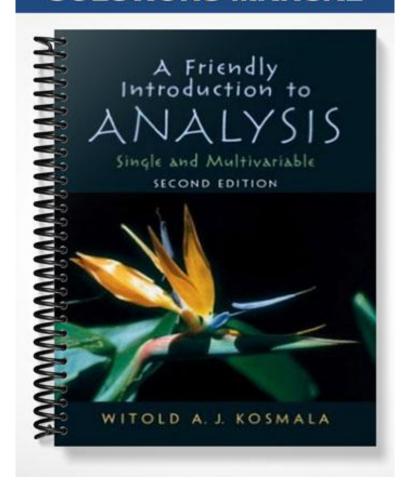
SOLUTIONS MANUAL



Chapter 2 – Sequences

- 1. $\frac{1}{\sqrt{n+1}} < 0.02 \Leftrightarrow 1 < (0.02)\sqrt{n+1} \Leftrightarrow n > 2499$. Thus, if $n^* = 2,500$, then for any $n \ge n^*$ the given inequality will be true.
- 2. (a) We prove that $\lim_{n\to\infty} a_n = 0$. Let $\varepsilon > 0$ be given. We need to find $n^* \in \mathbb{N}$ so that $|a_n 0| < \varepsilon$ for all $n \ge n^*$. But, $|a_n 0| = \frac{1}{2n-3}$ if $n \ge 2$, and $\frac{1}{2n-3} < \varepsilon$ if $n > \frac{1}{2\varepsilon} + \frac{3}{2}$. Thus, if $n^* > \max\left\{2, \frac{1}{2\varepsilon} + \frac{3}{2}\right\}$, then $|a_n| < \varepsilon$ for all $n \ge n^*$. It is also alright to write that $|a_n 0| = \frac{1}{2n-3} < \frac{1}{n}$ if n > 3. Thus, if n > 3 and $n > \frac{1}{\varepsilon}$, then $|a_n 0| < \varepsilon$. So, choose $n^* > \max\left\{3, \frac{1}{\varepsilon}\right\}$.
 - (b) We prove that $\lim_{n\to\infty} a_n = 0$. Let $\varepsilon > 0$ be given. We need to find $n^* \in \mathbb{N}$ so that $|a_n 0| < \varepsilon$ for all $n \ge n^*$. But, $|a_n| = \frac{n}{n^2 2}$ if $n \ge 2$, and $\frac{n}{n^2 2} \le \frac{n}{\frac{1}{2}n^2} = \frac{2}{n}$ if $n \ge 2$, and $\frac{2}{n} < \varepsilon$ if $n > \frac{2}{\varepsilon}$. Thus, if $n^* > \max\left\{2, \frac{2}{\varepsilon}\right\}$, then $|a_n| < \varepsilon$ for all $n \ge n^*$.
 - (c) We prove that $\lim_{n\to\infty} a_n = 0$. Let $\varepsilon > 0$ be given. We need to find $n^* \in \mathbb{N}$ so that $|a_n 0| < \varepsilon$ for all $n \ge n^*$. But, $|a_n| = \frac{1}{n^p} < \varepsilon$ if $n > \sqrt[p]{\frac{1}{\varepsilon}}$. Thus, if $n^* > \sqrt[p]{\frac{1}{\varepsilon}}$, then $|a_n| < \varepsilon$ for all $n \ge n^*$.
 - (d) We prove that $\lim_{n\to\infty} a_n = \frac{1}{2}$. Let $\varepsilon > 0$ be given. We need to find $n^* \in \mathbb{N}$ so that $\left| a_n \frac{1}{2} \right| < \varepsilon$ for all $n \ge n^*$. But, $\left| a_n \frac{1}{2} \right| = \frac{\sqrt{n}}{4n + 2\sqrt{n}} < \frac{\sqrt{n}}{4n} = \frac{1}{4\sqrt{n}} < \varepsilon$ if $n > \frac{1}{16\varepsilon^2}$. Thus, if $n^* > \frac{1}{16\varepsilon^2}$, then $\left| a_n \frac{1}{2} \right| < \varepsilon$.
 - (f) Suppose $\{a_n\}$ converges to A. Then, there exists $n^* \in \mathbb{N}$ such that for a particular $\varepsilon > 0$, say, 1, we have $\left| (-1)^n A \right| < 1$ for all $n \ge n^*$. Now, if $n \ge n^*$ is even, then we have $\left| 1 A \right| < 1$, which implies that A > 0. If $n \ge n^*$ is odd, then we have $\left| -1 A \right| < 1$, which implies A < 0. Due to Theorem 2.1.9 this is a contradiction.
 - (g) Since $a_n = \sqrt{n+1} \sqrt{n} = \frac{\left(\sqrt{n+1} \sqrt{n}\right)\left(\sqrt{n+1} + \sqrt{n}\right)}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$, we will prove that $\lim_{n \to \infty} a_n = 0$. Let $\varepsilon > 0$ be given. Since $\sqrt{n+1} > \sqrt{n}$, we have that $|a_n - 0| = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}} < \varepsilon$ if $n > \frac{1}{4\varepsilon^2}$. Thus, if $n^* > \frac{1}{4\varepsilon^2}$, then $|a_n - 0| < \varepsilon$ for all $n \ge n^*$.
 - (h) We will prove that $\{a_n\}$ does not converge by using Definition 2.1.6. Case 1. Suppose that $A \ge 0$ is any arbitrary real number, $\frac{1}{2}$ is a particular $\varepsilon > 0$, and n^* is an arbitrary natural number. We will show that $|a_m A| \ge \frac{1}{2}$ for some $m > n^*$. To this end, let m be odd and write $|a_m A| = \left|(-1)\left(\frac{m}{m+1}\right) A\right| \ge 1$

- $\frac{m}{m+1} \ge \frac{1}{2}$. Case 2. Suppose that A < 0 and proceed in a similar fashion.
- (k) We will prove that $\{a_n\}$ does not converge by using Definition 2.1.6. Case 1. Suppose that $A \ge \frac{3}{4}$ is any arbitrary real number, $\frac{1}{4}$ is a particular $\varepsilon > 0$, and n^* is an arbitrary natural number. We will show that $|a_m A| \ge \frac{1}{4}$ for some $m > n^*$. To this end, let m be any even natural number. Then, $|a_m A| \ge \frac{1}{m} \frac{3}{4} \ge \frac{1}{4}$. Case 2. Suppose $A < \frac{3}{4}$ and proceed in a similar fashion.
- 3. (a) Using Example 1.3.3, we have $a_n = \frac{1+2+\cdots+n}{n^2} = \frac{\frac{n(n+1)}{2}}{n^2} = \frac{n+1}{2n}$, which we will prove tends to $\frac{1}{2}$.

 To this end, let $\varepsilon > 0$ be given. Since, $\left| a_n \frac{1}{2} \right| = \frac{1}{2n} < \varepsilon$ if $n > \frac{1}{2\varepsilon}$. Thus, if $n^* > \frac{1}{2\varepsilon}$, then $\left| a_n \frac{1}{2} \right| < \varepsilon$ for all $n \ge n^*$.
- **4.** (\Rightarrow) Let $\varepsilon > 0$ be given. We need to show that $\lim_{n \to \infty} |a_n| = 0$, that is, we need to find n^* so that $|a_n| 0| < \varepsilon$ for all $n \ge n^*$. Since $\lim_{n \to \infty} a_n = 0$, there exists n_1 such that $|a_n 0| < \varepsilon$ for all $n \ge n_1$. But, if $n^* = n_1$, we have $||a_n| 0| = |a_n| < \varepsilon$ for all $n \ge n^*$. Proof of the converse is similar.
- 5. Let $\varepsilon > 0$ be given. We wish to show that $\lim_{n \to \infty} |a_n| = |A|$, that is, we need to find n^* so that $||a_n| |A|| < \varepsilon$ for all $n \ge n^*$. Since $\lim_{n \to \infty} a_n = A$, there exists n_1 such that $|a_n A| < \varepsilon$ for all $n \ge n_1$. But, if $n^* = n_1$, using Corollary 1.8.6, we have $||a_n| |A|| \le |a_n A| < \varepsilon$ for all $n \ge n^*$.

 The converse is false. Choose $a_n = (-1)^n$.
- **6.** (\Rightarrow) Let $\varepsilon > 0$ be given. We need to show that $\lim_{n \to \infty} (a_n A) = 0$, that is, we need to find n^* so that $|(a_n A) 0| < \varepsilon$ for all $n \ge n^*$. Since $\lim_{n \to \infty} a_n = A$, there exists n_1 such that $|a_n A| < \varepsilon$ for all $n \ge n_1$. But, if $n^* = n_1$, we have $|(a_n A) 0| = |a_n A| < \varepsilon$ for all $n \ge n^*$. Proof of the converse is similar.
- 8. Let $\varepsilon > 0$ be given. We need to show that $\lim_{n \to \infty} a_n = A$, that is, we need to find n^* so that $|a_n A| < \varepsilon$ for all $n \ge n^*$. Since $\lim_{n \to \infty} b_n = 0$, there exists n_1 such that $|b_n 0| < \frac{\varepsilon}{k+1}$ for all $n \ge n_1$. But, if $n^* = n_1$, we have $|a_n A| \le k|b_n| < k \cdot \frac{\varepsilon}{k+1} < \varepsilon$ for all $n \ge n^*$. We chose $\frac{\varepsilon}{k+1}$ instead of $\frac{\varepsilon}{k}$ in the case k = 0.
- 9. Use Exercise 7.
- **10.** We will prove that $\{b_n\}$ converges to A. Let $\varepsilon > 0$ be given. We need to find n^* so that $|b_n A| < \varepsilon$ for all $n \ge n^*$. Since $\lim_{n \to \infty} a_n = A$, there exists n_1 such that $|a_n A| < \frac{\varepsilon}{2}$ for all $n \ge n_1$. But, if $n^* = n_1$, then we have $|b_n A| = \left|\frac{a_n + a_{n+1}}{2} A\right| \le \left|\frac{a_n}{2} A\right| + \left|\frac{a_{n+1}}{2} A\right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.
- 12. Suppose that $\lim_{n\to\infty} a_n = A \neq 0$. By Theorem 2.1.12 there exists n^* such that $\frac{1}{2}|A| \leq |a_n|$ for all $n \geq n^*$, which

in turn implies that $\left|\frac{1}{a_n}\right| < \frac{2}{|A|}$. Thus, if $M = \max\left\{\frac{2}{|A|}, \frac{1}{|a_1|}, \frac{1}{|a_2|}, \cdots, \frac{1}{|a_{n^*-1}|}\right\}$ then, $\left|\frac{1}{a_n}\right| \le M$ for all $n \in \mathbb{N}$.

- 13. Choose any $t \in (0,1)$ and fix it. By Remark 2.1.8, part (g), there exists n^* such that $|a_n A| < (1-t)A|$ for all $n \ge n^*$. But, $|a_n| = |a_n A + A| \ge |A| |a_n A| > |A| (1-t)|A| = t|A|$. If t = 0, then the conclusion $|a_n| \ge t|A|$ becomes $|a_n| \ge 0$, which is certainly true. If t = 1, then the conclusion $|a_n| \ge t|A|$ becomes $|a_n| \ge |A|$, which need not hold. For example, pick $a_n = 1 \frac{1}{n}$.
- 14. We will show that if c > 0, then $\lim_{n \to \infty} \sqrt[q]{c} = 1$.

We have $(1+d_n)^n=1+nd_n+\frac{n(n-1)}{2}(d_n)^2+\cdots+(d_n)^n>nd_n$, and thus, $c=\frac{1}{1+d_n}$. By binomial theorem we have $(1+d_n)^n=1+nd_n+\frac{n(n-1)}{2}(d_n)^2+\cdots+(d_n)^n>nd_n$, and thus, $c=\left(\frac{1}{1+d_n}\right)^n=\frac{1}{(1+d_n)^n}<\frac{1}{nd_n}$ from which it follows that $0< cnd_n<1$, that is, $0< d_n<\frac{1}{cn}$ for all $n\in \mathbb{N}$. Thus, $0<1-\frac{1}{\sqrt{c}}=1-\frac{1}{1+d_n}=\frac{d_n}{1+d_n}< d_n<\frac{1}{cn}$ for all $n\in \mathbb{N}$. Thus, $|\sqrt[n]{c}-1|<\frac{1}{cn}$, and so by Exercise 8, $\lim_{n\to\infty}\sqrt[n]{c}=1$ if 0< c<1.

Case 2. If c=1, then $\sqrt[n]{c}=1$ for each value of n. Thus, by Exercise 6 we have $\lim_{n\to\infty}\sqrt[n]{c}=\lim_{n\to\infty}1=1$.

Case 3. If c>1, then by Exercise 32 of Section 1.9, we have $\sqrt[n]{c}>1$. Therefore, $\sqrt[n]{c}=1+b_n$ with $b_n>0$. Thus, we have $c=(1+b_n)^n=1+nb_n+\frac{n(n-1)}{2}(b_n)^2+\cdots+(b_n)^n>nb_n$. Therefore, $c>nb_n$ and consequently, $b_n<\frac{c}{n}$. Thus, we have $|\sqrt[n]{c}-1|=|b_n|=b_n<\frac{c}{n}$ for all $n\in \mathbb{N}$. By Exercise 8, $\lim_{n\to\infty}\sqrt[n]{c}=1$ if c>1.

- 15. We will show that if c > 0, then $\lim_{n \to \infty} \sqrt[n]{n} = 1$. If n > 1, then by Exercise 32 of Section 1.9, we have $\sqrt[n]{n} > 1$. Therefore, $\sqrt[n]{n} = 1 + b_n$ with $b_n > 0$. Thus, we have $n = (1 + b_n)^n = 1 + nb_n + \frac{n(n-1)}{2}(b_n)^2 + \dots + (b_n)^n > 1 + \frac{n(n-1)}{2}(b_n)^2$. Thus, if n > 1, we have $n 1 > \frac{n(n-1)}{2}(b_n)^2$, which gives $2 > n(b_n)^2$, or equivalently, $b_n < \frac{\sqrt{2}}{\sqrt{n}}$. Thus, $|\sqrt[n]{n} 1| = b_n < \sqrt{2} \cdot \frac{1}{\sqrt{n}}$. Since, by Exercise 2(c), $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$, Exercise 8 gives the desired conclusion.
- 16. We will show that $\lim_{n\to\infty} \frac{n^2}{2^n} = 0$. Note that, as verified in Exercise 4(g) of Section 1.3, by the binomial theorem, we have $2^n = (1+1)^n = 1+n+\frac{n(n-1)}{2}+\frac{n(n-1)(n-2)}{3!}+\cdots+1>\frac{n(n-1)(n-2)}{6}$ for all $n\in\mathbb{N}$. Thus, if $n\geq 4$ (why?) we have that $\frac{n^2}{2^n} < \frac{6n^2}{n(n-1)(n-2)} = \frac{6n}{n^2-3n+2} < \frac{6n}{n^2-3n} = \frac{6}{n-3}$. Hence, $\left|\frac{n^2}{2^n}-0\right| < \frac{6}{n-3}$, and by Exercise 8, the desired result follows.
- 17. We will prove that $\lim_{n\to\infty} nr^n = 0$ if |r| < 1. If r = 0, then $nr^n = 0$ for each n. Therefore, $\lim_{n\to\infty} nr^n = 0$

 $\lim_{n \to \infty} 0 = 0. \text{ If } |r| < 1, \text{ there exists } b > 0 \text{ such that } |r| = \frac{1}{1+b}. \text{ But, } nr^n = (1+b)^n = 1 + nb + \frac{n(n-1)}{2}b^2 + \cdots + b^n > \frac{n(n-1)}{2}b^2, \text{ for all } n \in \mathbb{N}. \text{ Therefore, } \left| nr^n - 0 \right| = nr^n = n \cdot \frac{1}{(1+b)^n} < \frac{2}{b^2} \cdot \frac{1}{n-1}. \text{ Now apply Exercise 8.}$

- 18. By Examples 1.3.4 and 1.4.5 we have $a + ar + ar^2 + \cdots + ar^n = a\left(1 + r + r^2 + \cdots + r^n\right) = a\left(\frac{r^{n+1} 1}{r 1}\right) = \frac{a}{1 r} \frac{a}{1 r} \cdot r^{n+1}$. To show that $\{a_n\}$ converges to $\frac{a}{1 r}$, we can write $\left|a + ar + ar^2 + \cdots + ar^n \frac{a}{1 r}\right| = \frac{\left|a\right|}{1 r} \cdot \left|r\right|^{n+1}$. Thus, using Theorem 2.1.13 and by Exercise 8 we have that $\{a_n\}$ converges to $\frac{a}{1 r}$.
- 19. (a) Set a = 1 and $r = \frac{1}{2}$ in Exercise 18 to get $\lim_{n \to \infty} a_n = 2$.
 - **(b)** We write $1.\overline{9} = 1 + 0.9 + 0.09 + 0.009 + \dots = 1 + \lim_{n \to \infty} \left(\frac{9}{10} + \frac{9}{10^2} + \dots + \frac{9}{10^n} \right) = 2$.
- **20.** (a) No, not if $a_n = n$.
 - **(b)** No, not if $a_n = \frac{1}{n}$.
 - (c) No, not if $a_n = 0$, or $a_n = n^n$, or ...
- 21. Let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} (a_n a_{n-2}) = 0$, there exists n_1 such that $|a_n a_{n-2}| < \overline{\varepsilon}$ for all $n \ge n_1$. Next, observe that for any $n > n_1$ we can write, $a_n a_{n-1} = (a_n a_{n-2}) (a_{n-1} a_{n-3}) + (a_{n-2} a_{n-3}) \cdots \pm (a_{n_1+1} a_{n_1-1}) \mp (a_{n_1} a_{n_1-1})$. Thus, if $n > n_1$, we have, $|a_n a_{n-1}| \le (n n_1)\varepsilon + |a_{n_1} a_{n_1-1}|$, and hence, $\lim_{n \to \infty} \frac{a_n a_{n-1}}{n} = 0$.

- 1. Let $\varepsilon > 0$ be given. We need to find n^* such that $\left| \frac{1}{b_n} \frac{1}{B} \right| < \varepsilon$ for all $n \ge n^*$. Since B and b_n are not 0, by Theorem 2.1.12, there exists n_1 such that $\left| b_n \right| > \frac{|B|}{2}$ if $n \ge n_1$. Since, $\lim_{n \to \infty} b_n = B$, there exists n_2 such that $\left| b_n B \right| < \frac{B^2 \varepsilon}{2}$ for all $n \ge n_2$. If $n^* = \max \left\{ n_1, n_2 \right\}$, then for all $n \ge n^*$ we have $\left| \frac{1}{b_n} \frac{1}{B} \right| = \frac{|B b_n|}{|b_n B|} < \frac{|b_n B|}{|B|} = \frac{2|b_n B|}{B^2} < \varepsilon$.
- 2. Let $\varepsilon > 0$ be given. We need to find n^* such that $|ca_n cA| < \varepsilon$ for all $n \ge n^*$. Since $\lim_{n \to \infty} a_n = A$, there exists n_1 such that $|a_n A| < \frac{\varepsilon}{|c|+1}$ for all $n \ge n_1$. (We use |c|+1 to avoid 0 in the denominator.) Choose $n^* = n_1$. Then, for all $n \ge n^*$ we have $|ca_n cA| = |c| |a_n A| < |c| \cdot \frac{\varepsilon}{|c|+1} < \varepsilon$.

- 3. Let $\varepsilon > 0$ be given. We need to find n^* such that $\left| (a_n)^p A^p \right| < \varepsilon$ for all $n \ge n^*$. Since $\{a_n\}$ converges, by Theorem 2.1.11, it is bounded. Therefore, there exists M > 0 such that $\left| a_n \right| \le M$ for all n. Also, since $\lim_{n \to \infty} a_n = A$, there exists n_1 such that $\left| a_n A \right| < \left| \varepsilon \left(M^{p-1} + M^{p-2}A + \cdots + A^{p-1} \right)^{-1} \right|$. If $n^* = n_1$, then for all $n \ge n^*$ we have $\left| (a_n)^p A^p \right| = |a_n A| \left| (a_n)^{p-1} + (a_n)^{p-2}A + \cdots + A^{p-1} \right| \le |a_n A| \left| M^{p-1} + M^{p-2}A + \cdots + A^{p-1} \right| < \varepsilon$. Hence, the result follows. Observe that Theorem 2.2.1, part (b), could have been used p 1 times to prove this result.
- 4. Observe that for any two real numbers a and b we have $ab = \frac{1}{4} \left[(a+b)^2 (a-b)^2 \right]$. Since $\lim_{n \to \infty} a_n = A$ and $\lim_{n \to \infty} b_n = B$ by Theorem 2.2.1 we have that $\lim_{n \to \infty} \left(a_n \pm b_n \right) = A \pm B$, and thus, $\lim_{n \to \infty} \left(a_n \pm b_n \right)^2 = (A \pm B)^2$. Hence, $\lim_{n \to \infty} \left[\left(a_n + b_n \right)^2 \left(a_n b_n \right)^2 \right] = (A + B)^2 (A B)^2 = 4AB$. Exercise 2 completes the proof.
- 5. Let $\varepsilon > 0$ be given. We need to find n^* such that $|a_n b_n 0| < \varepsilon$ for all $n \ge n^*$. Since $\{b_n\}$ is bounded, there exists M > 0 such that $|b_n| \le M$ for all n. Since $\lim_{n \to \infty} a_n = 0$ there exists n_1 such that $|a_n 0| < \frac{\varepsilon}{M}$ for all $n \ge n_1$. If $n^* = n_1$, then for all $n \ge n^*$ we have that $|a_n b_n 0| = |a_n| |b_n| < \frac{\varepsilon}{M} \cdot M = \varepsilon$. Hence, $\lim_{n \to \infty} a_n b_n = 0$.
- 6. By Exercise 6 from Section 2.1, $\lim_{n\to\infty} a_n = A \Leftrightarrow \lim_{n\to\infty} (a_n A) = 0$ and $\lim_{n\to\infty} b_n = B \Leftrightarrow \lim_{n\to\infty} (b_n B) = 0$ and thus bounded by say, M. Since $a_nb_n AB = (a_n A)(b_n B) + A(b_n B) + B(a_n A)$, employing Theorem 2.2,7 we see that $\lim_{n\to\infty} (a_n A)(b_n B) = 0$. (Observe that we cannot split this limit into two since that is what we are trying to prove.) Also, $A \lim_{n\to\infty} (b_n B) = A \cdot 0 = 0$ and $B \lim_{n\to\infty} (a_n A) = B \cdot 0 = 0$. Thus, $\lim_{n\to\infty} (a_nb_n AB) = \lim_{n\to\infty} (a_n A)(b_n B) + A \lim_{n\to\infty} (b_n B) + B \lim_{n\to\infty} (a_n A) = 0$. Hence, by Exercise 6 from Section 2.1, $\lim_{n\to\infty} a_nb_n = AB$.
- 7. We prove that $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{A}$, where $A = \lim_{n\to\infty} a_n$. Let $\varepsilon > 0$ be given. We need to find n^* such that $\left|\sqrt{a_n} \sqrt{A}\right| < \varepsilon$ for all $n \ge n^*$. Case 1. Suppose A = 0. Since $\lim_{n\to\infty} a_n = A = 0$, there exists n_1 such that $|a_n 0| = a_n < \varepsilon^2$ for all $n \ge n_1$. If $n^* = n_1$, then for all $n \ge n^*$ we have $\left|\sqrt{a_n} \sqrt{A}\right| = \left|\sqrt{a_n} 0\right| = \sqrt{a_n} < \sqrt{\varepsilon^2} = |\varepsilon| = \varepsilon$.

Case 2. Suppose $A \neq 0$. Since $\lim_{n \to \infty} a_n = A$, there exists n_2 such that $|a_n - A| < \sqrt{A \varepsilon}$ for all $n \geq n_2$. If $n^* = n_2$, then for all $n \geq n^*$ we rationalize and write $|\sqrt{a_n} - \sqrt{A}| = \frac{|a_n - A|}{\sqrt{a_n} + \sqrt{A}} \leq \frac{|a_n - A|}{\sqrt{A}} < \frac{\sqrt{A\varepsilon}}{\sqrt{A}} = \varepsilon$. Hence, $\lim_{n \to \infty} \sqrt{a_n} = \sqrt{A}$.

To prove that $\lim_{n\to\infty} \sqrt[3]{a_n} = \sqrt[3]{A}$, follow a similar procedure.

8. (a) Let $\varepsilon > 0$ be given. We will show that $A - B < \varepsilon$ and employ Exercise 13 from Section 1.8. Since $\lim_{n \to \infty} a_n = A$ and $\lim_{n \to \infty} b_n = B$, there exist n_1 and n_2 such that $|a_n - A| < \frac{\varepsilon}{2}$ for all $n \ge n_1$, and

 $|b_n-B|<\frac{\varepsilon}{2}$ for all $n\geq n_2$. Now, if we choose $n^*=\max\left\{n_1,n_2\right\}$, then for all $n\geq n^*$ we have $A-a_n<\frac{\varepsilon}{2}$ and $b_n-B<\frac{\varepsilon}{2}$. Therefore, for all $n\geq n^*$, since $a_n\leq b_n$, we have $A-B=\left(A-a_n\right)+\left(b_n-B\right)+\left(a_n-b_n\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}+0=\varepsilon$. Thus, by Exercise 13 from Section 1.8 we have $A-B\leq 0$. Hence, $A\leq B$.

- **(b)** Choose $a_n = 0$, $b_n = \frac{1}{n}$, and $n_1 = 1$.
- 9. Proof is by contradiction. Suppose that A < 0. Then, since $\lim_{n \to \infty} a_n = A$, there exists n_2 such that for all $n \ge n_2$ we have $|a_n A| < \frac{|A|}{2}$. Therefore, by Exercise 14(a) from Section 1.8, we have $-\frac{|A|}{2} < a_n A < \frac{|A|}{2}$, which is equivalent to $A \frac{|A|}{2} < a_n < A + \frac{|A|}{2}$. But, $A + \frac{|A|}{2}$ is negative, which implies that $a_n < 0$ for all $n \ge n_2$. This is a contradiction to the hypothesis.

 Another way to prove $A \ge 0$ is to apply Exercise 8(a) with $b_n = 0$ and the reverse inequality.
- 10. Suppose $\{a_n\}$ converges to A and to B. By Theorem 2.2.1, part (f), with $a_n = b_n$, we have that $A \le B$.
- 11. (a) $\lim_{n\to\infty} \sqrt[n]{\frac{1}{n}} = \lim_{n\to\infty} \frac{1}{\sqrt[n]{n}} = \frac{1}{\lim_{n\to\infty} \sqrt[n]{n}} = \frac{1}{1} = 1$.

Similarly, $B \le A$. Hence, A = B.

- (b) $\lim_{n \to \infty} r^{\frac{n+1}{2}} = \lim_{n \to \infty} \sqrt{r} \sqrt{r^n} = \sqrt{r} \lim_{n \to \infty} \sqrt{r^n} = \sqrt{r} \cdot \sqrt{0} = 0.$
- (c) Since $n < 2^n$, which can be proven by induction, we have $0 < \frac{1}{2^n} < \frac{1}{n}$. But, $\lim_{n \to \infty} \frac{1}{n} = 0$. Thus, by the sandwich theorem, $\lim_{n \to \infty} \frac{1}{2^n} = 0$.
- (d) Since $\lim_{n\to\infty} \frac{|r|}{n} = 0$, there exists $n_1 \in N$ such that $\frac{|r|}{n} < \frac{1}{2}$ if $n \ge n_1$. Now, since first we are looking for $\lim_{n\to\infty} \frac{|r^n|}{n!}$, assume that $n > n_1$ and write $0 \le \frac{|r^n|}{n!} = \frac{|r|}{1} \cdot \frac{|r|}{2} \cdot \frac{|r|}{3} \cdot \dots \cdot \frac{|r|}{n_1 + 1} \cdot \dots \cdot \frac{|r|}{n} < \frac{|r^n|}{1 \cdot 2 \cdot 3} \cdot \dots \cdot \frac{|r|}{n_1} \cdot \frac{|r|}{1 \cdot 2} \cdot \dots \cdot \frac{|r|}{n_1} \cdot \frac{|r|}{1 \cdot 2} \cdot \dots \cdot \frac{|r|}{n_1} \cdot \dots \cdot \frac{|r|$
- (e) Use Exercise 2(c) of Section 2.1 and the sandwich theorem.
- (f) Rationalizing, we write $0 < \sqrt{n+1} \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{\sqrt{n}}$. Now apply the sandwich theorem.
- (g) If we rationalize the numerator, we obtain $a_n = \sqrt{n} \left(\sqrt{n+1} \sqrt{n} \right) = \sqrt{n^2 + n} n = \frac{n}{\sqrt{n^2 + n} + n} = \frac{1}{\sqrt{1 + \frac{1}{n}} + 1}$, which tends to $\frac{1}{2}$ as n goes to infinity.
- (h) We rationalize the numerator, to obtain $a_n = \sqrt{n^2 + 1} n = \frac{1}{\sqrt{n^2 + 1} + n} < \frac{1}{n}$. So, by the sandwich

theorem the limit is 0.

- (i) Since $\sqrt[n]{n} < \sqrt[n]{n+\sqrt{n}} < \sqrt[n]{n+n} = \sqrt[n]{2n} = \sqrt[n]{2}\sqrt[n]{n}$, and $\lim_{n\to\infty} \sqrt[n]{2} = 1 = \lim_{n\to\infty} \sqrt[n]{n}$, by the sandwich theorem, the limit is 1.
- (j) Since $\sqrt[n]{2^{n+1}} = 2\sqrt[n]{2}$ and $\lim_{n \to \infty} \sqrt[n]{2} = 1$, then limit of the desired expression is 2.
- (k) For n > 3 we can write $0 < \frac{n^2}{n!} = \frac{n \cdot n}{n(n-1)(n-2)\cdots(2)(1)} < \frac{n}{(n-1)(n-2)} < \frac{n}{n^2 3n} = \frac{1}{n-3}$. Now apply the sandwich theorem.
- (1) $\lim_{n \to \infty} \frac{1}{n} \sin \frac{1}{n} = \left(\lim_{n \to \infty} \frac{1}{n}\right) \cdot \left(\lim_{n \to \infty} \sin \frac{1}{n}\right) = 0 \cdot 0 = 0.$
- (m) If m = 2n, then we write, $\lim_{n \to \infty} n \sin \frac{1}{2n} = \lim_{m \to \infty} \left(\frac{1}{2} m \right) \sin \frac{1}{m} = \frac{1}{2} \lim_{m \to \infty} m \sin \frac{1}{m} = \frac{1}{2} \cdot 1 = \frac{1}{2}$.
- 12. Even though $\{a_n\}$ converges to 0, $\{a_nb_n\}$ need not converge. For example, choose $a_n = \frac{1}{n}$ and $b_n = n^2$. Then $\{a_nb_n\}$ diverges to $+\infty$. But if $b_n = kn$, $k \in \Re$, then $\{a_nb_n\}$ converges to k. However, if $\{b_n\}$ is bounded, whether convergent or not, $\{a_nb_n\}$ will converge to 0. This requires a proof.
- 13. Not true. Choose $a_n = \frac{1}{n}$ and $b_n = n$. Observe that if in addition we were to assume that $\{a_n\}$ converges to a nonzero value A, then the statement is true because then we can apply Theorem 2.2.1, part (c), and write $b_n = \frac{a_n b_n}{a_n}$. Since $\{b_n\}$ is a quotient of 2 converging sequences and all the conditions of Theorem 2.2.1, part (c), are satisfied, we can conclude that $\{b_n\}$ must converge.
- 14. To prove that $\lim_{n\to\infty} \sqrt[n]{c} = 1$, for 0 < c < 1, write $0 < \left| \sqrt[n]{c} 1 \right| < \frac{1}{cn}$, and for c > 1, write $0 < \sqrt[n]{c} 1 < \frac{c}{n}$. To prove that $\lim_{n\to\infty} \sqrt[n]{n} = 1$, write $0 < \sqrt[n]{n} 1 < \sqrt{\frac{2}{n}}$, which tends to 0. To prove that $\lim_{n\to\infty} \frac{n^2}{2^n} = 0$, write $0 < \frac{n^2}{2^n} < \frac{6}{n-3}$. To prove that $\lim_{n\to\infty} nr^n = 0$, write $0 < nr^n < \frac{2}{b^2} \cdot \frac{1}{n-1}$, b a real constant.
- 15. Due to partial fraction decomposition we have $a_n = \frac{1}{2} \left(\frac{1}{2n-1} \frac{1}{2n+1} \right)$. Thus, $s_n = a_1 + a_2 + \cdots + a_n = \frac{1}{2} \left(1 \frac{1}{2n+1} \right) = \frac{n}{2n+1}$, which tends to $\frac{1}{2}$ as n goes to infinity.
- **16.** Due to partial fraction decomposition we have $a_n = \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$. Thus, $b_n = a_1 + a_2 + \dots + a_n = 1 \frac{1}{n+1}$, which tends to 1 as n goes to infinity.
- 17. Write $s_n = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^{n-1}} = 1 + \left(1 \frac{1}{2}\right) + \left(\frac{1}{2} \frac{1}{4}\right) + \left(\frac{1}{4} \frac{1}{8}\right) + \dots + \left(\frac{1}{2^{n-2}} \frac{1}{2^{n-1}}\right) = 1 + 1 \frac{1}{2^{n-1}}$, which tends to 2 as $n \to \infty$.
- 18. (a) Yes. Choose $a_n = \sqrt{n}$.

- (b) Suppose $\{a_n\}$ is bounded. Since $\lim_{n\to\infty}\frac{1}{n}=0$, the product must tend to 0, (see Exercise 5). This contradicts the fact that $L\neq 0$.
- 19. To prove $\{a_n\}$ converges to -1, we show that $\lim_{n\to\infty} (a_n+1)=0$ and then apply Exercise 6 from Section 2.1. To this end, we write $\lim_{n\to\infty} (a_n+1) = \lim_{n\to\infty} \left(\frac{b_n+1}{b_n-1}+1\right) = \lim_{n\to\infty} \frac{2b_n}{b_n-1} = \frac{0}{0-1} = 0$.
- **21.** If $\alpha = \beta$, $\alpha \ge 0$, then $a_n = \sqrt[n]{\alpha^n + \alpha^n} = \alpha \sqrt[n]{2} \to \alpha \cdot 1 = \alpha = \beta$, as $n \to \infty$, by Exercise 14 in Section 2.1. If $0 \le \alpha < \beta$, then $a_n = \sqrt[n]{\alpha^n + \beta^n} = \beta \sqrt[n]{\left(\frac{\alpha}{\beta}\right)^n + 1} \to \beta \cdot 1 = \beta$.

- 1. Let M > 0 be given. We want to find $n^* \in N$ so that $b_n > M$ for all $n \ge n^*$. Since $\lim_{n \to \infty} a_n = +\infty$, there exists $n_1 \in N$ such that $a_n > M$ for all $n \ge n_1$. Now choose $n^* = n_1$. Then, for all $n \ge n^*$ we have $b_n \ge a_n > M$.
- 2. (a) Let M > 0 be given. We want to find n^* so that $a_n + b_n > M$ for all $n \ge n^*$. Since $\{a_n\}$ diverges to $+\infty$, there exists n_1 such that for all $n \ge n_1$ we have $a_n > M K$ where K is a lower bound of $\{b_n\}$. Now choose $n^* = n_1$. Then for all $n \ge n^*$ we have $a_n + b_n > (M K) + K = M$. Note that if $\{b_n\}$ is not bounded below, then the result is false. For example, choose $a_n = n$ and $b_n = -n$.
 - (b) Let M > 0 be given. We want to find n^* so that $a_n b_n > M$ for all $n \ge n^*$. Since $\{a_n\}$ diverges to $+\infty$, there exists n_1 such that for all $n \ge n_1$ we have $a_n > \frac{M}{K}$ where K > 0 is a lower bound of $\{b_n\}$. Now choose $n^* = n_1$. Then for all $n \ge n^*$ we have $a_n b_n > \frac{M}{K} \cdot K = M$. Note that if $\{b_n\}$ is not bounded below, then Theorem 2.3.3, part (b), is not true. For example, choose $a_n = n$ and $b_n = -n$. Then, $\{a_n b_n\}$ diverges to $-\infty$. If $\{b_n\}$ is bounded below but not by a positive constant, the result is still not true. For example, choose $a_n = n$ and $b_n = -1$. Then, $\{a_n b_n\}$ diverges to $-\infty$. Or, choose $a_n = n$ and $b_n = \frac{c}{n}$, $c \in \Re^+$ so that $\{b_n\}$ is bounded below by 0. Then $\{a_n b_n\}$ converges to c. Also, see the answer to Exercise 6. If $b_n = 0$, then $\{a_n b_n\}$ converges to 0.
 - (c) Let M > 0 be given. If c is a positive constant, we want to find n^* so that $ca_n > M$ for all $n \ge n^*$. Since $\{a_n\}$ diverges to $+\infty$, there exists n_1 such that $a_n > \frac{M}{c}$ for all $n \ge n_1$. Now choose $n^* = n_1$. Then, for all $n \ge n^*$ we have $ca_n > c \cdot \frac{M}{c} = M$. If c is a negative constant, we want to find n^* so that $ca_n < -M$ for all $n \ge n^*$. Since $\{a_n\}$ diverges to $+\infty$, there exists n_1 such that $a_n > \frac{M}{c}$ for all $n \ge n_1$. Now choose $n^* = n_1$. Then, for all $n \ge n^*$ we have $ca_n < c \cdot \frac{M}{c} = -M$.
- 3. (a) Since for n > 2 we can write $\frac{n^2 + 1}{n 2} > \frac{n^2}{n 2} > \frac{n^2}{n} = n$, which tends to $+\infty$ as n goes to infinity, by the

comparison theorem, we have $\lim_{n\to\infty} a_n = +\infty$.

- **(b)** Since $n^3 n + 1 > \frac{n^3}{2}$, and $2n + 4 \le 4n$ for $n \ge 2$, we conclude that whenever $n \ge 2$, we have $\frac{n^3 n + 1}{2n + 4} > \frac{n^3}{4n} = \frac{1}{4}n^2$. By the comparison theorem, the sequence $\{a_n\}$ diverges to $+\infty$.
- (c) Show $\{-a_n\}$ tends to $+\infty$.
- **4.** (a) $a_n = (-1)^n$.
 - **(b)** $a_n = 0$ for n even and $a_n = -n$ for n odd.
 - (c) $a_n = 0$ for n even and $a_n = n$ for n odd.
 - (**d**) $a_n = (-1)^n n$.
- 5. Use either a definition or Theorem 2.3.3.
- 6. (a) Use either a definition, or use Theorem 2.1.12 and part (b) of Theorem 2.3.3, or prove by contradiction. So here is a possible sequence of steps one can take: $b_n > \frac{1}{2}B > 0$ eventually, so $a_n b_n > \frac{1}{2}B a_n \to \infty$. Comparison theorem proves the conclusion.
 - (b) The sequence $\{a_nb_n\}$ can converge, diverge to $+\infty$, diverge to $-\infty$, or it can oscillate. Examples are: $a_n = n$ and $b_n = \frac{1}{n}$; $a_n = n$ and $b_n = 1$; $a_n = n$ and $b_n = -1$; $a_n = n$ and $b_n = 0$ for n even and $b_n = -1$ for n odd.
- 7. Since $\{a_n\}$ diverges to infinity, there exists n_1 such that $a_n \ne 0$ for any $n \ge n_1$. Then, for all $n \ge n_1$, we have $b_n = \frac{a_n b_n}{a_n} = \frac{1}{a_n} (a_n b_n)$. Since, $\{a_n\}$ diverges to infinity, by Theorem 2.3.6, $\lim_{n \to \infty} \frac{1}{a_n} = 0$. Since the sequence $\{a_n b_n\}$ converges, by Theorem 2.1.11, it is bounded. Therefore, by Theorem 2.2.7, the sequence $\{b_n\}$ must converge to 0.
- 8. Write a_n as $a_n = n^p \left(s_p + s_{p-1} n^{-1} + \dots + s_0 n^{-p} \right) = n^p b_n$. Since $\left\{ b_n \right\}$ converges to $s_p \neq 0$, it is bounded. Also, $\lim_{n \to \infty} n^p = +\infty$. By Theorem 2.3.3, parts (c) and (d), we have that $\lim_{n \to \infty} a_n = \pm \infty$. It is $+\infty$ if $s_p > 0$ and $-\infty$ if $s_p < 0$.
- 9. Rewrite a_n as $a_n = n^{p-q}b_n$, where $\{b_n\}$ converges to $\frac{s_p}{t_q}$ by employing theorems in Section 2.1 and 2.2. Since p > q, then $\lim_{n \to \infty} n^{p-q} = +\infty$. Therefore, by Theorem 2.3.3, parts (b)–(d), $\lim_{n \to \infty} n^{p-q}b_n = \pm \infty$, depending on the sign of $\frac{s_p}{t_q}$.
- **10.** (a) Yes. Let $a_n = n$, $b_n = (-1)^n n^2$.
 - **(b)** Yes. Let $a_n = \frac{1}{n}$ and $b_n = (-1)^n$.
- 12. (a) By Theorems 2.1.11 and 2.1.12, there exists n_1 such that $\frac{L}{2} < \frac{a_n}{b_n} < 2L$ for all $n \ge n_1$. Therefore,

- $\frac{1}{2}Lb_n < a_n < 2Lb_n$. Using the right-hand inequality, if $\lim_{n\to\infty}a_n = +\infty$, then according to Theorem 2.3.2, we have $\lim_{n\to\infty}2Lb_n = +\infty$. Thus, by Theorem 2.3.3, part (c), $\lim_{n\to\infty}b_n = +\infty$. In a similar way, using the left-hand inequality, we conclude that $\lim_{n\to\infty}b_n = +\infty$ implies that $\lim_{n\to\infty}a_n = +\infty$. Be careful, students may wish to use a contradiction and assume that $\lim_{n\to\infty}b_n\neq +\infty$ and then try to conclude that $\{b_n\}$ must be bounded. This is of course not true.
- (b) Choose, $a_n = 1$ and $b_n = n$. Then, $\lim_{n \to \infty} b_n = +\infty$, which does not imply that $\lim_{n \to \infty} a_n = +\infty$. Next, choose, $a_n = n$ and $b_n = 1$. Then, $\lim_{n \to \infty} a_n = +\infty$, which does not imply that $\lim_{n \to \infty} b_n = +\infty$.
- 13. (a) By Theorem 2.3.6, the sequence $\left\{\frac{b_n}{a_n}\right\}$ diverges to $+\infty$. Therefore, there exists n_1 such that for any M>0 we have $\frac{b_n}{a_n}>M$, provided $n\geq n_1$. Thus, if $n\geq n_1$, we have $b_n>Ma_n$. If the sequence $\left\{a_n\right\}$ diverges to infinity, by Theorem 2.3.3, part (c), we have $\lim_{n\to\infty}Ma_n=+\infty$. Hence, by the comparison theorem, the sequence $\left\{b_n\right\}$ diverges to $+\infty$.
 - (b) Since $b_n > 0$, we can write $a_n = \frac{a_n b_n}{b_n} = \frac{a_n}{b_n} \cdot b_n$. Since $\left\{ \frac{a_n}{b_n} \right\}$ converges to 0 and $\left\{ b_n \right\}$ is bounded, by Theorem 2.2.7 the sequence $\left\{ a_n \right\}$ converges to 0.
- 14. Let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} a_n = +\infty$, there exists n_1 such that $a_n > M = \frac{(\alpha \varepsilon \beta)k}{\varepsilon \beta^2}$. Now choose $n^* = n_1$. Then, for all $n \ge n^*$ we have $\left| \frac{\alpha a_n}{k + \beta a_n} \frac{\alpha}{\beta} \right| = \frac{\alpha k}{\beta k + \beta^2 a_n} < \frac{\alpha k}{\beta k + \beta^2 M} = \varepsilon$. Hence, the conclusion follows. Argue differently by multiplying the given limit by $\frac{1}{a_n} / \frac{1}{a_n}$.
- **16.** (a) Let $a_n = \frac{b^n}{n!}$. Then, $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = b \lim_{n \to \infty} \frac{1}{n+1} = 0 < 1$. Thus, by Theorem 2.3.7, part (a), the sequence $\{a_n\}$ converges to 0.
 - (b) We will show that the sequence $\{a_n\}$ with $a_n = \frac{n^n}{n!}$ diverges to $+\infty$ by proving that $\{\frac{1}{a_n}\}$ converges to 0 and applying Theorem 2.3.6. To this end, we write $0 \le \frac{n!}{n^n} = \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n} \le \frac{1 \cdot n \cdot n \cdot \dots \cdot n}{n \cdot n \cdot n \cdot \dots \cdot n} = \frac{1}{n}$, which tends to 0. Therefore, by the sandwich theorem, the sequence $\{\frac{1}{a_n}\}$ converges to 0, which proves the desired result. Or to prove that $\{a_n\}$ diverges to $+\infty$ directly, use the comparison theorem, since $a_n \ge n$.
 - (c) We will prove that $\lim_{n\to\infty} n^k r^n = 0$ using Theorem 2.3.7. Thus, if $a_n = n^k r^n$ we write $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = |r|$ < 1. Therefore, by Theorem 2.3.7, part (a), the sequence converges to 0.
- 17. This approach for the second situation is not useful since R represents $\lim_{n\to\infty} a_n$ where $a_n = 2^0 + 2^1 + 2^2 + \cdots + 2^n$. Since this sequence diverges to $+\infty$, $R = +\infty$, and thus the next to the last line involves $\infty \infty$.

- 18. (a) Since, $\left| \frac{\frac{n^2 + 3n 3}{n^3} 0}{\frac{2}{n}} \right| = \frac{\left| n^2 + 3n 3 \right|}{2n^2} < \frac{2n^2}{2n^2} = 1$, if $n \ge 2$, by Definition 2.3.9 we have that $\frac{n^2 + 3n 3}{n^3} = 0 + \mathcal{O}\left(\frac{2}{n}\right)$.
 - (b) Since, $\left| \frac{\sin n}{n} 0 \right| = \left| \sin n \right| \le 1$ for all n, by Definition 2.3.9 we have the desired result.
- 19. Use Definition 2.3.9 to show that both sequences converge to 1 at roughly the same rate.
- **20.** Suppose $\{a_n\}$ converges to a nonzero value. Then a_n can be written as the sum of $b_n = \begin{cases} a_n, n \text{ even} \\ 0, n \text{ odd} \end{cases}$ and $c_n = \begin{cases} 0, n \text{ even} \\ a_n, n \text{ odd.} \end{cases}$ If $\{a_n\}$ converges to 0, then a_n can be written as the sum of $b_n = \begin{cases} a_n 1, n \text{ even} \\ 1, n \text{ odd.} \end{cases}$ and $c_n = \begin{cases} 1, n \text{ even} \\ a_n 1, n \text{ odd.} \end{cases}$ Note that the second decomposition does not work if the limit is not zero. For example choose $a_n = 2$.

- **4.** (a) Since for $n \ge 1$ we have $2n \ge n+1$, and thus, $n2^{n+1} \ge (n+1)2^n$, which is equivalent to $\frac{n}{2^n} \ge \frac{n+1}{2^{n+1}}$. Hence, $a_n \ge a_{n+1}$, and thus the sequence is decreasing.
 - (b) If $n \ge 3$, then $2n+1 < n^2$, which gives $n^2 + 2n + 1 < 2n^2$. Therefore, $(n+1)^2 < 2n^2$ which is equivalent to $2^n(n+1)^2 < 2^{n+1}n^2$, which gives that $a_{n+1} < a_n$. So, the sequence is eventually strictly decreasing.
 - (c) Note that $\frac{a_{n+1}}{a_n} = 3 \cdot \frac{1+3^{2n}}{1+3^{2n+2}} < 3 \cdot \frac{1+3^{2n}}{3^{2n+2}} = \frac{1}{3^{2n+1}} + \frac{1}{3} < 1$, for all n. Since $a_n > 0$, the sequence is strictly decreasing.
 - (d) Since for all n, 2 > 1, we have that 2(n+1) > 2n+1. Thus, $[1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)] \cdot [2(n+1)] > [1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)](2n+1)$. Dividing both sides by $2^{n+1}(n+1)!$ we obtain $a_n > a_{n+1}$. Hence, the given sequence is strictly decreasing.
 - (e) Since $\frac{n+1}{2n+1} < 1$, we multiply both sides of the inequality by $\frac{n!}{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}$ to obtain that $a_{n+1} < a_n$. Hence, $\{a_n\}$ is strictly decreasing.
- **6.** (a) Since $\frac{a_{n+1}}{a_n} < 1$ and $a_n > 0$, by Exercise 5(a), $\{a_n\}$ converges. (In fact, by Exercise 20 of Section 2.2, $\{a_n\}$ converges to $\frac{1}{2}$.)
 - (b) $\{a_n\}$ is strictly decreasing and bounded below by 0, thus it converges.
 - (c) Since $a_n > 0$, by Exercises 4(b) and 5, $\{a_n\}$ converges.
 - (d) Since $a_{n+1} = a_n + \frac{1}{2^{n+1}}$, $\{a_n\}$ is strictly increasing. By Example 1.3.4, $a_n = \frac{1 + \frac{1}{2^{n+1}}}{1 \frac{1}{2}} < 2$. Thus, $\{a_n\}$

- is bounded above and hence, converges (to 2, in fact).
- (e) Since $a_n > 0$, by Exercises 4(c) and 5, $\{a_n\}$ converges (to 0, in fact).
- (f) Since $a_n > 0$, by Exercises 4(e) and 5, $\{a_n\}$ converges.
- (g) $\{a_n\}$ converges to 0 and $-\frac{1}{2} \le a_n \le 1$, but it is not monotone.
- (h) Note that for all n, $n+1 \ge 2$ is equivalent to $2^n(n!)(n+1) \ge 2 \cdot 2^n(n!)$. Therefore, $a_n \ge a_{n+1}$ and so the sequence is decreasing. Since it is bounded below by 0, it converges.
- 7. (a) By Exercise 2(t) of Section 1.3 we have that $a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 \frac{1}{n} < 2$ for all n, and thus $\{a_n\}$ is bounded by 2. Also, $a_{n+1} = a_n + (n+1)^{-2}$, meaning that $\{a_n\}$ is strictly increasing and thus bounded below by $a_1 = 1$. Therefore, $\{a_n\}$ is convergent and $1 \le a_n < 2$ for all n. Thus, by Theorem 2.2.1, part (f), $1 \le A \le 2$. Furthermore, note that $1 + \frac{1}{4} \le a_n < 2$ for all $n \ge 2$. Hence, $\frac{5}{4} \le A \le 2$. The lower bound can be progressively improved.
 - (b) By Exercise 2(u) of Section 1.3 we have that $a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le \frac{7}{4} \frac{1}{n} < \frac{7}{4}$ for all $n \ge 2$. Again, since $\{a_n\}$ is strictly increasing, it converges. Since $a_2 = 1 + \frac{1}{4} = \frac{5}{4}$, we have $\frac{5}{4} \le a_n < \frac{7}{4}$ for all $n \ge 2$. Thus, $1 < a_n < \frac{7}{4}$ and $1 \le B \le \frac{7}{4}$.
- 8. Since $r^{n+1} = r \cdot r^n > r^n$ for r > 1, $\{a_n\}$ is strictly increasing. We show $\{a_n\}$ is not bounded above by contradiction. Thus, assume that $\{a_n\}$ is bounded above. Then, by Theorem 2.4.4, part (a), the sequence $\{a_n\}$ converges to, say, A. Taking limits of the recursion formula $a_{n+1} = ra_n$ using Remark 2.1.8, part (c), we obtain A = rA, which implies A must be 0. This is a contradiction, and hence, $\{a_n\}$ tends to $+\infty$.
- 9. (a) Since $0 < a_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n)} = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \dots \cdot \frac{2n-1}{2n} < \frac{1}{2} \cdot 1 \cdot 1 \cdot \dots \cdot 1 = \frac{1}{2}$ and $\{a_n\}$ is strictly decreasing, it converges to, say, A. Therefore, $0 \le A < \frac{1}{2}$.
 - (b) Since $0 < b_n = \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \cdots \cdot \frac{2n}{2n+1} < \frac{2}{3}$ and $\{b_n\}$ is strictly decreasing, it converges to, say, B. Therefore, $0 \le B < \frac{2}{3}$.
 - (c) Since $\{a_n\}$ and $\{b_n\}$ both converge, $\{a_nb_n\}$ also converges, by Theorem 2.2.1, part (b). Furthermore, we can write $\lim_{n\to\infty} a_nb_n = \lim_{n\to\infty} \frac{1}{2n+1} = 0$.
 - (d) Since $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$ and $\lim_{n\to\infty} a_n b_n = AB$, either A = 0, B = 0, or both. But, since $a_n < b_n$ for all n, $A \le B$. Hence, A must be 0.
- **10.** (b) $a_1 = a$ and $a_{n+1} = ra_n$, for all $n \in N$.
- 11. (b) By the mathematical induction we can prove that $\{a_n\}$ is increasing and bounded above by 2, see Exercise 11 from Section 1.9. Hence, $\{a_n\}$ converges to, say, A. Taking limits of the recursion formula we obtain $A = \sqrt{1 + \sqrt{A}}$. Thus, A must satisfy the equation $A^4 2A^2 A + 1 = 0$.
 - (c) By the mathematical induction we can prove that $\{a_n\}$ is increasing and bounded above by 2. Hence,

 $\{a_n\}$ converges to, say, A. Taking limits of the recursion formula we obtain $A = \sqrt{2A}$, which gives A = 0 or A = 2. Since the sequence begins with $\sqrt{2} > 1$ and is increasing, A = 0 is not a possibility for its limit. Hence, $\{a_n\}$ converges to 2.

- (d) $\{a_n\}$ is unbounded and oscillating, and hence, divergent. Observe that taking limits of the recursion formula and obtaining A=1 is meaningless.
- (f) $\{a_n\}$ diverges to $+\infty$.
- (g) By the mathematical induction we can prove that $\{a_n\}$ is increasing and bounded above by 2. Hence, $\{a_n\}$ converges to, say, A. Taking limits of the recursion formula we obtain $A = 1 + \frac{1}{2}A$. Hence, $\{a_n\}$ converges to A = 2.
- (i) Since by Example 1.3.12, we have that $a_n = -1 + 2^n$, $\{a_n\}$ diverges to $+\infty$.
- (k) Using the idea similar to the one in Example 1.3.12, we find that $a_n = \frac{1}{3^{n-1}}$. So, $\{a_n\}$ converges to 0.
- (1) By the mathematical induction we can prove that $\{a_n\}$ is decreasing and bounded below by 0. Hence, $\{a_n\}$ converges to, say, A. Taking limits of the recursion formula we obtain $A = \frac{1}{3}A$, or A = 0. In fact, $a_n = \frac{1}{3^{n-1}}$ as in parts (j) and (k).
- 12. By Exercises 42 and 43 of Section 1.9, $\{a_n\}$ is decreasing and bounded below by \sqrt{A} . Therefore, $\{a_n\}$ converges to, say, L. Taking limits of the recursion formula we obtain $L = \frac{L^2 + A}{2L}$. Solving for L we obtain $L = \sqrt{A}$ or $L = -\sqrt{A}$. Since \sqrt{A} is the lower bound of $\{a_n\}$, $\{a_n\}$ converges to \sqrt{A} .
- 13. By mathematical induction it can be proven that $b_n > 0$ for all n. Furthermore, we have $B (b_{n+1})^2 = B \frac{(b_n)^2 \left[3B + (b_n)^2\right]^2}{\left[3(b_n)^2 + B\right]^2} = \left[B (b_n)^2\right] \left[\frac{B (b_n)^2}{3(b_n)^2 + B}\right]^2$, for all n.
 - Case 1. Suppose B > 1. Then, since $b_1 = 1$ we have $(b_1)^2 = 1$ and so $B > (b_1)^2$. Then, from the preceding formula with n = 1, we have that $B (b_2)^2 > 0$, which implies that $B > (b_2)^2$. By the mathematical induction we can prove that $B > (b_n)^2$ for all n. Therefore, $b_n < \sqrt{B}$ for all n, and thus, $\{b_n\}$ is bounded above. To show $\{b_n\}$ is strictly increasing, we multiply $(b_n)^2 < B$ by 2 and add $B + (b_n)^2$ to both sides to obtain $3(b_n)^2 + B < 3B + (b_n)^2$. This gives $1 < \frac{3B + (b_n)^2}{3(b_n)^2 + B}$. Thus, $b_n < \frac{b_n \left[3B + (b_n)^2\right]}{3(b_n)^2 + B} = b_{n+1}$ for all n. Therefore, $\{b_n\}$ is strictly increasing and hence, converges.
 - Case 2. Suppose B < 1. Following similar steps to those in case 1 we can show that $\{b_n\}$ is strictly decreasing and bounded below by \sqrt{B} . Hence, $\{b_n\}$ converges.
 - Case 3. Suppose B = 1. Following a similar argument to the one in case 1, we can show that $b_n = 1$ for all n. Therefore, $\{b_n\}$ converges.

Since in all 3 cases the sequence converges to, say, L, taking limits of the recursion formula we get that L=0, $L=\sqrt{B}$, or $L=-\sqrt{B}$. Due to the monotonicity and boundedness of the sequence in each case, we

conclude that the limit of $\{b_n\}$ is \sqrt{B} .

- 14. Note, this is Newton's method for approximating roots of a polynomial $f(x) = x^3 x$.
- 15. (a) Since α satisfies the equation $r^2 = 1 + r$, we can write $\alpha = \sqrt{1 + \alpha} = \sqrt{1 + \sqrt{1 + \alpha}} = \cdots$
 - (b) $\{a_n\}$ is increasing, bounded below by 1, and bounded above by 2. Thus, $\{a_n\}$ converges to, say, A. Taking limits of the recursion formula we obtain $A = \sqrt{1+A}$, which is equivalent to $A^2 A 1 = 0$. Thus, $A = \alpha$, since the other value of A is negative.
 - (c) Since β satisfies the equation $m^2 = 1 m$, we can write $\beta = \sqrt{1 \beta} = \sqrt{1 \sqrt{1 \beta}} = \cdots$.
 - (d) The sequence is not monotone. It converges because it represents $\sqrt{1-\sqrt{1-\sqrt{1-\cdots}}}$ which is equal to β .
 - (e) This sequence has the same recursion formula as that in part (b), but the initial value b_1 is different. Thus, the sequence produced is different. In fact, it oscillates.
- **16.** (a) Since $a_2 = \frac{a_1 + b_1}{2}$ and $b_2 = \sqrt{a_1b_1}$, by Theorem 1.8.4, part (c), we have $a_2 > b_2$. Also, $a_2 = \frac{a_1 + b_1}{2}$ implies that $2a_2 = a_1 + b_1 < a_1 + a_1 = 2a_1$, so $a_2 < a_1$. And, $b_2 = \sqrt{a_1b_1}$ implies that $(b_2)^2 = a_1b_1 > b_1b_1 = (b_1)^2$. Since $b_1 > 0$, we have $b_2 > b_1$. Therefore, $b_1 < b_2 < a_2 < a_1$. By the mathematical induction the desired inequality can be proven.
 - (b) Suppose the statement to be proven is P(n). We will prove its validity by the mathematical induction. First observe that P(1) is true because from part (a) we have $a_2 > b_2 > b_1$, which gives $0 < a_2 b_2 = \frac{a_1 + b_1}{2} b_2 < \frac{a_1 + b_1}{2} b_1 = \frac{a_1 b_1}{2}$. Next, suppose P(k) is true for some integer $k \in \mathbb{N}$, that is, $0 < a_{k+1} b_{k+1} < \frac{a_1 b_1}{2^k}$. We will show that P(k+1) is true, that is, $0 < a_{k+2} b_{k+2} < \frac{a_1 b_1}{2^{k+1}}$. To this end, we write, $0 < a_{k+2} b_{k+2} = \frac{a_{k+1} + b_{k+1}}{2} b_{k+2} < \frac{a_{k+1} + b_{k+1}}{2} b_{k+1} = \frac{a_{k+1} b_{k+1}}{2} < \frac{a$
 - (c) By the sandwich theorem and part (b), we have that $\lim_{n\to\infty} (a_{n+1} b_{n+1}) = 0$. Since each sequence converges, we obtain $0 = \lim_{n\to\infty} a_{n+1} \lim_{n\to\infty} b_{n+1} = A B$.
- 17. (a) By Problem 1.10.15, 0 < a < b implies that $a < \frac{2ab}{a+b} < \frac{a+b}{2} < b$. If $a = b_n$ and $b = a_n$, we obtain $b_n < \frac{2a_nb_n}{a_n+b_n} < \frac{a_n+b_n}{2} < a_n$ which gives $b_n < b_{n+1} < a_{n+1} < a_n$. Therefore, $\{b_n\}$ is increasing and bounded above by a_1 , and thus, converges to, say, $a_n > b_n$. In addition, $\{a_n\}$ is decreasing and bounded below by $a_n > b_n$, and thus, converges to, say, $a_n > b_n$. Hence, taking limits of the first recursion formula we get $a_n > b_n$, which implies that $a_n > b_n$.
 - (b) Multiply two recursion formulas together to obtain $a_{n+1}b_{n+1} = \frac{a_n + b_n}{2} \cdot \frac{2a_nb_n}{a_n + b_n} = a_nb_n$, for all $n \ge 1$. Similarly, $a_nb_n = a_{n-1}b_{n-1}$ for all $n \ge 2$. Thus, by mathematical induction it can be proven that $a_{n+1}b_{n+1} = a_1b_1$ for all $n \ge 1$. Taking limits of both sides we get that $AB = a_1b_1$, which gives $A = \sqrt{a_1b_1}$, since A = B. Hence, $\lim_{n \to \infty} a_n = \sqrt{a_1b_1}$.

18. By Theorem 2.4.4, (a) \Rightarrow (b). Now we prove that (b) \Rightarrow (a). Let any set S of real numbers be given which is bounded above. We will show sup S exists and is finite. To do this, we form an increasing sequence $\{a_n\}$ of points in S and a decreasing sequence $\{b_n\}$ of upper bounds of S in such a way that $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = A$. To obtain the desired conclusion, we will prove that $A = \sup S$.

We start with any point a_1 in S and any upper bound b_1 of S. Both exist due to our assumption and clearly, $a_1 \le b_1$. Let $c_1 = \frac{a_1 + b_1}{2}$ be the midpoint between a_1 and b_1 . We determine a_2 and b_2 as follows. If c_1 is an upper bound of S, let $a_2 = a_1$ and $b_2 = c_1$. If c_1 is not an upper bound of S, let a_2 be some point in S satisfying $a_2 \ge a_1$, and let $b_2 = b_1$. In either case, we have that $a_2 \in S$ and b_2 is an upper bound of S, $a_1 \le a_2 \le b_2 \le b_1$, and $b_2 - a_2 \le \frac{b_1 - a_1}{2}$. Repeat the above process using a_2 and a_2 to obtain values a_3 and a_3 . Therefore, this process gives rise to two sequences a_1 and a_2 , where a_3 is increasing and bounded above by a_1 , and a_2 is decreasing and bounded below by a_2 . In addition, by mathematical induction, we have $a_2 \le b_2 \le$

Next we show that $A = \sup S$. Let $x \in S$. Then, $b_n \ge x$ for all n because each b_n is an upper bound of S. Therefore, $A \ge x$. This proves that A is an upper bound of S. Next, if t < A, then $a_n > t$ for large enough n since $\lim_{n \to \infty} a_n = A$. Since $a_n \in S$, this shows that t is not an upper bound of S. Hence, A is the least upper bound of S.

- 19. (a) Use mathematical induction. Suppose P(n) is the statement $n!! = 2^{\frac{n}{2}} \left(\frac{n}{2}\right)!$. Then, P(0) is clearly true. Suppose P(k) is true for some even integer k, that is, $k!! = 2^{\frac{k}{2}} \left(\frac{k}{2}\right)!$. We will show that P(k+2) is true, that is, $(k+2)!! = 2^{\frac{k+2}{2}} \left(\frac{k+2}{2}\right)!$. To this end, we write that $(k+2)!! = (k+2)(k!!) = (k+2)2^{\frac{k}{2}} \left(\frac{k}{2}\right)!$ $= \left(\frac{k}{2}+1\right)2 \cdot 2^{\frac{k}{2}} \left(\frac{k}{2}\right)! = 2^{\frac{k+2}{2}} \left(\frac{k+2}{2}\right)!$. Hence, P(n) is true for all $n=0,2,4,\ldots$
 - (b) Use mathematical induction.
 - (c) Not true.
- 20. Not true if some values are permitted to be negative.

- If N_ε(s₀) contains infinitely many points of S, it certainly contains one point different from s₀. Therefore, (b) ⇒ (a). We prove that (a) ⇒ (b) by contradiction. Suppose N is some neighborhood of s₀ which contains only a finite number of points of S. Let a₁, a₂, ..., a_n be these points of N ∩ S which are different from s₀. Define r = min {|s₀ a_k|}. Clearly, r > 0. Now, N_r(s₀) contains no points of S different from s₀. Hence, s₀ is not an accumulation point of S, a contradiction.
- 3. (a) If $a_n = (-1)^n \frac{n}{n+1}$, then accumulation points of $S = \{a_n \mid n \in \mathbb{N}\}$ are 1 and -1.
 - (b) If $S = \{x \mid x \in (0,1) \cup \{2\}\}$, then 2 is not an accumulation point of S.

- (c) If $S = \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\}$, then $\sup S = 1 \in S$ and accumulation point $0 \notin S$.
- (d) If $S = \left\{ \frac{(-1)^n}{n} \middle| n \in \mathbb{N} \right\}$, then 0 is the accumulation point of S and $0 \notin S$. Also, inf S = -1 and $\sup S = \frac{1}{2}$ are both in S.
- **4.** (a) (\Rightarrow) Suppose s_0 is an accumulation point of S. Then, every neighborhood $\left(s_0 \frac{1}{n}, s_0 + \frac{1}{n}\right)$ contains at least one element of S other than s_0 , call it a_n . Therefore, $s_0 \frac{1}{n} < a_n < s_0 + \frac{1}{n}$, which implies that $\lim_{n \to \infty} a_n = s_0$, by the sandwich theorem.
 - (\Leftarrow) Suppose that $\lim_{n\to\infty} a_n = s_0$ for some sequence $\{a_n\}$ in S with $a_n \neq s_0$ for every n. Let $\varepsilon > 0$ be given. Then, since $\lim_{n\to\infty} a_n = s_0$, there exists n_1 such that $|a_n s_0| < \varepsilon$ for all $n \geq n_1$. Therefore, there exists at least one $a_m \neq s_0$ that is in this neighborhood. Hence, s_0 is an accumulation point of S.
 - (b) The condition $a_n \neq s_0$ for every $n \in \mathbb{N}$ can be relaxed to a condition that $a_n \neq s_0$ for some arbitrarily large values of n. We simply do not want a sequence that attains only values of s_0 after some point because in that case the set $S = \{a_n \mid n \in \mathbb{N}\}$ would be finite. Then, the existence of such sequence would not imply that s_0 is an accumulation point of S.
- 5. (\Rightarrow) Suppose $M = \sup S$. Since for any $n \in N$, $M \frac{1}{n}$ is not an upper bound of S, there exists $a_n \in S$ such that $M \frac{1}{n} \le a_n \le M$. Hence, $\{a_n\}$ converges to M. Note that if S is finite, then $a_n = M$, eventually, since $M \in S$. If S is infinite, then M may or may not belong to S.
 - (\Leftarrow) Show that $M = \sup S$. We only have to show that S has no upper bound K such that K < M. We prove this by contradiction. Thus, suppose that K is an upper bound of S and K < M. Since $\lim_{n \to \infty} a_n = M$, by Theorem 2.1.12 there exists $n^* \in N$ such that $a_n > K$ for all $n \ge n^*$. Since $a_n \in S$, we conclude that K is not an upper bound of S. Contradiction. Hence, $M = \sup S$. Note that a_n need not be distinct from M. If we can find a sequence $\{a_n\}$ in S where $a_n = M$ for some n, then $M = \max S$.
- 6. (a) If $\sup S = \max S$, we are done. If $\sup S \neq \max S$, we need to prove that $s_0 = \sup S$ is an accumulation point of S. Let $\varepsilon > 0$ be given. Then, $s_0 \varepsilon$ is not an upper bound of S. Therefore, there exists $x \in S$ such that $x > s_0 \varepsilon$. But, $s_0 = \sup S$ and $s_0 \neq \max S$. Thus, $s_0 \notin S$ and so $x \neq s_0$. Hence, s_0 is an accumulation point of S.
 - (b) Example of a set S where $\sup S = \max S$ but $\sup S$ is not an accumulation point of S is, say, $S = S_1 = \{0\}$. Here, $\sup S_1 = 0 = \max S_1$ but S_1 has no accumulation points. Example of such a set S need not be necessarily finite. Choose another set $S = S_2 = \left\{\frac{1}{n} \middle| n \in N\right\}$. Then, $\sup S_2 = 1 = \max S_2$ and 0 is an accumulation point of S_2 but, $0 \ne 1$.
 - (c) Let $S = \{1\} \cup \left\{ \frac{n}{n+1} \mid n \in \mathbb{N} \right\}$. Then, $\sup S = \max S = 1$ and 1 is one of the accumulation points of S.
- 7. (b) Let $\varepsilon > 0$ be given. Suppose that m > n and write $\left| a_m a_n \right| = \left| \frac{m+1}{m} \frac{n+1}{n} \right| = \frac{m-n}{mn} < \frac{m}{mn} = \frac{1}{n}$. But,

 $\frac{1}{n} < \varepsilon$ if $n > \frac{1}{\varepsilon}$. Thus, choose $n^* > \frac{1}{\varepsilon}$. Then, if $m > n \ge n^*$, we have $|a_m - a_n| < \varepsilon$. Therefore, $\{a_n\}$ is a Cauchy sequence by Definition 2.5.6.

- (c) Let $\varepsilon > 0$ be given. Suppose that m > n and write $\left| a_m a_n \right| = \left| \frac{m}{m+1} \frac{n}{n+1} \right| = \frac{m-n}{(m+1)(n+1)} < \frac{m}{(m+1)(n+1)} < \frac{1}{n+1} < \frac{1}{n}$. But, $\frac{1}{n} < \varepsilon$ if $n > \frac{1}{\varepsilon}$. Thus, choose $n^* > \frac{1}{\varepsilon}$. Then, if $m > n \ge n^*$, we have $\left| a_m a_n \right| < \varepsilon$. Therefore, $\left\{ a_n \right\}$ is a Cauchy sequence by Definition 2.5.6.
- (d) Note that $\frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$. Let $\varepsilon > 0$ be given and suppose that m > n. Then $a_n < a_m$, since a_m has additional positive terms. Thus, $0 < a_m a_n = \frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)} + \cdots + \frac{1}{m(m+1)} = \frac{1}{(n+1)(n+2)} + \frac{1}{(n+2)(n+3)} + \cdots + \frac{1}{m(m+1)} = \frac{1}{n+1} \frac{1}{n+1} < \frac{1}{n+1} < \frac{1}{n}$. Since $\frac{1}{n}$ tends to 0 as n goes to infinity, $\frac{1}{n} < \varepsilon$, eventually. Hence, the given sequence is a Cauchy sequence.
- (e) Note that $\frac{1}{n^2} < \frac{1}{n(n-1)} = \frac{1}{n-1} \frac{1}{n}$. Suppose m > n > 1, and write $|a_m a_n| = a_m a_n = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{m^2} < \left(\frac{1}{n} \frac{1}{n+1}\right) + \left(\frac{1}{n+1} \frac{1}{n+2}\right) + \dots + \left(\frac{1}{m-1} \frac{1}{m}\right) = \frac{1}{n} \frac{1}{m} < \frac{1}{n}$. Since $\frac{1}{n}$ tends to 0 as n goes to infinity, $\frac{1}{n} < \varepsilon$, eventually, no matter what $\varepsilon > 0$ is. Hence, the given sequence is a Cauchy sequence.
- (f) We will show $\{a_n\}$ is not a Cauchy sequence by finding a particular relationship between m and n for which $|a_m a_n|$ is greater than or equal to some positive real number. To this end, if m > n, we can write $|a_m a_n| = a_m a_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{m} > \frac{1}{m} + \frac{1}{m} + \dots + \frac{1}{m} = (m-n) \cdot \frac{1}{m} = 1 \frac{n}{m}$. Therefore, if m = 2n, then $a_{2n} a_n > \frac{1}{2}$. Hence, $\{a_n\}$ is not a Cauchy sequence.
- (g) Note that $\{a_n\}$ is not monotone. Let $\varepsilon > 0$ be given and suppose that m > n. Then, $|a_m a_n| = \frac{\left|(-1)^{n+2} + (-1)^{n+3} + \cdots + \frac{(-1)^{m+1}}{m!}\right| \le \frac{1}{(n+1)!} + \frac{1}{(n+2)!} + \cdots + \frac{1}{m!} \le \frac{1}{2^n} + \frac{1}{2^{n+1}} + \cdots + \frac{1}{2^{m-1}} = \frac{1}{2^n} \left(1 + \frac{1}{2} + \cdots + \frac{1}{2^{m-n-1}}\right) < \frac{1}{2^n} \cdot 2 = \frac{1}{2^{n-1}} < \varepsilon$ if n is large. Therefore, $\{a_n\}$ is a Cauchy sequence. In fact, it converges to $1 e^{-1}$.
- (h) Let $\varepsilon > 0$ be given and suppose m > n. Then, $|a_m a_n| \le |a_m a_{m-1}| + |a_{m-1} a_{m-2}| + \cdots + |a_{m-1} a_m| < r^{m-1} + r^{m-2} + \cdots + r^{n+1} + r^n = r^n \left(r^{m-n-1} + r^{m-n-2} + \cdots + r + 1 \right) = r^n \cdot \frac{1-r^{m-n}}{1-r} < r^n \cdot \frac{1}{1-r}$, which converges to 0 since $0 \le r < 1$, and so $\frac{r^n}{1-r} < \varepsilon$ for large enough n. Hence, $\{a_n\}$ is a Cauchy sequence.
- 8. (a) Choose $a_n = \sqrt{n}$. Clearly, $\{a_n\}$ diverges to $+\infty$. But, $0 \le |a_{n+1} a_n| = \sqrt{n+1} \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}}$, which tends to 0 as n goes to infinity. Hence, by the sandwich theorem, $\lim_{n \to \infty} |a_{n+1} a_n| = 0$.

- (b) Since $\{a_n\}$ converges, it is Cauchy. Therefore, for any $\varepsilon > 0$ there exists $n^* \in \mathbb{N}$ such that $|a_m a_n| < \varepsilon$ for all $m, n \ge n^*$. Thus, in particular, pick m = n + 1. This gives $0 \le |a_{n+1} a_n| < \varepsilon$ for all $n \ge n^*$. Hence, $\lim_{n \to \infty} |a_{n+1} a_n| = 0$.
- 9. Suppose $\{a_n\}$ is a Cauchy sequence. We will use a similar proof to that of Theorem 2.1.11. Since $\{a_n\}$ Cauchy implies that there exists $n^* \in \mathbb{N}$ such that for all $m, n \ge n^*$ we have $|a_n a_m| < 1$. Since m and n are any values greater than or equal to n^* , choose $m = n^*$. Then we have $|a_n a_{n^*}| < 1$ for all $n \ge n^*$. By the triangle inequality, for all $n \ge n^*$ we have $|a_n| = |a_n a_{n^*} + a_{n^*}| \le |a_n a_{n^*}| + |a_{n^*}| < 1 + |a_{n^*}|$. Thus, we bounded all terms a_n starting with a_{n^*} , $n^* \in \mathbb{N}$. Hence, $|a_n| \le M$ for all $n \in \mathbb{N}$ if we pick $M = \max\{1 + |a_{n^*}|, |a_1|, |a_2|, \dots, |a_{n^*-1}|\}$.
- 10. Suppose $S = \{a_1, a_2, ..., a_k\}$ where all k elements, $k \in \mathbb{N}$, are distinct. Let $\alpha > 0$ denote the minimum distance between any 2 elements of S. The value α exists because S is finite. Since $\{a_n\}$ is Cauchy, there exists $n_1 \in \mathbb{N}$ such that for all $m, n \ge n_1$ we have $|a_n a_m| < \varepsilon$ for any given $\varepsilon > 0$. In particular, if $\varepsilon = \alpha$ and $m = n_1$ we have $|a_n a_{n_1}| < \alpha$ for all $n \ge n_1$. But, both terms a_n and a_{n_1} are in S with distance between them of α or more, unless they are equal to each other. Hence, for all $n \ge n_1$ all terms of $\{a_n\}$ must be equal. Hence, $\{a_n\}$ is constant for all $n \ge n_1$.
- 11. (a) Let $\varepsilon > 0$ be given. We need to find $n^* \in N$ such that $\left| (a_m + b_m) (a_n + b_n) \right| < \varepsilon$ for all $m, n \ge n^*$. Since $\left\{ a_n \right\}$ is Cauchy, there exists n_1 such that $\left| a_m - a_n \right| < \frac{\varepsilon}{2}$ for all $m, n \ge n_1$. Since $\left\{ b_n \right\}$ is Cauchy, there exists n_2 such that $\left| b_m - b_n \right| < \frac{\varepsilon}{2}$ for all $m, n \ge n_2$. Choose $n^* = \max \left\{ n_1, n_2 \right\}$. Then, for all $n \ge n^*$ we have $\left| (a_m + b_m) - (a_n + b_n) \right| \le \left| a_m - a_n \right| + \left| b_m - b_n \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. Hence, $\left\{ a_n + b_n \right\}$ is Cauchy.
 - (b) Let $\varepsilon > 0$ be given. We need to find n^* such that $|a_m b_m a_n b_n| < \varepsilon$ for all $m, n \ge n^*$. Since $\{a_n\}$ and $\{b_n\}$ are Cauchy, by Theorem 2.5.8 they are bounded. Therefore, there exists M > 0 such that $|a_n| < M$ and $|b_n| < M$ for all $n \in \mathbb{N}$. In addition, $\{a_n\}$ Cauchy, implies that there exists $n_1 \in \mathbb{N}$ such that $|a_m a_n| < \frac{\varepsilon}{2M}$ for all $m, n \ge n_1$. And $\{b_n\}$ Cauchy, implies that there exists $n_2 \in \mathbb{N}$ such that $|b_m b_n| < \frac{\varepsilon}{2M}$ for all $m, n \ge n_2$. Choose $n^* = \max\{n_1, n_2\}$. Then, for all $m, n \ge n^*$ we have $|a_m b_m a_n b_n| = |a_m b_m a_n b_m + a_n b_m a_n b_n| \le |b_m| |a_m a_n| + |a_n| |b_m b_n| < M \cdot \frac{\varepsilon}{2M} + M \cdot \frac{\varepsilon}{2M} = \varepsilon$. Hence, $\{a_n b_n\}$ is a Cauchy sequence.
- 12. (a) Proof of part (a). From the proof of Theorem 2.5.11 we have that $|a_m a_n| \le \frac{k^{n-1}}{1-k} \cdot |a_2 a_1|$. Since $\lim_{m \to \infty} a_m = A$, the limits of the preceding inequality yield $|A a_n| \le \frac{k^{n-1}}{1-k} \cdot |a_2 a_1|$. Proof of part (b). It can be proven by induction that $|a_{n+p} a_{n+p-1}| \le k^p |a_n a_{n-1}|$, for n > 1 and p nonnegative integer. Therefore, if m > n > 1 we have $|a_m a_n| \le |a_m a_{m-1}| + |a_{m-1} a_{m-2}| + \cdots + |a_n a_{n-1}| \le (k^{m-n} + k^{m-n-1} + \cdots + k^2 + k)|a_n a_{n-1}| = k \cdot \frac{1 k^{m-n}}{1-k} \cdot |a_n a_{n-1}| <$

- $\frac{k}{1-k} \cdot |a_n a_{n-1}|$, since 0 < k < 1. Now take limits as m tends to $+\infty$ of this inequality to obtain the desired result.
- (b) In Example 2.5.13, $a_1 = 1$ makes the sequence increasing and bounded above (by 2.) If $a_1 = 2$, then $a_n = 2$. In the case $a_1 = 4$, the sequence is decreasing and bounded below (by 0.) Therefore, if we used techniques from Section 2.4 to prove the convergence of $\{a_n\}$ in each of these cases, we would need to consider these cases separately. In all 3 cases, $\{a_n\}$ remains contractive and convergent. Taking limits of the recursion formula, we see that $\{a_n\}$ converges to 2 in all 3 cases.
- 13. Note that if $0 < a_1 \le \frac{1}{3}$ we have $a_2 = (a_1)^2 < a_1$. Also, if $a_{k+1} \le a_k$ for some $k \in \mathbb{N}$, we have $a_{k+2} = (a_{k+1})^2 \le (a_k)^2 = a_{k+1}$. Thus, by the mathematical induction, $\{a_n\}$ is decreasing. Moreover, $a_{n+2} = (a_{n+1})^2$ and $a_{n+1} = (a_n)^2$, thus, subtracting we obtain $a_{n+2} a_{n+1} = (a_{n+1})^2 (a_n)^2 = (a_{n+1} a_n)(a_{n+1} + a_n)$. Therefore, $|a_{n+2} a_{n+1}| = |a_{n+1} a_n| |a_{n+1} + a_n| \le |a_{n+1} a_n| |a_1 + a_1| \le |a_{n+1} a_n| \left(\frac{1}{3} + \frac{1}{3}\right) = \frac{2}{3} |a_{n+1} a_n|$. Hence, $\{a_n\}$ is contractive.
- **14.** (b) Since $a_1 = 1$, we have $a_n > 1$ for all $n \ge 2$. In addition, $|a_{n+2} a_{n+1}| = \left| \frac{a_{n+1} a_n}{a_n a_{n+1}} \right| = \left| \frac{a_{n+1} a_n}{a_n \left[1 + \left(a_n \right)^{-1} \right]} \right|$ $\le \frac{|a_{n+1} a_n|}{|a_n + 1|} < \frac{|a_{n+1} a_n|}{2}, \text{ for all } n \ge 2. \text{ Therefore, since } 0 < r = \frac{1}{2} < 1, \text{ by the contraction principle, the sequence converges to, say, } A.$
 - (c) Taking limits of the recursion formula we get $A = 1 + \frac{1}{A}$, which is equivalent to $A^2 A 1 = 0$. Two choices for A are $\frac{1 \sqrt{5}}{2}$ or $\frac{1 + \sqrt{5}}{2}$. Certainly, since the first is negative and $a_n \ge 1$ for all n, $\frac{1 + \sqrt{5}}{2}$ is the correct value for the limit.
- 15. Since $a_{n+2} = a_n + a_{n+1}$ and $a_n > 0$ for all $n \in \mathbb{N}$, we can divide by a_{n+1} to obtain $\frac{a_{n+2}}{a_{n+1}} = \frac{a_n}{a_{n+1}} + 1$. Thus, if $b_n = \frac{a_{n+1}}{a_n}$, we have $b_{n+1} = \frac{1}{b_n} + 1$. By Exercise 14, $\{b_n\}$ converges to $\frac{1+\sqrt{5}}{2}$.
- 16. (a) Since $a_{n+2} = \frac{a_{n+1} + a_n}{2}$, upon subtraction of a_{n+1} from both sides, we get $a_{n+2} a_{n+1} = \frac{1}{2}(a_n a_{n+1})$. By the contraction principle, $\{a_n\}$ converges to, say, A. We will show that $A = \frac{a_1 + 2a_2}{3}$. Taking limits of the recursion formula yields no information. We can find the explicit formula by assuming that $a_n = cr^n$, as we did in Example 1.3.12. Instead we write $a_{n+2} a_{n+1} = \frac{1}{2}(a_n a_{n+1})$, $a_{n+1} a_n = \frac{1}{2}(a_{n-1} a_n)$, ..., $a_4 a_3 = \frac{1}{2}(a_2 a_3)$, and $a_3 a_2 = \frac{1}{2}(a_1 a_2)$. Adding these together we get $a_{n+2} a_2 = \frac{1}{2}(a_1 a_{n+1})$. Now we take limits to obtain $A a_2 = \frac{1}{2}(a_1 A)$. This gives $A = \frac{1}{3}(a_1 + 2a_2)$.
 - **(b)** Let $b_n = |a_{n+1} a_n|$. Then, since $a_{n+2} a_{n+1} = \frac{1}{2}(a_n a_{n+1})$, we have that $b_{n+1} = \frac{1}{2}b_n$, and therefore,

 $b_{n+1} = \frac{1}{2}b_n = \frac{1}{2} \cdot \frac{1}{2}b_{n-1} = \dots = \frac{1}{2^n}b_1$. Using the method of Example 2.5.7 we can conclude that $\{a_n\}$ is a Cauchy sequence.

- 17. (a) Since $a_{n+2} = \frac{1}{3}a_n + \frac{2}{3}a_{n+1}$, upon subtraction of a_{n+1} from both sides we get $a_{n+2} a_{n+1} = \frac{1}{3}a_n \frac{1}{3}a_{n+1} = \frac{1}{3}(a_n a_{n+1})$. Therefore, by the contraction principle, $\{a_n\}$ converges to, say, A. Limit of the recursion formula gives no information. We find a_n in a similar way we did in Exercise 16(a). Since, $a_{n+2} a_{n+1} = \frac{1}{3}(a_n a_{n+1})$, $a_{n+1} a_n = \frac{1}{3}(a_{n-1} a_n)$, ..., $a_4 a_3 = \frac{1}{3}(a_2 a_3)$, and $a_3 a_2 = \frac{1}{3}(a_1 a_2)$. Adding these together we get $a_{n+2} a_2 = \frac{1}{3}(a_1 a_{n+1})$. Now we take limits to obtain $A a_2 = \frac{1}{3}(a_1 A)$. This gives $A = \frac{1}{4}(a_1 + 3a_2)$.
- 18. (a) $\{a_n\}$ is not monotone.
 - (b) Observe that $a_n \ge 1$ for all n and that $a_{n+1} = 1 + \frac{1}{1+a_n}$ and $a_{n+2} = 1 + \frac{1}{1+a_{n+1}}$ for all n. Subtracting we obtain $a_{n+2} a_{n+1} = \frac{a_n a_{n+1}}{\left(1 + a_{n+1}\right)\left(1 + a_n\right)} \le \frac{a_n a_{n+1}}{(1+1)(1+1)}$. Therefore, $\left|a_{n+2} a_{n+1}\right| \le \frac{1}{4}\left|a_{n+1} a_n\right|$. Thus, since $0 \le k = \frac{1}{4} < 1$, by the contraction principle, the sequence $\left\{a_n\right\}$ converges to, say, A.
 - (c) We take limits of the recursion formula to get $A = 1 + \frac{1}{1+A}$. This gives $A = \sqrt{2}$, $-\sqrt{2}$. Clearly, since $a_n \ge 1$ for all n, the correct value for the limit is $\sqrt{2}$.

- 1. (a) Yes, because $b_n = a_{2n-1}$.
 - (b) No, because $\frac{1}{\sqrt{3}}$ is a term of $\{b_n\}$ but not of $\{a_n\}$. Note that we cannot write $b_n = a_{\sqrt{n}}$ because $f(n) = \sqrt{n}$ is not a function whose range is a subset of N.
 - (c) No, because $\frac{1}{3}$ is a term of $\{b_n\}$ but not of $\{a_n\}$.
- 2. (a) The sequence $\{a_n\}$ is 1, 0, 1, 0, ... Subsequence $\{a_{2n}\}$ converges to 0, and $\{a_{2n-1}\}$ converges to 1. Therefore, by Theorem 2.6.5, since $0 \ne 1$, $\{a_n\}$ diverges. Subsequential limit points α are 0 and 1. Also, $\limsup_{n \to \infty} a_n = 1$ and $\liminf_{n \to \infty} a_n = 0$.
 - (b) The sequence $\{a_n\}$ is 1, 0, -1, 0, The subsequence $\{a_{2n-1}\}$ diverges because $a_{2n-1} = (-1)^{n+1}$. Therefore, $\{a_n\}$ contains a diverging subsequence and thus, must diverge. Subsequential limit points α are 0, 1, and -1. Also, $\limsup_{n\to\infty} a_n = 1$ and $\liminf_{n\to\infty} a_n = -1$.
 - (c) The sequence $\{a_n\}$ converges or diverges depending on the choice of r. Subsequential limit points are $\alpha = 1$ if r = 1, $\alpha = 0$ if |r| < 1, $\alpha = 1$ and -1 if r = -1, and there are none if |r| > 1. $\limsup_{n \to \infty} a_n$ is equal to 1 if r = 1, 0 if |r| < 1, 1 if r = -1, and there is none if |r| > 1. $\liminf_{n \to \infty} a_n$ is equal to 1 if r = 1, 0 if |r| < 1, -1 if r = -1, and there is none if |r| > 1.

- (d) $\{a_n\}$ diverges because subsequence $\{a_{2n}\}$ converges to 1 and subsequence $\{a_{2n-1}\}$ converges to -1, which is not equal to 1. Subsequential limit points are 1 and -1. In addition, $\limsup_{n\to\infty} a_n = 1$ and $\liminf_{n\to\infty} a_n = -1$.
- 3. Consider the subsequence $\left\{a_{2^n}\right\}$. Since $a_{2^n}=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\cdots+$ $\left(\frac{1}{2^{n-1}+1}+\cdots+\frac{1}{2^n}\right)>1+\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}\right)+\cdots+\left(\frac{1}{2^n}+\cdots+\frac{1}{2^n}\right)>1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\cdots+\frac{1}{2}$ $=1+n\left(\frac{1}{2}\right). \text{ Since } 1+n\left(\frac{1}{2}\right) \text{ tends to } +\infty \text{ as } n \text{ goes to infinity, by the comparison theorem, } \left\{a_{2^n}\right\} \text{ diverges to } +\infty. \text{ Therefore, } \left\{a_n\right\} \text{ contains a subsequence which is unbounded, and so } \left\{a_n\right\} \text{ is not bounded and, hence, diverges.}$
- 4. We assume (a) is true and prove that if $\{a_n\}$ is any monotone (we only consider increasing) and bounded sequence, then it converges. Since (a) is true and $\{a_n\}$ is bounded, there exists a subsequence $\{a_{n_k}\}$ that converges to, say, A. This means that, if an arbitrary $\varepsilon > 0$ is given, there exists $m \in \mathbb{N}$ such that $A \varepsilon < a_{n_k} < A + \varepsilon$ for all $k \ge m$. But, $\{a_n\}$ is increasing. So if we choose $n^* \ge n_m$, then for all $n \ge n^*$ we have $A \varepsilon < a_n \le A$. Hence, $\{a_n\}$ converges to A.

We assume (b) and prove that the sequence $\{a_n\}$ has a converging subsequence. This part is easy because we used (b) to prove the Bolzano-Weierstrass theorem for sets, which in turn we used to prove the Bolzano-Weierstrass theorem for sequences which is what the goal was here.

- 5. Suppose $\{a_n\}$ is unbounded above. Let M>0 be given. Since $\{a_n\}$ is unbounded, there exist infinitely many terms of $\{a_n\}$ larger than M. In particular, there exists $n_1 \in \mathbb{N}$ such that $a_{n_1} > 1$. Also, there exists $n_2 > n_1$ such that $a_{n_2} > \max\{2, a_{n_1}\}$. Continue this argument to obtain $n_1 < n_2 < \cdots$ such that $a_{n_{k+1}} > \max\{k+1, a_{n_k}\}$. We have constructed a subsequence that is increasing and tends to $+\infty$. Proof is similar for $\{a_n\}$ that is bounded below.
- 6. (\Leftarrow) Same as in the proof of Theorem 2.5.9. (\Rightarrow) If $\{a_n\}$ is a Cauchy sequence, then we want to prove that $\{a_n\}$ is convergent. First observe that by Theorem 2.5.8, A is bounded. By the Bolzano-Weierstrass theorem for sequences there exists $\{a_{n_k}\}$ which converges to, say, α . We will prove $\{a_n\}$ must also converge to α . Let $\varepsilon > 0$ be given. We want to find n^* such that for all $n \ge n^*$ we have $|a_n \alpha| < \varepsilon$. The sequence $\{a_n\}$ Cauchy, implies that there exists n_1 such that for all $m, n \ge n_1$ we have $|a_n a_m| < \frac{\varepsilon}{2}$. Since $\{a_{n_k}\}$ converges to α , there exists m such that for all $n_k \ge m$ we have $|a_{n_k} \alpha| < \frac{\varepsilon}{2}$. Choose $n^* = \max\{n_1, m\}$ and observe that $n_k \ge k$. Therefore, if $k \ge n^*$, then $n_k \ge n^*$. Hence, for all $n \ge n^*$ we have $|a_n \alpha_n| \le |a_n a_{n_k}| + |a_{n_k} \alpha| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$.
- 7. The proof is a special case of Exercise 4 of Section 2.5 because here the existence of a sequence from within S converging to s_0 is precisely the subsequence we are looking for. Note that $\{a_n\}$ might not converge to s_0 . For example, consider a_n defined by 1 for n odd and $\frac{1}{n}$ for n even. Then $\{a_n\}$ diverges but $\{a_{2n}\}$ converges to 0, which is an accumulation point of S.

- 8. By Exercise 7, there exists a subsequence of $\{a_n\}$ which converges to B. Since $\{a_n\}$ converges to A, A = B by Theorem 2.6.5.
- 9. (a) Since c < 1, $\sqrt[n]{c} < 1$ for all $n \in \mathbb{N}$. Thus, $\{a_n\}$ is bounded and $a_{n+1} a_n = \binom{n+1}{c} \sqrt[n]{c} = \binom{n(n+1)}{c} > 0$. Hence, $\{a_n\}$ is increasing by Remark 2.4.3, part (d), and thus, converging to, say, A. To find A using subsequences, first observe that by Theorem 2.2.1, part (e), we have $\{\sqrt{a_n}\}$ converging to \sqrt{A} . Here, $\sqrt{a_n} = \sqrt{\sqrt[n]{c}} = 2\sqrt[n]{c}$. But, $\{2\sqrt[n]{c}\}$ is a subsequence of $\{\sqrt[n]{c}\}$. Thus, $\{\sqrt{a_n}\}$ is a subsequence of $\{a_n\}$ and so it must converge to A. Therefore, $\sqrt{A} = A$ giving A = 0 or 1. Since c > 0 and $\{a_n\}$ is increasing, the limit must be 1.
 - (b) Since $r^{n+1} = r \cdot r^n < r^n$, the sequence $\{a_n\}$ is decreasing. Since $r^n > 0$, $\{a_n\}$ is bounded below, hence convergent to, say, A. Note that $\lim_{n \to \infty} r^{n+1} = \lim_{n \to \infty} (r \cdot r^n) < r \lim_{n \to \infty} r^n = rA$. This means that $\{a_{n+1}\}$ converges to rA. But, $\{a_{n+1}\}$ is a subsequence of $\{a_n\}$ which converges to A. Therefore, rA = A. Since $r \ne 1$, A must be 0.
 - (c) By Exercise 11(c) of Section 2.4, $\{a_n\}$ converges to, say, A. Therefore, $\{a_{n+1}\}$ converges to A and also $\{\sqrt{2a_n}\}$ converges to $\sqrt{2A}$. Since the limit is unique, we have $A = \sqrt{2A}$ and hence, A = 2.

1. T	9. T	17. T	25. F	33. F	41. F	49. F
2. T	10. T	18. T	26. T	34. F	42. F	50. T
3. F	11. F	19. T	27. F	35. T	43. T	
4. T	12. F	20. F	28. T	36. F	44. F	
5. F	13. F	21. F	29. F	37. F	45. T	
6. T	14. T	22. F	30. F	38. F	46. F	
7. F	15. T	23. F	31. F	39. F	47. F	
8. T	16. F	24. F	32. T	40. T	48. F	