
SOLUTIONS MANUAL

Chapter 2

The Composition and Structure of the Atom Solutions to the Practice Problems

Practice Problems

- 2.1 a. 16 protons and 16 electrons (atomic number = 16)
 - 32 16 = 16 neutrons (mass number atomic number)
 - b. 11 protons and 11 electrons (atomic number = 11)
 - 23 11 = 12 neutrons (mass number atomic number)
 - c. 1 proton and 1 electron (atomic number = 1)
 - 1-1 = 0 neutrons (mass number atomic number)
 - d. 94 protons and 94 electrons (atomic number = 94)
 - 224 94 = 150 neutrons (mass number atomic number)
- 2.2 Step 1. Convert each percentage to a decimal fraction.

$$99.63\% {}^{14}_{7}\text{N x } \frac{1}{100\%} = 0.9963 {}^{14}_{7}\text{N}$$

$$0.37\% {}^{15}_{7}\text{N x} \frac{1}{100\%} = 0.0037 {}^{15}_{7}\text{N}$$

Step 2.

contributions to atomic mass by N-14 =

(fraction of all N atoms that are N-14) x (mass of a N-14 atom)

$$= 0.9963 \text{ x } 14.003 \text{ amu}$$

$$= 13.951$$
 amu

contributions to atomic mass by N-15 =

(fraction of all N atoms that are N-15) x (mass of a N-15 atom)

$$= 0.0037 \times 15.000$$

$$= 0.056$$
 amu

Step 3. The weighted average is:

(contribution of N-14) + (contribution of N-15)

=
$$13.951 \text{ amu} + 0.056 \text{ amu}$$

= $14.007 \approx 14.01 \text{ amu}$

2.3 Step 1. Convert each percentage to a decimal fraction.

90.48 %
$${}^{20}_{10}$$
Ne x $\frac{1}{100\%}$ = 0.9048 ${}^{20}_{10}$ Ne
0.27 % ${}^{21}_{10}$ Ne x $\frac{1}{100\%}$ = 0.0027 ${}^{21}_{10}$ Ne
9.25 % ${}^{22}_{10}$ Ne x $\frac{1}{100\%}$ = 0.0925 ${}^{22}_{10}$ Ne

Step 2.

contributions to atomic mass by
$$^{20}_{10}$$
Ne = $^{20}_{10}$ Ne that are $^{20}_{10}$ Ne $^{20}_{10}$ Ne atom)

$$\begin{array}{ll} \text{contributions to} \\ \text{ato mic mass by } \begin{array}{l} 21 \\ 10 \\ \text{Ne} \end{array} = \\ \begin{pmatrix} \text{fraction of all Ne atoms} \\ \text{that are } \begin{array}{l} 21 \\ 10 \\ \text{Ne} \\ \end{pmatrix} x \\ \begin{pmatrix} \text{mass of a} \\ 21 \\ 10 \\ \text{Ne atom} \\ \end{pmatrix} \end{array}$$

$$=$$
 0.057 amu

$$\begin{array}{ll} \text{contributions to} \\ \text{ato mic mass by} \ \ _{10}^{22} \text{Ne} \end{array} \ = \ \begin{pmatrix} \text{fraction of all Ne atoms} \\ \text{that are} \ \ _{10}^{22} \text{Ne} \end{pmatrix} x \begin{pmatrix} \text{mass of a} \\ \text{$_{10}^{22}$Ne atom} \end{pmatrix}$$

$$=$$
 0.9025 x 21.99 amu

Step 3. The weighted average is:

```
atomic mass of naturally occurring neon = (contribution of Ne-20)
                                          + (contribution of Ne-21)
                                          + (contribution of Ne-22)
                                = 18.087 + 0.057 amu + 2.034 amu
                               = 20.18 \text{ amu}
```

- 2.4 a. Total electrons = 11, valence electrons = 1, energy level = 3
 - b. Total electrons = 12, valence electrons = 2, energy level = 3
 - c. Total electrons = 16, valence electrons = 6, energy level = 3
 - d. Total electrons = 17, valence electrons = 7, energy level = 3
 - e. Total electrons = 18, valence electrons = 8, energy level = 3
- 2.5
- a. sulfur: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^4$ b. calcium: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^2$ c. potassium: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$, $4s^1$

 - d. phosphorus: $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^3$