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Chapter 2 —Sequences

Section 2.1

1.

1 <0.02 <1< (0.02)vn+1 <> n>2499. Thus, if n* = 2,500, then for any » = n* the given inequality
Vn+1
will be true.

(a) Weprove that lim a, =0. Let £ >0 be given. We need to find n* €N so that ]a,, - 0[ <¢ for all

H—»
1 3 : 1 3
nzn* But, jJa, -0 = if n=2, and g if n>—+—. Thus, if n*>max{2,—+—},
lon=00= 273 -3 2 2% 2
then |a,,|<£ for all n = n*. It is also alright to write that |an-0|= > ! 3 <l if n>3. Thus, if n>3
n- n

1
and n >l, then |a,, -0|<¢. So, choose n* >max{3,;},
€
(b} Weprove that lim a, =0. Let &£ >0 be given. We need to find n* €N so that Ia,, —0|<s for all
n—-m
n . n 2, . 2 .
n=n*. But, |a,|= 3 if n=z2,and +5—7=— ifnz2,and 2<.*; if n>—. Thus, if
n“ -2 n“-2 %n n n £

2
n*> max{2,-;—}, then |a,|<¢ forall n=n*.

(c) We prove that lim a, = 0. Let £ >0 be given. We need to find n* €N so that |a, —0]<¢ for all

n-—roo

1
n = n*_ But, la,,|='—p<8 if n>ﬂE. Thus, if n*>4£, then Ia,,|<e forall n = n*.
n £ £

< ¢ for all

(d) We prove that lim a, =%. Let € = 0 be given. We need to find n* €N so that
n—»o0
P R . S B
" 2] 4n+24n  an 4qfn
(f) Suppose {a,,} converges to A . Then, there exists n* € N such that for a particular £ > 0, say, 1, we

a, —-2"'

1

1 1
nzn*. But, f n > == Thus, if 7*>—— then |a, - —|<¢.
£ 16¢ 2

have ’(—l)n — Al <1 for all n = n*. Now, if n = n* is even, then we have |1 - A| <1, which implies that
A>0.If n = n* is 0dd, then we have |-1- Al <1, which implies A< 0. Due to Theorem 2.1.9 this is a
contradiction.

(Vn{l—\/;)(wln+1+1/;) 1 |
= , ill prove that li =0.
1/n+1+\/; _\[n+1+1/; we will prove tha ninman

1
Let £ >0 be given. Since 1/n+1>—\/;,wchavcthat |a,,—0|=1l ]l 1/_< 211/_.<£ifn>'—.
n+l+4/n n

(g) Since a, =n+1-/n=

4¢?
1
Thus, if 7*> 27 then la, -0 <¢ forall nzn*.
£
(h) We will prove that {a,,} does not converge by using Definition 2.1.6. Case 1. Suppose that A=0 is
any arbitrary real number, L is a particular £ >0, and n* is an arbitrary natural number. We will show

(_1)(_'_"_)_ A
m+1

2

that |a,, — Al z% for some m > n* . To this end, let m be odd and write |a,, — A=

21
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10.

12.

. l Case 2. Suppose that A <0 and proceed in a similar fashion.

m+1 2

(k) We will prove that {a,,} does not converge by using Definition 2.1.6. Case I. Suppose that A z% is
any arbitrary real number, % is a particular £ >0, and n* is an arbitrary natural number. We will show

1 .
that |a,, - A|2 " for some m > n*. To this end, let m be any even natural number. Then, |a,, - A|=

L_ Al= 1.3 = l Case 2. Suppose A < 3 and proceed in a similar fashion.
m m 4] 4 4
142 n(n+1) 1 1
+2+4+n T 5 n+
(a) Using Example 1.3.3, we have a, = 5 = 22 ~n , which we will prove tends to >
n n

To this end, let £ > 0 be given. Since,

1
an—2

(=) Let £ >0 be given. We need to show that lim lanl =0, that is, we need to find #* so that "an|—0| <&

n—ew

for all n = n*. Since lim a, =0, there exists n; such that |a, - 0|<[Z] forall n = ny. But, if n* =y, we

n—w

have ua,,|— 0] =la,| <& for all n = n*. Proof of the converse is similar.

1 1
d, ——|=——<¢€if n>-—1—. Thus, if n*>~1—, then
2l 2n 2 2e

< ¢ for all n = n*.

Let £ >0 be given. We wish to show that lim|a,|=|A]|. that is, we need to find n* so that Ila,,|— IAN <& for
1 —»00

all n=n*. Since lim a, = A, there exists n; such that Ia_,, —Al <[] for all n = ny. But, if n* = m, using
n—%

Corollary 1.8.6, we have |a,|-|4]sa, - A <€ for all n = n*.
The converse is false. Choose a,, = (-1)".
(=) Let £ >0 be given. We need to show that lim ( a, — A) =0, that is, we need to find n* so that
n—o0
l(a,, - A) - 0| <¢ forall n=n*. Since Lm a, = A, there exists ny such that Ia,, - A| < forall n=n.

n—row

But, if n* =y, we have I(a,, - A) —O! =|a, ~ A| <& for all n = n*. Proof of the converse is similar.

Let £ > 0 be given. We need to show that lim a, = A, that is, we need to find n* so that lan - Al < ¢ for all

n—oo
. . . . 32 .
nzn*. Since lim b, =0, there exists ny such that Ibn —0| N P for all n = ny. But, if a* = n;, we have
n—roo
|an ~ A|s kb, < k- —— <& for all n = n*. We chose —— instead of < in the case k =0.
k+1 k+1 k

Use Exercise 7.
We will prove that {b,,} convergesto A. Let £ >0 be given. We need to find n* so that |bn - A| <¢ forall

. . . 13 .
nzn*. Since lim a, = A, there exists n) such that |a, - A| < for all n = ny. But, if n* = n, then we

n—+w

€

a,+a €
Zn T %n4l C—b—=g,
2 2

2

9ntl _ 4
2

%0 4
2

have |b, - A|= Als +

Suppose that lim a, = A =0. By Theorem 2.1.12 there exists n* such that %|A| sl|a,| for all n = n*, which

H—>00
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13.

14.

15.

16.

17.

=M forall nEN.

dp

in turn implies that ‘—L <£~. Thus, if M = max{—g-,L,-—l—, ,;} then,
as| |4 A el Jaal”lane]

Choose any # €(0,1) and fix it. By Remark 2.1.8, part (g), there exists n* such that |a, - A| < for

all n = n*. But, |a,|=|a, — A+ A|2|A|-|a, - A|>|A|- Q- 1)|A] = {A]. If 1 = 0, then the conclusion

|aa| 2 1}A] becomes |a,|= 0, which is certainly true. If ¢ =1, then the conclusion |a,| = 1}A| becomes

Ianl = |A|, which need not hold. For example, pick a,, =1- %

We will show that if ¢ > 0, then lim &c =1.

n—»0

Case 1. If 0 <c <1, then g/c < 1. So, there exists d,, > 0 such that Q,/c_=1 !

. By binomial theorem
n

n(n-1)

n
we have (1+d,)" =1+nd, + (dn)z_,_...+(d,,)">ndn,andthus,c=( ! )=( L2

l+d, 1+dn)n nd,

from which it follows that 0 < cnd,, <1, that is, 0<d, < —L for all n €N . Thus, 0 <1 —‘(/; =1- N ld
cn +d,

dy <d,,<—l-forallnEN.Thus, I’{/g-1|<—1—,andsobyExerciseS, lim&c =1if 0 <c <1,
1+d, cn cn n—sx

Case 2. If ¢ = 1, then Rfc =1 for each value of n. Thus, by Exercise 6 we have lim Rlc = lim 1=1.

n—+0 n—»c0
Case 3. If ¢ > 1, then by Exercise 32 of Section 1.9, we have 4/; = 1. Therefore, ‘{/_ =1+b, with
by, > 0. Thus, we have ¢ =(1+5,)" =1+nb, + n(nz— D (by)? + -+ +(b,)" > nb,. Therefore, ¢ > nb, and

consequently, b, <—. Thus, we have I’(/; —1|=|6,|=b, << forall n EN. By Exercise 8, lim e =1 if
n n

n—eo

c>1.

We will show that if ¢ > 0, then lim &n =1. If n > 1, then by Exercise 32 of Section 1.9, we have &fn > 1.

n—so

Therefore, &n =1+b, with b, >0. Thus, we have 7=(1+b,)" =1+nb, +@(bn)2+ - +(B,)" >

1""’1("%-"1‘?'(17")2- Thus, if n>1, we have n~-1> n—(n?_}l(b,,)2 , Which gives 2 > n(bn )2 , or equivalently,

V2 1 1
b, < —. Thus, ’i/; ~-l|=bh, < -\E -—=. Since, by Exercise 2(c), lim —= =0, Exercise 8 gives the desired
"~ In O R g Vi ¢

"n—=o0
conclusion.

2
We will show that lim g;l— =0. Note that, as verified in Exercise 4(g) of Section 1.3, by the binomial

n(n—l)_'_n(n—l)(n—Z)+ et l> nn-1)(n-2)
2 3

2 2
Thus, if n = 4 (why?) we have that 2 < —— " -— bn . 26” -
2" a(n-Dn-2) p“-3n+2 n“-3n n-3

forall n EN,

2
2o
2?1

theorem, we have 2" = (1 +1)" = 1+n+

<

. Hence,

, and by Exercise 8, the desired result follows.

n-

We will prove that lim ar" =0 if [r|<1.1f r =0, then nr" =0 for each n. Therefore, lim nr” =

n-»o0 n—roo
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lim 0 =0.If |r|<1, there exists 5 >0 such that |r|=ﬁ. But, nr” =(1+5)" =1+n
+

n-—»oo
s =D 1 <i2.
(1+b)" b* n-1

b+___n(n—1) b+
2

b2, for all n EN . Therefore, Inr" - 0’ =nr"=n- . Now apply Exercise 8.

n+l
1
18. By Examples 1.3.4 and 1.4.5 we have a +ar +ar’ + - +ar" =a(1+r+r2 + o +r") = a(rr N ]=

a a a .
1 i r™!_To show that {an} converges to . we can write
-r 1-r ' -r

2 n a
a-+ar+ar”+ - +ar 17
-7

Ial n+l . . a
1-r Irl . Thus, using Theorem 2.1.13 and by Exercise 8 we have that {an} converges to P
-F —r

19. (a) Seta=1and r=%inExercise18toget lim a,=2.

H—*20

(b) We write 1.9=1+0.9+0.09+0.009+ - =1+ 1im(i+—?—+---¥ ® )=2,
n—e\10 107 10"

20. (a) No,notif g, =n.
(b) No, notif a, =l.
n

(¢) No,notifa, =0, ora, =n",or ....

21. Let £>0 be given. Since lim (a, - a,_) =0, there exists n; such that la,, ~a,,_2|< forall n=ry.
n—ow

Next, observe that for any n > n; we can write, a,, —a,_1 = (a,, - a,,_z)— (a,,_l -ay_3 )+(an_2 - a,,_3) -

sk (a,“l —dn,—l) ?(a,,l —a,,l_l). Thus, if n > m, we have, Ia,, —an_1|s(n —nl)£+ 2y, —a,,l_ll, and

. a, —
hence, lim 2n—%-1 _¢.

n—rx n

Section 2.2

1. Let £ >0 be given. We need to find n* such that

B
Theorem 2.1.12, there exists ny such that > u if nzny. Since, lim b, = B, there exists ny such that
n 2 1 -

n=—»oc0

<¢ for all n = n*. Since B and b,, are not 0, by

n

st

b, - B| < 5 for all n = ny. If n* =max{n1,n2} , then for all n = n* we have
1| bl de-dl
b Bl paB By 8

2. Let £ >0 be given. We need to find n* such that |ca, - cA|<¢ for all n = n*. Since lim a, = A, there

n—ew

. € ) P .
exists ny such that |a, - A] < m for all # = ny. (We use c|+1 to avoid 0 in the denominator.) Choose

n* = . Then, for all n = n* we have Ica,, —cA|=|c||a,l —A|<|c|- Hil <&,
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(an)p“Ap

Theorem 2.1.11, it is bounded. Therefore, there exists M >0 such that |a,|s M for all n. Also, since

3. Let £ >0 be given. We need to find n* such that <€ for all n = n*. Since {a,,} converges, by

lim a, = A, there exists ny such that |a,, — A|< .s‘(MP_l +MP A +Ap_1)“1 . If n* = ny, then for
n~roo
all n = n* we have |(a,)” - AP =la, - 4| (a,,)p-l+(a,,)p—2A+ +A~”'1|s

|a,, - AI(M PULMP 244 Ap_l) <¢&. Hence, the result follows. Observe that Theorem 2.2.1, part (b),
could have been used p—1 times to prove this result.

4. Observe that for any two real numbers @ and # we have ab = i—[(a + b)2 ~(a-b) ] Since lim a, = A and

=00

lim b, = B by Theorem 2.2.1 we have that lim (a, = b,) = A= B, and thus, lim (a, + b,)* = (A= B)Z.
—0

H—roo n—oc n

Hence, lim [(a,, + b,,)2 - (a,, - bn)2]= (A+ B)2 —(A- )B)2 =4 AB . Exercise 2 completes the proof.
n-—=co

5. Let £ >0 be given. We need to find n* such that |a,b, -0 <& forall n =n*. Since {&,} is bounded, there

exists M >0 such that [b,|< M for all n. Since lim a, =0 there exists n; such that |a, —0|< for all

H—>
nzny. If n* = ny, then for all n 2 n* we have that |a,b, —0|=|an||bn|<A—4--M =¢. Hence, lim a,b, = 0.

n—»rxn

6. By Exercise 6 from Section 2.1, lim a,=A < lim( A) 0and lim b, =B < lim (b - ) 0 and

thus bounded by say, M. Since c'zl,,b: -AB = (a,, Z_,:lcjn(b,, - ) + A(b,, —’;33’:’ B(a,, - A) , :mploymg Theorem
2.2,7 we see that lim (a,, - A)(b, —B) = 0. (Observe that we cannot split this limit into two since that is
what we are trymg to prove.) Also, A llm(b - ) A-0=0and B 11m (a,, ) =B-0=0. Thus,

lim (a,b, - AB)= lim (a, - A)(b, - B) +A lnm(b -B)+B hm(an A)=0. Hence, by Exercise 6 from
Sne—(:zon 2.1, lim a:b:t

n—w

7. We prove that hm .‘} =+/A,where A= lim a,. Let € >0 be given. We need to find n* such that

>0

Han — Al , <E for all n = n*. Case 1. Suppose A= 0. Since lim a, = A =0, there exists n; such that

n—w

Ia,, -0j=a, <H for all n = ny. If n* =ny, then for all n = n* we have N;—-\/-A—|=Ha,, —0l== -\/Z<
Ve - |-
Case 2. Suppose A= 0. Since lim a, = A, there exists ny such that Ian AI A glforall nzny. If

n-—»o0
on-4 _lan AI

n* = n,, then for all n = n* we rationalize and write l-\/a,, - ‘\/AI \/_ _J-— -\/Z =&, Hence,
+
lim w,a,, =vVA .
n—x

To prove that tim %’“u = %/Z , follow a similar procedure.

-+

8. (a) Let £>0 be given. We will show that A - B< ¢ and employ Exercise 13 from Section 1.8. Since

lim a, = A and lim b, = B, there exist ny and np such that |a, - 4| < E for all n = ny, and
n—+x© n—row



26

Section 2.2

10.

11.

Ib B| for all n = ny. Now, if we choose n* = max{nl ,nz} , then for all » = n* we have

A-a, <§ and b, - B <-§—. Therefore, for all n = n*, since a,, < b,, we have A-B =(A—a,,)+

(b,, ~-B)+ (an —b,,) < §+-§-+O =¢. Thus, by Exercise 13 from Section 1.8 we have A~ B 0. Hence,
A= B.

(b) Choose a, =0, b, =l,and n=1.
n

Proof is by contradiction. Suppose that A< 0. Then, since lim a, = A, there exists ny such that for all

n—sw
Al Al
n = ny we have |a,, —AI < |—2| Therefore, by Exercise 14(a) from Section 1.8, we have —|—2|

<a,-A< -Iél

n 7’
which is equivalentto A~ |2| <a,<A+— l I . But, A +|—21 is negative, which implies that a,, <0 for all
n = ny. This is a contradiction to the hypothesm.

Another way to prove Az 0 is to apply Exercise 8(a) with b, =0 and the reverse inequality.

Suppose {a,,} converges to A and to B. By Theorem 2.2.1, part (f), with @, = b,,, we have that A< B.
Similarly, B=< A. Hence, A= B.

(b) 11mr2=lun1/_1/_ '\/_llm‘\/—— ~r-40=0.

n=—>0

1 1
(¢) Since n <2", which can be proven by induction, we have 0 < o < But, lim < =0. Thus, by the
n—oc 1

o1
sandwich theorem, lim — =0,

n—o 27
{(d) Since lim = l l =0, there exists ny €N such that l | 1f n = m . Now, since first we are looking for
n—swo n n 2
lim —* a , assume that # > ny and w ’ | |r| |r| |r| H _ILH
1 rite 05— <
n—» nl n 1 23 ny np+l n
n-n
(HHH ﬂ)l 'llM'l' l=M(l) |,which tends to 0 as n goes to o . Now
1 23 ny /2 2 2 2 2

apply the sandwich theorem and Theorem 2.1.14..
(e} Use Exercise 2(c) of Section 2.1 and the sandwich theorem.

1 1
(f) Rationalizing, we write 0 </n+1 - -\/~ = ————-— < —=. Now apply the sandwich theorem.
A+l ++ ‘\/;

. . . f n
(g) If we rationalize the numerator, we obtain a,, = 1/;1_(1/71 +1- -\/;) =Vnl+n-n= —-‘/E_u——u =
n“+n+n

—lm—, which tends to 1 as n goes to infinity.
1}1+ L1 2

(h) We rationalize the numerator, to obtain a,, = Vnz +l-n= ‘/——_—1— < l So, by the sandwich
n“+l+n "
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12,

13.

14.

15.

16.

17.

18.

theorem the limit is 0.

(i) Since R/;<Vn+ n <8#n+n=%2n= l{/—i{/; and hm ’{/_ 1= lim &/n , by the sandwich theorem,

n=rx

the limit is 1.

(j) Since §2"*!' =242 and 1im %2 = 1, then limit of the desired expression is 2.

n—»ow
k) F 3 . 0<n2 n-n < n N 1 N )
or > we C = . W a
7 E 3 e e O A D-2) ) -D(—-2)  pE_3n  n—3 Nowapply

the sandwich theorem.

1)) lim—l-sinl=(lim 1J(llmsm ) 0-0=0.
n

n—wo N n n—>o N n =0

. . o1 . 1 .11 .11 1
(m) If m = 2n  then we write, lim nsin— = lim |=m [sin—== lim msin—=---1=—,
n-—»x N m—x m 2mow m 2 2

Even though {an} converges to 0, {a,,b,,} need not converge. For example, choose a, = 1 and b, = n*,
n

Then {anbn} diverges to +o. But if b, = kn, k €N, then {a,,bn} converges to k . However, if {b,,} is
bounded, whether convergent or not, {a,,bn} will converge to 0. This requires a proof.

1 L ..
Not true. Choose a,, =— and b,, = n. Observe that if in addition we were to assume that {a,,} converges to a
n
nonzero value A, then the statement is true because then we can apply Theorem 2.2.1, part (c), and write
aﬂbll
b, =

n
(), are satisfied, we can conclude that {b,,} must converge.

. Since {b,,} is a quotient of 2 converging sequences and all the conditions of Theorem 2.2.1, part

To prove that lim &fc =1, for 0 < c <1, write 0<|’{/— 1'<——~ and for ¢ > 1, write 0<&c - 1<<. To
n—»o n

2

. prove that lim X/n =1, write 0<&n -1< Jz , which tends to 0. To prove that lim —;1; =0, write
n =0 H n—o

n? 2 1
0 <—-<——. To prove that lim nr" =0, write 0 <nr” <—*——, b arcal constant.
2" n"3 n—m b n—l
Due to partial fraction d ti have a,, 1 1 Th + o+
_1 _ ) s, =ay + -
ue to partial fraction decomposition we have ST us, 5, =@ +as ay,

1 n 1
. _ . . ity
2( e 1) Tt l,whlch tends to —2 as n goes to infinity

1 1 1
n(n+l) n n+l

Due to partial fraction decomposition we have a, = . Thus, b, =ay+ay +--- +a, =

1- , which tends to 1 as n goes to infinity,
n+
Writesn=1+l+l+-!-+u-+ 1 =1+(1—l)+(l——l—+l——!-+ 1 ! 1+1- L ,
2 4 8 2n-1 2)\2 4) \a 38 an=2  on-1 n-1

which tends to 2 as n — o,

(a) Yes. Choose a, = vn.
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(b) Suppose {a,,} is bounded. Since lim 1 = 0, the product must tend to 0, (see Exercise 5). This

n—scc N

contradicts the factthat L = 0.

19. To prove {an} converges to —1, we show that lim (a,, + 1) =0 and then apply Exercise 6 from Section 2.1.

n-»oo

To this end, we write lim (an +1)= lim (Z” *1 + 1) = lim 2b, _ O _ 0.

n—o n—>o0

hn

21. f a =B, a=z0, then a, =%a" +a” =a’(/5—>a-l=a=ﬁ,as n — =, by Exercise 14 in Section 2.1. If

n
Osa<pf,then a,=fa"+p" =8 (%) +1—=B-1=p,
Section 2.3
1. Let M >0 be given. We want to find n* &N so that b, > M for all n =z n*. Since lim a, = + », there
n-—+0
exists ny EN such that a, > for all n = ny. Now choose n* = n;. Then, for all n = n* we have

byza,>M.

2. (a) Let M>0 be given, We want to find n* so that a, +5b, > M for all n 2 n*. Since {a,,} diverges to

+ o, there exists ny such that for all # = n; we have a, > where K is a lower bound of
{b,,} . Now choose n* = ny. Then for all n = n* we have a, +b, > (M - K)+ K = M. Note that if
{b,,} is not bounded below, then the result is false. For example, choose a, =n and b, = -n.

(b) Let M>0 be given, We want to find n* so that a,b, > M for all n = n*. Since {a,,} diverges to + 0,

M
there exists ny such that for all n = n; we have a, > where K> 0 is a lower bound of {b,,} . Now

choose n* = n;. Then for all # = n* we have a,b, > %-K =M . Note that if {b,,} is not bounded

below, then Theorem 2.3.3, part (b), is not true. For example, choose a, =n and b, =-n. Then,
{a,,b,,} diverges to — o If {b,,} is bounded below but not by a positive constant, the result is still not
true. For example, choose a, =n and b, = -1. Then, {a,,b,,} diverges to — o, Or, choose a,, =n and

by, = i, cE€R* so that {b,,} is bounded below by 0. Then {a,,b,,} converges to ¢. Also, see the
n

answer to Exercise 6. If b, =0, then {a,,b,,} converges to 0.

(¢) Let M>0 be given. If ¢ is a positive constant, we want to find r* so that ca, > M for all n = n*.

Since {a,,} diverges to + o, there exists nj such that a, > for all n =z n. Now choose a* = n;.

M . .
Then, for all n = n* we have ca, >c-—=M . If ¢ is a negative constant, we want to find n* so that
c

M

cany <M for all n = n*. Since {an} diverges to + o, there exists n; such that a, > s for all

M
n 2 ny. Now choose n* = ny, Then, for all n 2 n* we have ca, <c-—=-M.
-

2 ;v-l n?  n?
> 3 > ——=n, which tends to + © as n goes to infinity, by the
n- n- n

3. (a) Since for 7 >2 we can write
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10.

12.

comparison theorem, we have lim aq, = + .

n—>«

3
(b} Since non+l> n? and 2n + 4 =4n for n = 2, we conclude that whenever n = 2, we have

nden+l A1 2 . .
——— > —=-—n". By the comparison theorem, the sequence {a,,} diverges to + .,
2n+4 4n 4

(¢) Show {—a,,} tends to + o,

@) ap=(-D"
(b) a, =0 for n evenand a, =—»n for n odd. .

(c) a, =0 for n evenand a, =n for n odd.

) a,=(-1)"n.

- Use either a definition or Theorem 2.3.3.

(a) Use either a definition, or use Theorem 2.1.12 and part (b) of Theorem 2.3.3, or prove by contradiction.
So here is a possible sequence of steps one can take: b, > —;—B > 0 eventually, so a,b, > %Ban —> o0,

Comparison theorem proves the conclusion.

(b) The sequence {a,,b,,} can converge, diverge to + o, diverge to — %, or it can oscillate. Examples are:

a, =n and bn=l' a,=nand b, =1;a, =n and b,, =-1; a, =n and b, =0 for n even and
n

b

by, =-1 for r odd.

Since {an} diverges to infinity, there exists »; such that a,, = 0 for any n = ny. Then, for all n = n;, we have
by _ —}-—(a,,b,,). Since, {a,,}' diverges to infinity, by Theorem 2.3.6, lim L 0. Since the
a, da, n—o a,

sequence {a,,b,,} converges, by Theorem 2.1.11, it is bounded. Therefore, by Theorem 2.2.7, the sequence
{b,,} must converge to Q.

b, -

Write a, as a, = n’ (s,J +sp_1n'l + et son_p)s n?b, . Since {b,,} converges to s, = 0, it is bounded.

Also, lim n? = +oo, By Theorem 2.3.3, parts (c) and (d), we have that lim a, =+, Itis + if 5, >0 and

7 =00 n—»w

% if 5, <0.

- s
Rewrite a, as a, =n’ 9b,, where {b,,} converges to t_p by employing theorems in Section 2.1 and 2.2.
q
Since p > g, then lim n?~¢ = 4o, Therefore, by Theorem 2.3.3, parts (b)~(d), lim n?™ %, = 2w,

n-> n—eo0

§
depending on the sign of t_p'
' q

(a) Yes.Let a, =n, b, =(-1)"n2.
(b) Yes.Let a, L and b, =(-1)".
n

L
(a) By Theorems 2.1.11 and 2.1.12, there exists ny such that < %’L <2 for all n = n; . Therefore,

n



30 Section 2.3

-;—Lb,l < a, <2Lb,. Using the right-hand inequality, if lim a, = + o, then according to Theorem 2.3.2,

we have lim 2Lb, = +o. Thus, by Theorem 2.3.3, pmzzcn;, lim b, = +o. In a similar way, using the
left-hand';r_n;:uality, we conclude that 11_1’1‘1m b, =+ implies tl:a?mli_r’nm ap =+, Be careful, students may
wish to use a contradiction and assumz that lim b, = +c and the;; try to conclude that {b,,} must be
bounded. This is of course not true. "

(b) Choose, a, =1 and b, =n. Then, nlil;nmb,, = +00, which does not imply that "li_r’ncm a, = +=. Next,

choose, a, =n and b, =1. Then, lim a, =+, which does not imply that lim b, =+

n—>w n—w

13. (a) By Theorem 2.3.6, the sequence {b—”} diverges to + . Therefore, there exists n) such that for any
an

M >0 we have 25— > M , provided n = ny. Thus, if n =z m, we have b, > Ma,, . If the sequence {a,,}
an

diverges to infinity, by Theorem 2.3.3, part (c), we have lim Ma, =+ . Hence, by the comparison-

n—m

theorem, the sequence {b,,} diverges to +,

b
(b) Since b, >0, we can write q, = S _fn. b,. Since {Z—"} converges to 0 and {b,,} is bounded, by
n n n

Theorem 2.2.7 the sequence {a,,} converges to 0.

o -ef)k
14. Let £ >0 be given. Since lim a, = +, there exists n; such that a, >|M =(—ﬁ2§—2- . Now choose
n—x £,
n* =ny . Then, for all n = n* we have Hn Gl ak2 < ak 5— =& . Hence, the conclusion
k+pa, B| pk+p-a, Pk+B°M

follows. Argue differently by multiplying the given limit by 1 / L
a,| ay

n

16. (a) Let a,,=b—’.Then, lim
n!

11 —=00|

An+]
an

=0 <1. Thus, by Theorem 2.3.7, part (a), the sequence

=b lim
n—on+1

{a,,} converges to 0.

. n 1
(b) We will show that the sequence {a,,} with a,, = n_' diverges to + = by proving that {—} converges
ni Gy
n! 1.2.3..... l.n.n.....n 1
to 0 and applying Theorem 2.3.6. To this end, we write 0= — = i =—
n

M AR n Rmmnm-n n
. . 1 .
which tends to 0. Therefore, by the sandwich theorem, the sequence {—} converges to 0, which proves
- an
the desired result. Or to prove that {a,,} diverges to + o directly, use the comparison theorem, since
a, =n. '

Qn+l
a,

i

(¢) We will prove that lim % =0 using Theorem 2.3.7. Thus, if a, = n*r" we write lim
n—w n—ex

< 1. Therefore, by Theorem 2.3.7, part (a), the sequence converges to 0.

17. This approach for the second situation is not useful since R represents lim a, where a, = 2P 4+2142% 4

n—sw

v+ 42" Since this sequence diverges to +, R= 4o, and thus the next to the last line involves o — .
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18.

19.

20.

. 22“33"__3“)' |”2+3”“3l 2m? - n’+3n-3
(a) Since, 4 3 = <—= 1, if n = 2, by Definition 2.3.9 we have that — =
- | 2n? 2n n
0+O (E) .

n

sinn
(b) Since, 2 T |~ ISiﬂ "I =1 forall n, by Definition 2.3.9 we have the desired result.

n

Use Definition 2.3.9 to show that both sequences converge to 1 at roughly the same rate.

a,, neven

Suppose {a,,} converges to a nonzero value. Then a, can be written as the sum of b, = {0 dd
, N O

0, n even I { } 0. th be writt th ¢ b a, -1, neven
= a,j converges to 0, then a, can be written as the sum o =
"“\a, nodd, ™ & n " =11, n odd
1, neven " . L
Cp = 1 nodd Note that the second decomposition does not work if the limit is not zero. For example
a, -1, nodd.

choose a,, =2.

Section 2.4

4.

n+l
2n+l ’

2" 2 (n 4+ 12", which is equivalent to f; =

(a) Since for n =21 we have 2rzn+1, and thus, n
Hence, @, = a, ., and thus the sequence is decreasing.

(b) If n=3,then 2n+1< n? , which gives n?+2n+1<20”, Therefore, (n + 1)2 <2n* which is equivalent
to 2"(n+ 1)2 <2 +lnz, which gives that a,,| < a, . So, the sequence is eventually strictly decreasing.

2 2
(¢) Note that Z2+L - 3. 1+3™ < 143 1
a, 1+32H+2 32n+2 32n+1

+§< 1, for all n. Since a, >0, the sequence is
strictly decreasing,

(d) Since forall n, 2 >1, we have that 2(n+1)>2n+1. Thus, [1-3-5- -+ 2n-1]-[2(n + D] >
[1-3-5- - -@n-1]@n +1). Dividing both sides by 2"*! (n + 1)! we obtain a,, > ;. Hence, the
given sequence is strictly decreasing.

n!
11 <1, we multiply both sides of the inequality by 135 @n-D

. n+ .
(e) Since to obtain that

n+
ap,1 < a, . Hence, {an} is strictly decreasing.

(a) Since Intl <1 and a, >0, by Exercise 5(a), {a,,} converges. (In fact, by Exercise 20 of Section 2.2,
an

{a,,} converges to %.)

(b) {a,,} is strictly decreasing and bounded below by 0, thus it converges.

(e} Since @, >0, by Exercises 4(b) and 5, {a,,} converges.
' 1

nel

<2 Thus, {an}

-1

1
(d) Since a,,; =4, +?‘ﬁ, {a,,} is strictly increasing. By Example 1.3.4, @, = )
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is bounded above and hence, converges (to 2, in fact).
(e) Since aq, >0, by Exercises 4(c) and 5, {a,,} converges (to 0, in fact).
~(f) Since a, >0, by Exercises 4(e) and 5, {a,,} converges.
(g) {a,,} converges to 0 and ——12— s a, s 1, but it is not monotone.
(h) Note that for all n, n+1=2 is equivalent to 2"(n (n + 1) = 2-2"(n!). Therefore, a, = a,,; and so the
sequence is decreasing. Since it is bounded below by 0, it converges.
. . 1 1 1 1
7. (a) By Exercise 2(t) of Section 1.3 we have that a, =1 +2—2 +3—2+ A= S 2-— <2 forall n, and thus
n n
{an} is bounded by 2. Also, a4 =a, +(n+ 1)"2 , meaning that {a,,} 1s strictly increasing and thus
bounded below by a; = 1. Therefore, {a,,} is convergent and 1 s a,, <2 for all n. Thus, by Theorem
2.2.1, part (f), 1 s A= 2. Furthermore, note that 1+% sa, <2 forall n =z2. Hence, -;s A=s2.The
lower bound can be progressively improved.
(b) By Exercise 2(u) of Section 1.3 we have that a, =1+ ! +1+ + ! s7 1<7f all n=2
xercise 2(u ion 1.3 we have tha —t+—=+ " t—s——-—<—forallnz2.
y ectio e n YY) 25T T o
Again, since {a,,} is strictly increasing, it converges. Since a; =1 +% = g, we have ;— saq, <% for all
n=z=2. Thus, l<a, <l and lsle.
4 4
8. Since " —rr"s> " forr>1 , {a,,} is strictly increasing. We show {a,,} is not bounded above by
contradiction. Thus, assume that {a,,} is bounded above. Then, by Theorem 2.4.4, part (a), the sequence {a,,}
converges to, say, A. Taking limits of the recursion formula a, ) = ra, using Remark 2.1.8, part (c), we
obtain A= rA, which implies A must be 0. This is a contradiction, and hence, {an} tends to + co.
. 1-3-5-----2n-1) 1 3 5 2n-1 1 1 . )
9. (a) Since 0<a, = 246 -(2n) =EZ~6- e on <5-1-1- e =~i and {a,,} is strictly
decreasing, it converges to, say, A. Therefore, 0s A < %
(b) Since 0<b, =%% g e 2:’11 <§ and {b,,} is strictly decreasing, it converges to, say, B.
Therefore, 0 < B < 3
(c) Since {a,,} and {b,,} both converge, {a,,b,,} also converges, by Theorem 2.2.1, part (b). Furthermore,
we can write lim a,b, = lim =0.
n-—-»x n—x2n+1
(d) Since lim a,=A, lim b, =B and lim a,b, = AB, either A= 0, B=0, or both. But, since a, < b,
n—eo e de] n-»o
forall n, As B. Hence, A must be 0.
10. (b) ay=a and a,,y =ra,, forall n EN.
11. (b) By the mathematical induction we can prove that {a,,} is increasing and bounded above by 2, see

Exercise 11 from Section 1.9. Hence, {an} converges to, say, A. Taking limits of the recursion formula

we obtain A = '\/1 + 1/Z . Thus, A must satisfy the equation A4 —2A2 -A+1=0.

(c¢) By the mathematical induction we can prove that {a,,} is increasing and bounded above by 2. Hence,



Section 2.4 33

12.

13.

\

{an} converges to, say, A. Taking limits of the recursion formula we obtain A =+/2A , which gives

A= 0 or A= 2. Since the sequence begins with V2 >1andis increasing, A= 0 is not a possibility for
its limit. Hence, a,,} converges to 2.

(d) {a,,} is unbounded and oscillating, and hence, divergent. Observe that taking limits of the recursion
formula and obtaining A =1 is meaningless.

(f) {a,,} diverges to + .

(g) By the mathematical induction we can prove that {a,,} is increasing and bounded above by 2. Hence,
{an} converges to, say, A. Taking limits of the recursion formula we obtain A=1+ % A. Hence, {an}

convergesto A= 2.

(i) Since by Example 1.3.12, we have that @, = -1+ 2", {a,,} diverges to + .
. . .
(k) Using the idea similar to the one in Example 1.3.12, we find that @, = Pl {an} converges to 0.

(1) By the mathematical induction we can prove that {a,,} is decreasing and bounded below by 0. Hence,

{a,,} converges to, say, A. Taking limits of the recursion formula we obtain A = %A, or A=0.In

1
fact, a, = -37_—1- as in parts (j) and (k).

By Exercises 42 and 43 of Section 1.9, {a,,} is decreasing and bounded below by VA . Therefore, {a,,}
. 2

converges to, say, L. Taking limits of the recursion formula we obtain L = . Solving for L we obtain

L= '\/Z or L= —-\/Z . Since -\/Z is the lower bound of {an}, {an} converges to -\/X .

By mathematical induction it can be proven that b, > 0 for all n. Furthermore, we have B - (b,,+1 )2 =
2 3

(bn)2[3B+(b,,)2] [B-(b,,)z] A B-@)

B- - [B ~(bn ] a7 1

3,)"+B

T 2
[3.+8]  [3(6.)*+5]
Case 1. Suppose B> 1. Then, since b] = 1 we have (b])2 = landso B> (bl)z. Then, from the
preceding formula with # =1, we have that B - (l:vz)2 > 0, which implies that B> (bz )2. By the
mathematical induction we can prove that B > (b,, )2 for all n. Therefore, b, < 1/1_3 for all n, and thus, {b,,}
is bounded above. To show {b,,} is strictly increasing, we multiply (b,,)2 < Bby2andadd B +(b,,)2 to both
i r
(b,,)z b,|3B+(b,)
. Thus, b, < ———
3o,)" +B

,forall n.

3B
sides to obtain 3(b,, )2 +B<3B+ (b,, )2. This gives 1< * ==b,, forall

3(b,)* +B
n . Therefore, {b,,} is strictly increasing and hence, converges.
Case 2. Suppose B <1. Following similar steps to those in case 1 we can show that {b,,} is strictly
decreasing and bounded below by /B . Hence, {b,,} convérges.
Case 3. Suppose B = 1. Following a similar argument to the one in case 1, we can show that b, =1 for
all n. Therefore, {bn} converges.

Since in all 3 cases the sequence converges to, say, L, taking limits of the recursion formula we get that
L=0, L= 1/E ,or L= —qﬁi_ . Due to the monotonicity and boundedness of the sequence in each case, we
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conclude that the limit of {b,,} is JBT .

14. Note, this is Newton’s method for approximating roots of a polynomial f(x) = X —x.

15. (a)
(b)

(c)

(d)

(e)

16. (a)

(b)

(c)

17. (a)

(b)

Since a satisfies the equation Pl et4r , We can write o = 1}1 +a = 1}1 +Vl+a =

{an} is increasing, bounded below by 1, and bounded above by 2. Thus, {a,,} converges to, say, A.

Taking limits of the recursion formula we obtain A =+/1+ A, which is equivalent to AP -A-1=0.
Thus, A= «, since the other value of A is negative.

 Since B satisfies the equation m? =1-m , We can write 8 =-‘/1—ﬁ *Wh“\h‘ =

The sequence is not monotone. It converges because it represents {1 — /1 - -\fl - --- which is equal

to 8.
This sequence has the same recursion formula as that in part (b), but the initial value by is different.
Thus, the sequence produced is different. In fact, it oscillates.

1+by a,+b

Since a4 = and by = -‘/a,bl , by Theorem 1.8.4, part (c), we have a2 > by. Also, a; =

implies that 2a; = a; +b) <ay +a) =2a;, s0 ay <a. And, by = -‘}albl implies that (bz )2 =a1b >
bbb = (b1 )2. Since & > 0, we have b, > by . Therefore, by < by < a; < a;. By the mathematical
induction the desired inequality can be proven.

Suppose the statement to be proven is P(n), We will prove its validity by the mathematical induction.

First observe that P(1) is true because from part (a) we have a3 > b; > by, which gives 0 < ay - by =

a1+bl ‘—bz < aj +bl —bl _
2 2

a
O<apyy—byyy <

a1 —by . Next, suppose P(k) is true for some integer k €N, that is,

~by ) . . a1 —b
. We will show that P(k +1) is true, thatis, 0 <@g, g —bp,p < S To

Gt b, G —be
bsy = <

. . a1 +b
thlscnd, we write, 0<ak+2—bk+2 =ﬁ'§“—l€-ﬂ~—bk+2< 5

1 al bl al bl
2 2k 2k+1

By the sandwich theorem and part (b), we have that lim (a,,+1 —b,,+1) = 0. Since each sequence

. Hence, P(n) is true for all n.

converges, we obtain 0 = lim a,, - hm bpry = A B

n—»x

2ab  a+b

By Problem 1.10.15, 0 <a < b implies that a < <

<b.If a=b, and b = g, , we obtain
a+bh

2a,b, <l +b,
a, +b, 2
bounded above by ay, and thus, converges to, say, B. In addition, {a,,} is decreasing and bounded below
by bl , and thus, converges to, say, 4. Hence, taking limits of the first recursion formula we get

b, < < a,, which gives b, < b,,1 < a, 4 < a,. Therefore, {b,,} is increasing and

A= T which implies that A= B.

Multiply two recursion formulas together to obtain a,,,b,,1 = ﬂ__%fi_ . 1‘1-%— =apb,,forall n =1,
a, +
Similarly, apb, = a,-1by -1 for all n = 2. Thus, by mathematical induction it can be proven that

apy1bpi1 = @by for all n =1, Taking limits of both sides we get that AB = q by, which gives
A —-‘falbl ,since A= B.Hence, lim a, = 1fazlb

=00
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18. By Theorem 2.4.4, (a) = (b). Now we prove that (b) => (a). Let any set § of real numbers be given which is
bounded above. We will show sup § exists and is finite. To do this, we form an increasing sequence {a,,} of

points in § and a decreasing sequence {b,,} of upper bounds of § in such a way that lim a, = lim b, = A.

n—o n—w
To obtain the desired conclusion, we will prove that A= sup §.
We start with any point @) in § and any upper bound 4, of S. Both exist due to our assumption and
a + bl

clearly, a; s by. Let ¢) = be the midpoint between a; and b . We determine a; and b, as follows. If

¢1 is an upper bound of S, let @3 = ay and b, = ¢ . If ¢ is not an upper bound of §, let @ be some point

in S satisfying ap = ay, and let by = by. In either case, we have that a, €S and b; is an upper bound of S,

b -a . .
1L_"1 Repeat the above process using @, and by to obtain values a3 and

ay=am <by=b,ad b, -a, <
by. Therefore, this process gives rise to two sequences {an} and {b,,} , where {a,,} is increasing and

bounded above by #;, and {b,,} is decreasing and bounded below by a;. In addition, by mathematical

by ~ay
n-1

induction, we have 0= b, —a, = . Since the right-hand side tends to 0, by the sandwich theorem,

Iim (b,, - an) =0, and so Sequcnces {a,,} and {b,,} have the same limit, say A.

n=—»ao

Next we show that A=sup§. Let x €5. Then, b, = x for all n because each b, is an upper bound of
S . Therefore, Az x. This proves that A is an upper bound of §. Next, if ¢t <A, then a, > ¢ for large
enough n since lim a, = A. Since a, €S, this shows that ¢ is not an upper bound of §. Hence, A is the

n-»o0

least upper bound of §'.

19. (a) Use mathematical induction. Suppose P(n) is the statement n!!= 21 (%)' Then, P(0) is clearly true.

ik
Suppose P(k) is true for some even integer & , that is, k!l= 27 (E)' We will show that P(k +2) is

k+2 A
true, that is, (k+2)!!= 2%1(-;—)!. To this end, we write that (k + 2)!! = (£ + 2Xk !1) = (k + 2)25(5)!

- (§+1)2-25(§)1- 2%“2(1%”)@ 2‘2‘("—;%)' Hence, P(n) is true for all n=0,2,4, ....

(b) Use mathematical induction.
(c) Not true.

20. Not true if some values are permitted to be negative.

Section 2.5

1. If N, (-YD) contains infinitely many points of §, it certainly contains one point different from sq . Therefore,
(b) => (a). We prove that (a) = (b) by contradiction. Suppose N is some neighborhood of sy which contains
only a finite number of points of §. Let a;,a,, ... ,a, be these points of N M S which are different from sq .

Define r = min {lso ‘akl}‘ Clearly, r > 0. Now, N,(so) contains no points of § different from s, . Hence,
Isk=sn
Sp is not an accumulation point of §, a contradiction.

d (a) Ifa,= D" —n—l , then accumulation points of §= {an ln = N} are l and - 1.
n+

(b) If §= {x| x&€(0,1) U{2}}, then 2 is not an accumulation point of §.
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ap!
(¢) IfS= {—n— ne< N} , then sup §=1€S and accumulation point 0 &S8.
_D*
d) IfS= {(—;{)— nE N}, then O is the accumulation point of § and 0 &S. Also, inf § = -1 and

supS=% are both in §.

1 1
(a) (=) Suppose sy is an accumulation point of S . Then, every neighborhood (So T 80+ ;z-)

. . 1 1 .
contains at least one element of § other than s, call it a, . Therefore, 53 —— < a,, < sg+—, which
n n
implies that lim a, = sg, by the sandwich theorem.
n—»ow
(=) Suppose that lim a, = sg for some sequence {a,, } in § with a, =59 forevery n. Let
n—>ox

€ >0 be given. Then, since lLim a, = 5, there exists ny such that |a, - sp| <& forall nzny.

n=-row

Therefore, there exists at least one a,, » sg that is in this neighborhood. Hence, sq is an accumulation
point of §.

(b) The condition a, = sy for every n EN can be relaxed to a condition that a, = 5o for some arbitrarily
large values of n. We simply do not want a sequence that attains only values of sp after some point

because in that case the set § = {a,, |n EN } would be finite. Then, the existence of such sequence would

not imply that s is an accumulation point of §.
(=>) Suppose M =supS. Since forany n EN, M 1 is not an upper bound of §, there exists a, €S such
n

1 e i g \ .
that M ——=<a, <M . Hence, {a,,} converges to M. Note that if § is finite, then a, = M, eventually, since
h

MES . If § is infinite, then M may or may not belong to S.
(«=) Show that M = supS. We only have to show that § has no upper bound K such that K < M. We

prove this by contradiction. Thus, suppose that K is an upper bound of § and K < M. Since lim a, =M,

n—oo
by Theorem 2.1.12 there exists n* €N such that a,, > K for all n = n*. Since a,, €S, we conclude that X is
not an upper bound of §. Contradiction. Hence, M = supS. Note that a, need not be distinct from M. If we
can find a sequence {a,,} in S where a, = M for some n,then M=max §.

(a) If supS=max §, we are done. If sup § = max S, we need to prove that sq = supS is an accumulation
point of . Let € >0 be given. Then, so - £ is not an upper bound of S. Therefore, there exists x €S
such that x > sy — €. But, 5o =supS and sy = max S. Thus, so &5 and so x = 5y . Hence, sq is an
accumulation point of §.

(b) Example of a set S where sup S=max S but sup S is not an accumulation point of § is, say,

S =351 ={0}. Here, sup §; = 0= max S; but §; has no accumulation points. Example of such a set §

1
need not be necessarily finite. Choose another set S=53 = {; nEN } Then, sup §; =1 =max S; and
0 is an accumulation point of S, but, 0 =1,

n

(c) Let S={1} U{ A4S N}. Then, supS=max § =1 and 1 is one of the accumulation points of §.

n+l1

=|m+1_n+1|=m—n<£
| m n| mn mn

1
{b) Let £ >0 be given. Suppose that m > n and write Iam -a,.l = ; But,
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(c)

(@)

(e)

(f)

(g)

(h)

| 1 1 . .
— <¢ if n>—. Thus, choose n*>—. Then, if m > n = n*, we have |a,, - a,| <. Therefore, {a,,} is a
€

n £
Cauchy sequence by Definition 2.5.6.

Let £ >0 be given. Suppose that m > n and write |a,, —a nl m _ 7 I= mn <
g PP |m "I |m+1 n+1| (m+1)n+1)
i < 1 <l. But, l<t;" if n>l. Thus, choose n*>—1-. Then, if m > n = n*, we have
(m+D)(n+l) n+1 n n € £
|am - anl < £. Therefore, {a,,} is a Cauchy sequence by Definition 2.5.6.
Note that 1 1.1 . Let £ >0 be given and suppose that m > n. Then a, < a,,, since a,,
nn+l) n n+l
.. .. 1
has additional positive terms. Thus, 0<a,, —a, = + L +o L.
o n+Dn+2) m+2)n+3) m(m+1)
1 1)+(1 1++(1 1)1 11 L gince L tends o 0
- - —- = - —. Since — s
n+l n+2 n+2 n+3 m m+l) n+l m+l n+1<n ! en endstofas n

P 1 . .
goes to infinity, — < ¢, eventually. Hence, the given sequence is a Cauchy sequence.
n

Notethati< 1 ———1——l.Suppose m>n>1, and write Iamhan|=am—an=

n? (-1 n-1
1 1
_,_(____)=_1__—1-<l. Since L
m-1 m/ n m n n

1 1 1 1 1 1
P + ) + 4+ —2 < | + - +
n+D)* (+2) m n n+l n+l n+2
tends to 0 as n goes to infinity, 1 < £, eventually, no matter what ¢ > 0 is. Hence, the given sequence
n
is a Cauchy sequence.

We will show {a,,} is not a Cauchy sequence by finding a particular relationship between m and n for

which |a,, ~a,| is greater than or equal to some positive real number. To this end, if m > n, we can
. 1 1 1 1 1 1 1 n ;
write |a,, - a,|=a,, ~a, =~——+ + > —d 4 s d— = (M —n)-— = | ——. Therefore, if
n+l n+2 m m m m m m

1 .
m=2n,then a,, -a, > 7 Hence, {a,, } 1s not a Cauchy sequence.

Note that {a, } is not monotone. Let & >0 be given and suppose that m > n . Then, lay, —a,| =

- \n+2 o yn+3 - ym+1
lenm2 en™ et I 111 1

[0l ) m | e Tm g Tt g
1(, 1 1 1

1 . .
2—n(1+5+ +W)< ;’1—'2= o1 <& if n is large. Therefore, {a,,} is a Cauchy sequence. In

fact, it converges to 1 ~e)
Let £ >0 be given and suppose m > n. Then, |am —a,,[ slam —am_1|+|am_l —am_2|+ s

1, m-2 n+l . 1-rm"

lanss —an)<r™ 4™ F 4 M " 2 r"(rm_"F] prmon-2

r +---+r+1)=r" <

1-r
n
r" -L, which converges to 0 since 0 = r< 1, and so —1—r-~ < ¢ for large enough n. Hence, {a,,} isa
-r —-r
Cauchy sequence.

Choose a, =+n. Clearly, {a,,} diverges to +«. But, Os|an+1—a,,|='\/n+1 —-\/_=—"/—=11T<
n+l++/n

1 . . . .
——=» Which tends to 0 as n goes to infinity. Hence, by the sandwich theorem, lim|a,,; ~a,|=0.
n—s0

2Jn
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10.

11,

(b) Since {an} converges, it is Cauchy. Therefore, for any £ > 0 there exists n* €N such that Iam ~ay|
<& forall m,n=n*. Thus, in particular, pick m = n +1. This gives O=la,,; -a,|<¢ forall n=n*.
Hence, lim |a,,+1 - a,,|= 0

n—>o

Suppose {an} is a Cauchy sequence. We will use a similar proof to that of Theorem 2.1.11. Since {a,,}

Cauchy implies that there exists n* €N such that for all m,nz n* we have |a,, - a,,| < . Since m and n
are any values greater than or equal to n* , choose m = n* . Then we have |a,, - an*l <1 for all n = n*_By the
triangle inequality, for all n = n* we have |a,|=|a, —ays +ay+| |a, — aye|+|a,e| < 1+|a,s|. Thus, we
bounded all terms a,, starting with a,«, n* €N . Hence, |a,|<M forall n EN if we pick M =

max{l +|a,,*|,|a1|,|a2|, :l“n*—ll}-

Suppose § = {al,az, ,ak} where all £ elements, k €N, are distinct. Let ¢« > 0 denote the minimum
distance between any 2 elements of S. The value a exists because S is finite. Since {a,,} is Cauchy, there
exists ny EN such that for all m,n = n; we have |a,, - am| < ¢ for any given £ > 0. In particular, if £ =

and m = ny we have Ia,, —a, I <a forall n = n. But, both terms a, and a, arein § with distance between

them of a or more, unless they are equal to each other. Hence, for all n = iy all terms of {a,,} must be equal.
Hence, {an} is constant for all n = n;.

(a) Let € >0 be given. We need to find n* €N such that I(a +by)~(a, +b )|<£ for all m,n=n*.

Since {a, } is Cauchy, there exists n; such that la, - a,,|< forall m,n=ny. Since {4,} is Cauchy,

there exists ny such that [bm ~b |< for all m,n = ny . Choose n* = ma.x{n] nz} Then, for all
n = n* we have |[(a,, +b,)~(a, +bn)|s|am -ay|+m —b,,]<—;—+§—=s. Hence, {a, + &, } is Cauchy.

(b) Let £ >0 be given. We need to find n* such that |ambm —a,,b,,| <¢ for all m,n=n*. Since {a,,} and
{b,,} are Cauchy, by Theorem 2.5.8 they are bounded. Therefore, there exists M >0 such that |a, | < M
and Ibnl < M for all n EN . In addition, {a,,} Cauchy, implies that there exists ny €N such that

|a forall m,nzn;. And {b,,} Cauchy, implies that there exists n, €N such that

£
m =l <|2p7

£
|bm —bn|< M for all m,n= n,. Choose n* =max{n1,nz} . Then, for all m,n = n* we have

lambm = pby| =|amby, ~ apb,, +ayb, - a,b,|s b, lan —an|f|an||b ~byl<M- W+M m=€

Hence, {anbn } is a Cauchy sequence.

n-1

12. (a) Proof of part (a). From the proof of Theorem 2.5.11 we have that |am ,,l s k |a2 a1| Since

n—l
lim a,, = A, the limits of the preceding inequality yield |A anl s |a2 al|

m—>m

Proof of part (b). It can be proven by induction that Ian+P ‘an+p—1| <k lan - an_ll, for n>1 and
p nonnegative integer. Therefore, if m > n > 1 we have lam —a,,| = |am ——am_1|+|am_1 —am_2|+
1- km—n

1% -Ian—an_1|<

+|ay, —a,,_1|s(k""" T LR & +k)|a,, —a,q|=k
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——|a,, —a,-y|, since 0 < k <1. Now take limits as m tends to + of this inequality to obtain the

1-%
desired result.
(b) In Example 2.5.13, a; =1 makes the sequence increasing and bounded above (by 2.) If a; = 2, then

a, =2 . Inthe case ) = 4, the sequence is decreasing and bounded below (by 0.) Therefore, if we used
techniques from Section 2.4 to prove the convergence of {a,,} in each of these cases, we would need to
consider these cases separately. In all 3 cases, {a,,} remains contractive and convergent. Taking limits of

the recursion formula, we see that {a,,} converges to 2 in all 3 cases.

13. Note that if 0<gq s% we have a = (a1 )2 < ay. Also, if a3 ,1 = a; for some k €N, we have a7 =

(ak +1 )2 < (ak )2 = af4+1. Thus, by the mathematical induction, {an} is decreasing. Moreover, a, .y = (a,, +1 )2
and ay st =(a, ), thus, subtracting we obtain @,z ~ st = (ans )’ ~(an)” = (ans1 ~an Nans1 +ay).

| 1 1) 2
Therefore, Ian+2 - an+1' = Ian+1 ] ”an+1 +ay|slay -a,la +ayl= Ian+1 - anl(g + 5) = Elaml - a,,l.

Hence, {a,,} is contractive.

Ian+1"an|= Anil—an I
|anan+1 I Ia"[l"'(an)_lj“

14. (b) Since g; =1, we have a,, > 1 for all n = 2. In addition, |a,,+2 —an+1|=

Api)—a 2y —a . 1 . e
= | i”'l 1|n| < a1 = | , for all n = 2. Therefore, since 0 <r = 5< 1, by the contraction principle, the
a, +

sequence converges to, say, A.
(c) Taking limits of the recursion formula we get A =1+ % which is equivalent to A2 -A-1=0.Two

1-45 or 1+45 1+45
2

> Certainly, since the first is negative and a, =1 forall n, >

choices for A are

is the correct value for the limit.

15. Since a,,3 =a, +a,,y and a, >0 for all n EN, we can divide by a,,,; to obtain Gne2 _ Gn_ g, Thus, if

Gpil  Cn4l
1+ 1/5
5

b, = a;” , we have b, = El—+1. By Exercise 14, {5, } converges to
n n

16. (a) Since a,, ., =W, upon subtraction of @, from both sides, we get a,,.; - a,,; =
%(a,, ~day,,1). By the contraction principle, {an} converges to, say, A. We will show that A=
M;ﬁ. Taking limits of the recursion formula yields no information. We can find the explicit formula
by assuming that a, = cr”", as we did in Example 1.3.12. Instead we Write @p42 — Gpay = %(a,l - an+1),
Ay, -a, = %(a”_l - an), v s Qg—Q3= %(a; - a3) .and a3 —a, = %(al - az) . Adding these together
we get a,,)—a = ?li(al - a,,1). Now we take limits to obtain A-a; = —;—(al — A). This gives

A=%(a1 +2ay).

(b) Let b, =|a,,;—a,|- Then, since a,,2 —a,4 = }i(a" -@ay,q). We have that b, = -;—b,, , and therefore,
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1 11 1 . .
bpyy ==b, == =by_| = =—D>0). Using the method of Example 2.5.7 we can conclude that {a,,} is
2 22 2"
a Cauchy sequence.
. 1 . .
17. (a) Since a,,,= gan +%an+1, upon subtraction of a,,; from both sides we get ay,g — @pyy =
%an —%an“ = %(a,, —-a, +1). Therefore, by the contraction principle, {a,,} converges to, say, A.
Limit of the recursion formula gives no information. We find a,, in a similar way we did in Exercise
. 1 1 1
16(&) Smce, Ay —dpy] = g(a,, —a,,+1), Auy1—ay = —:J,—(an_l —a,,), ey 4 — A3 = E(az —03), and
ay—ay = %(al - a;). Adding these together we get a,,, ~a; = %(al -a,,1)- Now we take limits to
obtain A-a, = %(ul - A). This gives A= %(al +3a,).
18. (a) {an} is not monotone.
(b) Observe that @, =1 for all n and that a,,,| =1+ and a,,, =1+ for all n. Subtracting
+a, +an4
a,—a a,-a 1
we obtain a,,7 — dp.p = n_—atl o Zn”Zntl Therefore, |a,,0 — @pyt] S =|@nes — nl-
n+2 n+l (1+a”+1)(1+an) (1+1)(1+1) I n+2 n+1| 4l n+l Pl'
Thus, since O0<k= % <1, by the contraction principle, the sequence {a,,} converges to, say, A.
- . 1 L .
(c) Wetake limits of the recursion formula to get A=1+ A This gives A= 1/5, —\/5 . Clearly, since
+
a, =1 for all n, the correct value for the limit is V2.
Section 2.6
1. (a) Yes, because b, =az,_;.
1. - .
(b) No, because E is a term of {b,,} but not of {a,,} . Note that we cannot write b, = a Jn because
fm)= +/n is not a function whose range is a subset of N .
(¢) No, because % is a term of {b,,} but not of {an}.
2. (a) Thesequence {a,,} 11,0, 1,0, .... Subsequence {a2,,} converges to 0, and {aZn-—l} converges to 1.

(b)

(c)

Therefore, by Theorem 2.6.5, since 0 =1, {a,,} diverges. Subsequential limit points « are 0 and 1.
Also, limsupa, =1 and liminf a, =0.
n

—= 00 n—>o0
The sequence {an} is 1,0, -1, 0, ... . The subsequence {az,, _1} diverges because ap,_1 = (—1)"+l .
Therefore, {a,, } contains a diverging subsequence and thus, must diverge. Subsequential limit points o
are 0, 1, and —1. Also, limsupa, =1 and liminf a, = -1.

n—=w n—»ococ

The sequence {a,,} converges or diverges depending on the choice of r . Subsequential limit points are

a=1ifr=1, a=0if <!, a=1and -1 if r = ~1, and there are none if || > 1. lim supa, is equal
n—o
to 1if #=1,0if [|<1, 1if r =-1, and there is none if |r|>1. liminf a, isequal to 1 if r =1, 0 if
n—=o0

[{<1, -1 if r = -1, and there is none if Jr|>1.
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(d) {an} diverges because subsequence {az,,} converges to 1 and subsequence {ag,,_l} converges to —1,
which is not equal to 1. Subsequential limit points are 1 and —~1. In addition, lim supa, =1 and

n—>o0

liminf a, = ~1.

n—ow

1 ({1 1 1 1 1 1
Consider the subsequence {az,.} . Singe @, = 1+E+(§+Z)+(§+E+7+§)+ -

(—%mlw—~+"'+r—-l-—)>l+-l+(-1-+l)+(l+l+l+~l—)+"'+ —1—+"'+-—1—- >1+1+1+ 1 +---+1
2n-1 14 an 2 § 8 8 8 bl 2" 2 2 2 2

1
= 1+n(%). Since 1+ n(z) tends to +o as n goes to infinity, by the comparison theorem, {“2"} diverges to

+ 0. Therefore, {a,,} contains a subsequence which is unbounded, and so {an} is not bounded and, hence,
diverges.

We assume (a) is true and prove that if {a,,} is any monotone (we only consider increasing) and bounded
sequence, then it converges. Since (a) is true and {an} is bounded, there exists a subsequence {a,i,r } that

converges to, say, A. This means that, if an arbitrary £ > 0 is given, there exists m €N such that
A-g<ay <A+¢ forall k zm. But, {a,, is increasing. So if we choose n* = n,,, then for all r = n* we

have A- e<a, = A. Hence, {a,,} convergesto A.
We assume (b) and prove that the sequence {a,,} has a converging subsequence. This part is easy because

we used (b) to prove the Bolzano—Weierstrass theorem for sets, which in turn we used to prove the
Bolzano—Wejerstrass theorem for sequences which is what the goal was here.

Suppose {a,, } is unbounded above. Let M = 0 be given. Since {a,,} is unbounded, there exist infinitely
many terms of {a,,} larger than M. In particular, there exists ny €N such that a, >1. Also, there exists
ny >m such that a,, > max {2, a,,l} - Continue this argument to obtain ny <np < - such that a, >
max {k +1,a, } We have constructed a subsequence that is increasing and tends to + 0. Proof is similar for

{a,,} that is bounded below.

(=) Same as in the proof of Theorem 2.5.9. (=) If {a,,} is a Cauchy sequence, then we want to prove
that {a, } is convergent. First observe that by Theorem 2.5.8, A is bounded. By the Bolzano-Weierstrass

theoremn for sequences there exists {a,,k } which converges to, say, a. We will prove {a,,} must also

converge to o . Let £ >0 be given. We want to find #* such that for all n = n* we have Ia,, -al <kg. The

. . . £ .
sequence {a, } Cauchy, implies that there exists n; such that for all m, n=m we have la, —ap| <. Since

£
ap, -—al<. Choose n*=

max{n,m} and observe that n; = k. Therefore, if k = n*, then n; = n*. Hence, for all n = n* we have

{a,,k } converges to o , there exists m such that for all n; = m we have

+|a

£ €
o, -] s |a, —a,, ,,‘—a|<—2—+5= .

The proof is a special case of Exercise 4 of Section 2.5 because here the existence of a sequence from within §
converging to sq is precisely the subsequence we are looking for. Note that {a,,} might not converge to sp.
. 1 .
For example, consider a, defined by 1 for n oddand — for n even. Then {a,,} diverges but {az,,} converges
n

to 0, which is an accumulation point of §.
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8. By Exercise 7, there exists a subsequence of {a,,} which converges to B. Since {a,,} convergesto A, A=B
by Theorem 2.6.5.

9. (a) Since c<1, & <1 forall n €N . Thus, {a,,} is bounded and a,,,; —a, ="Yc -%c =

(b)

(c)

"*'V; (1 - MH%) >0, Hence, {a,,} is increasing by Remark 2.4.3, part (d), and thus, converging to,
say, A, To find A using subsequences, first observe that by Theorem 2.2.1, part (¢), we have {-\fa,, }

converging to VA . Here, 1/[; = W = %[c . But, {2’{/;} is a subsequence of {’(/c_} Thus, {JZ } isa

subsequence of {a,,} and so it must converge to A. Therefore, VA=A giving A=0 or 1. Since ¢ >0
and {a,,} is increasing, the limit must be 1.

- 1 . . . -
Since r"*! = r-r" <" the sequence {a, } is decreasing. Since r” >0, {a,} is bounded below, hence

convergent to, say, A. Note that Hm "o lim (r-r") <r lim " = rA. This means that {a,,“}

H—»c0 n—sx n—~x
converges to rA . But, {a,,+ 1}‘ is a subsequence of {a,,} which converges to A. Therefore, rA =A.
Since r =1, A must be 0.

By Exercise 11(c) of Section 2.4, {a,,} converges to, say, A. Therefore, {a,,,,l} converges to A and

also {+f2a, } converges to 4/2A . Since the limit is unique, we have A = -\/2A and hence, A= 2.
n 8

Section 2.7

1. T 9. T 17. T 25. F 33. F 41, F 49, F
2. T 10. T 18. T 26. T 34. F 42. F 50. T
3. F 11. F 19. T 27. F 35. T 43. T

4. T 12. F 20. F 28. T 36. F 44. F

5. F 13. F 21. F 29. F 37. F 45. T

6. T 14. T 22. F 30. F 38. F 46. F

7. F 15. T 23. F 31. F 39. F 47. F

8. T 16. F 24. F 32. T 40. T 48. F



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

