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Notes to the Instructor

One goal in our writing has been to create flexible texts that afford the instructor a variety

of topics and make available to the student an abundance of practice problems and projects.

We recommend that the instructor read the discussion given in the preface in order to gain

an overview of the prerequisites, topics of emphasis, and general philosophy of the text.

Supplements

Student’s Solutions Manual: By Viktor Maymeskul. Contains complete, worked-out solu-

tions to most odd-numbered exercises, providing students with an excellent study tool. ISBN

13: 978-0-321-74834-8; ISBN 10: 0-321-74834-4.

Companion Web site: Provides additional resources for both instructors and students,

including helpful links keyed to sections of the text, access to Interactive Differential Equations,

suggestions for incorporating Interactive Differential Equations modules, suggested syllabi,

index of applications, and study tips for students. Access: www.pearsonhighered.com/nagle

Interactive Differential Equations: By Beverly West (Cornell University), Steven Strogatz

(Cornell University), Jean Marie McDill (California Polytechnic State University – San Luis

Obispo), John Cantwell (St. Louis University), and Hubert Hohn (Massachusetts College of

Arts) is a popular software directly tied to the text that focuses on helping students visualize

concepts. Applications are drawn from engineering, physics, chemistry, and biology. Access:

www.pearsonhighered.com/nagle

Instructor’s MAPLE/MATHLAB/MATHEMATICA manuals: By Thomas W. Po-

laski (Winthrop University), Bruno Welfert (Arizona State University), and Maurino Bautista

(Rochester Institute of Technology). A collection of worksheets and projects to aid instructors

in integrating computer algebra systems into their courses. Available in the Pearson Instructor

Resource Center at www.pearsonhighered.com/irc.

MATLAB Manual ISBN 13: 978-0-321-53015-8; ISBN 10: 0-321-53015-2

MAPLE Manual ISBN 13: 978-0-321-38842-1; ISBN 10: 0-321-38842-9

MATHEMATICA Manual ISBN 13: 978-0-321-52178-1; ISBN 10: 0-321-52178-1
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Computer Labs

A computer lab in connection with a differential equations course can add a whole new di-

mension to the teaching and learning of differential equations. As more and more colleges

and universities set up computer labs with software such as MAPLE, MATLAB, DERIVE,

MATHEMATICA, PHASEPLANE, and MACMATH, there will be more opportunities to in-

clude a lab as part of the differential equations course. In our teaching and in our texts, we

have tried to provide a variety of exercises, problems, and projects that encourage the student

to use the computer to explore. Even one or two hours at a computer generating phase plane

diagrams can provide the students with a feeling of how they will use technology together

with the theory to investigate real world problems. Furthermore, our experience is that they

thoroughly enjoy these activities. Of course, the software, provided free with the texts, is

especially convenient for such labs.

Group Projects

Although the projects that appear at the end of the chapters in the text can be worked

out by the conscientious student working alone, making them group projects adds a social

element that encourages discussion and interactions that simulate a professional work place

atmosphere. Group sizes of 3 or 4 seem to be optimal. Moreover, requiring that each individual

student separately write up the group’s solution as a formal technical report for grading by

the instructor also contributes to the professional flavor.

Typically, our students each work on 3 or 4 projects per semester. If class time permits, oral

presentations by the groups can be scheduled and help to improve the communication skills

of the students.

The role of the instructor is, of course, to help the students solve these elaborate problems on

their own and to recommend additional reference material when appropriate.

Some additional Group Projects are presented in this guide (see page 10).

Technical Writing Exercises

The technical writing exercises at the end of most chapters invite students to make documented

responses to questions dealing with the concepts in the chapter. This not only gives students

an opportunity to improve their writing skills, but it helps them organize their thoughts and

better understand the new concepts. Moreover, many questions deal with critical thinking

2 Copyright c© 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



skills that will be useful in their careers as engineers, scientists, or mathematicians.

Since most students have little experience with technical writing, it may be necessary to return

ungraded the first few technical writing assignments with comments and have the students redo

the the exercise. This has worked well in our classes and is much appreciated by the students.

Handing out a “model” technical writing response is also helpful for the students.

Student Presentations

It is not uncommon for an instructor to have students go to the board and present a solution

to a problem. Differential equations is so rich in theory and applications that it is an excellent

course to allow (require) a student to give a presentation on a special application (e.g., almost

any topic from Chapters 3 and 5), on a new technique not covered in class (e.g., material from

Section 2.6, Projects A, B, or C in Chapter 4), or on additional theory (e.g., material from

Chapter 6 which generalizes the results in Chapter 4). In addition to improving students’

communication skills, these “special” topics are long remembered by the students. Here, too,

working in groups of 3 or 4 and sharing the presentation responsibilities can add substantially

to the interest and quality of the presentation. Students should also be encouraged to enliven

their communication by building physical models, preparing part of their lectures with the aid

of video technology, and utilizing appropriate internet web sites.

Homework Assignments

We would like to share with you an obvious, non-original, but effective method to encourage

students to do homework problems.

An essential feature is that it requires little extra work on the part of the instructor or grader.

We assign homework problems (about 5 of them) after each lecture. At the end of the week

(Fridays), students are asked to turn in their homework (typically, 3 sets) for that week. We

then choose at random one problem from each assignment (typically, a total of 3) that will

be graded. (The point is that the student does not know in advance which problems will be

chosen.) Full credit is given for any of the chosen problems for which there is evidence that the

student has made an honest attempt at solving. The homework problem sets are returned to

the students at the next meeting (Mondays) with grades like 0/3, 1/3, 2/3, or 3/3 indicating

the proportion of problems for which the student received credit. The homework grades are

tallied at the end of the semester and count as one test grade. Certainly, there are variations

Copyright c© 2012 Pearson Education, Inc. Publishing as Addison-Wesley. 3



on this theme. The point is that students are motivated to do their homework.

Syllabus Suggestions

To serve as a guide in constructing a syllabus for a one-semester or two-semester course,

the prefaces to the texts list sample outlines that emphasize methods, applications, theory,

partial differential equations, phase plane analysis, computation, or combinations of these. As

a further guide in making a choice of subject matter, we provide (starting on the next page)

a listing of text material dealing with some common areas of emphasis.

Numerical, Graphical, and Qualitative Methods

The sections and projects dealing with numerical, graphical, and qualitative techniques of

solving differential equations include:

Section 1.3: Direction Fields

Section 1.4: The Approximation Method of Euler

Project A for Chapter 1: Taylor Series Method

Project B for Chapter 1: Picard’s Method

Project C for Chapter 1: The Phase Line

Section 3.6: Improved Euler’s Method, which includes step-by-step outlines of the im-

proved Euler’s method subroutine and improved Euler’s method with tolerance. These

outlines are easy for the student to translate into a computer program (pp. 127–128).

Section 3.7: Higher-Order Numerical Methods : Taylor and Runge-Kutta, which includes

outlines for the Fourth Order Runge-Kutta subroutine and algorithm with tolerance (see

pp. 135–136).

Project H for Chapter 3: Stability of Numerical Methods

Project I for Chapter 3: Period Doubling and Chaos

4 Copyright c© 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



Section 4.8: Qualitative Considerations for Variable Coefficient and Non-linear Equa-

tions, which discusses the energy integral lemma, as well as the Airy, Bessel, Duffing,

and van der Pol equations.

Section 5.3: Solving Systems and Higher-Order Equations Numerically, which describes

the vectorized forms of Euler’s method and the Fourth Order Runge-Kutta method, and

discusses an application to population dynamics.

Section 5.4: Introduction to the Phase Plane, which introduces the study of trajectories

of autonomous systems, critical points, and stability.

Section 5.8: Dynamical Systems, Poincaré Maps, and Chaos, which discusses the use of

numerical methods to approximate the Poincarè map and how to interpret the results.

Project A for Chapter 6: Computer Algebra Systems and Exponential Shift

Project D for Chapter 6: Higher-Order Difference Equations

Project A for Chapter 8: Alphabetization Algorithms

Project D for Chapter 10: Numerical Method for Δu = f on a Rectangle

Project D for Chapter 11: Shooting Method

Project E for Chapter 11: Finite-Difference Method for Boundary Value Problems

Project C for Chapter 12: Computing Phase Plane Diagrams

Project D for Chapter 12: Ecosystem of Planet GLIA-2

Section 13.1: Introduction: Successive Approximations

Appendix B: Newton’s Method

Appendix C: Simpson’s Rule

Appendix E: Method of Least Squares

Appendix F: Runge-Kutta Procedure for Equations

Copyright c© 2012 Pearson Education, Inc. Publishing as Addison-Wesley. 5



The instructor who wishes to emphasize numerical methods should also note that the text

contains an extensive chapter of series solutions of differential equations (Chapter 8).

Engineering/Physics Applications

Since Laplace transforms is a subject vital to engineering, we have included a detailed chapter

on this topic – see Chapter 7. Stability is also an important subject for engineers, so we have

included an introduction to the subject in Section 5.4 along with an entire chapter addressing

this topic – see Chapter 12. Further material dealing with engineering/physics applications

include:

Project C for Chapter 2: Torricelli’s Law of Fluid Flow.

Project I for Chapter 2: Designing a Solar Collector.

Section 3.1: Mathematical Modeling.

Section 3.2: Compartmental Analysis, which contains a discussion of mixing problems

and of population models.

Section 3.3: Heating and Cooling off Buildings, which discusses temperature variations

in the presence of air conditioning or furnace heating.

Section 3.4: Newtonian Mechanics.

Section 3.5: Electrical Circuits.

Project C for Chapter 3: Curve of Pursuit.

Project D for Chapter 3: Aircraft Guidance in a Crosswind.

Project E for Chapter 3: Feedback and the Op Amp.

Project F for Chapter 3: Bang-Bang Controls.

Section 4.1: Introduction: The Mass-Spring Oscillator.

Section 4.8: Qualitative Considerations for Variable-Coefficient and Non-linear Equa-

tions.

Section 4.9: A Closer Look at Free Mechanical Vibrations.
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Section 4.10: A Closer Look at Forced Mechanical Vibrations.

Project B for Chapter 4: Apollo Re-entry

Project C for Chapter 4: Simple Pendulum

Section 5.1: Interconnected Fluid Tanks.

Section 5.4: Introduction to the Phase PLane.

Section 5.6: Coupled Mass-Spring Systems.

Section 5.7: Electrical Systems.

Section 5.8: Dynamical Systems, Poincaré Maps, and Chaos .

Project A for Chapter 5: Designing a Landing System for Interplanetary Travel.

Project C for Chapter 5: Things that Bob.

Project D for Chapter 5: Hamiltonian Systems.

Project C for Chapter 6: Transverse Vibrations of a Beam.

Chapter 7: Laplace Transforms, which in addition to basic material includes discussions

of transfer functions, the Dirac delta function, and frequency response modelling.

Project B for Chapter 8, Spherically Symmetric Solutions to Schrödinger’s Equation for

the Hydrogen Atom

Project D for Chapter 8, Buckling of a Tower

Project E for Chapter 8, Aging Spring and Bessel Functions

Section 9.6: Complex Eigenvalues, includes discussion of normal (natural) frequencies.

Project B for Chapter 9: Matrix Laplace Transform Method.

Project C for Chapter 9: Undamped Second-Order Systems.

Chapter 10: Partial Differential Equations, which includes sections on Fourier series, the

heat equation, wave equation, and Laplace’s equation.
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Project A for Chapter 10: Steady-State Temperature Distribution in a Circular Cylinder.

Project B for Chapter 10: A Laplace Transform Solution of the Wave Equation.

Project A for Chapter 11: Hermite Polynomials and the Harmonic Oscillator.

Section 12.4: Energy Methods, which addresses both conservative and non-conservative

autonomous mechanical systems.

Project A for Chapter 12: Solitons and Korteweg-de Vries Equation.

Project B for Chapter 12: Burger’s Equation.

Students of engineering and physics would also find Chapter 8 on series solutions particularly

useful, especially Section 8.8 on special functions.

Biology/Ecology Applications

Project C for Chapter 1: The Phase Plane, which discusses the logistic population model

and bifurcation diagrams for population control.

Project A for Chapter 2: Oil Spill in a Canal.

Project B for Chapter 2: Differential Equations in Clinical Medicine.

Section 3.1: Mathematical Modelling.

Section 3.2: Compartmental Analysis, which contains a discussion of mixing problems

and population models.

Project A for Chapter 3: Dynamics of HIV Infection.

Project B for Chapter 3: Aquaculture, which deals with a model of raising and harvesting

catfish.

Section 5.1: Interconnected Fluid Tanks, which introduces systems of equations.

Section 5.3: Solving Systems and Higher-Order Equations Numerically, which contains

an application to population dynamics.
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Section 5.5: Applications to Biomathematics: Epidemic and Tumor Growth Models.

Project B for Chapter 5: Spread of Staph Infections in Hospitals – Part I.

Project E for Chapter 5: Cleaning Up the Great Lakes

Project F for Chapter 5: A Growth Model for Phytoplankton – Part I.

Problem 19 in Exercises 10.5 , which involves chemical diffusion through a thin layer.

Project D for Chapter 12: Ecosystem on Planet GLIA-2

Project E for Chapter 12: Spread of Staph Infections in Hospitals – Part II.

Project F for Chapter 12: A Growth Model for Phytoplankton – Part II.

The basic content of the remainder of this instructor’s manual consists of supplemental group

projects, answers to the even-numbered problems, and detailed solutions to the most even-

numbered problems in Chapters 1, 2, 3, 4, and 7. These answers are not available any place

else since the text and the Student’s Solutions Manual only provide answers and solutions to

odd-numbered problems.

We would appreciate any comments you may have concerning the answers in this manual.

These comments can be sent to the authors’ email addresses below. We also would encourage

sharing with us (the authors and users of the texts) any of your favorite group projects.

E. B. Saff A. D. Snider

Edward.B.Saff@Vanderbilt.edu snider@eng.usf.edu
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Group Projects for Chapter 3

Delay Differential Equations

In our discussion of mixing problems in Section 3.2, we encountered the initial value

problem

x′(t) = 6− 3

500
x (t− t0) , (0.1)

x(t) = 0 for x ∈ [−t0, 0] ,

where t0 is a positive constant. The equation in (0.1) is an example of a delay differ-

ential equation. These equations differ from the usual differential equations by the

presence of the shift (t− t0) in the argument of the unknown function x(t). In general,

these equations are more difficult to work with than are regular differential equations,

but quite a bit is known about them.1

(a) Show that the simple linear delay differential equation

x′ = ax(t− b), (0.2)

where a, b are constants, has a solution of the form x(t) = Cest for any constant

C, provided s satisfies the transcendental equation s = ae−bs.

(b) A solution to (0.2) for t > 0 can also be found using the method of steps. Assume

that x(t) = f(t) for −b ≤ t ≤ 0. For 0 ≤ t ≤ b, equation (0.2) becomes

x′(t) = ax(t− b) = af(t− b),

and so

x(t) =

t∫
0

af(ν − b)dν + x(0).

Now that we know x(t) on [0, b], we can repeat this procedure to obtain

x(t) =

t∫
b

ax(ν − b)dν + x(b)

for b ≤ x ≤ 2b. This process can be continued indefinitely.

1See, for example, Differential–Difference Equations, by R. Bellman and K. L. Cooke, Academic Press, New

York, 1963, or Ordinary and Delay Differential Equations, by R. D. Driver, Springer–Verlag, New York, 1977
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Use the method of steps to show that the solution to the initial value problem

x′(t) = −x(t− 1), x(t) = 1 on [−1, 0],

is given by

x(t) =
n∑

k=0

(−1)k
[t− (k − 1)]k

k!
, for n− 1 ≤ t ≤ n ,

where n is a nonnegative integer. (This problem can also be solved using the

Laplace transform method of Chapter 7.)

(c) Use the method of steps to compute the solution to the initial value problem given

in (0.1) on the interval 0 ≤ t ≤ 15 for t0 = 3.

Extrapolation

When precise information about the form of the error in an approximation is known, a

technique called extrapolation can be used to improve the rate of convergence.

Suppose the approximation method converges with rate O (hp) as h→ 0 (cf. Section 3.6).

From theoretical considerations, assume we know, more precisely, that

y(x;h) = φ(x) + hpap(x) + O
(
hp+1

)
, (0.3)

where y(x;h) is the approximation to φ(x) using step size h and ap(x) is some function

that is independent of h (typically, we do not know a formula for ap(x), only that it

exists). Our goal is to obtain approximations that converge at the faster rate than

O (hp+1).

We start by replacing h by h/2 in (0.3) to get

y

(
x;
h

2

)
= φ(x) +

hp

2p
ap(x) + O

(
hp+1

)
.

If we multiply both sides by 2p and subtract equation (0.3), we find

2py

(
x;
h

2

)
− y(x;h) = (2p − 1)φ(x) + O

(
hp+1

)
.

Solving for φ(x) yields

φ(x) =
2py (x;h/2)− y(x;h)

2p − 1
+ O

(
hp+1

)
.
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Hence,

y∗
(
x;
h

2

)
:=

2py (x;h/2)− y(x;h)

2p − 1

has a rate of convergence of O (hp+1).

(a) Assuming

y∗
(
x;
h

2

)
= φ(x) + hp+1ap+1(x) + O

(
hp+2

)
,

show that

y∗∗
(
x;
h

4

)
:=

2p+1y∗ (x;h/4)− y∗(x;h/2)
2p+1 − 1

has a rate of convergence of O (hp+2).

(b) Assuming

y∗∗
(
x;
h

4

)
= φ(x) + hp+2ap+2(x) + O

(
hp+3

)
,

show that

y∗∗∗
(
x;
h

8

)
:=

2p+2y∗∗ (x;h/8)− y∗∗(x;h/4)
2p+2 − 1

has a rate of convergence of O (hp+3).

(c) The results of using Euler’s method (with h = 1, 1/2, 1/4, 1/8) to approximate the

solution to the initial value problem

y′ = y, y(0) = 1

at x = 1 are given in Table 1.2, page 26. For Euler’s method, the extrapolation

procedure applies with p = 1. Use the results in Table 1.2 to find an approximation

to e = y(1) by computing y∗∗∗(1; 1/8). [Hint: Compute y∗ (1; 1/2), y∗ (1; 1/4), and

y∗ (1; 1/8); then compute y∗∗ (1; 1/4) and y∗∗ (1; 1/8).]

(d) Table 1.2 also contains Euler’s approximation for y(1) when h = 1/16. Use this

additional information to compute the next step in the extrapolation procedure;

that is, compute y∗∗∗∗(1; 1/16).

12 Copyright c© 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



Group Projects for Chapter 5

Effects of Hunting on Predator–Prey Systems

As discussed in Section 5.3 (pp. 257–259), cyclic variations in the population of predators

and their prey have been studied using the Volterra-Lotka predator–prey model

dx

dt
= Ax− Bxy , (0.4)

dy

dt
= −Cy +Dxy , (0.5)

where A, B, C, and D are positive constants, x(t) is the population of prey at time

t, and y(t) is the population of predators. It can be shown that such a system has

a periodic solution. That is, there exists some constant T such that x(t) = x(t + T )

and y(t) = y(t + T ) for all t. The periodic or cyclic variation in the population has

been observed in various systems such as sharks–food fish, lynx–rabbits, and ladybird

beetles–cottony cushion scale. Because of this periodic behavior, it is useful to consider

the average population x and y defined by

x :=
1

T

t∫
0

x(t)dt , y :=
1

T

t∫
0

y(t)dt .

(a) Show that x = C/D and y = A/B. [Hint: Use equation (0.4) and the fact that

x(0) = x(T ) to show that

T∫
0

[A− By(t)] dt =

T∫
0

x′(t)
x(t)

dt = 0 .

(b) To determine the effect of indiscriminate hunting on the population, assume hunting

reduces the rate of change in a population by a constant times the population. Then

the predator–prey system satisfies the new set of equations

dx

dt
= Ax−Bxy − εx = (A− ε)x− Bxy , (0.6)

dy

dt
= −Cy +Dxy − δy = −(C + δ)y +Dxy , (0.7)

where ε and δ are positive constants with ε < A. What effect does this have on the

average population of prey? On the average population of predators?
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(c) Assume the hunting was done selectively, as in shooting only rabbits (or shooting

only lynx). Then we have ε > 0 and δ = 0 (or ε = 0 and δ > 0) in (0.6)–(0.7).

What effect does this have on the average populations of predator and prey?

(d) In a rural county, foxes prey mainly on rabbits but occasionally include a chicken

in their diet. The farmers decide to put a stop to the chicken killing by hunting

the foxes. What do you predict will happen? What will happen to the farmers’

gardens?

Limit Cycles

In the study of triode vacuum tubes, one encounters the van der Pol equation2

y′′ − μ
(
1− y2

)
y′ + y = 0 ,

where the constant μ is regarded as a parameter. In Section 4.8, we used the mass-spring

oscillator analogy to argue that the non-zero solutions to the van der Pol equation with

μ = 1 should approach a periodic limit cycle. The same argument applies for any positive

value of μ.

(a) Recast the van der Pol equation as a system in normal form and use software to

plot some typical trajectories for μ = 0.1, 1, and 10. Re-scale the plots if necessary

until you can discern the limit cycle trajectory; find trajectories that spiral in, and

ones that spiral out, to the limit cycle.

(b) Now let μ = −0.1, −1, and −10. Try to predict the nature of the solutions using

the mass-spring analogy. Then use the software to check your predictions. Are

there limit cycles? Do the neighboring trajectories spiral into, or spiral out from,

the limit cycles?

(c) Repeat parts (a) and (b) for the Rayleigh equation

y′′ − μ
[
1− (y′)2

]
y′ + y = 0 .

2Historical Footnote: Experimental research by E. V. Appleton and B. van der Pol in 1921 on the

oscillation of an electrical circuit containing a triode generator (vacuum tube) led to the non-linear equation

now called 0 van der Pol’s equation. Methods of solution were developed by van der Pol in 1926–1927.

Mary L. Cartwright continued research into non-linear oscillation theory and together with J. E. Little-

wood obtained existence results for forced oscillations in non-linear systems in 1945.
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Group Project for Chapter 13

David Stapleton, University of Central Oklahoma

Satellite Altitude Stability

In this problem, we determine the orientation at which a satellite in a circular orbit of

radius r can maintain a relatively constant facing with respect to a spherical primary

(e.g., a planet) of mass M . The torque of gravity on the asymmetric satellite maintains

the orientation.

Suppose (x, y, z) and (x, y, z) refer to coordinates in two systems that have a common

origin at the satellite’s center of mass. Fix the xyz-axes in the satellite as principal axes;

then let the z-axis point toward the primary and let the x-axis point in the direction of

the satellite’s velocity. The xyz-axes may be rotated to coincide with the xyz-axes by

a rotation φ about the x-axis (roll), followed by a rotation θ about the resulting y-axis

(pitch), and a rotation ψ about the final z-axis (yaw). Euler’s equations from physics

(with high terms omitted3 to obtain approximate solutions valid near (φ, θ, ψ) = (0, 0, 0))

show that the equations for the rotational motion due to gravity acting on the satellite

are

Ixφ
′′ = −4ω2

0 (Iz − Iy)φ− ω0 (Iy − Iz − Ix)ψ
′

Iyθ
′′ = −3ω2

0 (Ix − Iz) θ

Izψ
′′ = −4ω2

0 (Iy − Ix)ψ + ω0 (Iy − Iz − Ix)φ
′ ,

where ω0 =
√

(GM)/r3 is the angular frequency of the orbit and the positive constants

Ix, Iy, Iz are the moments of inertia of the satellite about the x, y, and z-axes.

(a) Find constants c1, . . . , c5 such that these equations can be written as two systems

d

dt

⎡⎢⎢⎢⎢⎣
φ

ψ

φ′

θ′

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
0 0 1 0

0 0 0 1

c1 0 0 c2

0 c3 c4 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
φ

ψ

φ′

ψ′

⎤⎥⎥⎥⎥⎦
and

d

dt

[
θ

θ′

]
=

[
0 1

c5 0

][
θ

θ′

]
.

3The derivation of these equations is found in Attitude Stabilization and Control of Earth Satellites, by

O. H. Gerlach, Space Science Reviews, #4 (1965), 541–566.
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(b) Show that the origin is asymptotically stable for the first system in (a) if

(c2c4 + c3 + c1)
2 − 4c1c3 > 0 ,

c1c3 > 0 ,

c2c4 + c3 + c1 > 0

and hence deduce that Iy > Ix > Iz yields an asymptotically stable origin. Are

there other conditions on the moments of inertia by which the origin is stable?

(c) Show that, for the asymptotically stable configuration in (b), the second system

in (a) becomes a harmonic oscillator problem, and find the frequency of oscillation

in terms of Ix, Iy, Iz, and ω0 . Phobos maintains Iy > Ix > Iz in its orientation

with respect to Mars, and has angular frequency of orbit ω0 = 0.82 rad/hr. If

(Ix − Iz) /Iy = 0.23, show that the period of the libration for Phobos (the period

with which the side of Phobos facing Mars shakes back and forth) is about 9 hours.
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CHAPTER 1: Introduction

EXERCISES 1.1: Background

2. This equation involves only ordinary derivatives of x with respect to t, and the highest

derivative has the second order. Thus it is an ordinary differential equation of the

second order with independent variable t and dependent variable x. It is linear because

x, dx/dt, and d2x/dt2 appear in additive combination (even with constant coefficients)

of their first powers.

4. This equation is an ODE because it contains no partial derivatives. Since the highest

order derivative is dy/dx, the equation is a first order equation. This same term also

shows us that the independent variable is x and the dependent variable is y. This

equation is nonlinear because of the y in the denominator of [y(2− 3x)]/[x(1− 3y)] .

6. This equation is an ordinary first order differential equation with independent variable

x and dependent variable y. It is nonlinear because of the term containing the square of

dy/dx.

8. This equation is an ODE because it contains only ordinary derivatives. The term dp/dt

is the highest order derivative and thus shows us that this is a first order equation. This

term also shows us that the independent variable is t and the dependent variable is p.

This equation is nonlinear since in the term kp(P − p) = kPp − kp2 the dependent

variable p is squared (compare with equation (7)).

10. This equation contains only ordinary derivatives of y with respect to x. Hence, it is an

ordinary differential equation of the second order (because the highest order derivative

is d2y/dx2) with independent variable x and dependent variable y. This equation is of

the form (7) and, therefore, is linear.

12. ODE of the second order with the independent variable x and the dependent variable y,

nonlinear.
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Chapter 1

14. The velocity at time t is the rate of change of the position function x(t), i.e., x′. Thus,

dx

dt
= kx4,

where k is the proportionality constant.

16. The equation is
dA

dt
= kA2,

where k is the proportionality constant.

EXERCISES 1.2: Solutions and Initial Value Problems

2. (a) Differentiating φ(x) yields φ′(x) = 2x. Substitution φ and φ′ for y and y′ into the

given equation, xy′ = 2y, gives x (2x) = 2 (x2), which is an identity on (−∞,∞).

Thus, φ(x) is an explicit solution on (−∞,∞).

(b) We compute
dφ

dx
=

d

dx
(ex − x) = ex − 1.

Functions φ(x) and φ′(x) are defined for all real numbers and

dφ

dx
+ φ(x)2 = (ex − 1) + (ex − x)2

= (ex − 1) +
(
e2x − 2xex + x2

)
= e2x + (1− 2x)ex + x2 − 1,

which is identically equal to the right-hand side of the given equation. Thus, φ(x)

is an explicit solution on (−∞,∞).

(c) Note that the function φ(x) = x2 − x−1 is not defined at x = 0. Differentiating

φ(x) twice yields

dφ

dx
=

d

dx

(
x2 − x−1

)
= 2x− (−1)x−2 = 2x+ x−2;

d2φ

dx2
=

d

dx

(
dφ

dx

)
=

d

dx

(
2x+ x−2

)
= 2 + (−2)x−3 = 2

(
1− x−3

)
.

Therefore,

x2
d2φ

dx2
= x2 · 2 (1− x−3

)
= 2

(
x2 − x−1

)
= 2φ(x),

and φ(x) is an explicit solution to the differential equation x2y′′ = 2y on any interval

not containing the point x = 0, in particular, on (0,∞).

18 Copyright c© 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



Exercises 1.2

4. Since y = sin x+ x2, we have y′ = cosx+ 2x and y′′ = − sin x+ 2. These functions are

defined on (−∞,∞). Substituting these expressions into y′′ + y = x2 + 2 gives

y′′ + y = − sin x+ 2 + sin x+ x2 = x2 + 2 for all x in (−∞,∞).

Therefore, y = sin x+x2 is a solution to the differential equation on the interval (−∞,∞).

6. Differentiating θ(t) = 2e3t − e2t twice, we get

dθ

dt
=

d

dt

(
2e3t − e2t

)
= 6e3t − 2e2t,

d2θ

dt2
=

d

dt

(
6e3t − 2e2t

)
= 18e3t − 4e2t.

So,
d2θ

dt2
− θ

dθ

dt
+ 3θ = −12e6t + 10e5t − 2e4t + 24e3t − 7e2t �≡ − 2e2t

on any interval. Therefore, θ(t) is not a solution to the given differential equation.

8. We differentiate y = e2x − 3e−x twice:

dy

dx
=

d

dx

(
e2x − 3e−x

)
= e2x(2)− 3e−x(−1) = 2e2x + 3e−x;

d2y

dx2
=

d

dx

(
dy

dx

)
=

d

dx

(
2e2x + 3e−x

)
= 2e2x(2) + 3e−x(−1) = 4e2x − 3e−x.

Substituting y, y′, and y′′ into the differential equation, we get

d2y

dx2
− dy

dx
− 2y =

(
4e2x − 3e−x

)− (
2e2x + 3e−x

)− 2
(
e2x − 3e−x

)
= (4− 2− 2)e2x + (−3− 3− 2(−3))e−x = 0.

Hence, y = e2x − 3e−x is an explicit solution to the given differential equation.

10. Differentiating the equation x2 + y2 = 4 implicitly, we obtain

2x+ 2yy′ = 0 ⇒ y′ = −x
y
.

Since there can be no function y = f(x) that satisfies the differential equation y′ = x/y

and the differential equation y′ = −x/y on the same interval, we see that x2 + y2 = 4

does not define an implicit solution to the differential equation.
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Chapter 1

12. To find dy/dx, we use implicit differentiation.

d

dx

[
x2 − sin(x+ y)

]
=

d

dx
(1) = 0 ⇒ 2x− cos(x+ y)

d

dx
(x+ y) = 0

⇒ 2x− cos(x+ y)

(
1 +

dy

dx

)
= 0 ⇒ dy

dx
=

2x

cos(x+ y)
− 1 = 2x sec(x+ y)− 1,

and so the given differential equation is satisfied.

14. Assuming that C1 and C2 are constants, we differentiate the function φ(x) twice to get

φ′(x) = C1 cos x− C2 sin x, φ′′(x) = −C1 sin x− C2 cosx.

Therefore,

φ′′ + φ = (−C1 sin x− C2 cos x) + (C1 sin x+ C2 cosx) = 0.

Thus, φ(x) is a solution with any choice of constants C1 and C2.

16. Differentiating both sides, we obtain

d

dx

(
x2 + Cy2

)
=

d

dx
(1) = 0 ⇒ 2x+ 2Cy

dy

dx
= 0 ⇒ dy

dx
= − x

Cy
.

Since, from the given relation, Cy2 = 1− x2, we have

− x

Cy
=

xy

−Cy2 =
xy

x2 − 1
.

So,
dy

dx
=

xy

x2 − 1
.

Writing Cy2 = 1− x2 in the form

x2 +
y2(

1/
√
C
)2 = 1,

we see that the curves defined by the given relation are ellipses with semi-axes 1 and

1/
√
C and so the integral curves are half-ellipses located in the upper/lower half plane.

18. The function φ(x) is defined and differentiable for all values of x except those satisfying

c2 − x2 = 0 ⇒ x = ±c.

In particular, this function is differentiable on (−c, c).
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Exercises 1.2

Clearly, φ(x) satisfies the initial condition:

φ(0) =
1

c2 − 02
=

1

c2
.

Next, for any x in (−c, c),
dφ

dx
=

d

dx

[(
c2 − x2

)−1
]
= (−1)

(
c2 − x2

)−2 (
c2 − x2

)′
= 2x

[(
c2 − x2

)−1
]2

= 2xφ(x)2.

Therefore, φ(x) is a solution to the equation y′ = 2xy2 on (−c, c).
Several integral curves are shown in Fig. 1–A on page 30.

20. (a) Substituting φ(x) = emx into the given equation yields

(emx)′′ + 6 (emx)′ + 5 (emx) = 0 ⇒ emx
(
m2 + 6m+ 5

)
= 0.

Since emx �= 0 for any x, φ(x) satisfies the given equation if and only if

m2 + 6m+ 5 = 0 ⇔ m = −1,−5.

(b) We have

(emx)′′′ + 3 (emx)′′ + 2 (emx)′ = 0 ⇒ emx
(
m3 + 3m2 + 2m

)
= 0

⇒ m(m2 + 3m+ 2) = 0 ⇔ m = 0,−1,−2.

22. We find

φ′(x) = c1e
x − 2c2e

−2x , φ′′(x) = c1e
x + 4c2e

−2x .

Substitution yields

φ′′ + φ′ − 2φ =
(
c1e

x + 4c2e
−2x

)
+

(
c1e

x − 2c2e
−2x

)− 2
(
c1e

x + c2e
−2x

)
= (c1 + c1 − 2c1) e

x + (4c2 − 2c2 − 2c2) e
−2x = 0.

Thus, with any choice of constants c1 and c2, φ(x) is a solution to the given equation.

(a) Constants c1 and c2 must satisfy the system{
2 = φ(0) = c1 + c2

1 = φ′(0) = c1 − 2c2 .

Subtracting the second equation from the first one yields

3c2 = 1 ⇒ c2 = 1/3 ⇒ c1 = 2− c2 = 5/3.
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(b) Similarly to the part (a), we obtain the system{
1 = φ(1) = c1e+ c2e

−2

0 = φ′(1) = c1e− 2c2e
−2

which has the solution c1 = (2/3)e−1, c2 = (1/3)e2.

24. In this problem, the independent variable is t, the dependent variable is y. Writing the

equation in the form
dy

dt
= ty + sin2 t ,

we conclude that f(t, y) = ty + sin2 t, ∂f(t, y)/∂y = t. Both functions, f and ∂f/∂y,

are continuous on the whole ty-plane. So, Theorem 1 applies for any initial condition,

in particular, for y(π) = 5.

26. With the independent variable t and the dependent variable x, we have

f(t, x) = sin t− cosx,
∂f(t, x)

∂x
= sin x ,

which are continuous on tx-plane. So, Theorem 1 applies for any initial condition.

28. Here, f(x, y) = 3x− 3
√
y − 1 and

∂f(x, y)

∂y
=

∂

∂y

[
3x− (y − 1)1/3)

]
= − 1

3 3
√

(y − 1)2
.

The function f is continuous at any point (x, y) while ∂f/∂y is defined and continuous

at any point (x, y) with y �= 1 i.e., on the xy-plane excluding the horizontal line y = 1.

Since the initial point (2, 1) belongs to this line, there is no rectangle containing the

initial point, on which ∂f/∂y is continuous. Thus, Theorem 1 does not apply.

30. Here, the initial point (x0, y0) is (0,−1) and G(x, y) = x + y + exy. The first partial

derivatives,

Gx(x, y) = (x+ y + exy)′x = 1 + yexy and Gy(x, y) = (x+ y + exy)′y = 1 + xexy,

are continuous on the xy-plane. Next,

G(0,−1) = −1 + e0 = 0, Gy(0,−1) = 1 + (0)e0 = 1 �= 0.

Therefore, all the hypotheses of Implicit Function Theorem are satisfied, and so the

relation x + y + exy = 0 defines a differentiable function y = φ(x) on some interval

(−δ, δ) about x0 = 0.
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EXERCISES 1.3: Direction Fields

2. (a) For y = ±2x,

dy

dx
=

d

dx
(±2x) = ±2 and

4x

y
=

4x

±2x
= ±2, x �= 0.

Thus y = 2x and y = −2x are solutions to the differential equation dy/dx = 4x/y

on any interval not containing the point x = 0.

(d) As x → ∞ or x → −∞, the solution in part (b) increases unboundedly and has

the lines y = 2x and y = −2x, respectively, as slant asymptotes. The solution in

part (c) also increases without bound as x → ∞ and approaches the line y = 2x,

while it is not even defined for x < 0.

4. The direction field and the solution curve satisfying the given initial conditions are

sketched in Fig. 1–D on page 31. From this figure we find that the terminal velocity is

limt→∞ v(t) = 2.

6. (a) The slope of the solution curve to the differential equation y′ = x+sin y at a point

(x, y) is given by y′. Therefore the slope at (1, π/2) is equal to

dy

dx

∣∣∣∣
x=1

= (x+ sin y)|x=1 = 1 + sin
π

2
= 2.

(b) The solution curve is increasing if the slope of the curve is greater than zero. From

the part (a), we know that the slope is x + sin y. The function sin y has values

ranging from −1 to 1; therefore if x is greater than 1 then the slope will always

have a value greater than zero. This tells us that the solution curve is increasing.

(c) The second derivative of every solution can be determined by differentiating both

sides of the original equation, y′ = x+ sin y. Thus

d

dx

(
dy

dx

)
=

d

dx
(x+ sin y) ⇒

d2y

dx2
= 1 + (cos y)

dy

dx
(chain rule)

= 1 + (cos y)(x+ sin y)

= 1 + x cos y + sin y cos y = 1 + x cos y +
1

2
sin 2y .
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(d) Relative minima occur when the first derivative, y′ , is equal to zero and the second

derivative, y′′ , is positive (Second Derivative Test). The value of the first derivative

at the point (0, 0) is given by

dy

dx
= 0 + sin 0 = 0.

This tells us that the solution has a critical point at the point (0, 0). Using the

second derivative found in part (c) we have

d2y

dx2
= 1 + 0 · cos 0 + 1

2
sin 0 = 1.

This tells us that the point (0, 0) is a point of relative minimum.

8. (a) For this particle, we have x(2) = 1, and so the velocity

v(2) =
dx

dt

∣∣∣∣
t=2

= t3 − x3
∣∣
t=2

= 23 − x(2)3 = 7.

(b) Differentiating the given equation yields

d2x

dt2
=

d

dt

(
dx

dt

)
=

d

dt

(
t3 − x3

)
= 3t2 − 3x2

dx

dt

= 3t2 − 3x2
(
t3 − x3

)
= 3t2 − 3t3x2 + 3x5.

(c) The function u3 is an increasing function. Therefore, as long as x(t) < t, x(t)3 < t3

and
dx

dt
= t3 − x(t)3 > 0

meaning that x(t) increases. At the initial point t0 = 2.5 we have x(t0) = 2 < t0.

Therefore, x(t) cannot take values smaller than 2.5, and the answer is “no”.

10. Direction fields and some solution curves to differential equations given in (a)–(e) are

shown in Fig. 1–E through Fig. 1–I on pages 32–33.

(a) y′ = sin x.

(b) y′ = sin y.

(c) y′ = sin x sin y.

(d) y′ = x2 + 2y2.

(e) y′ = x2 − 2y2.
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12. The isoclines satisfy the equation f(x, y) = y = c, i.e., they are horizontal lines shown in

Fig. 1–J, page 33, along with solution curves. The curve, satisfying the initial condition,

is shown in bold.

14. Here, f(x, y) = x/y, and so the isoclines are defined by

x

y
= c ⇒ y =

1

c
x.

These are lines passing through the origin and having slope 1/c. See Fig. 1–K on

page 34.

16. The relation x+2y = c yields y = (c−x)/2. Therefore, the isoclines are lines with slope

−1/2 and y-intercept c/2. See Fig. 1–L on page 34.

18. The direction field for this equation is shown in Fig. 1–M on page 34. From this picture

we conclude that any solution y(x) approaches zero, as x→ +∞.

EXERCISES 1.4: The Approximation Method of Euler

2. Here f(x, y) = y(2 − y), x0 = 0, and y0 = 3. We again use recursive formulas from

Euler’s method with h = 0.1. Setting n = 0, 1, 2, 3, and 4 and rounding off results to

three decimal places, we get

x1 = x0 + 0.1 = 0.1 , y1 = y0 + 0.1 · [y0(2− y0)] = 3 + 0.1 · [3(2− 3)] = 2.700 ;

x2 = 0.1 + 0.1 = 0.2 , y2 = 2.700 + 0.1 · [2.700(2− 2.700)] = 2.511 ;

x3 = 0.2 + 0.1 = 0.3 , y3 = 2.511 + 0.1 · [2.511(2− 2.511)] ≈ 2.383 ;

x4 = 0.3 + 0.1 = 0.4 , y4 = 2.383 + 0.1 · [2.383(2− 2.383)] ≈ 2.292 ;

x5 = 0.4 + 0.1 = 0.5 , y5 = 2.292 + 0.1 · [2.292(2− 2.292)] ≈ 2.225 .

4. In this initial value problem,

f(x, y) =
x

y
, x0 = 0, and y0 = −1 .

Thus, with h = 0.1, the recursive formulas (2) and (3) become

xn+1 = xn + h = xn + 0.1 ,

yn+1 = yn + hf(xn, yn) = yn + 0.1

(
xn
yn

)
, n = 0, 1, . . . .
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We set n = 0 in these formulas and obtain

x1 = x0 + 0.1 = 0 + 0.1 = 0.1 ,

y1 = y0 + 0.1 ·
(
x0
y0

)
= −1 + 0.1

(
0

−1

)
= −1.

Putting n = 1 in the recursive formulas yields

x2 = x1 + 0.1 = 0.1 + 0.1 = 0.2 ,

y2 = y1 + 0.1

(
x1
y1

)
= −1 + 0.1

(
0.1

−1

)
= −1.01 .

Continuing in the same manner, we find for n = 2, 3, and 4:

x3 = 0.2 + 0.1 = 0.3 , y3 = −1.01 + 0.1

(
0.2

−1.01

)
≈ −1.030 ;

x4 = 0.3 + 0.1 = 0.4 , y4 = −1.030 + 0.1

(
0.3

−1.030

)
≈ −1.059 ;

x5 = 0.4 + 0.1 = 0.5 , y5 = −1.059 + 0.1

(
0.4

−1.059

)
≈ −1.097 ,

where we have rounded off all answers to three decimal places.

6. In this problem, f(x, y) = (y2 + y)/x, x0 = y0 = 1, and h = 0.2. The recursive formulas

(2) and (3), applied succesively with n = 1, 2, 3, and 4, give

x1 = x0 + 0.2 = 1.2 , y1 = y0 + 0.2

(
y20 + y0
x0

)
= 1 + 0.2

(
12 + 1

1

)
= 1.400 ;

x2 = 1.2 + 0.2 = 1.4 , y2 = 1.400 + 0.2

(
1.4002 + 1.400

1.2

)
≈ 1.960 ;

x3 = 1.4 + 0.2 = 1.6 , y3 = 1.960 + 0.2

(
1.9602 + 1.960

1.4

)
≈ 2.789 ;

x4 = 1.6 + 0.2 = 1.8 , y4 = 2.789 + 0.2

(
2.7892 + 2.789

1.6

)
≈ 4.110 .

8. Notice that the independent variable in this problem is t and the dependent variable is

x. Hence, the recursive formulas given in equations (2) and (3) become

tn+1 = tn + h and φ(tn+1) ≈ xn+1 = xn + hf(tn, xn), n = 0, 1, 2, . . . .

We have f(t, x) = 1 + t sin(tx), t0 = 0, and x0 = 0. Thus, the recursive formula for x

has the form

xn+1 = xn + h [1 + tn sin(tnxn)] , n = 0, 1, 2, . . . .
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For the case N = 1, we have h = (1− 0)/1 = 1, which gives us

t1 = 0 + 1 = 1.0 , φ(1) ≈ x1 = 0 + 1.0 [1 + 0 · sin 0] = 1 .

For the case N = 2, we have h = 1/2 = 0.5 . Thus, we have

t1 = 0 + 0.5 = 0.5 , x1 = 0 + 0.5 [1 + 0 · sin 0] = 0.5 ,

and

t2 = 0.5 + 0.5 = 1, φ(1) ≈ x2 = 0.5 + 0.5 [1 + 0.5 sin(0.25)] ≈ 1.06185 .

For the case N = 4, we have h = 1/4 = 0.25 , and so the recursive formulas become

tn+1 = tn + 0.25 and xn+1 = xn + 0.25 [1 + tn sin(tnxn)] .

Therefore, we have

t1 = 0 + 0.25 = 0.25 , x1 = 0 + 0.25 [1 + 0 · sin(0)] = 0.25 .

Plugging these values into the recursive equations yields

t2 = 0.25 + 0.25 = 0.5 , x2 = 0.25 + 0.25 [1 + 0.25 sin(0.0625)] ≈ 0.50390 .

Continuing this way gives us

t3 = 0.75 , x3 = 0.50390 + 0.25 [1 + 0.5 sin(0.25195)] ≈ 0.78507 ,

t4 = 1.00 , φ(1) ≈ x4 ≈ 1.13920 .

For N = 8, we have h = 1/8 = 0.125 . Thus, the recursive formulas become

tn+1 = tn + 0.125 and xn+1 = xn + 0.125 [1 + tn sin(tnxn)] .

Using these formulas and starting with t0 = 0 and x0 = 0, we fill in Table 1–A on

page 29, where the approximations are rounded to five decimal places. From this table

we see that φ(1) ≈ x8 = 1.19157.

10. We have x0 = 0 and y0 = y (x0) = 0. Results of computations are shown in Table 1–B

on page 29. We stoppped computations after six steps because the difference between

two successive aprroximations was 0.3621− 0.3561 < 0.01. Thus, y(1) ≈ 0.3621 .
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Next we check that y = e−x + x − 1 is the actual solution to the given initial value

problem.

y′ =
(
e−x + x− 1

)′
= −e−x + 1 = x− (

e−x + x− 1
)
= x− y,

y(0) =
(
e−x + x− 1

)∣∣
x=0

= e0 + 0− 1 = 0.

Thus, it is the solution. (The actual value of y(1) is approximately 0.3679 .)

The solution curve y = e−x + x− 1 and the polygonal line approximation are shown in

Fig. 1–N, page 34.

Using the Euler’s method with h = 0.1 we also find that y(0.6) ≈ 0.17 < 0.2 and

y(0.7) ≈ 0.23. Therefore, within ±0.05, x0 ≈ 0.65.

12. Here, x0 = 0, y0 = 1, f(x, y) = y. With h = 1/n, the recursive formula (3) of the text

yields

y(1) = yn = yn−1 +
yn−1

n
= yn−1

(
1 +

1

n

)
=

[
yn−2

(
1 +

1

n

)](
1 +

1

n

)
= yn−2

(
1 +

1

n

)2

= . . . = y0

(
1 +

1

n

)n

=

(
1 +

1

n

)n

.

14. Computation results are given in Table 1–C on page 30.

16. For this problem notice that the independent variable is t and the dependent variable is

T . Hence, in the recursive formulas for Euler’s method, t will take the place of x and

T will take the place of y. Also we see that h = 0.1 and f(t, T ) = K (M4 − T 4), where

K = 40−4 and M = 70. Therefore, the recursive formulas given in equations (2) and (3)

of the text become

tn+1 = tn + 0.1 ,

Tn+1 = Tn + hf (tn, Tn) = Tn + 0.1
(
40−4

) (
704 − T 4

n

)
, n = 0, 1, 2, . . . .

From the initial condition T (0) = 100 we see that t0 = 0 and T0 = 100. Therefore, for

n = 0, we have

t1 = t0 + 0.1 = 0 + 0.1 = 0.1 ,

T1 = T0 + 0.1(40−4)(704 − T 4
0 ) = 100 + 0.1(40−4)(704 − 1004) ≈ 97.0316,

where we have rounded off to four decimal places.
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For n = 1,

t2 = t1 + 0.1 = 0.1 + 0.1 = 0.2 ,

T2 = T1 + 0.1(40−4)(704 − T 4
1 ) = 97.0316 + 0.1(40−4)(704 − 97.03164) ≈ 94.5068.

By continuing this way, we fill in Table 1–D on page 30. From this table we see that

T (1) = T (t10) ≈ T10 = 82.694 ,

T (2) = T (t20) ≈ T20 = 76.446 .

TABLES

nnn tttnnn xxxnnn

1 0.125 0.125

2 0.250 0.25024

3 0.375 0.37720

4 0.500 0.50881

5 0.625 0.64954

6 0.750 0.80539

7 0.875 0.98363

8 1.000 1.19157

Table 1–A: Euler’s method approximations for the solution of x′ = 1 + t sin(tx),

x(0) = 0, at t = 1 with 8 steps (h = 1/8).

hhh y(1)y(1)y(1)

1 0

2−1 0.2500

2−2 0.3164

2−3 0.3436

2−4 0.3561

2−5 0.3621

Table 1–B: Euler’s approximations to y′ = x− y, y(0) = 0 at x = 1 with h = 2−N .
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hhh yyy(2)

0.5 24.8438

0.1 ≈ 6.4 · 10176
0.05 ≈ 1.9 · 10114571
0.01 > 1010

30

Table 1–C: Euler’s method approximations of y(2) for y′ = 2xy2, y(0) = 1.

nnn tttnnn TTTnnn nnn tttnnn TTTnnn

1 0.1 97.0316 11 1.1 81.8049

2 0.2 94.5068 12 1.2 80.9934

3 0.3 92.3286 13 1.3 80.2504

4 0.4 90.4279 14 1.4 79.5681

5 0.5 88.7538 15 1.5 78.9403

6 0.6 87.2678 16 1.6 78.3613

7 0.7 85.9402 17 1.7 77.8263

8 0.8 84.7472 18 1.8 77.3311

9 0.9 83.6702 19 1.9 76.8721

10 1.0 82.6936 20 2.0 76.4459

Table 1–D: Euler’s approximations to the solution of T ′ = K (M4 − T 4), T (0) = 100,

with K = 40−4, M = 70, and h = 0.1.

FIGURES

Figure 1–A: Integral curves in Problem 18.
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Figure 1–B: The solution curve in Problem 2(a).

Figure 1–C: The solution curve in Problem 2(b).

Figure 1–D: The direction field and solution curves in Problem 4.
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Figure 1–E: The direction field and solution curves in Problem 10(a).

Figure 1–F: The direction field and solution curves in Problem 10(b).

Figure 1–G: The direction field and solution curves in Problem 10(c).
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Figures

Figure 1–H: The direction field and solution curves in Problem 10(d).

Figure 1–I: The direction field and solution curves in Problem 10(e).

Figure 1–J: The isoclines and solution curves in Problem 12.
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Figure 1–K: The isoclines and solution curves in Problem 14.

Figure 1–L: The isoclines and solution curves in Problem 16.

Figure 1–M: The direction field in Problem 18.

Figure 1–N: Euler’s method approximations to y = e−x+x−1 on [0, 1] with h = 0.1.
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CHAPTER 2: First Order Differential Equations

EXERCISES 2.2: Separable Equations

2. This equation is separable because we can separate variables by multiplying both sides

by dx and dividing by 4y2 − 3y + 1.

4. This equation is separable because

dy

dx
=

yex+y

x2 + 2
=

(
ex

x2 + 2

)
yey = g(x)p(y).

6. Writing the equation in the form

ds

dt
=
s+ 1

st
− s2,

we see that the right-hand side cannot be represented in the form g(t)p(s). Therefore,

the equation is not separable.

8. Multiplying both sides of the equation by y3dx and integrating yields

y3dy =
dx

x
⇒

∫
y3dy =

∫
dx

x

⇒ 1

4
y4 = ln |x|+ C1 ⇒ y4 = 4 ln |x|+ C ⇒ y = ± 4

√
ln (x4) + C ,

where C := 4C1 is an arbitrary constant.

10. Separating variables and integrating yields

xe2xdx = te−tdt ⇒ 1

4
e2x(2x− 1) = −te−t − e−t + C1

⇒ e2x(2x− 1) + 4e−t(t+ 1) = C

where C is an arbitrary constant. (We used integration by parts to evaluate the inte-

grals.)
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12. We have

3vdv

1− 4v2
=
dx

x
⇒

∫
3vdv

1− 4v2
=

∫
dx

x

⇒ −3

8

∫
du

u
=

∫
dx

x

(
u = 1− 4v2, du = −8vdv

)
⇒ −3

8
ln

∣∣1− 4v2
∣∣ = ln |x|+ C1

⇒ 1− 4v2 = ± exp

[
−8

3
ln |x|+ C1

]
= Cx−8/3,

where C = ±eC1 is any nonzero constant. Separating variables, we lost constant solutions

satisfying

1− 4v2 = 0 ⇒ v = ±1

2
,

which can be included in the above formula by letting C = 0. Thus,

v = ±
√
1− Cx−8/3

2
, C arbitrary,

is a general solution to the given equation.

14. Separating variables, we get

dy

(1 + y2)3/2
= 3x2dx ⇒

∫
dy

(1 + y2)3/2
=

∫
3x2dx

⇒ y√
1 + y2

= x3 + C ⇒ y√
1 + y2

− x3 = C,

where C is any constant. To evaluate the first integral, we used the trigonometric

substitution y = tan t.

16. We rewrite the equation in the form

x(1 + y2)dx+ ex
2

ydy = 0,

separate variables, and integrate.

e−x2

xdx = − ydy

1 + y2
⇒

∫
e−x2

xdx = −
∫

ydy

1 + y2

⇒
∫
e−udu = −dv

v

(
u = x2, v = 1 + y2

)
⇒ −e−u = − ln |v|+ C ⇒ ln

(
1 + y2

)− e−x2

= C
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is an implicit solution to the given equation. Solving for y yields

y = ±
√
C1 exp [exp (−x2)]− 1,

where C1 = eC is any positive constant,

18. Separating variables yields

dy

1 + y2
= tan xdx ⇒

∫
dy

1 + y2
=

∫
tan xdx ⇒ arctan y = − ln | cosx|+ C.

Since y(0) =
√
3, we have

arctan
√
3 = − ln cos 0 + C = C ⇒ C =

π

3
.

Therefore,

arctan y = − ln | cos x|+ π

3
⇒ y = tan

(
− ln | cos x|+ π

3

)
is the solution to the given initial value problem.

20. Separating variables yields

(y + 1)dy =
4x2 − x− 2

x2(x+ 1)
dx . (2.1)

For integrating the right-hand side, we use partial fractions.

4x2 − x− 2

x2(x+ 1)
=
A

x
+
B

x2
+

C

x+ 1

Solving for A, B, and C, we get A = 1, B = −2, and C = 3. Thus, integrating (2.1),

we obtain
1

2
(y + 1)2 = ln x+

2

x
+ 3 ln(x+ 1) + C.

With y(1) = 1, C = −3 ln 2 so that the answer is

1

2
(y + 1)2 = ln x+

2

x
+ 3 ln(x+ 1)− 3 ln 2

or, solving for y,

y = −1 +

√
ln (x2) +

4

x
+ ln [(x+ 1)3]− 6 ln 2 .
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22. Writing 2ydy = −x2dx and integrating, we find

y2 = −x
3

3
+ C.

With y(0) = 2,

(2)2 = −(0)3

3
+ C ⇒ C = 4,

and so

y2 = −x
3

3
+ 4 ⇒ y =

√
−x

3

3
+ 4.

We note that, taking the square root, we chose the positive sign because y(0) > 0.

24. For a general solution, we separate variables and integrate.∫
e2ydy =

∫
8x3dx ⇒ e2y

2
= 2x4 + C1 ⇒ e2y = 4x4 + C.

We substitute now the initial condition, y(1) = 0, and obtain

1 = 4 + C ⇒ C = −3.

Hence, the answer is given by

e2y = 4x4 − 3 ⇒ y =
1

2
ln

(
4x4 − 3

)
.

26. We separate variables and obtain∫
dy√
y
= −

∫
dx

1 + x
⇒ 2

√
y = − ln |1 + x|+ C = − ln(1 + x) + C,

because at initial point, x = 0, 1 + x > 0. Using the fact that y(0) = 1, we find C.

2 = 0 + C ⇒ C = 2,

and so y = [2− ln(1 + x)]2 /4 is the answer.

28. We have

dy

dt
= 2y(1− t) ⇒ dy

y
= 2(1− t)dt ⇒ ln |y| = −(t− 1)2 + C

⇒ y = ±eCe−(t−1)2 = C1e
−(t−1)2 ,

38 Copyright c© 2012 Pearson Education, Inc. Publishing as Addison-Wesley.



Exercises 2.2

where C1 �= 0 is any constant. Separating variables, we lost the solution y ≡ 0, which

can be included into the above formula by letting C1 = 0. So, a general solution to the

given equation is

y = C1e
−(t−1)2 , C1 is an arbitrary constant.

Substituting t = 0 and y = 3, we find

3 = C1e
−1 ⇒ C1 = 3e ⇒ y = 3e1−(t−1)2 = 3e2t−t2 .

The graph of this function is given in Fig. 2–A on page 76.

Since y(t) > 0 for any t, from the given equation we have y′(t) > 0 for t < 1 and y′(t) < 0

for t > 1. Thus t = 1 is the point of absolute maximum with ymax = y(1) = 3e.

30. (a) Dividing by (y + 1)2/3, multiplying by dx, and integrating, we obtain∫
dy

(y + 1)2/3
=

∫
(x− 3)dx ⇒ 3(y + 1)1/3 =

x2

2
− 3x+ C

⇒ y = −1 +

(
x2

6
− x+ C1

)3

.

(b) Substituting y ≡ −1 into the original equation yields

d(−1)

dx
= (x− 3)(−1 + 1)2/3 = 0,

and so the equation is satisfied.

(c) For y ≡ −1 for the solution in part (a), we must have(
x2

6
− x+ C1

)3

≡ 0 ⇔ x2

6
− x+ C1 ≡ 0,

which is impossible since a quadratic polynomial has at most two zeros.

32. (a) The direction field of the given differential equation is shown in Fig. 2–B, page 76.

Using this picture we predict that limx→∞ φ(x) = 1.

(b) In notation of Section 1.4, we have x0 = 0, y0 = 1.5, f(x, y) = y2 − 3y + 2, and

h = 0.1. With this step size, we need (1− 0)/0.1 = 10 steps to approximate φ(1).

The results of computation are given in Table 2–A on page 75. From this table we

conclude that φ(1) ≈ 1.26660 .
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(c) Separating variables and integrating, we obtain

dy

y2 − 3y + 2
= dx ⇒

∫
dy

y2 − 3y + 2
=

∫
dx ⇒ ln

∣∣∣∣y − 2

y − 1

∣∣∣∣ = x+ C ,

where we have used a partial fractions decomposition

1

y2 − 3y + 2
=

1

y − 2
− 1

y − 1

to evaluate the integral. The initial condition, y(0) = 1.5 , implies that C = 0, and

so

ln

∣∣∣∣y − 2

y − 1

∣∣∣∣ = x ⇒
∣∣∣∣y − 2

y − 1

∣∣∣∣ = ex ⇒ y − 2

y − 1
= −ex .

(We have chosen the negative sign because of the initial condition.) Solving for y

yields

y = φ(x) =
ex + 2

ex + 1

The graph of this solution is shown in Fig. 2–B on page 76.

(d) We find

φ(1) =
e+ 2

e+ 1
≈ 1.26894 .

Thus, the approximate value φ(1) ≈ 1.26660 found in part (b) differs from the

actual value by less than 0.003 .

(e) We find the limit of φ(x) at infinity writing

lim
x→∞

ex + 2

ex + 1
= lim

x→∞

(
1 +

1

ex + 1

)
= 1 ,

which confirms our guess in part (a).

34. (a) Separating variables and integrating, we get

dT

T −M
= −kdt ⇒

∫
dT

T −M
= −

∫
kdt ⇒ ln |T −M | = −kt+ C1

⇒ |T −M | = eC1e−kt ⇒ T −M = ±eC1e−kt = Ce−kt,

where C is any nonzero constant. We can include the lost solution T ≡M into this

formula by letting C = 0. Thus, a general solution to the equation is

T =M + Ce−kt.
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(b) Given that M = 70◦, T (0) = 100◦, T (6) = 80◦, we form a system to determine C

and k.{
100 = 70 + C

80 = 70 + Ce−6k
⇒

{
C = 30

k = −(1/6) ln[(80− 70)/30] = (1/6) ln 3.

Therefore,

T = 70 + 30e−(t ln 3)/6 = 70 + (30)3−t/6,

and after 20 min the reading is

T (20) = 70 + (30)3−20/6 ≈ 70.77◦.

36. A general solution to the cooling equation found in Problem 34, that is, T =M +Ce−kt.

Since T (0) = 100◦, T (5) = 80◦, and T (10) = 65◦, we determine M , C, and k from the

system⎧⎪⎪⎨⎪⎪⎩
M + C = 100

M + Ce−5k = 80

M + Ce−10k = 65

⇒
{
C(1− e−5k) = 20

Ce−5k(1− e−5k) = 15
⇒ e−5k = 3/4.

To find M , we can now use the first two equations in the above system.{
M + C = 100

M + (3/4)C = 80
⇒ M = 20.

38. With m = 100, g = 9.8, and k = 5, the equation becomes

100
dv

dt
= 100(9.8)− 5v ⇒ 20

dv

dt
= 196− v.

Separating variables and integrating yields∫
dv

v − 196
= − 1

20

∫
dt ⇒ ln |v − 196| = − t

20
+ C1 ⇒ v = 196 + Ce−t/20,

where C is an arbitrary nonzero constant. With C = 0, this formula also gives the (lost)

constant solution v(t) ≡ 196. From the initial condition, v(0) = 10, we find C.

196 + C = 10 ⇒ C = −186 ⇒ v(t) = 196− 186e−t/20.

The terminal velocity of the object can be found by letting t→ ∞.

v∞ = lim
t→∞

(
196− 186e−t/20

)
= 196 (m/sec).
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40. (a) Substituting ρ =Mp/RT into dp/dz = −ρg yields

dp

dz
= −

(
Mp

RT

)
g = −Mg

RT
p.

Separating variables and integrating, we find

dp

p
= −Mg

RT
dz (2.2)

⇒ ln p (2.3)

= −Mg

RT
z + C1 ⇒ p(z) = Ce−(Mg/RT )z.

For z = z0,

p (z0) = Ce−(Mg/RT )z0 ⇒ C = p (z0) e
(Mg/RT )z0 .

Thus,

p(z) = p (z0) e
(Mg/RT )(z0−z) = p (z0) e

−Mg(z−z0)/(RT ) .

(b) If T = T (z) varies, then integrating (2.2) from z0 to z we obtain

ln
p(z)

p (z0)
= −Mg

R

z∫
z0

dζ

T (ζ)

⇒ p(z) = p (z0) exp

⎡⎣−Mg

R

z∫
z0

dζ

T (ζ)

⎤⎦ .
(c) With the given formula for T (z), the integral in part (b) gives

z∫
z0

dζ

288− 0.0065 (ζ − z0)
= − 1

0.0065
ln

288− 0.0065 (z − z0)

288
.

Therefore,

p(z) = p (z0)

[
288− 0.0065 (z − z0)

288

]Mg/(0.0065R)

.

Substituting the given data into this equation and computing, we get the height

z − z0 ≈ 168 (m) .
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EXERCISES 2.3: Linear Equations

2. Writing
dy

dx
− x−2y = −x−2 sin x ,

we see that this equation has the form (4) with P (x) = −x−2 and Q(x) = −x−2 sin x.

Hence, it is linear.

Isolating dy/dx yields
dy

dx
=
y − sin x

x2
.

Since the right-hand side cannot be represented as a product g(x)p(y), the equation is

not separable.

4. This is a linear equation with independent variable t and dependent variable y since it

can be written as
dy

dt
− t− 1

t2 + 1
y = 0 .

This equation is also separable

dy

dt
=

t− 1

t2 + 1
y = g(t)p(y).

6. In this equation, the independent variable is t and the dependent variable is x. Dividing

by x, we obtain
dx

dt
=

sin t

x
− t2.

Therefore, it is neither linear (because of the (sin t)/x term) nor separable (because the

right-hand side is not a product of functions of single variables x and t).

8. This equation can be written as
dy

dx
− y = e3x .

Thus, P (x) ≡ −1, Q(x) = e3x, and the integrating factor is

μ(x) = exp

(∫
P (x)dx

)
= exp

(∫
(−1)dx

)
= e−x,

where we have taken zero integration constant. Multiplying both sides of the given

equation by μ(x), we obtain

e−x dy

dx
− e−xy = e−xe3x = e2x ⇒ d (e−xy)

dx
= e2x .

Copyright c© 2012 Pearson Education, Inc. Publishing as Addison-Wesley. 43



Exercises 2.3

16. Here, |x| < 1 and

P (x) = − x2

1− x2
= 1− 1

1− x2
, Q(x) =

1 + x√
1− x2

.

Therefore,

μ(x) = exp

[∫ (
1− 1

1− x2

)
dx

]
= ex

√
1− x

1 + x

so that μ(x)Q(x) = ex and

y = e−x

√
1 + x

1− x
(ex + C) =

√
1 + x

1− x

(
1 + Ce−x

)
.

18. Since μ(x) = exp
(∫

4dx
)
= e4x, we have

d

dx

(
e4xy

)
= e4xe−x = e3x

⇒ y = e−4x

∫
e3xdx =

e−x

3
+ Ce−4x.

Substituting the initial condition, y = 4/3 at x = 0, yields

4

3
=

1

3
+ C ⇒ C = 1,

and so y = e−x/3 + e−4x is the solution to the given initial value problem.

20. We have

μ(x) = exp

(∫
3dx

x

)
= exp (3 ln x) = x3

⇒ x3y =

∫
x3 (3x− 2) dx =

3x5

5
− x4

2
+ C

⇒ y =
3x2

5
− x

2
+ Cx−3.

With y(1) = 1,

1 = y(1) =
3

5
− 1

2
+ C ⇒ C =

9

10
⇒ y =

3x2

5
− x

2
+

9

10x3
.

22. From the standard form of this equation,

dy

dx
+ y cot x = x,

we find

μ(x) = exp

(∫
cot x dx

)
= exp (ln sin x) = sin x.
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