}$

(e) $x[n]=5, n=0,2,5,7 \quad \Rightarrow$ Energy signal $E=4 \times 5^{2}=100$
(f) $x[n]=\cos n \pi \Rightarrow$ periodic; period $N=2$
$P=\frac{1}{2} \sum_{n=0}^{1} \cos ^{2} n \pi=1$
2.11 (a) $\int_{-5}^{-2} t \delta(t+3) d t=-3$
(b) $\int_{-\infty}^{t}(\alpha+2) \delta(\alpha+2) u(\alpha) d \alpha=0 ; \alpha=-2 \Rightarrow u(-2)=0$
(c) $\int_{-\infty}^{t} \delta(t+2) \cos (10 t) u(t) d t=0 ; t=-2 \Rightarrow u(-2)=0$
(d) $\int_{0}^{2} \cos 5 t \delta(t+2) d t=0$
(e) $\int_{-5}^{5} \cos 5 t \delta(t+2) d t=\cos (-10)$
(f) $\int_{-\infty}^{\infty} \delta(t-4) t e^{-a t} u(t) d t=4 e^{-4 a}$
(g) $\int_{-\infty}^{\infty} e^{a \alpha} u(-\alpha) \delta\left(a-t_{0}\right) d \alpha=\left\{\begin{array}{cl}e^{a t_{0}} & , t_{0} \leq 0 \\ 0 & , t_{0}>0\end{array}\right.$
$2.12 \int_{-\infty}^{\infty} \delta\left(a t-t_{0}\right) f(t) d t=\int_{-\infty}^{\infty} \delta(\alpha) \frac{f}{|a|}\left(\alpha+t_{0} / a\right) d \alpha$ using at $-t_{0}=\alpha$

$$
=\frac{1}{|a|} f\left(\frac{t_{0}}{a}\right)
$$

(a) $\int_{-\infty}^{\infty} e^{a t} u(t) \delta(2 t-4) d t=\frac{1}{2} e^{2 a}$
(b) $\int_{-\infty}^{\infty} e^{-a t} \cos b t \delta(2 t-5) d t=e^{-\frac{5}{2} a} \cos \frac{5}{2} b$
(c) $\int_{-\infty}^{\infty} r(3 t) \delta(2 t-4) d t=\frac{1 r}{2}\left(3 \times \frac{4}{2}\right)=\frac{6}{2}=3$
2.13 (a) $\sum_{n=-\infty}^{\infty} \delta[n+2] e^{-2 n}=e^{4}$
(b) $\sum_{n=-\infty}^{\infty} \delta[n-3] \cos \left(\frac{n \pi}{4}\right)=\cos \frac{3 \pi}{4}$
(c) $\sum_{n=0}^{\infty} 3(n-2) \delta[n-5]=9$
(d) $\sum_{n=-\infty}^{\infty} \delta[2 n-3] x[n]=\sum_{l=-\infty}^{\infty} \delta[l] x\left[\frac{l+3}{2}\right]$, using $l=2 n-3$

$$
=x\left[\frac{3}{2}\right] \Rightarrow \text { undefined }
$$

$2.14 y[n]=\frac{1}{3}[x[n]+x[n-1]+x[n-2]]$
$y[n-1]=\frac{1}{3}[x[n-1]+x[n-2]+x[n-3]]$
$y[n]-y[n-1]=\frac{1}{3}[x[n]-x[n-3]]$
2.15 (a) $y(t)=\left\{\begin{aligned} x(t), & x(t) \geq 0 \\ 0, & x(t)<0\end{aligned}\right.$
(i) memoryless (ii) noninvertible (iii) nonlinear (iv) time-invariant (v) causal (vi) BIBO-stable.
(iii) $x_{1}(t) \rightarrow y_{1}(t)=x_{1}(t)$ for $x_{1}(t) \geq 0$ $-2 x_{1}(t) \rightarrow y_{2}(t)=0 \neq-2 y_{1}(t)$ if $x_{1}(t) \geq 0$
(iv) $x_{1}(t) \rightarrow y_{1}(t)=x_{1}(t)$, if $x_{1}(t) \geq 0$

$$
x_{2}(t)=x_{1}(t-d) \rightarrow y_{2}(t)=x_{2}(t)=x_{1}(t-d)=y_{1}(t-d)
$$

(b) $y(t)=\sin (a x(t))$
(i) memoryless (ii) noninvertible (iii) nonlinear (iv) time-invariant (v) causal (vi) stable
(vii) $x_{1}(t) \rightarrow y_{1}(t)=\sin \left(a x_{1}(t)\right)$

Let $x_{2}(t)=b x_{1}(t) \rightarrow y_{2}(t)=\sin \left(a x_{2}(t)\right)=\sin \left(a b x_{1}(t)\right)$

$$
\neq b \sin \left(a x_{1}(t)\right)
$$

(c) $y(t)=x(t) \sin (t+1)$
(i) memoryless $\Rightarrow \sin (t+1)$ calculated
(ii) noninvertible $\Rightarrow x(-1)=\frac{y(-1)}{\sin (0)}$, indeterminate
(iii) linear
(iv) time-varying: $x_{1}(t) \rightarrow y_{1}(t)=x_{1}(t) \sin (t+1)$

$$
\begin{aligned}
x_{2}(t)=x_{1}(t-d) \rightarrow y_{2}(t) & =x_{2}(t) \sin (t+1)=x_{1}(t-d) \sin (t+1) \\
& \neq y_{1}(t-d)=x_{1}(t-d) \sin (t+1-d)
\end{aligned}
$$

(v) causal
(vi) stable
(d) $y(t)=x(a t), a>0$
(i) memoryless (ii) noninvertible (iii) linear (iv) time-varying:

$$
\begin{aligned}
x_{1}(t) \rightarrow y_{1}(t)=x_{1}(a t) ; x_{2}(t)=x_{1}(t-d) \rightarrow y_{2}(t) & =x_{2}(a t)=x_{1}(a t-d) \\
& \neq y_{1}(t-d)=x_{1}(a(t-d))
\end{aligned}
$$

(v) causal (vi) stable
(e) $y[n]=x[1-n]$
(i) has memory (ii) invertible (iii) linear
(iv) time-varying: $x_{1}[n] \rightarrow y_{1}[n]=x_{1}[1-n]$

$$
\begin{aligned}
x_{2}[n]=x_{1}[n-k] \rightarrow y_{2}[n]=x_{2}[1-n] & =x_{1}[1-n-k] \\
& \neq y_{1}[n-k]=x_{1}[1-n+k]
\end{aligned}
$$

(v) causal (vi) stable
(f) $y[n]=x[2 n]$
(i) memoryless (ii) noninvertible (iii) linear (iv) time-varying
(v) causal (vi) stable
(g) $y[n]=\sum_{k=-\infty}^{n} x[k]$
(i) has memory (ii) invertible (iii) linear
(iv) $x_{1}[n] \rightarrow y_{1}[n]=\sum_{k=-\infty}^{n} x_{1}[k]$
$x_{2}[n]=x_{1}[n-N] \rightarrow y_{2}[n]=\sum_{k=-\infty}^{n} x_{2}[k]=\sum_{k=-\infty}^{n} x_{1}[k-N]$
$y_{1}[n-N]=\sum_{k=-\infty}^{n-N} x_{1}[k] \neq y_{2}[n] \Rightarrow$ time-varying
(v) causal (vi) stable
(h) $y[n]=\sum_{k=n-2}^{n+2} x[k]$
(i) has memory (ii) noninvertible (iii) linear
(iv) time-invariant:

$$
x_{1}[n] \rightarrow y_{1}[n]=\sum_{k=n-2}^{n+2} x_{1}[k]
$$

$$
\begin{aligned}
& x_{2}[n]=x_{1}[n-N] \rightarrow y_{2}[n]=\sum_{k=n-2}^{n+2} x_{2}[k]=\sum_{k=n-2}^{n+2} x_{1}[k-N] \\
& y_{1}[n-N]=\sum_{k=n-N-2}^{n-N+2} x_{1}[k]=y_{2}[n] \\
& \text { (v) noncausal (vi) stable }
\end{aligned}
$$

$2.16 y_{d}[n]=Q\{x[n]\}$ is nonlinear
Consider a 4-bit quantizer with the following ranges and their quantized outputs.
$x[n]<0.5 \Rightarrow y_{d}[n]=0000 ; 0.5 \leq x[n]<1.5 \Rightarrow 0001$;
$1.5 \leq x[n]<2.5 ; \ldots 13.5 \leq x[n]<14.5 \Rightarrow 1110$
$x[n] \geq 14.5 \Rightarrow y_{d}[n]=1111$.
For $x_{1}[n]=3.4, y_{d_{1}}[n]=0011$, and for
$x_{2}[n]=9.4, y_{d_{2}}[n]=1001$. But, for
$x_{1}[n]+x_{2}[n]=12.8, y_{d}[n]=1101 \neq y_{d_{1}}[n]+y_{d_{2}}[n]$
The same is true for a 16-bit quantizer.
2.17 Let $x_{1}(t) \rightarrow y_{1}(t)$ and $x_{2}(t) \rightarrow y_{2}(t)$, each satisfying the model.

For $x_{3}(t)=a_{1} x_{1}(t)+a_{2} x_{2}(t) \rightarrow y_{3}(\mathrm{t})$, assume $y_{3}(t)=a_{1} y_{1}(t)+a_{2} y_{2}(t)$. Then, from the model

$$
\begin{aligned}
a \frac{d y_{3}}{d t}+b y_{3}(t) & =a \frac{d}{d t}\left[a_{1} y_{1}(t)+a_{2} y_{2}(t)\right]+b\left[a_{1} y_{1}(t)+a_{2} y_{2}(t)\right] \\
& =a_{1}\left[a \frac{d y_{1}}{d t}+b y_{1}(t)\right]+a_{2}\left[a \frac{d y_{2}}{d t}+b y_{2}(t)\right] \\
& =a_{1} x_{1}(t)+a_{2} x_{2}(t) \\
& =x_{3}(t)
\end{aligned}
$$

Hence, a linear system.
2.18 For $x_{3}[n]=a_{1} x_{1}[n]+a_{2} x_{2}[n] \rightarrow y_{3}[n]=a_{1} y_{1}[n]+a_{2} y_{2}[n]$

From the model, $y_{3}[n]+a y_{3}[n-1]=a_{1} y_{1}[\mathrm{n}]+a_{2} y_{2}[n]+a a_{1} y_{1}[n-1]+a a_{2} y_{2}[n-1]$

$$
\begin{aligned}
& =a_{1}\left[y_{1}[n]+a y_{1}[n-1]\right]+a_{2}\left[y_{2}[n]+a y_{2}[n-1]\right] \\
& =a_{1} x_{1}[n]+a_{2} x_{2}[n]
\end{aligned}
$$

Hence, the system is linear.
2.19 System is nonlinear, e.g., $v_{i_{1}}(t)=-3 \rightarrow v_{0_{1}}(t)=-3$; $v_{i_{2}}(t)=7 \rightarrow v_{0_{2}}(t)=5 ; v_{i_{3}}(t)=v_{i_{1}}(t)+$ $v_{i_{2}}(t)=4 \rightarrow v_{0_{3}}(t)=4 \neq v_{0_{1}}(t)+v_{0_{2}}(t)$
Time-invariant: $v_{i}\left(t_{1}-d\right) \rightarrow v_{0}\left(t_{1}-d\right)=\left.v_{0}\left(t_{1}\right)\right|_{t_{1} \rightarrow t_{1}-d}$
Causal: $v_{0}\left(t_{1}\right)$ depends only on $v_{i}\left(t_{1}\right)$, not on $v_{i}\left(t_{1}+t\right)$ for any $t_{1}$.
$2.20 v_{0}(t)=-10 v_{i}(t)+0.05,-0.5 \mathrm{~V} \leq v_{i} \leq 0.5 \mathrm{~V}$
Nonlinear due to offset voltage.

$$
\text { e.g., } \begin{aligned}
v_{i_{1}}(t) & =0.2 \mathrm{~V} \rightarrow v_{0_{1}}(t)=-2+0.05=-1.95 \mathrm{~V} \\
v_{i_{2}}(t) & =0.4 \mathrm{~V} \\
& =2 v_{i_{1}}(t) \rightarrow v_{0_{2}}(t)=-4+0.05=-3.95 \mathrm{~V} \neq 2 v_{0_{1}}(t)
\end{aligned}
$$

$2.21 y(t)=x(t) \cos w_{c} t$
linear; causal; BIBO-stable
$2.22 y(t)=x^{2}(t) \Rightarrow$ nonlinear, causal, BIBO-stable.
$2.23 y(t)=x^{*}(t)$
Linear: $x_{1}(t)=a_{1}(t)+j b_{1}(t) \rightarrow y_{1}(t)=a_{1}(t)-j b_{1}(t)$

$$
\begin{aligned}
x_{2}(t) & =a_{2}(t)+j b_{2}(t) \rightarrow y_{2}(t)=a_{2}(t)-j b_{2}(t) \\
c_{1} x_{1}+c_{2} x_{2} & =c_{1} a_{1}(t)+j c_{1} b_{1}(t)+c_{2} a_{2}(t)+j c_{2} b_{2}(t) \rightarrow c_{1} a_{1}(t)+c_{2} a_{2}(t)-j\left[c_{1} b_{1}(t)+c_{2} b_{2}(t)\right] \\
& =c_{1} y_{1}(t)+c_{2} y_{2}(t), \text { for real } c_{1} \text { and } c_{2}
\end{aligned}
$$

Time-invariant: $x_{3}(t)=x_{1}(t-d) \rightarrow y_{3}(t)=y_{1}(t-d)$
$2.24 x(t)=u(t) \rightarrow y(t)=g(t)$
$f(t)=3 u(t)-4 u(t-2)$
$\therefore$ Response $=3 g(t)-4 g(t-2)$
$2.25 a \frac{d y}{d t}+b y(t)=x(t) ; x(t)=A e^{s t} \rightarrow y(t)=B e^{s t}$
Let $x_{1}(t)=A_{1} e^{s_{1} t} \rightarrow y_{1}(t)=B_{1} e^{s_{1} t}$ so that
$a \frac{d y_{1}}{d t}+b y_{1}(t)=a B_{1} s_{1} e^{s_{1} t}+b B_{1} e^{s_{1} t}=A_{1} e^{s_{1} t}$
and $x_{2}(t)=A_{2} e^{s_{2} t} \rightarrow y_{2}(t)=B_{2} e^{s_{2} t}$ so that
$a \frac{d y_{2}}{d t}+b y_{2}(t)=a B_{2} s_{2} e^{s_{2} t}+b B_{2} e^{s_{2} t}=A_{2} e^{s_{2} t}$
Then $x_{3}(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)=c_{1} A_{1} e^{s_{1} t}+c_{2} A_{2} e^{s_{2} t}$ satisfies
$y_{3}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$, for $y_{3}(t)=c_{1} B_{1} e^{s_{1} t}+c_{2} B_{2} e^{s_{2} t}$,

$$
\begin{aligned}
a \frac{d y_{3}}{d t}+b y_{3}(t) & =a c_{1} B_{1} s_{1} e^{s_{1} t}+a c_{2} B_{2} s_{2} e^{s_{2} t}+b c_{1} B_{1} e^{s_{1} t}+b c_{2} B_{2} e^{s_{2} t} \\
& =c_{1}\left[a B_{1} s_{1} e^{s_{1} t}+b B_{1} e^{s_{1} t}\right]+c_{2}\left[a B_{2} s_{2} e^{s_{1} t}+b B_{2} e^{s_{2} t}\right] \\
& =c_{1} y_{1}(t)+c_{2} y_{2}(t)
\end{aligned}
$$

$\mathbf{2 . 2 6} y[n]=\operatorname{Real}(x[n])$
For $x_{1}[n]=a_{1}[n]+j b_{1}[n] \rightarrow y_{1}[n]=a_{1}[n]$
Similarly, for $x_{2}[n]=a_{2}[n]+j b_{2}[n] \rightarrow y_{2}[n]=a_{2}[n]$
Then, for $x_{3}[n]=c_{1} x_{1}[n]+c_{2} x_{2}[n]=c_{1} a_{1}[n]+j c_{1} b_{1}[n]+c_{2} a_{2}[n]+j c_{2} b_{2}[n]$,
$y_{3}[n]=\operatorname{Re}\left(x_{3}[n]\right)=c_{1} a_{1}[n]+c_{2} a_{2}[n]$, for real $c_{1}$ and $c_{2}$

$$
=c_{1} y_{1}[n]+c_{2} y_{2}[n]
$$

Hence, the system is linear.

$$
\text { For } \begin{aligned}
x_{3}[n]=x_{1}[n-d], y_{3}[n] & =\operatorname{Re}\left(x_{1}[n-d]\right) \\
& =\operatorname{Re}\left(a_{1}[n-d]+j b_{1}[n-d]\right) \\
& =a_{1}[n-d] \\
& =y_{1}[n-d]
\end{aligned}
$$

Hence, the system is time-invariant.
$2.27 y[n]=x[n]+b y[n-1] ; y[0]=0 ; x[n]=K, 0<K<\infty$
$y[1]=K ; y[2]=K+b K ; y[3]=K\left[1+b+b^{2}\right] ; \ldots$
$y[n]=K\left(1+b+b^{2}+\ldots+b^{n-1}\right)$
For $b>1, y[n] \rightarrow \infty$ as $n \rightarrow \infty$
$\therefore$ BIBO-unstable.

```
K = 5; a = 0.2; N = 20;
b = 1+a;
x = K*ones (N,1);
y0 = 0;
y = zeros(size(x));
y(1) = x(1);
for n = 2:N
    Y(n) = x(n) + b*y(n - 1);
end
```


2.28 For inputs $x_{1}[n]=z_{1}^{n}$ and $x_{2}[n]=z_{2}^{n}$, let the outputs be $x_{1}[n] \rightarrow y_{1}[n]=Y_{1} z_{1}^{n}$ and
$x_{2}[n] \rightarrow y_{2}[n]=Y_{2} z_{2}^{n}$. Then, for $x_{3}[n]=a_{1} x_{1}[n]+a_{2} x_{2}[n]$, assume
$y_{3}[n]=a_{1} y_{1}[n]+a_{2} y_{2}[n]$.
From the model, the left-hand side gives
$a_{1} y_{1}[n]+1.4 a_{1} y_{1}[n-1]+0.48 a_{1} y_{1}[n-2]+a_{2} y_{2}[n]+1.4 a_{2} y_{2}[n-1]+0.48 a_{2} y_{2}[n-2]$
$=a_{1} x_{1}[n]+a_{2} x_{2}[n]=x_{3}[n]$
Hence, the model is linear.
2.29 Let the current in the circuit be $i(t)$. Writing the KVL, we have

$$
\begin{aligned}
& R i(t)+\frac{1}{C} \int_{0}^{t} i d t=v_{s}(t)=R i(t)+v_{0}(t) \\
& i(t)=\frac{v_{s}(t)-v_{0}(t)}{R}, \quad \text { and } v_{0}(t)=\frac{1}{C} \int_{0}^{t} i d t \\
& \frac{d v_{0}}{d t}=\frac{1}{C} \frac{\left[v_{s}(t)-v_{0}(t)\right]}{R}
\end{aligned}
$$

Since
or

$$
v_{0}(t)+R C \frac{d v_{0}}{d t}=v_{s}(t)
$$

Discretization: $v_{0}[n T]+\frac{R C}{T}\left[v_{0}[n T]-v_{0}[(n-1) T]\right]=v_{s}[n T]$
or

$$
v_{0}[n]=\frac{T}{T+R C} v_{s}[n]+\frac{R C}{T+R C} v_{0}[n-1]
$$

```
%Input--10 u(t)
%RCy'(t) + y(t) = x(t)
% y[n] = b1*x[n] + al*y[n-1], b1 = T/(a+T), al = a/(a+T)
%DT-recursive solution
C = 1E-6; R = 1E4; Vi = 10; a = R*C;
T = 1E-3;
Ln = 100;
b1 = T/ (a+T); a1 = a/(a + T);
n = 0:Ln-1;
ntime = n/10;
```

```
x = Vi*ones(size(n));
y = zeros(size(x));
y(1) = 0;
for k = 2: Ln
    end
% Initial voltage
% closed form CT solution
Tc = 1E-4;
Nc = 0:999;
tau = R*C;
yc = Vi*(1-exp(-Nc*Tc/tau));
Values at t = [0.5 1 5 100] ms are
CT: [0.4877 [ 0.9516 [lll
DT at T = 1ms: [----- 0.9091 3.7908 9.9993]
DT at T = 10ms: [------ ------ ------ 9.9902]
```



2.30 DT Model: $\frac{y[n+2]-2 y[n+1]+y[n]}{T^{2}}+\frac{5}{T}(y[n+1]-y[n])+6 y[n]=x[n]$
or, replacing $n+2$ by $n$

$$
y[n]-\left(\frac{5}{T}-\frac{2}{T^{2}}\right) y[n-1]+\left(6-\frac{5}{T}+\frac{1}{T^{2}}\right) y[n-2]=x[n-2]
$$

Exact solution: $y(t)=\frac{1}{6}-\frac{1}{2} e^{-2 t}+\frac{1}{3} e^{-3 t}, t \geq 0$
\% Second order diff. eq.--discretized to DT model
\% Input--u(t)
$\% y^{\prime \prime}(t)+5 y^{\prime}(t)+6 y(t)=x(t)=u(t)$
$\% \mathrm{y}[\mathrm{n}]=\mathrm{T}^{\wedge} 2 * \mathrm{u}[\mathrm{n}-2]-(5 * \mathrm{~T}-2) * \mathrm{y}[\mathrm{n}-1]-\left(6 * \mathrm{~T}^{\wedge} 2+1-5 * \mathrm{~T}\right) * \mathrm{y}[\mathrm{n}-2]$
$\% a=5 * T-2 ; b=6 * T^{\wedge} 2+1-5 * T$
\% DT-recursive solution
$\mathrm{T} 1 \mathrm{=} 1 \mathrm{E}-3$;
a1 = 5*T1-2; b1 = 6*T1^2+1-5*T1;
Ln1 = 5000;
n1 = 0:Ln1-1;
x1 = ones(size(n1));
y1 = zeros(size(x1));
\% initial voltage
y10 = 0;
y1 (1) = 0;
$\mathrm{y} 1(2)=\mathrm{T1} 1^{\wedge}$;
for $k=3: \operatorname{Ln} 1$
$\mathrm{y} 1(\mathrm{k})=\mathrm{T} 1^{\wedge} 2 * \mathrm{x} 1(\mathrm{k})-\mathrm{a} 1 * \mathrm{y} 1(\mathrm{k}-1)-\mathrm{b} 1 * \mathrm{y} 1(\mathrm{k}-2)$; $\%$ Response end

```
T2 = 50E-3;
a2 = 5*T2-2; b2 = 6*T2^2+1-5*T2;
Ln2 = 5000;
n2 = 0:Ln2-1;
x2 = ones(size(n2));
y2 = zeros(size(x2));
% initial voltage
y20 = 0;
y2(1) = 0;
y2(2) = T2^2;
for k = 3: Ln2
    y2(k) = T2^2*x2(k) -a2*y2(k-1) -b2*y2(k-2); % Response
end
% closed form CT solution
Tc = 5E-4;
Nc = 0:9999;
LNc = length(Nc);
mode1 = 0.5*exp(-2*Tc*Nc);
mode2 = (1/3)*exp(-3*Tc*Nc);
yc = (1/6)*ones(size(mode1))-mode1 + mode2;
```


2.31 DT Model: $(L / T)(y[n]-y[n-1])+(T / 2 C) \sum_{k=0}^{n-1}(y[k]+y[k+1)]+R y[n]=x[n]$

For $n-1$
$(L / T)(y[n-1]-y[n-2])+(T / 2 C) \sum_{k=0}^{n-2}(y[k]+y[k+1])+R y[n-1]=x[n-1]$
Using the above
$(T / 2 C) \sum_{k=0}^{n-2}(y[k]+y[k+1])=x[n-1]-(L / T)(y[n-1]-y[n-2])-R y[n-1]$
Hence, the model equation becomes
$(L / T)(y[n]-y[n-1])+(T / 2 C)(y[n-1]+y[n])+R y[n]+x[n-1]-(L / T)(y[n-1]$
$-y[n-2])-R y[n-1] x[n]$
Or
$((L / T)+T / 2 C+R) y[n]=x[n]-x[n-1]+(R+2 L / T-T / 2 C) y[n-1]-(L / T) y[n-2]$
\% Integro-diff. eq. discretized to DT model
\% Input--u(t)
$\% L y^{\prime}(t)+R y(t)+(1 / C)$ integ $(y(t))=x(t)=u(t)$
$\% y[n]=(1 / a) *[x[n]-x[n-1]+b * y[n-1]-c * y[n-2]]$
$\% \mathrm{a}=\mathrm{L} / \mathrm{T}+(\mathrm{T} /(2 * \mathrm{C})+\mathrm{R}$;
\% $\mathrm{b}=\mathrm{R}-\mathrm{T} /(2 * \mathrm{C})+2 * \mathrm{~L} / \mathrm{T}$;
\% $\mathrm{c}=\mathrm{L} / \mathrm{T}$
$\mathrm{R}=4 ; \mathrm{L}=0.4 ; \mathrm{C}=0.001$;
\% DT-recursive solution
$\mathrm{T} 1=0.5 \mathrm{E}-3$;
$\mathrm{a} 1=(\mathrm{T} 1 /(2 * \mathrm{C})+\mathrm{L} / \mathrm{T} 1+\mathrm{R})$;
$\mathrm{b} 1=\mathrm{R}-\mathrm{T} 1 /(2 * \mathrm{C})+2 * \mathrm{~L} / \mathrm{T} 1$;
c1 = L/T1;
$\operatorname{Ln} 1=5000$;
n1 = 1:Ln1-1;
x1 = ones(size(n1));
y1 = zeros(size (x1));
\% initial conditions-unused
$\mathrm{y} 1 \mathrm{~m} 1=0 ; \mathrm{y} 1 \mathrm{~m} 2=0$;
y10 = 1/a1;

```
y1(1) = y10*b1/a1;
Y1(2) = Y1(1)*b1/a1-y10*c1/a1;
for k = 3: Ln1-1
    y1(k) = y1 (k-1)*b1/a1 - y1(k-2)*C1/a1;
end
% Response
resp1 = [y10y1]; time 1 = [0 n1]*T1;
% Change time sample
T2 = 15E-3;
a2 = (T2/(2*C) + L/T2 + R);
b2 = R-T2/(2*C) + 2*L/T2;
c2 = L/T2;
Ln2 = 500;
n2 = 1:Ln2-1;
x2 = ones(size(n2));
y2 = zeros(size(x2));
%initial conditions--unused
Y2m1 = 0; Y2m2 = 0;
y20 = 1/a2;
y2(1) = y20*b2/a2;
y2(2) = y2(1)*b2/a2 - y20*c2/a2;
for m = 3:Ln2-1
    y2(m)= y2(m-1)*b2/a2 - y2 (m-2)*c2/a2;
end
% Response
resp2 = [y20 y2]; time2 = [0 n2]*T2;
% closed form CT solution
Tc = 1E-4;
Nc = 0:99999;
LNC = length(Nc);
yc = 0.0502*exp(-5*Tc*Nc).*sin(49.7494*Tc*Nc);
```




$2.32 i_{c}=I_{S} e^{\frac{v_{B E}}{V_{T}}}, I_{S}=1 E-15 \mathrm{~A}$, and $V_{T}=25 \mathrm{mV}$
(a) At $V_{B E}=0.73 \mathrm{~V}, I_{C}=4.8017 \mathrm{~mA}$. Hence, the $Q$-point is $(0.73 \mathrm{~V}, 4.8017 \mathrm{~mA})$
(b) For $v_{B E}$ varying about the bias point by a small amount
$i_{c}=I_{c}+i_{c}=I_{S} e^{\frac{v_{B E}}{V_{T}}}=I_{S} e^{\frac{v_{B E}+v_{b e}}{V_{T}}}=I_{S} e^{\frac{V_{B E}}{V_{T}}} e^{\frac{v_{b e}}{V_{T}}}=I_{c} e^{\frac{v_{b e}}{V_{T}}}$
Expanding $i_{c}=I_{c}+i_{c}=I_{c} e^{\frac{v_{B E}}{V_{T}}} \approx I_{c}\left(1+\frac{v_{b e}}{V_{T}}\right)$, for $\left|v_{b e}\right| \ll V_{T}$.
Hence, the incremental current is related to the incremental voltage by $i_{c} \approx \frac{I_{c}}{V_{T}} v_{b e}$, for $\left|v_{b e}\right| \ll V_{T}$.
(c) $v_{c}(t)=15-i_{c} R_{c} \rightarrow V_{c}+v_{c}=15-\left(I_{c}+i_{c}\right) R_{c}$

Hence, $v_{c}=i_{c} R_{c} \approx \frac{I_{c}}{V_{T}} v_{b e} R_{c}$, and the incremental gain is given by
$\frac{\partial v_{c}}{\partial v_{b e}}=-\frac{I_{c}}{V_{T}} R_{c}=-960.35$

