## SOLUTIONS MANUAL



## Part One

## Solutions to Exercises

## Chapter 2 <br> Review of Probability

- Solutions to Exercises

1. (a) Probability distribution function for $Y$

| Outcome <br> (number of heads) | $Y=0$ | $Y=1$ | $Y=2$ |
| :--- | :---: | :---: | :---: |
| probability | 0.25 | 0.50 | 0.25 |

(b) Cumulative probability distribution function for $Y$

| Outcome <br> (number of heads) | $Y<0$ | $0 \leq Y<1$ | $1 \leq Y<2$ | $Y \geq 2$ |
| :--- | :---: | :---: | :---: | :---: |
| Probability | 0 | 0.25 | 0.75 | 1.0 |

(c) $\mu_{Y}=E(Y)=(0 \times 0.25)+(1 \times 0.50)+(2 \times 0.25)=1.00$

Using Key Concept 2.3: $\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}$, and
$E\left(Y^{2}\right)=\left(0^{2} \times 0.25\right)+\left(1^{2} \times 0.50\right)+\left(2^{2} \times 0.25\right)=1.50$
so that $\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=1.50-(1.00)^{2}=0.50$.
2. We know from Table 2.2 that $\operatorname{Pr}(Y=0)=0.22, \operatorname{Pr}(Y=1)=0.78, \operatorname{Pr}(X=0)=0.30$, $\operatorname{Pr}(X=1)=0.70$. So
(a)

$$
\begin{aligned}
\mu_{Y} & =E(Y)=0 \times \operatorname{Pr}(Y=0)+1 \times \operatorname{Pr}(Y=1) \\
& =0 \times 0.22+1 \times 0.78=0.78, \\
\mu_{X} & =E(X)=0 \times \operatorname{Pr}(X=0)+1 \times \operatorname{Pr}(X=1) \\
& =0 \times 0.30+1 \times 0.70=0.70 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sigma_{X}^{2} & =E\left[\left(X-\mu_{X}\right)^{2}\right] \\
& =(0-0.70)^{2} \times \operatorname{Pr}(X=0)+(1-0.70)^{2} \times \operatorname{Pr}(X=1) \\
& =(-0.70)^{2} \times 0.30+0.30^{2} \times 0.70=0.21, \\
\sigma_{Y}^{2} & =E\left[\left(Y-\mu_{Y}\right)^{2}\right] \\
& =(0-0.78)^{2} \times \operatorname{Pr}(Y=0)+(1-0.78)^{2} \times \operatorname{Pr}(Y=1) \\
& =(-0.78)^{2} \times 0.22+0.22^{2} \times 0.78=0.1716 .
\end{aligned}
$$

(c) Table 2.2 shows $\operatorname{Pr}(X=0, Y=0)=0.15, \operatorname{Pr}(X=0, Y=1)=0.15, \operatorname{Pr}(X=1, Y=0)=0.07$, $\operatorname{Pr}(X=1, Y=1)=0.63$. So

$$
\begin{aligned}
\sigma_{X Y}= & \operatorname{cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
= & (0-0.70)(0-0.78) \operatorname{Pr}(X=0, Y=0) \\
& +(0-0.70)(1-0.78) \operatorname{Pr}(X=0, Y=1) \\
& +(1-0.70)(0-0.78) \operatorname{Pr}(X=1, Y=0) \\
& +(1-0.70)(1-0.78) \operatorname{Pr}(X=1, Y=1) \\
= & (-0.70) \times(-0.78) \times 0.15+(-0.70) \times 0.22 \times 0.15 \\
& +0.30 \times(-0.78) \times 0.07+0.30 \times 0.22 \times 0.63 \\
= & 0.084,
\end{aligned}
$$

$$
\operatorname{cor}(X, Y)=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{0.084}{\sqrt{0.21 \times 0.1716}}=0.4425
$$

3. For the two new random variables $W=3+6 X$ and $V=20-7 Y$, we have:
(a)

$$
\begin{aligned}
& E(V)=E(20-7 Y)=20-7 E(Y)=20-7 \times 0.78=14.54, \\
& E(W)=E(3+6 X)=3+6 E(X)=3+6 \times 0.70=7.2 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sigma_{W}^{2} & =\operatorname{var}(3+6 X)=6^{2} \cdot \sigma_{X}^{2}=36 \times 0.21=7.56 \\
\sigma_{V}^{2} & =\operatorname{var}(20-7 Y)=(-7)^{2} \cdot \sigma_{Y}^{2}=49 \times 0.1716=8.4084
\end{aligned}
$$

(c)

$$
\begin{aligned}
\sigma_{W V} & =\operatorname{cov}(3+6 X, 20-7 Y)=6(-7) \operatorname{cov}(X, Y)=-42 \times 0.084=-3.528 \\
\operatorname{cor}(W, V) & =\frac{\sigma_{W V}}{\sigma_{W} \sigma_{V}}=\frac{-3.528}{\sqrt{7.56 \times 8.4084}}=-0.4425 .
\end{aligned}
$$

4. (a) $E\left(X^{3}\right)=0^{3} \times(1-p)+1^{3} \times p=p$
(b) $E\left(X^{k}\right)=0^{k} \times(1-p)+1^{k} \times p=p$
(c) $E(X)=0.3$
$\operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=0.3-0.09=0.21$
Thus, $\sigma=\sqrt{0.21}=0.46$.
To compute the skewness, use the formula from exercise 2.21:

$$
\begin{aligned}
E(X-\mu)^{3} & =E\left(X^{3}\right)-3\left[E\left(X^{2}\right)\right][E(X)]+2[E(X)]^{3} \\
& =0.3-3 \times 0.3^{2}+2 \times 0.3^{3}=0.084
\end{aligned}
$$

Alternatively, $E(X-\mu)^{3}=\left[(1-0.3)^{3} \times 0.3\right]+\left[(0-0.3)^{3} \times 0.7\right]=0.084$
Thus, skewness $=E(X-\mu)^{3} / \sigma^{3}=.084 / 0.46^{3}=0.87$.

To compute the kurtosis, use the formula from exercise 2.21:

$$
\begin{aligned}
E(X-\mu)^{4} & =E\left(X^{4}\right)-4[E(X)]\left[E\left(X^{3}\right)\right]+6[E(X)]^{2}\left[E\left(X^{2}\right)\right]-3[E(X)]^{4} \\
& =0.3-4 \times 0.3^{2}+6 \times 0.3^{3}-3 \times 0.3^{4}=0.0777
\end{aligned}
$$

Alternatively, $E(X-\mu)^{4}=\left[(1-0.3)^{4} \times 0.3\right]+\left[(0-0.3)^{4} \times 0.7\right]=0.0777$
Thus, kurtosis is $E(X-\mu)^{4} / \sigma^{4}=.0777 / 0.46^{4}=1.76$
5. Let $X$ denote temperature in ${ }^{\circ} \mathrm{F}$ and $Y$ denote temperature in ${ }^{\circ} \mathrm{C}$. Recall that $Y=0$ when $X=32$ and $Y=100$ when $X=212$; this implies $Y=(100 / 180) \times(X-32)$ or $Y=-17.78+(5 / 9) \times X$. Using Key Concept 2.3, $\mu_{X}=70^{\circ} \mathrm{F}$ implies that $\mu_{Y}=-17.78+(5 / 9) \times 70=21.11^{\circ} \mathrm{C}$, and $\sigma_{X}=7^{\circ} \mathrm{F}$ implies $\sigma_{Y}=(5 / 9) \times 7=3.89^{\circ} \mathrm{C}$.
6. The table shows that $\operatorname{Pr}(X=0, Y=0)=0.045, \operatorname{Pr}(X=0, Y=1)=0.709, \operatorname{Pr}(X=1, Y=0)=0.005$, $\operatorname{Pr}(X=1, Y=1)=0.241, \operatorname{Pr}(X=0)=0.754, \operatorname{Pr}(X=1)=0.246, \operatorname{Pr}(Y=0)=0.050$, $\operatorname{Pr}(Y=1)=0.950$.
(a)

$$
\begin{aligned}
E(Y) & =\mu_{Y}=0 \times \operatorname{Pr}(Y=0)+1 \times \operatorname{Pr}(Y=1) \\
& =0 \times 0.050+1 \times 0.950=0.950 .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Unemployment Rate } & =\frac{\#(\text { unemployed })}{\#(\text { labor force })} \\
& =\operatorname{Pr}(Y=0)=0.050=1-0.950=1-E(Y) .
\end{aligned}
$$

(c) Calculate the conditional probabilities first:

$$
\begin{aligned}
& \operatorname{Pr}(Y=0 \mid X=0)=\frac{\operatorname{Pr}(X=0, Y=0)}{\operatorname{Pr}(X=0)}=\frac{0.045}{0.754}=0.0597, \\
& \operatorname{Pr}(Y=1 \mid X=0)=\frac{\operatorname{Pr}(X=0, Y=1)}{\operatorname{Pr}(X=0)}=\frac{0.709}{0.754}=0.9403, \\
& \operatorname{Pr}(Y=0 \mid X=1)=\frac{\operatorname{Pr}(X=1, Y=0)}{\operatorname{Pr}(X=1)}=\frac{0.005}{0.246}=0.0203, \\
& \operatorname{Pr}(Y=1 \mid X=1)=\frac{\operatorname{Pr}(X=1, Y=1)}{\operatorname{Pr}(X=1)}=\frac{0.241}{0.246}=0.9797 .
\end{aligned}
$$

The conditional expectations are

$$
\begin{aligned}
E(Y \mid X=1) & =0 \times \operatorname{Pr}(Y=0 \mid X=1)+1 \times \operatorname{Pr}(Y=1 \mid X=1) \\
& =0 \times 0.0203+1 \times 0.9797=0.9797, \\
E(Y \mid X=0) & =0 \times \operatorname{Pr}(Y=0 \mid X=0)+1 \times \operatorname{Pr}(Y=1 \mid X=0) \\
& =0 \times 0.0597+1 \times 0.9403=0.9403
\end{aligned}
$$

(d) Use the solution to part (b),

> Unemployment rate for college grads $=1-E(Y \mid X=1)=1-0.9797=0.0203$.

Unemployment rate for non-college grads

$$
=1-E(Y \mid X=0)=1-0.9403=0.0597
$$

(e) The probability that a randomly selected worker who is reported being unemployed is a college graduate is

$$
\operatorname{Pr}(X=1 \mid Y=0)=\frac{\operatorname{Pr}(X=1, Y=0)}{\operatorname{Pr}(Y=0)}=\frac{0.005}{0.050}=0.1
$$

The probability that this worker is a non-college graduate is

$$
\operatorname{Pr}(X=0 \mid Y=0)=1-\operatorname{Pr}(X=1 \mid Y=0)=1-0.1=0.9
$$

(f) Educational achievement and employment status are not independent because they do not satisfy that, for all values of $x$ and $y$,

$$
\operatorname{Pr}(Y=y \mid X=x)=\operatorname{Pr}(Y=y)
$$

For example,

$$
\operatorname{Pr}(Y=0 \mid X=0)=0.0597 \neq \operatorname{Pr}(Y=0)=0.050
$$

7. Using obvious notation, $C=M+F$; thus $\mu_{C}=\mu_{M}+\mu_{F}$ and $\sigma_{C}^{2}=\sigma_{M}^{2}+\sigma_{F}^{2}+2 \operatorname{cov}(M, F)$. This implies
(a) $\mu_{C}=40+45=\$ 85,000$ per year.
(b) $\operatorname{cor}(M, F)=\frac{\operatorname{Cov}(M, F)}{\sigma_{M} \sigma_{F}}$, so that $\operatorname{Cov}(M, F)=\sigma_{M} \sigma_{F} \operatorname{cor}(M, F)$. Thus
$\operatorname{Cov}(M, F)=12 \times 18 \times 0.80=172.80$, where the units are squared thousands of dollars per year.
(c) $\sigma_{C}^{2}=\sigma_{M}^{2}+\sigma_{F}^{2}+2 \operatorname{cov}(M, F)$, so that $\sigma_{C}^{2}=12^{2}+18^{2}+2 \times 172.80=813.60$, and $\sigma_{C}=\sqrt{813.60}=28.524$ thousand dollars per year.
(d) First you need to look up the current Euro/dollar exchange rate in the Wall Street Journal, the Federal Reserve web page, or other financial data outlet. Suppose that this exchange rate is $e$ (say $e=0.80$ euros per dollar); each $1 \$$ is therefore with $e \mathrm{E}$. The mean is therefore $e \mu_{c}$ (in units of thousands of euros per year), and the standard deviation is $e \sigma_{C}$ (in units of thousands of euros per year). The correlation is unit-free, and is unchanged.
8. $\mu_{Y}=E(Y)=1, \sigma_{Y}^{2}=\operatorname{var}(Y)=4$. With $Z=\frac{1}{2}(Y-1)$,

$$
\begin{aligned}
& \mu_{Z}=E\left(\frac{1}{2}(Y-1)\right)=\frac{1}{2}\left(\mu_{Y}-1\right)=\frac{1}{2}(1-1)=0 \\
& \sigma_{Z}^{2}=\operatorname{var}\left(\frac{1}{2}(Y-1)\right)=\frac{1}{4} \sigma_{Y}^{2}=\frac{1}{4} \times 4=1
\end{aligned}
$$

9. 

|  |  | Value of $\boldsymbol{Y}$ |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Probability |  |  |  |  |  |  |  |
|  | $\mathbf{1 4}$ | $\mathbf{2 2}$ | $\mathbf{3 0}$ | $\mathbf{4 0}$ | $\mathbf{6 5}$ | $\boldsymbol{X}$ |  |
| Distribution of |  |  |  |  |  |  |  |$|$

(a) The probability distribution is given in the table above.

$$
\begin{aligned}
E(Y) & =14 \times 0.21+22 \times 0.23+30 \times 0.30+40 \times 0.15+65 \times 0.11=30.15 \\
E\left(Y^{2}\right) & =14^{2} \times 0.21+22^{2} \times 0.23+30^{2} \times 0.30+40^{2} \times 0.15+65^{2} \times 0.11=1127.23 \\
\operatorname{Var}(\mathrm{Y}) & =E\left(Y^{2}\right)-[E(Y)]^{2}=218.21 \\
\sigma_{Y} & =14.77
\end{aligned}
$$

(b) Conditional Probability of $Y \mid X=8$ is given in the table below

| Value of $\boldsymbol{Y}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 4}$ | $\mathbf{2 2}$ | $\mathbf{3 0}$ | $\mathbf{4 0}$ | $\mathbf{6 5}$ |
| $0.02 / 0.39$ | $0.03 / 0.39$ | $0.15 / 0.39$ | $0.10 / 0.39$ | $0.09 / 0.39$ |

$$
\begin{aligned}
E(Y \mid X=8)= & 14 \times(0.02 / 0.39)+22 \times(0.03 / 0.39)+30 \times(0.15 / 0.39) \\
& +40 \times(0.10 / 0.39)+65 \times(0.09 / 0.39)=39.21 \\
E\left(Y^{2} \mid X=8\right)= & 14^{2} \times(0.02 / 0.39)+22^{2} \times(0.03 / 0.39)+30^{2} \times(0.15 / 0.39) \\
& +40^{2} \times(0.10 / 0.39)+65^{2} \times(0.09 / 0.39)=1778.7
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(Y) & =1778.7-39.21^{2}=241.65 \\
\sigma_{Y \mid X=8} & =15.54
\end{aligned}
$$

(c) $E(X Y)=(1 \times 14 \times 0.02)+(1 \times 22: 0.05)+\cdots(8 \times 65 \times 0.09)=171.7$
$\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)=171.7-5.33 \times 30.15=11.0$
$\operatorname{Corr}(X, Y)=\operatorname{Cov}(X, Y) /\left(\sigma_{X} \sigma_{Y}\right)=11.0 /(5.46 \times 14.77)=0.136$
10. Using the fact that if $Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ then $\frac{Y-\mu_{Y}}{\sigma_{Y}} \sim N(0,1)$ and Appendix Table 1, we have
(a)

$$
\operatorname{Pr}(Y \leq 3)=\operatorname{Pr}\left(\frac{Y-1}{2} \leq \frac{3-1}{2}\right)=\Phi(1)=0.8413 .
$$

(b)

$$
\begin{aligned}
\operatorname{Pr}(Y & >0)=1-\operatorname{Pr}(Y \leq 0) \\
& =1-\operatorname{Pr}\left(\frac{Y-3}{3} \leq \frac{0-3}{3}\right)=1-\Phi(-1)=\Phi(1)=0.8413 .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\operatorname{Pr}(40 \leq Y \leq 52) & =\operatorname{Pr}\left(\frac{40-50}{5} \leq \frac{Y-50}{5} \leq \frac{52-50}{5}\right) \\
& =\Phi(0.4)-\Phi(-2)=\Phi(0.4)-[1-\Phi(2)] \\
& =0.6554-1+0.9772=0.6326 .
\end{aligned}
$$

(d)

$$
\begin{aligned}
\operatorname{Pr}(6 \leq Y \leq 8) & =\operatorname{Pr}\left(\frac{6-5}{\sqrt{2}} \leq \frac{Y-5}{\sqrt{2}} \leq \frac{8-5}{\sqrt{2}}\right) \\
& =\Phi(2.1213)-\Phi(0.7071) \\
& =0.9831-0.7602=0.2229 .
\end{aligned}
$$

11. (a) 0.90
(b) 0.05
(c) 0.05
(d) When $Y \sim \chi_{10}^{2}$, then $Y / 10 \sim F_{10, \infty}$.
(e) $Y=Z^{2}$, where $Z \sim \mathrm{~N}(0,1)$, thus $\operatorname{Pr}(Y \leq 1)=\operatorname{Pr}(-1 \leq Z \leq 1)=0.32$.
12. (a) 0.05
(b) 0.950
(c) 0.953
(d) The $t_{d f}$ distribution and $\mathrm{N}(0,1)$ are approximately the same when $d f$ is large.
(e) 0.10
(f) 0.01
13. (a) $E\left(Y^{2}\right)=\operatorname{Var}(Y)+\mu_{Y}^{2}=1+0=1 ; E\left(W^{2}\right)=\operatorname{Var}(W)+\mu_{W}^{2}=100+0=100$.
(b) $Y$ and $W$ are symmetric around 0 , thus skewness is equal to 0 ; because their mean is zero, this means that the third moment is zero.
(c) The kurtosis of the normal is 3 , so $3=\frac{E\left(Y-\mu_{Y}\right)^{4}}{\sigma_{Y}^{5}}$; solving yields $\mathrm{E}\left(Y^{4}\right)=3$; a similar calculation yields the results for $W$.
(d) First, condition on $X=0$, so that $S=W$ :
$E(S \mid X=0)=0 ; E\left(S^{2} \mid X=0\right)=100, E\left(S^{3} \mid X=0\right)=0, E\left(S^{4} \mid X=0\right)=3 \times 100^{2}$.
Similarly,

$$
E(S \mid X=1)=0 ; E\left(S^{2} \mid X=1\right)=1, E\left(S^{3} \mid X=1\right)=0, E\left(S^{4} \mid X=1\right)=3 .
$$

From the large of iterated expectations

$$
\begin{aligned}
& E(S)=E(S \mid X=0) \times \operatorname{Pr}(\mathrm{X}=0)+E(S \mid X=1) \times \operatorname{Pr}(X=1)=0 \\
& E\left(S^{2}\right)=E\left(S^{2} \mid X=0\right) \times \operatorname{Pr}(\mathrm{X}=0)+E\left(S^{2} \mid X=1\right) \times \operatorname{Pr}(X=1)=100 \times 0.01+1 \times 0.99=1.99 \\
& E\left(S^{3}\right)=E\left(S^{3} \mid X=0\right) \times \operatorname{Pr}(\mathrm{X}=0)+E\left(S^{3} \mid X=1\right) \times \operatorname{Pr}(X=1)=0 \\
& E\left(S^{4}\right)=E\left(S^{4} \mid X=0\right) \times \operatorname{Pr}(\mathrm{X}=0)+E\left(S^{4} \mid X=1\right) \times \operatorname{Pr}(X=1)=3 \times 100^{2} \times 0.01+3 \times 1 \times 0.99=302.97
\end{aligned}
$$

(e) $\mu_{S}=E(S)=0$, thus $E\left(S-\mu_{S}\right)^{3}=E\left(S^{3}\right)=0$ from part d. Thus skewness $=0$.

Similarly, $\sigma_{S}^{2}=E\left(S-\mu_{S}\right)^{2}=E\left(S^{2}\right)=1.99$, and $E\left(S-\mu_{S}\right)^{4}=E\left(S^{4}\right)=302.97$.
Thus, kurtosis $=302.97 /\left(1.99^{2}\right)=76.5$
14. The central limit theorem suggests that when the sample size $(n)$ is large, the distribution of the sample average $(\bar{Y})$ is approximately $N\left(\mu_{Y}, \sigma_{\bar{Y}}^{2}\right)$ with $\sigma_{\bar{Y}}^{2}=\frac{\sigma_{Y}^{2}}{n}$. Given $\mu_{Y}=100, \sigma_{Y}^{2}=43.0$,
(a) $n=100, \sigma_{\bar{Y}}^{2}=\frac{\sigma_{Y}^{2}}{n}=\frac{43}{100}=0.43$, and

$$
\operatorname{Pr}(\bar{Y} \leq 101)=\operatorname{Pr}\left(\frac{\bar{Y}-100}{\sqrt{0.43}} \leq \frac{101-100}{\sqrt{0.43}}\right) \approx \Phi(1.525)=0.9364
$$

(b) $n=165, \sigma_{\bar{Y}}^{2}=\frac{\sigma_{Y}^{2}}{n}=\frac{43}{165}=0.2606$, and

$$
\begin{aligned}
\operatorname{Pr}(\bar{Y}>98) & =1-\operatorname{Pr}(\bar{Y} \leq 98)=1-\operatorname{Pr}\left(\frac{\bar{Y}-100}{\sqrt{0.2606}} \leq \frac{98-100}{\sqrt{0.2606}}\right) \\
& \approx 1-\Phi(-3.9178)=\Phi(3.9178)=1.000 \text { (rounded to four decimal places). }
\end{aligned}
$$

(c) $n=64, \sigma_{\bar{Y}}^{2}=\frac{\sigma_{Y}^{2}}{64}=\frac{43}{64}=0.6719$, and

$$
\begin{aligned}
\operatorname{Pr}(101 \leq \bar{Y} \leq 103) & =\operatorname{Pr}\left(\frac{101-100}{\sqrt{0.6719}} \leq \frac{\bar{Y}-100}{\sqrt{0.6719}} \leq \frac{103-100}{\sqrt{0.6719}}\right) \\
& \approx \Phi(3.6599)-\Phi(1.2200)=0.9999-0.8888=0.1111 .
\end{aligned}
$$

15. (a)

$$
\begin{aligned}
\operatorname{Pr}(9.6 \leq \bar{Y} \leq 10.4) & =\operatorname{Pr}\left(\frac{9.6-10}{\sqrt{4 / n}} \leq \frac{\bar{Y}-10}{\sqrt{4 / n}} \leq \frac{10.4-10}{\sqrt{4 / n}}\right) \\
& =\operatorname{Pr}\left(\frac{9.6-10}{\sqrt{4 / n}} \leq Z \leq \frac{10.4-10}{\sqrt{4 / n}}\right)
\end{aligned}
$$

where $Z \sim \mathrm{~N}(0,1)$. Thus,
(i) $n=20 ; \operatorname{Pr}\left(\frac{9.6-10}{\sqrt{4 / n}} \leq Z \leq \frac{10.4-10}{\sqrt{4 / n}}\right)=\operatorname{Pr}(-0.89 \leq Z \leq 0.89)=0.63$
(ii) $n=100 ; \operatorname{Pr}\left(\frac{9.6-10}{\sqrt{4 / n}} \leq Z \leq \frac{10.4-10}{\sqrt{4 / n}}\right)=\operatorname{Pr}(-2.00 \leq Z \leq 2.00)=0.954$
(iii) $n=1000 ; \operatorname{Pr}\left(\frac{9.6-10}{\sqrt{4 / n}} \leq Z \leq \frac{10.4-10}{\sqrt{4 / n}}\right)=\operatorname{Pr}(-6.32 \leq Z \leq 6.32)=1.000$
(b)

$$
\begin{aligned}
\operatorname{Pr}(10-c \leq \bar{Y} \leq 10+c) & =\operatorname{Pr}\left(\frac{-c}{\sqrt{4 / n}} \leq \frac{\bar{Y}-10}{\sqrt{4 / n}} \leq \frac{c}{\sqrt{4 / n}}\right) \\
& =\operatorname{Pr}\left(\frac{-c}{\sqrt{4 / n}} \leq Z \leq \frac{c}{\sqrt{4 / n}}\right) .
\end{aligned}
$$

As $n$ get large $\frac{c}{\sqrt{4 / n}}$ gets large, and the probability converges to 1 .
(c) This follows from (b) and the definition of convergence in probability given in Key Concept 2.6.
16. There are several ways to do this. Here is one way. Generate $n$ draws of $Y, Y_{1}, Y_{2}, \ldots Y_{n}$. Let $X_{i}=1$ if $Y_{i}<3.6$, otherwise set $X_{i}=0$. Notice that $X_{i}$ is a Bernoulli random variables with $\mu_{x}=\operatorname{Pr}(X=1)=$ $\operatorname{Pr}(Y<3.6)$. Compute $\bar{X}$. Because $\bar{X}$ converges in probability to $\mu_{x}=\operatorname{Pr}(X=1)=\operatorname{Pr}(Y<3.6), \bar{X}$ will be an accurate approximation if $n$ is large.
17. $\mu_{Y}=0.4$ and $\sigma_{Y}^{2}=0.4 \times 0.6=0.24$
(a) (i) $P(\bar{Y} \geq 0.43)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \geq \frac{0.43-0.4}{\sqrt{0.24 / n}}\right)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \geq 0.6124\right)=0.27$
(ii) $P(\bar{Y} \leq 0.37)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \leq \frac{0.37-0.4}{\sqrt{0.24 / n}}\right)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \leq-1.22\right)=0.11$
(b) We know $\operatorname{Pr}(-1.96 \leq Z \leq 1.96)=0.95$, thus we want $n$ to satisfy $0.41=\frac{0.41-0.4}{\sqrt{0.24 / n}}>-1.96$ and $\frac{0.39-0.4}{\sqrt{0.24 / n}}<-1.96$. Solving these inequalities yields $n \geq 9220$.
18. $\operatorname{Pr}(Y=\$ 0)=0.95, \operatorname{Pr}(Y=\$ 20000)=0.05$.
(a) The mean of $Y$ is

$$
\mu_{Y}=0 \times \operatorname{Pr}(Y=\$ 0)+20,000 \times \operatorname{Pr}(Y=\$ 20000)=\$ 1000 .
$$

The variance of $Y$ is

$$
\begin{aligned}
\sigma_{Y}^{2} & =E\left[\left(Y-\mu_{Y}\right)^{2}\right] \\
& =(0-1000)^{2} \times \operatorname{Pr}(Y=0)+(20000-1000)^{2} \times \operatorname{Pr}(Y=20000) \\
& =(-1000)^{2} \times 0.95+19000^{2} \times 0.05=1.9 \times 10^{7},
\end{aligned}
$$

so the standard deviation of $Y$ is $\sigma_{Y}=\left(1.9 \times 10^{7}\right)^{\frac{1}{2}}=\$ 4359$.
(b) (i) $E(\bar{Y})=\mu_{Y}=\$ 1000, \sigma_{\bar{Y}}^{2}=\frac{\sigma_{Y}^{2}}{n}=\frac{1.9 \times 10^{7}}{100}=1.9 \times 10^{5}$.
(ii) Using the central limit theorem,

$$
\begin{aligned}
\operatorname{Pr}(\bar{Y}>2000) & =1-\operatorname{Pr}(\bar{Y} \leq 2000) \\
& =1-\operatorname{Pr}\left(\frac{\bar{Y}-1000}{\sqrt{1.9 \times 10^{5}}} \leq \frac{2,000-1,000}{\sqrt{1.9 \times 10^{5}}}\right) \\
& \approx 1-\Phi(2.2942)=1-0.9891=0.0109 .
\end{aligned}
$$

19. (a)

$$
\begin{aligned}
\operatorname{Pr}\left(Y=y_{j}\right) & =\sum_{i=1}^{l} \operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right) \\
& =\sum_{i=1}^{l} \operatorname{Pr}\left(Y=y_{j} \mid X=x_{i}\right) \operatorname{Pr}\left(X=x_{i}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
E(Y) & =\sum_{j=1}^{k} y_{j} \operatorname{Pr}\left(Y=y_{j}\right)=\sum_{j=1}^{k} y_{j} \sum_{i=1}^{l} \operatorname{Pr}\left(Y=y_{j} \mid X=x_{i}\right) \operatorname{Pr}\left(X=x_{i}\right) \\
& =\sum_{i=1}^{l}\left(\sum_{j=1}^{k} y_{j} \operatorname{Pr}\left(Y=y_{j} \mid X=x_{i}\right) \operatorname{Pr}\left(X=x_{i}\right)\right. \\
& =\sum_{i=1}^{l} E\left(Y \mid X=x_{i}\right) \operatorname{Pr}\left(X=x_{i}\right) .
\end{aligned}
$$

(c) When $X$ and $Y$ are independent,

$$
\operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right)=\operatorname{Pr}\left(X=x_{i}\right) \operatorname{Pr}\left(Y=y_{j}\right),
$$

so

$$
\begin{aligned}
& \sigma_{X Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
&=\sum_{i=1}^{l} \sum_{j=1}^{k}\left(x_{i}-\mu_{X}\right)\left(y_{j}-\mu_{Y}\right) \operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right) \\
&=\sum_{i=1}^{l} \sum_{j=1}^{k}\left(x_{i}-\mu_{X}\right)\left(y_{j}-\mu_{Y}\right) \operatorname{Pr}\left(X=x_{i}\right) \operatorname{Pr}\left(Y=y_{j}\right) \\
&=\left(\sum_{i=1}^{l}\left(x_{i}-\mu_{X}\right) \operatorname{Pr}\left(X=x_{i}\right)\right)\left(\sum_{j=1}^{k}\left(y_{j}-\mu_{Y}\right) \operatorname{Pr}\left(Y=y_{j}\right)\right. \\
&=E\left(X-\mu_{X}\right) E\left(Y-\mu_{Y}\right)=0 \times 0=0, \\
& \quad \operatorname{cor}(X, Y)=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{0}{\sigma_{X} \sigma_{Y}}=0 .
\end{aligned}
$$

20. (a) $\operatorname{Pr}\left(Y=y_{i}\right)=\sum_{j=1}^{l} \sum_{h=1}^{m} \operatorname{Pr}\left(Y=y_{i} \mid X=x_{j}, Z=z_{h}\right) \operatorname{Pr}\left(X=x_{j}, Z=z_{h}\right)$
(b)

$$
\begin{aligned}
E(Y) & =\sum_{i=1}^{k} y_{i} \operatorname{Pr}\left(Y=y_{i}\right) \operatorname{Pr}\left(Y=y_{i}\right) \\
& =\sum_{i=1}^{k} y_{i} \sum_{j=1}^{l} \sum_{h=1}^{m} \operatorname{Pr}\left(Y=y_{i} \mid X=x_{j}, Z=z_{h}\right) \operatorname{Pr}\left(X=x_{j}, Z=z_{h}\right) \\
& =\sum_{j=1}^{l} \sum_{h=1}^{m}\left[\sum_{i=1}^{k} y_{i} \operatorname{Pr}\left(Y=y_{i} \mid X=x_{j}, Z=z_{h}\right)\right] \operatorname{Pr}\left(X=x_{j}, Z=z_{h}\right) \\
& =\sum_{j=1}^{l} \sum_{h=1}^{m} E\left(Y \mid X=x_{j}, Z=z_{h}\right) \operatorname{Pr}\left(X=x_{j}, Z=z_{h}\right)
\end{aligned}
$$

where the first line in the definition of the mean, the second uses (a), the third is a rearrangement, and the final line uses the definition of the conditional expectation.
21. (a)

$$
\begin{aligned}
E(X-\mu)^{3} & =E\left[(X-\mu)^{2}(X-\mu)\right]=E\left[X^{3}-2 X^{2} \mu+X \mu^{2}-X^{2} \mu+2 X \mu^{2}-\mu^{3}\right] \\
& =E\left(X^{3}\right)-3 E\left(X^{2}\right) \mu+3 E(X) \mu^{2}-\mu^{3}=E\left(X^{3}\right)-3 E\left(X^{2}\right) E(X)+3 E(X)[E(X)]^{2}-[E(X)]^{3} \\
& =E\left(X^{3}\right)-3 E\left(X^{2}\right) E(X)+2 E(X)^{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
E(X-\mu)^{4} & =E\left[\left(X^{3}-3 X^{2} \mu+3 X \mu^{2}-\mu^{3}\right)(X-\mu)\right] \\
& =E\left[X^{4}-3 X^{3} \mu+3 X^{2} \mu^{2}-X \mu^{3}-X^{3} \mu+3 X^{2} \mu^{2}-3 X \mu^{3}+\mu^{4}\right] \\
& =E\left(X^{4}\right)-4 E\left(X^{3}\right) E(X)+6 E\left(X^{2}\right) E(X)^{2}-4 E(X) E(X)^{3}+E(X)^{4} \\
& =E\left(X^{4}\right)-4[E(X)]\left[E\left(X^{3}\right)\right]+6[E(X)]^{2}\left[E\left(X^{2}\right)\right]-3[E(X)]^{4}
\end{aligned}
$$

22. The mean and variance of $R$ are given by

$$
\begin{aligned}
\mu & =w \times 0.08+(1-w) \times 0.05 \\
\sigma^{2} & =w^{2} \times 0.07^{2}+(1-w)^{2} \times 0.042+2 \times w \times(1-w) \times[0.07 \times 0.04 \times 0.25]
\end{aligned}
$$

where $0.07 \times 0.04 \times 0.25=\operatorname{Cov}\left(R_{s}, R_{b}\right)$ follows from the definition of the correlation between $R_{s}$ and $R_{b}$.
(a) $\mu=0.065 ; \sigma=0.044$
(b) $\mu=0.0725 ; \sigma=0.056$
(c) $w=1$ maximizes $\mu ; \sigma=0.07$ for this value of $w$.
(d) The derivative of $\sigma^{2}$ with respect to $w$ is

$$
\begin{aligned}
\frac{d \sigma^{2}}{d w} & =2 w \times .07^{2}-2(1-w) \times 0.04^{2}+(2-4 w) \times[0.07 \times 0.04 \times 0.25] \\
& =0.0102 w-0.0018
\end{aligned}
$$

solving for $w$ yields $w=18 / 102=0.18$. (Notice that the second derivative is positive, so that this is the global minimum.) With $w=0.18, \sigma_{R}=.038$.
23. $X$ and $Z$ are two independently distributed standard normal random variables, so

$$
\mu_{X}=\mu_{z}=0, \sigma_{x}^{2}=\sigma_{Z}^{2}=1, \sigma_{x Z}=0 .
$$

(a) Because of the independence between $X$ and $Z, \operatorname{Pr}(Z=z \mid X=x)=\operatorname{Pr}(Z=z)$, and $E(Z \mid X)=E(Z)=0$. Thus $E(Y \mid X)=E\left(X^{2}+Z \mid X\right)=E\left(X^{2} \mid X\right)+E(Z \mid X)=X^{2}+0=X^{2}$.
(b) $E\left(X^{2}\right)=\sigma_{X}^{2}+\mu_{X}^{2}=1$, and $\mu_{Y}=E\left(X^{2}+Z\right)=E\left(X^{2}\right)+\mu_{Z}=1+0=1$.
(c) $E(X Y)=E\left(X^{3}+Z X\right)=E\left(X^{3}\right)+E(Z X)$. Using the fact that the odd moments of a standard normal random variable are all zero, we have $E\left(X^{3}\right)=0$. Using the independence between $X$ and $Z$, we have $E(Z X)=\mu_{z} \mu_{X}=0$. Thus $E(X Y)=E\left(X^{3}\right)+E(Z X)=0$.
(d)

$$
\begin{aligned}
\operatorname{Cov}(X Y) & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[(X-0)(Y-1)] \\
& =E(X Y-X)=E(X Y)-E(X) \\
& =0-0=0 . \\
\operatorname{cor}(X, Y) & =\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{0}{\sigma_{X} \sigma_{Y}}=0 .
\end{aligned}
$$

24. (a) $E\left(Y_{i}^{2}\right)=\sigma^{2}+\mu^{2}=\sigma^{2}$ and the result follows directly.
(b) $(Y / \sigma)$ is distributed i.i.d. $\mathrm{N}(0,1), W=\sum_{i=1}^{n}\left(Y_{i} / \sigma\right)^{2}$, and the result follows from the definition of a $\chi_{n}^{2}$ random variable.
(c) $E(W)=E(W)=E \sum_{i=1}^{n} \frac{Y_{i}^{2}}{\sigma^{2}}=\sum_{i=1}^{n} E \frac{Y_{i}^{2}}{\sigma^{2}}=n$.
(d) Write

$$
V=\frac{Y_{1}}{\sqrt{\frac{\sum_{i-1}^{n-Y_{1}^{2}}}{n-1}}}=\frac{Y_{I} / \sigma}{\sqrt{\frac{\sum_{i=2}^{n}(Y / \sigma)^{2}}{n-1}}}
$$

which follows from dividing the numerator and denominator by $\sigma . Y_{1} / \sigma \sim \mathrm{N}(0,1), \sum_{i=2}^{n}\left(Y_{i} / \sigma\right)^{2} \sim$ $\chi_{n-1}^{2}$, and $Y_{1} / \sigma$ and $\sum_{i=2}^{n}\left(Y_{i} / \sigma\right)^{2}$ are independent. The result then follows from the definition of the $t$ distribution.

