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Preface

This manual provides complete solutions to the end-of-chapter exercises for
Foundations of Astrophysics by Barbara Ryden and Bradley M. Peterson, a
first course in astrophysics intended primarily for second-year majors in the
physical sciences. SI units, augmented when necessary by various units peculiar
to astronomy, are used throughout. In the written solutions, units are given
whenever they may not be obvious.

Although most of the problems in this book have been heavily field-tested
over the years, no doubt some errors, both typographical and conceptual, have
eluded our scrutiny. The authors would be pleased to learn of any errors in the
textbook or this solutions manual.

This solutions manual is intended to be an evolving document since it is
expected to be made available only to instructors via a secure website. It will
therefore be updated regularly by the authors, and the revision history will be
recorded at the end. Also at the end of this manual will be a list of known errors
found in the textbook itself.

We thank Catherine J. Grier for her help in proofreading this manual.
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Chapter 1

Early Astronomy

1.1. The Polynesian inhabitants of the Pacific reportedly held festivals
whenever the Sun was at the zenith at local noon. How many times
per year was such a festival held? At what time(s) of year was the
festival held on Tahiti? At what time(s) of year was it held on Oahu?
[Hints: any reputable world atlas will give you the latitude of Tahiti
and Oahu. You may also find the information in Figure 1.13 to be
useful.]

The latitude of Tahiti = −17o 37′. The Sun crosses this declination on approx-
imately 2 February and 1 November.

The latitude of Oahu is +21o 28′ and the Sun crosses this declination on ap-
proximately May 29 and July 16.

We note in passing that both Tahiti and Oahu extend about 25′ of latitude in
the north–south direction.

1.2. For what range of latitudes are all the stars of the Big Dipper
circumpolar? Use the stars in the following table:

Star Right Ascension Declination

Alkaid 13h48m +49◦19′

Mizar 13h24m +54◦56′

Alioth 12h54m +55◦58′

Megrez 12h15m +57◦02′

Phecda 11h54m +53◦42′

Merak 11h02m +56◦23′

Dubhe 11h04m +61◦45′

For all the stars to be circumpolar, the southernmost star (Alkaid) must be
above the horizon at lower transit, as shown in Figure 1.1. Thus the elevation
of the North Celestial Pole must be equal to the angle between Alkaid and the

1
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2 CHAPTER 1. EARLY ASTRONOMY

Figure 1.1: Southernmost latitude from which all the stars of the Big Dipper
will be circumpolar.

NCP; the elevation is � = 90o − δAlkaid = 90o − 49o19′ = 40o41′. Only for
observers at this latitude or higher will all the Big Dipper stars be circumpolar.

What is the southernmost latitude from which all of the stars of the
Big Dipper can be seen?

For all the stars to be visible, the northernmost star (Dubhe) must be at the
horizon at upper transit, as shown in Figure 1.2. In other words, the NCP is
below the horizon by an angle equal to the separation between the NCP and
Dubhe, i.e., 90o − δDubhe = �. Thus � = δDubhe − 90o = 61o45′− 90o = −28o15′.
Only observers at or north of latitude −28o15′ can see all the stars of the Big
Dipper.

Figure 1.2: Southernmost latitude from which all the stars of the Big Dipper
can be seen.

Copyright © 2010 Pearson Education, Inc.



EARLY ASTRONOMY 3

For what range of latitudes are none of the stars of the Big Dipper
ever seen above the horizon?

For all of the stars to be below the horizon, the southernmost star must be on the
horizon at upper transit, as shown in Figure 1.3. In other words, the NCP must
be below the horizon by an angle equal to the distance between the NCP and
Alkaid, i.e., 90o − δAlkaid = −� or � = δAlkaid − 90o = 49o19′ − 90o = −40o41′.
Observers south of this latitude cannot observe any of the stars of the Big
Dipper.

Figure 1.3: Northernmost latitude from which none of the stars of the Big
Dipper can be seen.

1.3. Columbus, Ohio, is in the Eastern Time Zone, for which the civil
time is equal to the mean solar time along the 75o W meridian of
longitude.
(a) Ignoring daylight saving time for the moment, are there any days
of the year when civil noon (as shown by a clock) is the same as
apparent local noon (as shown by the Sun) in the city of Columbus?
If so, what day or days are they?

The longitude of Columbus is 82o59′ west. The zone time is set to longitude
75o, so Columbus is behind the zone time by

82o59′ − 75o = 7o59′
(

12h

180o

)
= 0.53h

(
60m

1h

)
= 31.9m.

Since the amplitude of the Equation of Time is only ∼ 18m, the Sun never

transits the meridian at local noon in Columbus, it always transits ∼ 14m to
50m after noon, zone time.

(b) Daylight savings time advances the clock by one hour from the
second Sunday in March to the first Sunday in November (“Spring
forward, fall back”). When daylight savings time is in effect, are there

Copyright © 2010 Pearson Education, Inc.



4 CHAPTER 1. EARLY ASTRONOMY

any days of the year when civil noon is the same as apparent local
noon in the city of Columbus? If so, what day or days are they?

Since the zone time is advanced an hour, the problem is made worse by daylight
savings time. During DST, the Sun crosses the meridian more than an hour
after noon, zone time.

1.4. Suppose you’ve been granted access to a large telescope during
the last week in September. One of the two objects you want to
observe is in the constellation Virgo; the other is in the constellation
Pisces. You only have time to observe one object: which should you
choose? Please explain your answer.

The right ascension of Virgo is α ∼ 13h and Pisces is at ∼ 0h. The autumnal
equinox is the third week of September: since the vernal equinox is α = 0h, the
Sun must be at α ∼ 12h at the autumnal equinox. Virgo is thus unobservable,
only an hour from the Sun. Pisces, however, will be crossing the meridian at
midnight.

1.5. In The Old Man and the Sea, Hemingway described the old man
lying in his boat off the coast of Cuba, looking up at the sky just
after sunset: “It was dark now as it becomes dark quickly after the
Sun sets in September. He lay against the worn wood of the bow
and rested all that he could. The first stars were out. He did not
know the name of Rigel but he saw it and knew soon they would
all be out and he would have all his distant friends.” Explain what
is astronomically incorrect about this passage. [Hint: what are the
celestial coordinates of the star Rigel?]

The right ascension of Rigel is α ∼ 6h and its declination is δ ∼ −8o, so it is
not circumpolar seen from Cuba. In September, the Sun is at α ∼ 12h, so at
sunset, α ∼ 18h is on the meridian. Rigel is thus near the nadir at this time.

1.6. (a) Consider two points on the Earth’s surface that are separated
by 1 arcsecond as seen from the center of the (assumed to be trans-
parent) Earth. What is the physical distance between the two points?

d = θR = 1′′ ×
(

rad

206265′′

)
× 6378 km×

(
103 m

km

)
∼ 31 m

(b) Consider two points on the Earth’s equator that are separated by
one second of time. What is the physical distance between the two
points?

θ = 1 sec ×
(

1hr

3600 sec

)
× 360o

24h
× π rad

180o
= 7.27 × 10−5 rad

Copyright © 2010 Pearson Education, Inc.



EARLY ASTRONOMY 5

So their physical separation is d = θR = 463.8 m.

1.7. The bright star Mintaka (also known as δ Orionis, the western-
most star of Orion’s belt) is extremely close to the celestial equa-
tor. Amateur astronomers can determine the field of view of their
telescope (that is the angular width of the region that they can see
through the telescope) by timing how long it takes Mintaka to drift
through the field of view when the telescope is held stationary in hour
angle. How long does it take Mintaka to drift through a 1 degree field
of view?

The sky appears to rotate westward at the sidereal rate

ω =
360o

24 sidereal hrs
=

15o

sidereal hr
.

The time it takes to rotate through an angle θ is

t =
θ

ω
=

1o

15o hr−1 × 60m

1 hr
= 4 sidereal minutes

In terms of mean solar time,

t = 4 sidereal minutes × 23h56m solar time

24h sidereal time
= 3m59s solar time

1.8. (a) Imagine that technologically advanced, but highly mischie-
vous, space aliens have reduced the tilt of the Earth’s axis from
23o.5 to 0o, while leaving the Earth’s orbit unchanged. Sketch the
analemma in this case.
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Figure 1.4: The part of the Earth’s analemma that is attributable only to the
eccentricity of the Earth’s orbit. The part due to obliquity has been removed.

(b) Now imagine the aliens have restored the axial tilt to its previous
value of 23o.5, but that they have changed the Earth’s orbit so that
it is a perfect circle, with the Earth’s orbital speed being perfectly
constant over the course of a year. Sketch the analemma in this case.
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6 CHAPTER 1. EARLY ASTRONOMY
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Figure 1.5: The part of the Earth’s analemma that is attributable only to the
obliquity of the ecliptic. The part due to eccentricity of the Earth’s orbit has
been removed.
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Figure 1.6: The Earth’s complete analemma, shown for reference.

(c) The martian analemma is shown in Figure 1.15. What is the tilt
of the rotation axis of Mars?

Inspection of the amplitude of the analemma shows that the inclination of Mars
must be ∼ 24o relative to its orbital plane.

1.9. How many square degrees are on the complete celestial sphere?

There are 180o per π radians, so there are 1802 square degrees in π2 steradians.
Thus, the surface area of the sky in steradians is

A =

(
180◦

π rad

)2

× 4π steradians = 41, 253 square degrees

Copyright © 2010 Pearson Education, Inc.



Chapter 2

Emergence of Modern

Astronomy

2.1. Over the course of the year, which gets more hours of daylight,
the Earth’s north pole or south pole? [Hint: The Earth is at perihe-
lion in January.]

The Earth is at perihelion in January, so its northern hemisphere winter is
shorter, and its southern hemisphere summer is shorter. Consequently, summed
over a year, the north pole gets more light.

2.2. On 2003 August 27, Mars was in opposition as seen from the
Earth. On 2005 July 14 (687 days later), Mars was in western quadra-
ture as seen from the Earth. What was the distance of Mars from
the Sun on these dates, measured in astronomical units (AU)? Is this
greater than or less than the semimajor axis length of the Martian
orbit? You may assume the Earth’s orbit is a perfect circle. [Hint:
The sidereal period of Mars is also 687 days.]

The number of orbits Earth makes in 687 days is

Norbit =
687 days

365.24 days per orbit
= 1.881 orbits.

The angle swept out by the Earth in 0.881 orbits is φ = (0.881)(360o) = 317o.14.
As per the left diagram in Figure 2.1, θ is the angle between the Earth and Mars
as seen from the Sun and is θ = 360o − φ = 42o.86. Simple trigonometry (right
diagram in Figure 2.1) gives the distance of Mars from the Sun,

c =
a

cos θ
=

1 AU

0.733
= 1.36 AU,

which is less than the length of the semimajor axis of the orbit of Mars. This
tells us that the orbit of Mars cannot be circular.

7
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8 CHAPTER 2. EMERGENCE OF MODERN ASTRONOMY

Figure 2.1: When Earth is at point 1 in the left diagram, Mars is at opposition.
After one orbit, Mars returns to the same position and Earth is now at point
2, where Mars appears to be at western quadrature; during this time, Earth
has swept out an angle 360o + φ, and θ = 360o − φ. The triangle from the left
diagram is expanded on the right, where a is the Earth–Sun distance, c is the
Mars–Sun distance, and b is the Earth–Mars distance when Mars is at western
quadrature.

[Aside: In the next Chapter, we introduce the perihelion distance q = a(1 − e).
In the case of Mars, the perihelion distance is is q = (1 − e)a = 1.524 AU(1 −
0.093) = 1.382 AU, which is less than the distance of Mars from the Sun on the
specified dates. This small error occurs on account of assuming that the Earth’s
orbit is circular, which it is not.]

2.3. In the 1670s, the astronomer Ole Roemer observed eclipses of the
Galilean satellite Io as it plunged through Juptier’s shadow once per
orbit. He noticed that the time between observed eclipses became
shorter as Jupiter came closer to the Earth and longer as Jupiter
moved away. Roemer calculated that the eclipses were observed 17
minutes earlier when Jupiter was in opposition than when it was close
to conjunction. This was attributed by Roemer to the finite speed
of light. From Roemer’s data, compute the speed of light, first in
AU min−1, then in m s−1.

The difference in Jupiter’s distance from Earth during opposition and conjunc-
tion is simply the diameter of the Earth’s orbit, D = 2AU. The speed of light
is thus c = 2 AU/17 min = 0.118 AU/min. In SI units, this becomes

c =
0.118 AU

min
× 1.49 × 1011 m AU−1

60 s min−1 = 2.92 × 108 m s−1.

Copyright © 2010 Pearson Education, Inc.



MODERN ASTRONOMY 9

2.4. In addition to aberration of starlight due to the Earth’s orbital
motion around the Sun, there should also be diurnal aberration due
to the Earth’s rotation. Where on the Earth is this effect the largest,
and what is its amplitude?

The diurnal effect is largest at the equator where the Earth’s rotational speed
is greatest,

vrot =
2πr

P
=

2π × 6.378 × 106 m/sidereal day

86, 160 s/sidereal day
= 465 m s−1.

The aberration angle will be

θ =
vrot

c
=

(
465m s−1

3 × 108m s−1

) (
206265′′

rad

)
= 0.32 arcsec.

2.5. A light-year is defined as the distance traveled by light in a vac-
uum during one tropical year. How many light-years are in a parsec?

d = ct = 2.99799× 108 m s−1 × 365.24 days

year
× 86, 400 s

day
= 9.461× 1015 m.

Thus,

1 pc =
3.085678× 1016 m

9.461× 1015 m lt-yr−1 = 3.26 lt-yr.

2.6. The planets all orbit the Sun in the same sense (counterclockwise
as seen from above the Earth’s north pole). Imagine a “wrong-way”
planet orbiting the Sun in the opposite (clockwise) sense, on an orbit
of semimajor axis length a = 1.3 AU. What would the sidereal period
of this planet be? What would its synodic period be as seen from the
Earth? What would its synodic period be as seen from Mars?

From Kepler’s Third Law, the sidereal period of planet is Pp = (1.3)3/2 = 1.48
years. From Figure 2.2, we see that

�ωp = �ωE + �ωs,

or −ωs = −ωp − ωE , which leads to

1

S
=

1

Pp
+

1

PE
=

1

1.48
+

1

1
,

or S = 0.597yr.
As seen from Mars (see Figure 2.3), −ωs = −ωp − ωMars. Using the sidereal
period of Mars PMars = (1.54)3/2 = 1.91 years, we solve for the synodic period
of the planet using

1

S
=

1

Pp
+

1

PMars
=

1

1.48
+

1

1.91

and find that S = 0.833 yr = 305 days.
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10 CHAPTER 2. EMERGENCE OF MODERN ASTRONOMY

Figure 2.2: Angular speeds of Earth (ωE) and the “wrong-way planet” (ωp) in
the sidereal reference frame, and the angular speed of the planet in a reference
frame that co-rotates with the Earth–Sun line (ωs).

Figure 2.3: Angular speeds of Mars (ωM ) and the “wrong-way planet” (ωp) in
the sidereal reference frame, and the angular speed of the planet in a reference
frame that co-rotates with the Mars–Sun line (ωs).

2.7. Consider a football thrown directly northward at a latitude 40o

N. The distance of the quarterback from the receiver is 20 yards
(18.5m), and the speed of the thrown ball is 25 m s−1. Does the
Coriolis force deflect the ball to the right or to the left? By what
amount (in meters) is the ball deflected? Does the receiver need
to worry about correcting for the deflection, or should he be more
worried about being nailed by the free safety? [Hint: Remember
that the angular velocity �ω of the Earth’s rotation is parallel to the
rotation axis.]

The Coriolis acceleration is given by equation (2.23),

	a = 2(	v × 	ω).

The velocity of the football is: |	v| = 25 m s−1 and ω is the angular rotation
speed of the Earth,

ω ≈ 2π rad

day
× 1 day

86, 400 s
≈ 7.27 × 10−5 rad s−1.
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MODERN ASTRONOMY 11

The ball will be deflected to the right in the northern hemisphere, by an amount

Δd ≈ 1

2
a(Δt)2,

where Δt is the time of flight, given by Δt = D/v. Thus,

d =

(
1

2

)
(2vω sin �)

(
D2

v2

)
=

D2ω sin �

v
.

For � = 40o, sin � = 0.64, this becomes

d =
(18.5)2 × 7.27 × 10−5 × 0.64

25
= 6.4 × 10−4 m = 0.64 mm.

Look out for the free safety!
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