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1.2 Convergence

1. Compute each of the following limits and determine the corresponding rate of
convergence.

(a) limn→∞

n−1
n3+2

(b) limn→∞

(√
n + 1 −√

n
)

(c) limn→∞

sin n
n

(d) limn→∞

3n2
−1

7n2+n+2

(a) For n > 1,
∣

∣

∣

∣

n − 1

n3 + 2
− 0

∣

∣

∣

∣

=
n − 1

n3 + 2
<

n

n3
=

1

n2
.

Thus, n−1
n3+2 converges to 0 with rate of convergence O(1/n2).

(b) Note that

lim
n→∞

(
√

n + 1 −
√

n) = lim
n→∞

(n + 1) − n√
n + 1 −√

n
= lim

n→∞

1√
n + 1 +

√
n

= 0.

Because

|(
√

n + 1 −
√

n) − 0| =
1√

n + 1 +
√

n
<

1

2
√

n
,

it follows that
√

n + 1−√
n converges to 0 with rate of convergence O(1/

√
n).

(c) Since −1 ≤ sin n ≤ 1 for all n, it follows that

− 1

n
≤ sinn

n
≤ 1

n

for all n. Then, by the squeeze theorem, limn→∞

sin n
n = 0. Moreover, because

∣

∣

∣

∣

sin n

n
− 0

∣

∣

∣

∣

≤ 1

n
,

the rate of convergence is O(1/n).

(d) For n > 13,
∣

∣

∣

∣

3n1 − 1

7n2 + n + 2
− 3

7

∣

∣

∣

∣

=
3n + 13

7(7n2 + n + 2)
<

4n

49n2
<

1

10n
.

Therefore, 3n2
−1

7n2+n+2 converges to 3
7 with rate of convergence O(1/n).
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2. Compute each of the following limits and determine the corresponding rate of
convergence.

(a) limx→0
ex

−1
x

(b) limx→0
sin x

x

(c) limx→0
ex

−cos x−x
x2

(d) limx→0
cos x−1+x2/2−x4/24

x6

(a) From Taylor’s Theorem, ex = 1 + x + 1
2x2eξ for some ξ between 0 and x.

Hence,
ex − 1

x
= 1 +

1

2
xeξ.

Because
∣

∣

∣

∣

ex − 1

x
− 1

∣

∣

∣

∣

=
1

2
|x|eξ < |x|

for all x satisfying |x| < ln 2, it follows that

lim
x→0

ex − 1

x
= 1 with rate of convergence O(x).

(b) From Taylor’s Theorem, sin x = x − x3

6 cos ξ for some ξ between 0 and x.
Then,

sinx

x
= 1 − x2

6
cos ξ

and
∣

∣

∣

∣

sinx

x
− 1

∣

∣

∣

∣

=
1

6
|x2 cos ξ| ≤ 1

6
x2.

Finally,

lim
x→0

sinx

x
= 1 with rate of convergence O(x2).

(c) From Taylor’s Theorem, we have

ex = 1 + x +
1

2
x2 +

1

6
x3eξ1

and

cos x = 1 − 1

2
x2 +

1

6
x3 sin ξ2

for some ξ1 and ξ2 between 0 and x. Then

ex − cos x − x

x2
= 1 +

x

6

(

eξ1 − sin ξ2

)

.

For sufficiently small x, eξ1 < 2, so |eξ1 − sin ξ2| < 2 + 1 = 3. Thus,
∣

∣

∣

∣

ex − cos x − x

x2
− 1

∣

∣

∣

∣

=
|x|
6

∣

∣eξ1 − sin ξ2

∣

∣ ≤ 1

2
|x|,
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and

lim
x→0

ex − cos x − x

x2
= 1 with rate of convergence O(x).

(d) From Taylor’s Theorem, we have

cos x = 1 − 1

2
x2 +

1

24
x4 − 1

720
x6 +

1

8!
x8 cos ξ

for some ξ between 0 and x. Hence,

cos x − 1 + 1
2x2 − 1

24x4

x6
= − 1

720
+

1

8!
x2 cos ξ,

and
∣

∣

∣

∣

cos x − 1 + 1
2x2 − 1

24x4

x6
+

1

720

∣

∣

∣

∣

=
1

8!
|x2 cos ξ| ≤ 1

8!
|x2|.

It therefore follows that

lim
x→0

cos x − 1 + 1
2x2 − 1

24x4

x6
= − 1

720

with rate of convergence O(x2).

3. Numerically determine which of the following sequences approaches 1 faster, and
then confirm the numerical evidence by determining the rate of convergence of
each sequence.

lim
x→0

sinx2

x2
versus lim

x→0

(sin x)2

x2
.

The values in the following table suggest that sin x2

x2 converges toward 1 more rapidly

than (sin x)2

x2 .

x
sinx2

x2

(sin x)2

x2

1.000 0.84147098480790 0.70807341827357
0.100 0.99998333341667 0.99667110793792
0.010 0.99999999833333 0.99996666711111
0.001 0.99999999999983 0.99999966666671

To confirm this conclusion, note that by Taylor’s Theorem,

sinu = u − 1

6
u3 cos ξ,

for some ξ between 0 and u. Using the substitution u = x2, we find

sinx2 = x2 − 1

6
x6 cos ξ
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for some ξ between 0 and x2. Consequently,

∣

∣

∣

∣

sinx2

x2
− 1

∣

∣

∣

∣

=
1

6
x4| cos ξ| ≤ 1

6
x4.

Starting from f(x) = (sin x)2, we find

f ′(x) = 2 sin x cos x = sin 2x, f ′′(x) = 2 cos 2x, f ′′′(x) = −4 sin 2x,

and f (4)(x) = −8 cos 2x. Therefore,

(sin x)2 = x2 − 1

3
x4 cos 2ξ

for some ξ between 0 and x, and

∣

∣

∣

∣

(sin x)2

x2
− 1

∣

∣

∣

∣

=
1

3
x2| cos 2ξ| ≤ 1

3
x2.

Finally,
sinx2

x2
= 1 + O(x4) and

(sin x)2

x2
= 1 + O(x2).

4. Suppose that 0 < a < b.

(a) Show that if αn = α + O(1/nb), then αn = α + O(1/na).

(b) Show that if f(x) = L + O(xb), then f(x) = L + O(xa).

(a) Suppose αn = α + O(1/nb). Then, there exists a constant λ such that for
sufficiently large n, |αn − α| ≤ λ 1

nb . Because a < b, it follows that na < nb

and 1
na > 1

nb for all n > 1. Thus,

|αn − α| ≤ λ
1

nb
< λ

1

na
,

and αn = α + O(1/na).

(b) Suppose f(x) = L + O(xb). Then, there exists a constant K such that for all
sufficiently small x, |f(x)−L| ≤ K|x|b. Because a < b, it follows that for all
|x| ≤ 1, |x|b ≤ |x|a. Thus, for sufficiently small x,

|f(x) − L| ≤ K|x|b ≤ K|x|a,

and f(x) = L + O(xa).

5. Suppose that f1(x) = L1 + O(xa) and f2(x) = L2 + O(xb). Show that

c1f1(x) + c2f2(x) = c1L1 + c2L2 + O(xc),
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where c = min(a, b).

Suppose f1(x) = L1 +O(xa) and f2(x) = L2 +O(xb). Then, there exist constants
K1 and K2 such that for all sufficiently small x, |f1(x)−L1| ≤ K1|xa| and |f2(x)−
L2| ≤ K2|xb|. Let c1 and c2 be any real numbers. Applying the triangle inequality,
we find

|c1f1(x) + c2f2(x) − (c1L1 + c2L2)| ≤ |c1||f1(x) − L1| + |c2||f2(x) − L2|
≤ |c1|K1|xa| + |c2|K2|xb|.

Now, let c = min(a, b). Then, for |x| < 1,

|c1|K1|xa| + |c2|K2|xb| < |c1|K1|xc| + |c2|K2|xc| = (|c1|K1 + |c2|K2)|xc|.

Consequently,
c1f1(x) + c2f2(x) = c1L1 + c2L2 + O(xc).

6. The table below lists the errors of successive iterates for three different methods
for approximating 3

√
5. Estimate the order of convergence of each method, and

explain how you arrived at your conclusions.

Method 1 Method 2 Method 3
4.0 ×10−2 3.7 ×10−4 4.3 ×10−3

9.1 ×10−4 1.2 ×10−15 1.8 ×10−8

4.8 ×10−7 1.5 ×10−60 1.4 ×10−24

If a sequence converges of order α, then the error in each term of the sequence is
roughly the error in the previous term raised to the power α. From the data for
“Method 1,” we see that each error is roughly the previous error squared; therefore,
we estimate the order of convergence to be α = 2. From the data for “Method
2,” we see that each error is roughly the previous error raised to the fourth power;
therefore, we estimate the order of convergence to be α = 4. Finally, from the data
for “Method 3,” we see that each error is roughly the previous error raised to the
third power; therefore, we estimate the order of convergence to be α = 3.

7. Let {pn} be a sequence which converges to the limit p.

(a) If

lim
n→∞

|pn+1 − p|
|pn − p|α = 0,

what can be said about the order of convergence of {pn} to p?

(b) If

lim
n→∞

|pn+1 − p|
|pn − p|α → ∞,

what can be said about the order of convergence of {pn} to p?
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(a) If

lim
n→∞

|pn+1 − p|
|pn − p|α = 0,

then the numerator approaches zero faster than the denominator. In order
to achieve a nonzero limit, we must increase the power in the denominator.
Therefore, the order of convergence must be greater than α.

(b) If

lim
n→∞

|pn+1 − p|
|pn − p|α → ∞,

then the denominator approaches zero faster than the numerator. In order
to achieve a nonzero limit, we must decrease the power in the denominator.
Therefore, the order of convergence must be less than α.

8. Suppose theory indicates that the sequence {pn} converges to p of order 1.5.
Explain how you would numerically verify this order of convergence.

To numerically verify the order of convergence, calculate the ratio

|pn+1 − p|
|pn − p|1.5

for several successive values of n. If the order of convergence is α = 1.5, these
ratios should approach a constant, specifically the asymptotic error constant.

9. Theory indicates that the following sequence should converge to
√

3 of order
1.618. Does the sequence actually achieve an order of convergence of 1.618? If
not, what is the actual order?

n pn

0 2.000000000000000
1 1.666666666666667
2 1.727272727272727
3 1.732142857142857
4 1.732050680431722
5 1.732050807565499

Because the values in the third column of the following table appear to be approach-
ing a constant, the evidence suggests that the sequence does, in fact, converge
toward

√
3 with order of convergence α = 1.618.

n pn |pn −
√

3|/|pn−1 −
√

3|1.618

1 2.000000000000000
2 1.666666666666667 0.55066002953142
3 1.727272727272727 0.39429299851516
4 1.732142857142857 0.52358803162884
5 1.732050680431722 0.43100791441420
6 1.732050807565499 0.48525581579327
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10. Theory indicates that the following sequence should converge to 4/3 of order
1.618. Does the sequence actually achieve an order of convergence of 1.618? If
not, what is the actual order?

n pn

0 1.498664098580016
1 1.497353997792205
2 1.428801977335339
3 1.401092915389552
4 1.376493676051456
5 1.361345745573130
6 1.351034482500881
7 1.344479850695066

Because the values in the third column of the following table are increasing with
n, the evidence suggests that the sequence does not have order of convergence
α = 1.618, but rather that the order of convergence is less than 1.618. Because
the values in the fourth column appear to be approaching a constant, these values
suggest that the sequence is converging to 4/3 with order of convergence α = 1.

n pn |pn − 4/3|/|pn−1 − 4/3|1.618 |pn − 4/3|/|pn−1 − 4/3|
1 1.49866409858002
2 1.49735399779221 3.01718763541581 0.99207588021590
3 1.42880197733534 1.77891367138598 0.58205253781266
4 1.40109291538955 3.03079120639280 0.70975745769255
5 1.37649367605146 3.36181849329742 0.63696294174768
6 1.36134574557313 4.52671513900300 0.64903127444432
7 1.35103448250088 5.75689539760301 0.63190377951100
8 1.34447985069507 7.61855893491390 0.62970586012393

11. Show that the convergence of the sequence generated by the formula

xn+1 =
x3

n + 3xna

3x2
n + a

toward
√

a is third-order. What is the asymptotic error constant?

Note

xn+1 −
√

a =
x3

n + 3xna

3x2
n + a

−
√

a =
x3

n − 3x2
n

√
a + 3xna − a3/2

3x2
n + a

=
(xn −√

a)3

3x2
n + a

.

Thus,

lim
n→∞

|xn+1 −
√

a|
|xn −√

a|3 = lim
n→∞

1

3x2
n + a

=
1

4a
.
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Consequently, xn → √
a with order of convergence α = 3 and asymptotic error

constant λ = 1
4a .

12. Let a be a non-zero real number. For any x0 satisfying 0 < x0 < 2/a, the
recursive sequence defined by

xn+1 = xn(2 − axn)

converges to 1/a. What are the order of convergence and the asymptotic error
constant?

Note

xn+1 −
1

a
= xn(2 − axn) − 1

a
= −ax2

n + 2xn − 1

a

= −a

(

x2
n − 2

a
xn +

1

a2

)

= −a

(

xn − 1

a

)2

.

Thus,

lim
n→∞

|xn+1 − 1
a |

|xn − 1
a |2

= lim
n→∞

a = a.

Consequently, xn → 1
a with order of convergence α = 2 and asymptotic error

constant λ = a.

13. Suppose that the sequence {pn} converges linearly to the limit p with asymptotic
error constant λ. Further suppose that pn+1 − p, pn − p and pn−1 − p are all of
the same sign. Show that

pn+1 − pn

pn − pn−1
≈ λ.

Suppose the sequence {pn} converges linearly to p with asymptotic error constant
λ. Then

lim
n→∞

|pn+1 − p|
|pn − p| = λ,

so, for sufficiently large n,

|pn+1 − p| ≈ λ|pn − p|.

Moreover,

|pn − p| ≈ λ|pn−1 − p| or |pn−1 − p| ≈ 1

λ
|pn − p|.

Because we are given that pn+1 − p, pn − p and pn−1 − p are all of the same sign,
we may drop the absolute values from the above expressions. Now,

pn+1 − pn

pn − pn−1
=

pn+1 − p − (pn − p)

pn − p − (pn−1 − p)
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≈ λ(pn − p) − (pn − p)

pn − p − 1
λ (pn − p)

=
λ − 1

1 − 1
λ

= λ.

14. A sequence {pn} converges superlinearly to p provided

lim
n→∞

|pn+1 − p|
|pn − p| = 0.

Show that if pn → p of order α for α > 1, then {pn} converges superlinearly to
p.

Suppose the sequence {pn} converges p of order α > 1 with asymptotic error
constant λ. Then

lim
n→∞

|pn+1 − p|
|pn − p|α = λ.

Then

lim
n→∞

|pn+1 − p|
|pn − p| = lim

n→∞

|pn+1 − p| · |pn − p|α−1

|pn − p|α

= lim
n→∞

|pn+1 − p|
|pn − p|α · lim

n→∞

|pn − p|α−1

= λ · 0 = 0.

Therefore, {pn} converges superlinearly to p.

15. Suppose that {pn} converges superlinearly to p (see Exercise 14). Show that

lim
n→∞

|pn+1 − pn|
|pn − p| = 1.

Note that
pn+1 − pn

pn − p
=

pn+1 − p − (pn − p)

pn − p
=

pn+1 − p

pn − p
− 1.

Because {pn} converges superlinearly to p, it then follows that

lim
n→∞

|pn+1 − pn|
|pn − p| =

∣

∣

∣

∣

lim
n→∞

(

pn+1 − p

pn − p
− 1

)∣

∣

∣

∣

= |0 − 1| = 1.

16. (a) Determine the third-degree Taylor polynomial and associated remainder
term for the function f(x) = ln(1 − x). Use x0 = 0.
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(b) Using the results of part (a), approximate ln(0.25) and compute the the-
oretical error bound associated with this approximation. Compare the
theoretical error bound with the actual error.

(c) Compute the following limit and determine the corresponding rate of con-
vergence:

lim
x→0

ln(1 − x) + x + 1
2x2

x3
.

(a) Let f(x) = ln(1 − x). Then

f ′(x) = − 1

1 − x
, f ′′(x) = − 1

(1 − x)2
, f ′′′(x) = − 2

(1 − x)3
, and f (4)(x) = − 6

(1 − x)4
.

Moreover,

f(0) = ln 1 = 0, f ′(0) = −1, f ′′(0) = −1, f ′′′(0) = −2, and f (4)(ξ) = − 6

(1 − ξ)4
.

Finally,

ln(1 − x) = P3(x) + R3(x)

= −x − x2

2
− x3

3
− x4

4(1 − ξ)4
,

for some ξ between 0 and x.

(b) Using the result of part (a),

ln(0.25) ≈ P3(0.75) = −0.75 − 0.752

2
− 0.753

3
= −1.171875.

Because 0 < ξ < 0.75, (1 − ξ)−4 ≤ 44 and

|error| = |R3(0.75)| =
0.754

4(1 − ξ)4
≤ 81

4
= 20.25.

The actual error is | ln(0.25) − P3(0.75)| ≈ 0.214419, which is significantly
less than the theoretical error bound.

(c) Once again using the result from part (a), we find

ln(1 − x) + x + 1
2x2

x3
= −1

3
− x

4(1 − ξ)4
.

Moreover,
∣

∣

∣

∣

ln(1 − x) + x + 1
2x2

x3
+

1

3

∣

∣

∣

∣

=
|x|

4|1 − ξ|4 ≤ |x|,

for all sufficiently small x. Therefore,

lim
x→0

ln(1 − x) + x + 1
2x2

x3
= −1

3
,

with rate of convergence O(x).
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17. (a) Determine the third-degree Taylor polynomial and associated remainder
term for the function f(x) =

√
1 + x. Use x0 = 0.

(b) Using the results of part (a), approximate
√

1.5 and compute the theoretical
error bound associated with this approximation. Compare the theoretical
error bound with the actual error.

(c) Compute the following limit and determine the corresponding rate of con-
vergence:

lim
x→0

√
1 + x − 1 − 1

2x

x2
.

(a) Let f(x) =
√

1 + x. Then

f ′(x) =
1

2
(1 + x)−1/2, f ′′(x) = −1

4
(1 + x)−3/2, f ′′′(x) = −3

8
(1 + x)−5/2,

and f (4)(x) = − 15
16 (1 + x)−7/2. Moreover,

f(0) = 1, f ′(0) =
1

2
, f ′′(0) = −1

4
, f ′′′(0) =

3

8
,

and f (4)(ξ) = − 15
16 (1 + ξ)−7/2. Finally,

√
1 + x = P3(x) + R3(x)

= 1 +
1

2
x − 1

8
x2 +

1

16
x3 − 5

128
x4(1 + ξ)−7/2,

for some ξ between 0 and x.

(b) Using the result of part (a),

√
1.5 ≈ P3(0.5) = 1 +

1

2
(0.5) − 1

8
(0.5)2 +

1

16
(0.5)3 = 1.2265625.

Because 0 < ξ < 0.5, (1 + ξ)−7/2 ≤ 1 and

|error| = |R3(0.5)| ≤ 5

128
(0.5)4 ≈ 2.44 × 10−3.

The actual error is |
√

1.5 − P3(0.5)| ≈ 1.82 × 10−3, which is less than the
theoretical error bound.

(c) Once again using the result from part (a), we find

√
1 + x − 1 − 1

2x

x2
= −1

8
− x

16
(1 + ξ)−5/2.

Moreover,
∣

∣

∣

∣

∣

√
1 + x − 1 − 1

2x

x2
+

1

8

∣

∣

∣

∣

∣

=
|x|
16

|1 − ξ|−5/2 ≤ 1

16
|x|,
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for all sufficiently small x. Therefore,

lim
x→0

√
1 + x − 1 − 1

2x

x2
= −1

8
,

with rate of convergence O(x).

In Exercises 18 - 21, verify that Taylor’s theorem produces the indicated formula,
where ξ is between 0 and x.

18.

ex = 1 + x +
x2

2
+ · · · + xn

n!
+

xn+1

(n + 1)!
eξ

Let f(x) = ex. Then f (n)(x) = ex and f (n)(0) = 1 for all n. Therefore, by Taylor’s
Theorem with x0 = 0,

ex =

n
∑

k=0

f (k)(0)

k!
xk +

f (n+1)(ξ)

(n + 1)!
xn+1

= 1 + x +
x2

2
+ · · · + xn

n!
+

xn+1

(n + 1)!
eξ,

for some ξ between 0 and x.

19.

sin x = x − x3

3!
+

x5

5!
− + · · · + (−1)nx2n+1

(2n + 1)!
+

(−1)n+1x2n+3

(2n + 3)!
cos ξ

Let f(x) = sin x. Then

f ′(x) = cos x, f ′′(x) = − sin x, and f ′′′(x) = − cos x.

Moreover,
f(0) = 0, f ′(0) = 1, f ′′(0) = 0, and f ′′′(0) = −1.

As higher-order derivatives are calculated, this cycle of four values repeats indefi-
nitely. In particular, we find

f (2n)(0) = 0 and f (2n+1)(0) = (−1)n.

Therefore, by Taylor’s Theorem with x0 = 0,

sinx = x − x3

3!
+

x5

5!
− + · · · + (−1)nx2n+1

(2n + 1)!
+

(−1)n+1x2n+3

(2n + 3)!
cos ξ,

for some ξ between 0 and x.
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20.

cos x = 1 − x2

2!
+

x4

4!
− + · · · + (−1)nx2n

(2n)!
+

(−1)n+1x2n+2

(2n + 2)!
cos ξ

Let f(x) = cos x. Then

f ′(x) = − sin x, f ′′(x) = − cos x, and f ′′′(x) = sinx.

Moreover,
f(0) = 1, f ′(0) = 0, f ′′(0) = −1, and f ′′′(0) = 0.

As higher-order derivatives are calculated, this cycle of four values repeats indefi-
nitely. In particular, we find

f (2n)(0) = (−1)n and f (2n+1)(0) = 0.

Therefore, by Taylor’s Theorem with x0 = 0,

cos x = 1 − x2

2!
+

x4

4!
− + · · · + (−1)nx2n

(2n)!
+

(−1)n+1x2n+2

(2n + 2)!
cos ξ,

for some ξ between 0 and x.

21.

1

1 + x
= 1 − x + x2 − + · · · + (−1)nxn +

(−1)n+1xn+1

(1 + ξ)n+2

Let f(x) = 1
1+x = (1 + x)−1. Then,

f ′(x) = −1 · (1 + x)−2, f ′′(x) = 1 · 2 · (1 + x)−3, f ′′′(x) = −1 · 2 · 3 · (1 + x)−4,

and, in general, f (n)(x) = (−1)n ·n! · (1+x)−n−1. Therefore, by Taylor’s Theorem
with x0 = 0,

1

1 + x
= 1 − x + x2 − + · · · + (−1)nxn +

(−1)n+1xn+1

(1 + ξ)n+2
,

for some ξ between 0 and x.


