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Notes to the Instructor

One goal in our writing has been to create flexible texts that afford the instructor a variety

of topics and make available to the student an abundance of practice problems and projects.

We recommend that the instructor read the discussion given in the preface in order to gain

an overview of the prerequisites, topics of emphasis, and general philosophy of the text.

Software Supplements

Interactive Differential Equations CD-ROM: By Beverly West (Cornell University),

Steven Strogatz (Cornell University), Jean Marie McDill (California Polytechnic State Uni-

versity – San Luis Obispo), John Cantwell (St. Louis University), and Hubert Hohn (Mas-

sachusetts College of Arts) is a popular software directly tied to the text that focuses on helping

students visualize concepts. Applications are drawn from engineering, physics, chemistry, and

biology. Runs on Windows or Macintosh and is included free with every book.

Instructor’s MAPLE/MATHLAB/MATHEMATICA manual: By Thomas W. Po-

laski (Winthrop University), Bruno Welfert (Arizona State University), and Maurino Bautista

(Rochester Institute of Technology). A collection of worksheets and projects to aid instruc-

tors in integrating computer algebra systems into their courses. Available via Addison-Wesley

Instructor’s Resource Center.

MATLAB Manual ISBN 13: 978-0-321-53015-8; ISBN 10: 0-321-53015-2

MAPLE Manual ISBN 13: 978-0-321-38842-1; ISBN 10: 0-321-38842-9

MATHEMATICA Manual ISBN 13: 978-0-321-52178-1; ISBN 10: 0-321-52178-1

Computer Labs

A computer lab in connection with a differential equations course can add a whole new di-

mension to the teaching and learning of differential equations. As more and more colleges

and universities set up computer labs with software such as MAPLE, MATLAB, DERIVE,

MATHEMATICA, PHASEPLANE, and MACMATH, there will be more opportunities to in-

clude a lab as part of the differential equations course. In our teaching and in our texts, we

have tried to provide a variety of exercises, problems, and projects that encourage the student

to use the computer to explore. Even one or two hours at a computer generating phase plane

diagrams can provide the students with a feeling of how they will use technology together
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with the theory to investigate real world problems. Furthermore, our experience is that they

thoroughly enjoy these activities. Of course, the software, provided free with the texts, is

especially convenient for such labs.

Group Projects

Although the projects that appear at the end of the chapters in the text can be worked

out by the conscientious student working alone, making them group projects adds a social

element that encourages discussion and interactions that simulate a professional work place

atmosphere. Group sizes of 3 or 4 seem to be optimal. Moreover, requiring that each individual

student separately write up the group’s solution as a formal technical report for grading by

the instructor also contributes to the professional flavor.

Typically, our students each work on 3 or 4 projects per semester. If class time permits, oral

presentations by the groups can be scheduled and help to improve the communication skills

of the students.

The role of the instructor is, of course, to help the students solve these elaborate problems on

their own and to recommend additional reference material when appropriate.

Some additional Group Projects are presented in this guide (see page 9).

Technical Writing Exercises

The technical writing exercises at the end of most chapters invite students to make documented

responses to questions dealing with the concepts in the chapter. This not only gives students

an opportunity to improve their writing skills, but it helps them organize their thoughts and

better understand the new concepts. Moreover, many questions deal with critical thinking

skills that will be useful in their careers as engineers, scientists, or mathematicians.

Since most students have little experience with technical writing, it may be necessary to return

ungraded the first few technical writing assignments with comments and have the students redo

the the exercise. This has worked well in our classes and is much appreciated by the students.

Handing out a “model” technical writing response is also helpful for the students.

Student Presentations

It is not uncommon for an instructor to have students go to the board and present a solution
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to a problem. Differential equations is so rich in theory and applications that it is an excellent

course to allow (require) a student to give a presentation on a special application (e.g., almost

any topic from Chapter 3 and 5), on a new technique not covered in class (e.g., material from

Section 2.6, Projects A, B, or C in Chapter 4), or on additional theory (e.g., material from

Chapter 6 which generalizes the results in Chapter 4). In addition to improving students’

communication skills, these “special” topics are long remembered by the students. Here, too,

working in groups of 3 or 4 and sharing the presentation responsibilities can add substantially

to the interest and quality of the presentation. Students should also be encouraged to enliven

their communication by building physical models, preparing part of their lectures on video

cassette, etc.

Homework Assignments

We would like to share with you an obvious, non-original, but effective method to encourage

students to do homework problems.

An essential feature is that it requires little extra work on the part of the instructor or grader.

We assign homework problems (about 10 of them) after each lecture. At the end of the week

(Fridays), students are asked to turn in their homework (typically, 3 sets) for that week. We

then choose at random one problem from each assignment (typically, a total of 3) that will

be graded. (The point is that the student does not know in advance which problems will be

chosen.) Full credit is given for any of the chosen problems for which there is evidence that the

student has made an honest attempt at solving. The homework problem sets are returned to

the students at the next meeting (Mondays) with grades like 0/3, 1/3, 2/3, or 3/3 indicating

the proportion of problems for which the student received credit. The homework grades are

tallied at the end of the semester and count as one test grade. Certainly, there are variations

on this theme. The point is that students are motivated to do their homework with little

additional cost (= time) to the instructor.

Syllabus Suggestions

To serve as a guide in constructing a syllabus for a one-semester or two-semester course, the

prefaces to the texts list sample outlines that emphasize methods, applications, theory, partial

differential equations, phase plane analysis, computation, or combinations of these. As a

further guide in making a choice of subject matter, we provide below a listing of text material

dealing with some common areas of emphasis.
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Numerical, Graphical, and Qualitative Methods

The sections and projects dealing with numerical, graphical, and qualitative techniques of

solving differential equations include:

Section 1.3: Direction Fields

Section 1.4: The Approximation Method of Euler

Project A for Chapter 1: Taylor Series

Project B for Chapter 1: Picard’s Method

Project D for Chapter 1: The Phase Line

Section 3.6: Improved Euler’s Method, which includes step-by-step outlines of the im-

proved Euler’s method subroutine and improved Euler’s method with tolerance. These

outlines are easy for the student to translate into a computer program (cf. pages 135

and 136).

Section 3.7: Higher-Order Numerical Methods : Taylor and Runge-Kutta, which includes

outlines for the Fourth Order Runge-Kutta subroutine and algorithm with tolerance (see

pages 144 and 145).

Project H for Chapter 3: Stability of Numerical Methods

Project I for Chapter 3: Period Doubling an Chaos

Section 4.8: Qualitative Considerations for Variable Coefficient and Nonlinear Equa-

tions, which discusses the energy integral lemma, as well as the Airy, Bessel, Duffing,

and van der Pol equations.

Section 5.3: Solving Systems and Higher-Order Equations Numerically, which describes

the vectorized forms of Euler’s method and the Fourth Order Runge-Kutta method, and

discusses an application to population dynamics.

Section 5.4: Introduction to the Phase Plane, which introduces the study of trajectories

of autonomous systems, critical points, and stability.
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Section 5.8: Dynamical Systems, Poincarè Maps, and Chaos, which discusses the use of

numerical methods to approximate the Poincarè map and how to interpret the results.

Project A for Chapter 5: Designing a Landing System for Interplanetary Travel

Project B for Chapter 5: Things That Bob

Project D for Chapter 5: Strange Behavior of Competing Species – Part I

Project D for Chapter 9: Strange Behavior of Competing Species – Part II

Project D for Chapter 10: Numerical Method for ∆u = f on a Rectangle

Project D for Chapter 11: Shooting Method

Project E for Chapter 11: Finite-Difference Method for Boundary Value Problems

Project C for Chapter 12: Computing Phase Plane Diagrams

Project D for Chapter 12: Ecosystem of Planet GLIA-2

Appendix A: Newton’s Method

Appendix B: Simpson’s Rule

Appendix D: Method of Least Squares

Appendix E: Runge-Kutta Procedure for Equations

The instructor who wishes to emphasize numerical methods should also note that the text

contains an extensive chapter of series solutions of differential equations (Chapter 8).

Engineering/Physics Applications

Since Laplace transforms is a subject vital to engineering, we have included a detailed chapter

on this topic – see Chapter 7. Stability is also an important subject for engineers, so we

have included an introduction to the subject in Chapter 5.4 along with an entire chapter

addressing this topic – see Chapter 12. Further material dealing with engineering/physic

applications include:

Project C for Chapter 1: Magnetic “Dipole”
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Project B for Chapter 2: Torricelli’s Law of Fluid Flow

Section 3.1: Mathematical Modeling

Section 3.2: Compartmental Analysis, which contains a discussion of mixing problems

and of population models.

Section 3.3: Heating and Cooling Buildings, which discusses temperature variations in

the presence of air conditioning or furnace heating.

Section 3.4: Newtonian Mechanics

Section 3.5: Electrical Circuits

Project C for Chapter 3: Curve of Pursuit

Project D for Chapter 3: Aircraft Guidance in a Crosswind

Project E for Chapter 3: Feedback and the Op Amp

Project F for Chapter 3: Band-Bang Controls

Section 4.1: Introduction: Mass-Spring Oscillator

Section 4.8: Qualitative Considerations for Variable-Coefficient and Nonlinear Equations

Section 4.9: A Closer Look at Free Mechanical Vibrations

Section 4.10: A Closer Look at Forced Mechanical Vibrations

Project B for Chapter 4: Apollo Reentry

Project C for Chapter 4: Simple Pendulum

Chapter 5: Introduction to Systems and Phase Plane Analysis, which includes sections

on coupled mass-spring systems, electrical circuits, and phase plane analysis.

Project A for Chapter 5: Designing a Landing System for Interplanetary Travel

Project B for Chapter 5: Things that Bob

Project C for Chapter 5: Hamiltonian Systems
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Project D for Chapter 5: Transverse Vibrations of a Beam

Chapter 7: Laplace Transforms, which in addition to basic material includes discussions

of transfer functions, the Dirac delta function, and frequency response modeling.

Projects for Chapter 8, dealing with Schrödinger’s equation, bucking of a tower, and

again springs.

Project B for Chapter 9: Matrix Laplace Transform Method

Project C for Chapter 9: Undamped Second-Order Systems

Chapter 10: Partial Differential Equations, which includes sections on Fourier series, the

heat equation, wave equation, and Laplace’s equation.

Project A for Chapter 10: Steady-State Temperature Distribution in a Circular Cylinder

Project B for Chapter 10: A Laplace Transform Solution of the Wave Equation

Project A for Chapter 11: Hermite Polynomials and the Harmonic Oscillator

Section 12.4: Energy Methods, which addresses both conservative and nonconservative

autonomous mechanical systems.

Project A for Chapter 12: Solitons and Korteweg-de Vries Equation

Project B for Chapter 12: Burger’s Equation

Students of engineering and physics would also find Chapter 8 on series solutions particularly

useful, especially Section 8.8 on special functions.

Biology/Ecology Applications

Project D for Chapter 1: The Phase Plane, which discusses the logistic population model

and bifurcation diagrams for population control.

Project A for Chapter 2: Differential Equations in Clinical Medicine

Section 3.1: Mathematical Modeling
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Section 3.2: Compartmental Analysis, which contains a discussion of mixing problems

and population models.

Project A for Chapter 3: Dynamics for HIV Infection

Project B for Chapter 3: Aquaculture, which deals with a model of raising and harvesting

catfish.

Section 5.1: Interconnected Fluid Tanks, which introduces systems of equations.

Section 5.3: Solving Systems and Higher-Order Equations Numerically, which contains

an application to population dynamics.

Section 5.5: Applications to Biomathematics: Epidemic and Tumor Growth Models

Project D for Chapter 5: Strange Behavior of Competing Species – Part I

Project E for Chapter 5: Cleaning Up the Great Lakes

Project D for Chapter 9: Strange Behavior of Competing Species – Part II

Problem 19 in Exercises 10.5 , which involves chemical diffusion through a thin layer.

Project D for Chapter 12: Ecosystem on Planet GLIA-2

The basic content of the remainder of this instructor’s manual consists of supplemental group

projects, answers to the even-numbered problems, and detailed solutions to the even-numbered

problems in Chapters 1, 2, 4, and 7 as well as Sections 3.2, 3.3, and 3.4. The answers are,

for the most part, not available any place else since the text only provides answers to odd-

numbered problems, and the Student’s Solutions Manual contains only a handful of worked

solutions to even-numbered problems.

We would appreciate any comments you may have concerning the answers in this manual.

These comments can be sent to the authors’ email addresses below. We also would encourage

sharing with us (= the authors and users of the texts) any of your favorite group projects.

E. B. Saff A. D. Snider

Edward.B.Saff@Vanderbilt.edu snider@eng.usf.edu
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Group Projects for Chapter 3

Delay Differential Equations

In our discussion of mixing problems in Section 3.2, we encountered the initial value

problem

x′(t) = 6− 3

500
x (t− t0) , (0.1)

x(t) = 0 for x ∈ [−t0, 0] ,

where t0 is a positive constant. The equation in (0.1) is an example of a delay differ-

ential equation. These equations differ from the usual differential equations by the

presence of the shift (t− t0) in the argument of the unknown function x(t). In general,

these equations are more difficult to work with than are regular differential equations,

but quite a bit is known about them.1

(a) Show that the simple linear delay differential equation

x′ = ax(t− b), (0.2)

where a, b are constants, has a solution of the form x(t) = Cest for any constant

C, provided s satisfies the transcendental equation s = ae−bs.

(b) A solution to (0.2) for t > 0 can also be found using the method of steps. Assume

that x(t) = f(t) for −b ≤ t ≤ 0. For 0 ≤ t ≤ b, equation (0.2) becomes

x′(t) = ax(t− b) = af(t− b),

and so

x(t) =

t∫
0

af(ν − b)dν + x(0).

Now that we know x(t) on [0, b], we can repeat this procedure to obtain

x(t) =

t∫
b

ax(ν − b)dν + x(b)

for b ≤ x ≤ 2b. This process can be continued indefinitely.

1See, for example, Differential–Difference Equations, by R. Bellman and K. L. Cooke, Academic Press, New
York, 1963, or Ordinary and Delay Differential Equations, by R. D. Driver, Springer–Verlag, New York, 1977
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Use the method of steps to show that the solution to the initial value problem

x′(t) = −x(t− 1), x(t) = 1 on [−1, 0],

is given by

x(t) =
n∑

k=0

(−1)k [t− (k − 1)]k

k!
, for n− 1 ≤ t ≤ n ,

where n is a nonnegative integer. (This problem can also be solved using the

Laplace transform method of Chapter 7.)

(c) Use the method of steps to compute the solution to the initial value problem given

in (0.1) on the interval 0 ≤ t ≤ 15 for t0 = 3.

Extrapolation

When precise information about the form of the error in an approximation is known, a

technique called extrapolation can be used to improve the rate of convergence.

Suppose the approximation method converges with rate O (hp) as h→ 0 (cf. Section 3.6).

From theoretical considerations, assume we know, more precisely, that

y(x;h) = φ(x) + hpap(x) +O
(
hp+1

)
, (0.3)

where y(x;h) is the approximation to φ(x) using step size h and ap(x) is some function

that is independent of h (typically, we do not know a formula for ap(x), only that it

exists). Our goal is to obtain approximations that converge at the faster rate O (hp+1).

We start by replacing h by h/2 in (0.3) to get

y

(
x;
h

2

)
= φ(x) +

hp

2p
ap(x) +O

(
hp+1

)
.

If we multiply both sides by 2p and subtract equation (0.3), we find

2py

(
x;
h

2

)
− y(x;h) = (2p − 1)φ(x) +O

(
hp+1

)
.

Solving for φ(x) yields

φ(x) =
2py (x;h/2)− y(x;h)

2p − 1
+O

(
hp+1

)
.

Hence,

y∗
(
x;
h

2

)
:=

2py (x;h/2)− y(x;h)

2p − 1

has a rate of convergence of O (hp+1).
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(a) Assuming

y∗
(
x;
h

2

)
= φ(x) + hp+1ap+1(x) +O

(
hp+2

)
,

show that

y∗∗
(
x;
h

4

)
:=

2p+1y∗ (x;h/4)− y∗(x;h/2)

2p+1 − 1

has a rate of convergence of O (hp+2).

(b) Assuming

y∗∗
(
x;
h

4

)
= φ(x) + hp+2ap+2(x) +O

(
hp+3

)
,

show that

y∗∗∗
(
x;
h

8

)
:=

2p+2y∗∗ (x;h/8)− y∗∗(x;h/4)

2p+2 − 1

has a rate of convergence of O (hp+3).

(c) The results of using Euler’s method (with h = 1, 1/2, 1/4, 1/8) to approximate the

solution to the initial value problem

y′ = y, y(0) = 1

at x = 1 are given in Table 1.2, page 27. For Euler’s method, the extrapolation

procedure applies with p = 1. Use the results in Table 1.2 to find an approximation

to e = y(1) by computing y∗∗∗(1; 1/8). [Hint: Compute y∗ (1; 1/2), y∗ (1; 1/4), and

y∗ (1; 1/8); then compute y∗∗ (1; 1/4) and y∗∗ (1; 1/8).]

(d) Table 1.2 also contains Euler’s approximation for y(1) when h = 1/16. Use this

additional information to compute the next step in the extrapolation procedure;

that is, compute y∗∗∗∗(1; 1/16).

Group Projects for Chapter 5

Effects of Hunting on Predator–Prey Systems

As discussed in Section 5.3 (page 277), cyclic variations in the population of predators

and their prey have been studied using the Volterra-Lotka predator–prey model

dx

dt
= Ax−Bxy , (0.4)

dy

dt
= −Cy +Dxy , (0.5)
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where A, B, C, and D are positive constants, x(t) is the population of prey at time t, and

y(t) is the population of predators. It can be shown that such a system has a periodic

solution (see Project D). That is, there exists some constant T such that x(t) = x(t+T )

and y(t) = y(t + T ) for all t. The periodic or cyclic variation in the population has

been observed in various systems such as sharks–food fish, lynx–rabbits, and ladybird

beetles–cottony cushion scale. Because of this periodic behavior, it is useful to consider

the average population x and y defined by

x :=
1

T

t∫
0

x(t)dt , y :=
1

T

t∫
0

y(t)dt .

(a) Show that x = C/D and y = A/B. [Hint: Use equation (0.4) and the fact that

x(0) = x(T ) to show that

T∫
0

[A−By(t)] dt =

T∫
0

x′(t)

x(t)

d =

dt
0. ]

(b) To determine the effect of indiscriminate hunting on the population, assume hunting

reduces the rate of change in a population by a constant times the population. Then

the predator–prey system satisfies the new set of equations

dx

dt
= Ax−Bxy − εx = (A− ε)x−Bxy , (0.6)

dy

dt
= −Cy +Dxy − δy = −(C + δ)y +Dxy , (0.7)

where ε and δ are positive constants with ε < A. What effect does this have on the

average population of prey? On the average population of predators?

(c) Assume the hunting was done selectively, as in shooting only rabbits (or shooting

only lynx). Then we have ε > 0 and δ = 0 (or ε = 0 and δ > 0) in (0.6)–(0.7).

What effect does this have on the average populations of predator and prey?

(d) In a rural county, foxes prey mainly on rabbits but occasionally include a chicken

in their diet. The farmers decide to put a stop to the chicken killing by hunting

the foxes. What do you predict will happen? What will happen to the farmers’

gardens?
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Limit Cycles

In the study of triode vacuum tubes, one encounters the van der Pol equation2

y′′ − µ
(
1− y2

)
y′ + y = 0 ,

where the constant µ is regarded as a parameter. In Section 4.8 (page 224), we used the

mass-spring oscillator analogy to argue that the nonzero solutions to the van der Pol

equation with µ = 1 should approach a periodic limit cycle. The same argument applies

for any positive value of µ.

(a) Recast the van der Pol equation as a system in normal form and use software to

plot some typical trajectories for µ = 0.1, 1, and 10. Re-scale the plots if necessary

until you can discern the limit cycle trajectory; find trajectories that spiral in, and

ones that spiral out, to the limit cycle.

(b) Now let µ = −0.1, −1, and −10. Try to predict the nature of the solutions using

the mass-spring analogy. Then use the software to check your predictions. Are

there limit cycles? Do the neighboring trajectories spiral into, or spiral out from,

the limit cycles?

(c) Repeat parts (a) and (b) for the Rayleigh equation

y′′ − µ
[
1− (y′)

2
]
y′ + y = 0 .

Group Project for Chapter 13

David Stapleton, University of Central Oklahoma

Satellite Altitude Stability

In this problem, we determine the orientation at which a satellite in a circular orbit of

radius r can maintain a relatively constant facing with respect to a spherical primary

(e.g., a planet) of mass M . The torque of gravity on the asymmetric satellite maintains

the orientation.

2Historical Footnote: Experimental research by E. V. Appleton and B. van der Pol in 1921 on the
oscillation of an electrical circuit containing a triode generator (vacuum tube) led to the nonlinear equation
now called van der Pol’s equation. Methods of solution were developed by van der Pol in 1926–1927.
Mary L. Cartwright continued research into nonlinear oscillation theory and together with J. E. Little-

wood obtained existence results for forced oscillations in nonlinear systems in 1945.
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Suppose (x, y, z) and (x, y, z) refer to coordinates in two systems that have a common

origin at the satellite’s center of mass. Fix the xyz-axes in the satellite as principal axes;

then let the z-axis point toward the primary and let the x-axis point in the direction of

the satellite’s velocity. The xyz-axes may be rotated to coincide with the xyz-axes by

a rotation φ about the x-axis (roll), followed by a rotation θ about the resulting y-axis

(pitch), and a rotation ψ about the final z-axis (yaw). Euler’s equations from physics

(with high terms omitted3 to obtain approximate solutions valid near (φ, θ, ψ) = (0, 0, 0))

show that the equations for the rotational motion due to gravity acting on the satellite

are

Ixφ
′′ = −4ω2

0 (Iz − Iy)φ− ω0 (Iy − Iz − Ix)ψ
′

Iyθ
′′ = −3ω2

0 (Ix − Iz) θ

Izψ
′′ = −4ω2

0 (Iy − Ix)ψ + ω0 (Iy − Iz − Ix)φ
′ ,

where ω0 =
√

(GM)/r3 is the angular frequency of the orbit and the positive constants

Ix, Iy, Iz are the moments of inertia of the satellite about the x, y, and z-axes.

(a) Find constants c1, . . . , c5 such tha these equations can be written as two systems

d

dt


φ

ψ

φ′

θ′

 =


0 0 1 0

0 0 0 1

c1 0 0 c2

0 c3 c4 0



φ

ψ

φ′

ψ′


and

d

dt

[
θ

θ′

]
=

[
0 1

c5 0

][
θ

θ′

]
.

(b) Show that the origin is asymptotically stable for the first system in (a) if

(c2c4 + c3 + c1)
2 − 4c1c3 > 0 ,

c1c3 > 0 ,

c2c4 + c3 + c1 > 0

and hence deduce that Iy > Ix > Iz yields an asymptotically stable origin. Are

there other conditions on the moments of inertia by which the origin is stable?

3The derivation of these equations is found in Attitude Stabilization and Control of Earth Satellites, by
O. H. Gerlach, Space Science Reviews, #4 (1965), 541–566
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(c) Show that, for the asymptotically stable configuration in (b), the second system

in (a) becomes a harmonic oscillator problem, and find the frequency of oscillation

in terms of Ix, Iy, Iz, and ω0 . Phobos maintains Iy > Ix > Iz in its orientation

with respect to Mars, and has angular frequency of orbit ω0 = 0.82 rad/hr. If

(Ix − Iz) /Iy = 0.23, show that the period of the libration for Phobos (the period

with which the side of Phobos facing Mars shakes back and forth) is about 9 hours.
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CHAPTER 1: Introduction

EXERCISES 1.1: Background

2. This equation is an ODE because it contains no partial derivatives. Since the highest

order derivative is d2y/dx2, the equation is a second order equation. This same term

also shows us that the independent variable is x and the dependent variable is y. This

equation is linear.

4. This equation is a PDE of the second order because it contains second partial derivatives.

x and y are independent variables, and u is the dependent variable.

6. This equation is an ODE of the first order with the independent variable t and the

dependent variable x. It is nonlinear.

8. ODE of the second order with the independent variable x and the dependent variable y,

nonlinear.

10. ODE of the fourth order with the independent variable x and the dependent variable y,

linear.

12. ODE of the second order with the independent variable x and the dependent variable y,

nonlinear.

14. The velocity at time t is the rate of change of the position function x(t), i.e., x′. Thus,

dx

dt
= kx4,

where k is the proportionality constant.

16. The equation is
dA

dt
= kA2,

where k is the proportionality constant.
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Chapter 1

EXERCISES 1.2: Solutions and Initial Value Problems

2. (a) Writing the given equation in the form y2 = 3 − x, we see that it defines two

functions of x on x ≤ 3, y = ±
√

3− x. Differentiation yields

dy

dx
=

d

dx

(
±
√

3− x
)

= ± d

dx

[
(3− x)1/2

]
= ±1

2
(3− x)−1/2(−1) = − 1

±2
√

3− x
= − 1

2y
.

(b) Solving for y yields

y3(x− x sin x) = 1 ⇒ y3 =
1

x(1− sin x)

⇒ y =
1

3
√
x(1− sin x)

= [x(1− sin x)]−1/3 .

The domain of this function is x 6= 0 and

sin x 6= 1 ⇒ x 6= π

2
+ 2kπ, k = 0,±1,±2, . . . .

For 0 < x < π/2, one has

dy

dx
=

d

dx

{
[x(1− sin x)]−1/3

}
= −1

3
[x(1− sin x)]−1/3−1 d

dx
[x(1− sin x)]

= −1

3
[x(1− sin x)]−1[x(1− sin x)]−1/3[(1− sin x) + x(− cosx)]

=
(x cosx+ sinx− 1)y

3x(1− sin x)
.

We also remark that the given relation is an implicit solution on any interval not

containing points x = 0, π/2 + 2kπ, k = 0,±1,±2, . . . .

4. Differentiating the function x = 2 cos t− 3 sin t twice, we obtain

x′ = −2 sin t− 3 cos t, x′′ = −2 cos t+ 3 sin t.

Thus,

x′′ + x = (−2 cos t+ 3 sin t) + (2 cos t− 3 sin t) = 0

for any t on (−∞,∞).

6. Substituting x = cos 2t and x′ = −2 sin 2t into the given equation yields

(−2 sin 2t) + t cos 2t = sin 2t ⇔ t cos 2t = 3 sin 2t .

Clearly, this is not an identity and, therefore, the function x = cos 2t is not a solution.
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Exercises 1.2

8. Using the chain rule, we have

y = 3 sin 2x+ e−x,

y′ = 3(cos 2x)(2x)′ + e−x(−x)′ = 6 cos 2x− e−x,

y′′ = 6(− sin 2x)(2x)′ − e−x(−x)′ = −12 sin 2x+ e−x.

Therefore,

y′′ + 4y =
(
−12 sin 2x+ e−x

)
+ 4

(
3 sin 2x+ e−x

)
= 5e−x,

which is the right-hand side of the given equation. So, y = 3 sin 2x+ e−x is a solution.

10. Taking derivatives of both sides of the given relation with respect to x yields

d

dx
(y − ln y) =

d

dx

(
x2 + 1

)
⇒ dy

dx
− 1

y

dy

dx
= 2x

⇒ dy

dx

(
1− 1

y

)
= 2x ⇒ dy

dx

y − 1

y
= 2x ⇒ dy

dx
=

2xy

y − 1
.

Thus, the relation y−ln y = x2+1 is an implicit solution to the equation y′ = 2xy/(y−1).

12. To find dy/dx, we use implicit differentiation.

d

dx

[
x2 − sin(x+ y)

]
=

d

dx
(1) = 0 ⇒ 2x− cos(x+ y)

d

dx
(x+ y) = 0

⇒ 2x− cos(x+ y)

(
1 +

dy

dx

)
= 0 ⇒ dy

dx
=

2x

cos(x+ y)
− 1 = 2x sec(x+ y)− 1,

and so the given differential equation is satisfied.

14. Assuming that C1 and C2 are constants, we differentiate the function φ(x) twice to get

φ′(x) = C1 cosx− C2 sin x, φ′′(x) = −C1 sin x− C2 cosx.

Therefore,

φ′′ + φ = (−C1 sin x− C2 cosx) + (C1 sin x+ C2 cosx) = 0.

Thus, φ(x) is a solution with any choice of constants C1 and C2.

16. Differentiating both sides, we obtain

d

dx

(
x2 + Cy2

)
=

d

dx
(1) = 0 ⇒ 2x+ 2Cy

dy

dx
= 0 ⇒ dy

dx
= − x

Cy
.
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Chapter 1

Since, from the given relation, Cy2 = 1− x2, we have

− x

Cy
=

xy

−Cy2
=

xy

x2 − 1
.

So,
dy

dx
=

xy

x2 − 1
.

Writing Cy2 = 1− x2 in the form

x2 +
y2(

1/
√
C
)2 = 1,

we see that the curves defined by the given relation are ellipses with semi-axes 1 and

1/
√
C and so the integral curves are half-ellipses located in the upper/lower half plane.

18. The function φ(x) is defined and differentiable for all values of x except those satisfying

c2 − x2 = 0 ⇒ x = ±c.

In particular, this function is differentiable on (−c, c).

Clearly, φ(x) satisfies the initial condition:

φ(0) =
1

c2 − 02
=

1

c2
.

Next, for any x in (−c, c),

dφ

dx
=

d

dx

[(
c2 − x2

)−1
]

= (−1)
(
c2 − x2

)−2 (
c2 − x2

)′
= 2x

[(
c2 − x2

)−1
]2

= 2xφ(x)2.

Therefore, φ(x) is a solution to the equation y′ = 2xy2 on (−c, c).

Several integral curves are shown in Fig. 1–A on page 29.

20. (a) Substituting φ(x) = emx into the given equation yields

(emx)′′ + 6 (emx)′ + 5 (emx) = 0 ⇒ emx
(
m2 + 6m+ 5

)
= 0.

Since emx 6= 0 for any x, φ(x) satisfies the given equation if and only if

m2 + 6m+ 5 = 0 ⇔ m = −1,−5.
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