


Chapter 1 • Introduction 

1.1 A gas at 20°C may be rarefied if it contains less than 1012 molecules per mm3. If 
Avogadro’s number is 6.023E23 molecules per mole, what air pressure does this represent? 

Solution: The mass of one molecule of air may be computed as 

1Molecular weight 28.97 mol
m 4.81E 23 g

Avogadro’s number 6.023E23 molecules/g mol

−
= = = −

⋅
 

Then the density of air containing 1012 molecules per mm3 is, in SI units, 

ρ � �� �= −� �� �
� �� �

= − = −

12
3

3 3

molecules g
10  4.81E 23 

moleculemm

g kg
4.81E 11 4.81E 5 

mm m

 

Finally, from the perfect gas law, Eq. (1.13), at 20°C = 293 K, we obtain the pressure: 

ρ  Α
� �� �= = − =� �� � ⋅� �� �

2

3 2

kg m
p RT 4.81E 5 287 (293 K) .

m s K
ns4.0 Pa  

 

1.2 The earth’s atmosphere can be modeled as a uniform layer of air of thickness 20 km 
and average density 0.6 kg/m3 (see Table A-6). Use these values to estimate the total mass 
and total number of molecules of air in the entire atmosphere of the earth. 

Solution: Let Re be the earth’s radius ≈ 6377 km. Then the total mass of air in the 
atmosphere is 

2
t avg avg e

3 2

m  dVol (Air Vol) 4 R (Air thickness)

(0.6 kg/m )4 (6.377E6 m) (20E3 m) .    Ans

ρ ρ ρ π

π

= = ≈

= ≈
�

6.1E18 kg
 

Dividing by the mass of one molecule ≈ 4.8E−23 g (see Prob. 1.1 above), we obtain the 
total number of molecules in the earth’s atmosphere: 

molecules
m(atmosphere) 6.1E21 grams

N  
m(one molecule) 4.8E 23 gm/molecule

Ans.= = ≈
−

1.3E44 molecules  
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1.3 For the triangular element in Fig. P1.3, 
show that a tilted free liquid surface, in 
contact with an atmosphere at pressure pa, 
must undergo shear stress and hence begin 
to flow. 

Solution: Assume zero shear. Due to 
element weight, the pressure along the 
lower and right sides must vary linearly as 
shown, to a higher value at point C. Vertical 
forces are presumably in balance with ele-
ment weight included. But horizontal forces 
are out of balance, with the unbalanced 
force being to the left, due to the shaded 
excess-pressure triangle on the right side 
BC.  Thus hydrostatic pressures cannot keep 
the element in balance, and shear and flow 
result. 

 
Fig. P1.3 

 

 

1.4 The quantities viscosity µ, velocity V, and surface tension Y may be combined into 
a dimensionless group. Find the combination which is proportional to µ. This group has a 
customary name, which begins with C. Can you guess its name? 

Solution: The dimensions of these variables are {µ} = {M/LT}, {V} = {L/T}, and {Y} = 
{M/T2}. We must divide µ by Y to cancel mass {M}, then work the velocity into the 
group: 

2

/
,  { } ;

Y /

            .

M LT T L
hence multiply by V

L TM T

finally obtain Ans

µ � �� � � � � �= = =� � � � � � � �
� � �� � �� �

µV
dimensionless.

Y
=

 

This dimensionless parameter is commonly called the Capillary Number. 
 

1.5 A formula for estimating the mean free path of a perfect gas is: 

 1.26 1.26 (RT)
p(RT)

µ µ
ρ

= = √
√

�  (1) 
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where the latter form follows from the ideal-gas law, ρ = p/RT. What are the dimensions 
of the constant “1.26”? Estimate the mean free path of air at 20°C and 7 kPa. Is air 
rarefied at this condition? 

Solution: We know the dimensions of every term except “1.26”: 

2

3 2

M M L
{ } {L} { } { } {R} {T} { }

LT L T
µ ρ

� �� � � �= = = = = Θ� � � � � �
Θ� � � � � �

�  

Therefore the above formula (first form) may be written dimensionally as 

3 2 2

{M/L T}
{L} {1.26?} {1.26?}{L}

{M/L } [{L /T }{ }]

⋅= =
√ ⋅Θ Θ

 

Since we have {L} on both sides, {1.26} = {unity}, that is, the constant is dimensionless. 
The formula is therefore dimensionally homogeneous and should hold for any unit system. 

For air at 20°C = 293 K and 7000 Pa, the density is ρ = p/RT = (7000)/[(287)(293)] = 
0.0832 kg/m3. From Table A-2, its viscosity is 1.80E−5 N ⋅ s/m2. Then the formula predict 
a mean free path of 

1/2

1.80E 5
1.26

(0.0832)[(287)(293)]
Ans.

−= ≈� 9.4E 7 m−  

This is quite small. We would judge this gas to approximate a continuum if the physical 
scales in the flow are greater than about 100 ,�  that is, greater than about 94 µm. 

 

1.6 If p is pressure and y is a coordinate, state, in the {MLT} system, the dimensions of 
the quantities (a) ∂p/∂y; (b) � p dy; (c) ∂2p/∂y2; (d) ∇p. 

Solution: (a) {ML−2T−2}; (b) {MT−2}; (c) {ML−3T−2}; (d) {ML−2T−2} 
 

1.7 A small village draws 1.5 acre-foot of water per day from its reservoir. Convert this 
water usage into (a) gallons per minute; and (b) liters per second. 

Solution: One acre = (1 mi2/640) = (5280 ft)2/640 = 43560 ft2. Therefore 1.5 acre-ft = 
65340 ft3 = 1850 m3. Meanwhile, 1 gallon = 231 in3 = 231/1728 ft3. Then 1.5 acre-ft of 
water per day is equivalent to 

3

3

ft 1728 gal 1 day
Q 65340     . (a)

day 231 1440 minft
Ans� �� �= ≈� �� �

� �� �

gal
340

min
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Similarly, 1850 m3 = 1.85E6 liters. Then a metric unit for this water usage is: 

L 1 day
Q 1.85E6   . (b)

day 86400 sec
Ans

� �� �= ≈� �� �
� �� �

L
21

s
 

 

1.8 Suppose that bending stress σ in a beam depends upon bending moment M and 
beam area moment of inertia I and is proportional to the beam half-thickness y. Suppose 
also that, for the particular case M = 2900 in⋅lbf, y = 1.5 in, and I = 0.4 in4, the predicted 
stress is 75 MPa. Find the only possible dimensionally homogeneous formula for σ. 

Solution: We are given that σ = y fcn(M,I) and we are not to study up on strength of 
materials but only to use dimensional reasoning. For homogeneity, the right hand side 
must have dimensions of stress, that is,  

2

M
{ } {y}{fcn(M,I)}, or: {L}{fcn(M,I)}

LT
σ � �= =� �

� �
 

or: the function must have dimensions 
2 2

M
{fcn(M,I)}

L T

� �= � �
� �

 

Therefore, to achieve dimensional homogeneity, we somehow must combine bending 
moment, whose dimensions are {ML2T–2}, with area moment of inertia, {I} = {L4}, and 
end up with {ML–2T–2}. Well, it is clear that {I} contains neither mass {M} nor time {T} 
dimensions, but the bending moment contains both mass and time and in exactly the com-
bination we need, {MT–2}. Thus it must be that σ is proportional to M also. Now we 
have reduced the problem to: 

2

2 2

M ML
yM fcn(I), or {L} {fcn(I)}, or: {fcn(I)}

LT T
σ

� �� �= = =� � � �
� � � �

4{L }−  

We need just enough I’s to give dimensions of {L–4}: we need the formula to be exactly 
inverse in I. The correct dimensionally homogeneous beam bending formula is thus: 

where {C} {unity} .Ans=σ = My
C ,

I
 

The formula admits to an arbitrary dimensionless constant C whose value can only be 
obtained from known data. Convert stress into English units: σ  = (75 MPa)/(6894.8) = 
10880 lbf/in2. Substitute the given data into the proposed formula: 

2 4

lbf My (2900 lbf in)(1.5 in)
10880 C C , or:

Iin 0.4 in
Ans.σ ⋅= = = C 1.00≈  

The data show that C = 1, or σ  = My/I, our old friend from strength of materials. 
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1.9 The dimensionless Galileo number, Ga, expresses the ratio of gravitational effect to 
viscous effects in a flow. It combines the quantities density ρ, acceleration of gravity g, 
length scale L, and viscosity µ. Without peeking into another textbook, find the form of 
the Galileo number if it contains g in the numerator. 

Solution: The dimensions of these variables are {ρ} = {M/L3}, {g} = {L/T2}, {L} = 
{L}, and {µ} = {M/LT}. Divide ρ by µ to eliminate mass {M} and then combine with g 
and L to eliminate length {L} and time {T}, making sure that g appears only to the first 
power: 

3

2

/

/

M L T

M LT L

ρ
µ

� �� � � �= =� � � � � �
� �� � � �

 

while only {g} contains {T}. To keep {g} to the 1st power, we need to multiply it by 
{ρ/µ}2. Thus {ρ/µ}2{g} = {T2/L4}{L/T2} = {L−3}. 

We then make the combination dimensionless by multiplying the group by L3. Thus 
we obtain: 

ρ ρ
µ µ

� �= = = =� �
� �

2 2 3
3

2
( )( ) .

gL
Galileo number Ga g L Ans

3

2

gL

ν
 

 

1.10 The Stokes-Oseen formula [10] for drag on a sphere at low velocity V is: 

2 29
F 3 DV V D

16

ππµ ρ= +  

where D = sphere diameter, µ = viscosity, and ρ = density. Is the formula homogeneous? 

Solution: Write this formula in dimensional form, using Table 1-2: 

2 29
{F} {3 }{ }{D}{V} { }{V} {D} ?

16

ππ µ ρ� �= + � �
� �

 

2
2

2 3 2

ML M L M L
or: {1} {L} {1} {L } ?

LT TT L T

� �� � � � � � � �= +� � � � � � � �� �
� � � � � � � �� �

 

where, hoping for homogeneity, we have assumed that all constants (3,π,9,16) are pure, 
i.e., {unity}. Well, yes indeed, all terms have dimensions {ML/T2}! Therefore the Stokes-
Oseen formula (derived in fact from a theory) is dimensionally homogeneous. 

 



6 Solutions Manual • Fluid Mechanics, Fifth Edition 

1.11 Test, for dimensional homogeneity, the following formula for volume flow Q 
through a hole of diameter D in the side of a tank whose liquid surface is a distance h 
above the hole position: 

2Q 0.68D gh=  

where g is the acceleration of gravity. What are the dimensions of the constant 0.68? 

Solution: Write the equation in dimensional form: 
1/ 2 33 ? 2 1/ 2

2

L LL {0.68?}{L } {L} {0.68}{Q}
TTT

� �� � � � =� � � �= =� �
� � � �� �

 

Thus, since 2D gh( )  has provided the correct volume-flow dimensions, {L3/T}, it follows 
that the constant “0.68” is indeed dimensionless Ans. The formula is dimensionally 
homogeneous and can be used with any system of units. [The formula is very similar to the 
valve-flow formula d oQ C A ( p/ )ρ= ∆  discussed at the end of Sect. 1.4, and the number 
“0.68” is proportional to the “discharge coefficient” Cd for the hole.] 

 

1.12 For low-speed (laminar) flow in a tube of radius ro, the velocity u takes the form 

( )2 2
o

p
u B r r

µ
∆= −  

where µ is viscosity and ∆p the pressure drop. What are the dimensions of B? 

Solution: Using Table 1-2, write this equation in dimensional form: 

2 2
2 2{ p} L {M/LT } L

{u} {B} {r }, or: {B?} {L } {B?} ,
{ } T {M/LT} Tµ

� �∆ � �= = =� � � �
� � � �

 

or: {B} = {L–1} Ans. 

The parameter B must have dimensions of inverse length. In fact, B is not a constant, it 
hides one of the variables in pipe flow. The proper form of the pipe flow relation is  

( )2 2
o

p
u C r r

Lµ
∆= −  

where L is the length of the pipe and C is a dimensionless constant which has the 
theoretical laminar-flow value of (1/4)—see Sect. 6.4. 
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1.13 The efficiency η of a pump is defined as 

Q p

Input Power
η ∆=  

where Q is volume flow and ∆p the pressure rise produced by the pump. What is η if 
∆p = 35 psi, Q = 40 L/s, and the input power is 16 horsepower? 

Solution: The student should perhaps verify that Q∆p has units of power, so that η is a 
dimensionless ratio. Then convert everything to consistent units, for example, BG: 

2

2 2

L ft lbf lbf ft lbf
Q 40 1.41 ; p 35 5040 ; Power 16(550) 8800 

s s sin ft

⋅= = ∆ = = = =  

3 2(1.41 ft s)(5040 lbf ft )
0.81 or

8800 ft lbf s
Ans.η / /= ≈

⋅ /
81%  

Similarly, one could convert to SI units: Q = 0.04 m3/s, ∆p = 241300 Pa, and input power = 
16(745.7) = 11930 W, thus h = (0.04)(241300)/(11930) = 0.81. Ans. 

 

1.14 The volume flow Q over a dam is 
proportional to dam width B and also varies 
with gravity g and excess water height H 
upstream, as shown in Fig. P1.14. What is 
the only possible dimensionally homo-
geneous relation for this flow rate? 

Solution: So far we know that 
Q = B fcn(H,g). Write this in dimensional 
form: 

3

2

L
{Q} {B}{f(H,g)} {L}{f(H,g)},

T

L
or: {f(H,g)}

T

� �
= = =� �
� �

� �
= � �
� �

 

 
Fig. P1.14

So the function fcn(H,g) must provide dimensions of {L2/T}, but only g contains time. 
Therefore g must enter in the form g1/2 to accomplish this. The relation is now  

Q = Bg1/2fcn(H), or: {L3/T} = {L}{L1/2/T}{fcn(H)}, or: {fcn(H)} = {L3/2} 
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In order for fcn(H) to provide dimensions of {L3/2}, the function must be a 3/2 power. 
Thus the final desired homogeneous relation for dam flow is: 

Q = CBg1/2H3/2, where C is a dimensionless constant Ans. 
 

1.15 As a practical application of Fig. P1.14, often termed a sharp-crested weir, civil 
engineers use the following formula for flow rate: Q ≈ 3.3 BH3/2, with Q in ft3/s and B 
and H in feet. Is this formula dimensionally homogeneous? If not, try to explain the 
difficulty and how it might be converted to a more homogeneous form. 

Solution: Clearly the formula cannot be dimensionally homogeneous, because B and H 
do not contain the dimension time. The formula would be invalid for anything except 
English units (ft, sec). By comparing with the answer to Prob. 1.14 just above, we see 
that the constant “3.3” hides the square root of the acceleration of gravity. 

 

1.16 Test the dimensional homogeneity of the boundary-layer x-momentum equation: 

x
u u p

u v g
x y x y

∂ ∂ ∂ ∂τρ ρ ρ
∂ ∂ ∂ ∂

+ = − + +  

Solution: This equation, like all theoretical partial differential equations in mechanics, 
is dimensionally homogeneous. Test each term in sequence: 

∂ ∂ ∂ρ ρ
∂ ∂ ∂

� �� � � � � � � �= = = = =� � � � � � � � � �
� � � � � � � �� �

2

3

u u M L L/T p M/LT
u v ;

x y T L x LL 2 2 2 2

M M

L T L T
 

2

x 3 2

M L M/LT
{ g } ;

x LL T

∂τρ
∂

� � � � � �= = = =� � � � � �
� � � � � �2 2 2 2

M M

L T L T
 

All terms have dimension {ML–2T–2}. This equation may use any consistent units. 
 

1.17 Investigate the consistency of the Hazen-Williams formula from hydraulics: 

0.54
2.63 p

Q 61.9D
L

∆� �= � �
� �

 

What are the dimensions of the constant “61.9”? Can this equation be used with 
confidence for a variety of liquids and gases? 
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Solution: Write out the dimensions of each side of the equation: 

� � � �∆� �= = =� � � � � �
� �� � � �

0.540.543 2
? 2.63 2.63L p M/LT

{Q}   {61.9}{D } {61.9}{L }
T L L

 

The constant 61.9 has fractional dimensions: {61.9} = {L1.45T0.08M–0.54} Ans. 
Clearly, the formula is extremely inconsistent and cannot be used with confidence 

for any given fluid or condition or units. Actually, the Hazen-Williams formula, still 
in common use in the watersupply industry, is valid only for water flow in smooth 
pipes larger than 2-in. diameter and turbulent velocities less than 10 ft/s and (certain) 
English units. This formula should be held at arm’s length and given a vote of “No 
Confidence.” 

 

1.18* (“*” means “difficult”—not just a 
plug-and-chug, that is) For small particles at 
low velocities, the first (linear) term in Stokes’ 
drag law, Prob. 1.10, is dominant, hence 
F = KV,  where  K  is a constant.  Suppose 

 

a particle of mass m is constrained to move horizontally from the initial position x = 0 
with initial velocity V = Vo. Show (a) that its velocity will decrease exponentially with 
time; and (b) that it will stop after travelling a distance x = mVo/K. 

Solution: Set up and solve the differential equation for forces in the x-direction: 

� = − = − = = −� �
o

V t

x x
V 0

dV dV m
F Drag ma , or: KV m , integrate dt

dt V K
 

( )Solve and  (a,b)Ans. �
t

mt K mt Ko
o

0

mV
V V e x V dt 1 e

K
− / − /= = = −  

Thus, as asked, V drops off exponentially with time, and, as t , x .∞→ = omV K/  
 

1.19 Marangoni convection arises when a surface has a difference in surface 
tension along its length. The dimensionless Marangoni number M is a combination 
of thermal diffusivity α = k/(ρcp) (where k is the thermal conductivity), length scale 
L, viscosity µ, and surface tension difference δY. If M is proportional to L, find  
its form. 
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Solution: List the dimensions: {α} = {L2/T}, {L} = {L}, {µ} = {M/LT}, {δY} = {M/T2}. 
We divide δ Y by µ to get rid of mass dimensions, then divide by α  to eliminate time: 

{ }2 2

Y Y 1 1
, then

M LT L L T

M T T LT L

δ δ
µ µ α

� � � �� � � � � �= = = =� � � � � � � � � �
� � � � � �� � � �

 

Multiply by L and we obtain the Marangoni number: .Ans
L

M = δ
µα
Y

 

 

1.20C (“C” means computer-oriented, although this one can be done analytically.) A 
baseball, with m = 145 g, is thrown directly upward from the initial position z = 0 and 
Vo = 45 m/s. The air drag on the ball is CV2, where C ≈ 0.0010 N ⋅ s2/m2. Set up a 
differential equation for the ball motion and solve for the instantaneous velocity V(t) and 
position z(t). Find the maximum height zmax reached by the ball and compare your results 
with the elementary-physics case of zero air drag. 

Solution: For this problem, we include the weight of the ball, for upward motion z: 

� = − − − = = − = −
+� �

o

V t
2

z z 2
V 0

dV dV
F ma , or: CV mg m , solve  dt t

dt g CV /m
 

φφ
φ

� � � �− √= − =� � � �� �
	 
� �

mg Cg m cos( t (gC/m)
Thus V tan t and z ln

C m C cos

 
 

where –1
otan [V (C/mg)]φ = √ . This is cumbersome, so one might also expect some 

students simply to program the differential equation, m(dV/dt) + CV2 = −mg, with a 
numerical method such as Runge-Kutta. 

For the given data m = 0.145 kg, Vo = 45 m/s, and C = 0.0010 N⋅s2/m2, we compute 

1mg m Cg m
0.8732 radians, 37.72 , 0.2601 s , 145 m

C s m C
φ −= = = =  

Hence the final analytical formulas are: 

� � = −� �
� �

−� �= 	 

� �

m
V in 37.72 tan(0.8732 .2601t)

s

cos(0.8732 0.2601t)
and z(in meters) 145 ln

cos(0.8732)

 

The velocity equals zero when t = 0.8732/0.2601 ≈ 3.36 s, whence we evaluate the 
maximum height of the baseball as zmax = 145 ln[sec(0.8734)] ≈ 64.2 meters. Ans. 
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For zero drag, from elementary physics formulas, V = Vo − gt and z = Vot − gt2/2, we 
calculate that 

2 2
o o

max height max
V V45 (45)

t  and z  
g 9.81 2g 2(9.81)

= = ≈ = = ≈4.59 s 103.2 m  

Thus drag on the baseball reduces the maximum height by 38%. [For this problem I 
assumed a baseball of diameter 7.62 cm, with a drag coefficient CD ≈ 0.36.] 

 

1.21 The dimensionless Grashof number, Gr, is a combination of density ρ, viscosity µ, 
temperature difference ∆T, length scale L, the acceleration of gravity g, and the 
coefficient of volume expansion β, defined as β = (−1/ρ)(∂ρ/∂T)p. If Gr contains both g 
and β in the numerator, what is its proper form? 

Solution: Recall that {µ/ρ} = {L2/T} and eliminates mass dimensions. To eliminate tem-
perature, we need the product {β∆Τ} = {1}. Then {g} eliminates {T}, and L3 cleans it all up: 

2 3 2Thus the dimensionless g / .Gr TL Ansρ β µ= ∆  
 

1.22* According to the theory of Chap. 8, 
as a uniform stream approaches a cylinder 
of radius R along the line AB shown in 
Fig. P1.22, –∞ < x < –R, the velocities are  

2 2u U (1 R /x ); v w 0∞= − = =   
Fig. P1.22 

Using the concepts from Ex. 1.5, find (a) the maximum flow deceleration along AB; and 
(b) its location. 

Solution: We see that u slows down monotonically from U∞ at A to zero at point B, 
x = −R, which is a flow “stagnation point.” From Example 1.5, the acceleration (du/dt) is 

2 2 2

2 3 3 5

du u u R 2R U 2 2 x
u 0 U 1 U ,

dt t x R Rx x

∂ ∂ − ζ
∂ ∂ ζ ζ

∞
∞ ∞

� �� � � � � �
= + = + − + = =� �� � � � � �

� � 	 
	 
 	 
� �
 

This acceleration is negative, as expected, and reaches a minimum near point B, which is 
found by differentiating the acceleration with respect to x: 

2
max decel.

min

d du 5 x
0 if , or . (b)

dx dt 3 R

du
Substituting 1.291 into (du/dt) gives . (a)

dt

Ans

Ans

ζ

ζ

� � = = ≈� �
� �

= − =

|

| ∞

−

−
2

1.291

U
0.372

R
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A plot of the flow deceleration along line AB is shown as follows. 

 
 

1.23E This is an experimental home project, finding the flow rate from a faucet.  
 

1.24 Consider carbon dioxide at 10 atm and 400°C. Calculate ρ and cp at this state and 
then estimate the new pressure when the gas is cooled isentropically to 100°C. Use two 
methods: (a) an ideal gas; and (b) the Gas Tables or EES. 

Solution: From Table A.4, for CO2, k ≈ 1.30, and R ≈ 189 m2/(s2⋅K). Convert pressure 
from p1 = 10 atm = 1,013,250 Pa, and T1 = 400°C = 673 K. (a) Then use the ideal gas laws: 

1
1 2 2 3

1

1,013,250
;

(189 / )(673 )

1.3(189)
. (a)

1 1.3 1p

p Pa kg

RT m s K K m

kR J
c Ans

k kg K

ρ = = =

= = =
− − ⋅

7.97

819

 

For an ideal gas cooled isentropically to T2 = 100°C = 373 K, the formula is 
/( 1) 1.3 /(1.3 1)

2 2 2
2

1 1

373
0.0775,  . (a)

1013 673

k k
p T p K

p Ans
p T kPa K

− −
� � � �= = = = =� �� � � �� �

or: 79 kPa  

For EES or the Gas Tables, just program the properties for carbon dioxide or look them up: 

3
1 2 kg/m ;  J/(kg K);  kPa . (b)pc p Ansρ = = ⋅ =7.98 1119 43  

(NOTE: The large errors in “ideal” cp and “ideal” final pressure are due to the sharp drop-
off in k of CO2 with temperature, as seen in Fig. 1.3 of the text.) 
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1.25 A tank contains 0.9 m3 of helium at 200 kPa and 20°C. Estimate the total mass of 
this gas, in kg, (a) on earth; and (b) on the moon.  Also, (c) how much heat transfer, in 
MJ, is required to expand this gas at constant temperature to a new volume of 1.5 m3? 

Solution: First find the density of helium for this condition, given R = 2077 m2/(s2⋅K) 
from Table A-4. Change 20°C to 293 K: 

2
3

He
He

p 200000 N/m
0.3286 kg/m

R T (2077 J/kg K)(293 K)
ρ = = ≈

⋅
 

Now mass is mass, no matter where you are. Therefore, on the moon or wherever, 

3 3
He Hem (0.3286 kg/m )(0.9 m )  (a,b)Ans.ρ υ= = ≈ 0.296 kg  

For part (c), we expand a constant mass isothermally from 0.9 to 1.5 m3. The first law of 
thermodynamics gives 

added by gas v 2 1dQ dW dE mc T 0 since T T  (isothermal)− = = ∆ = =  

Then the heat added equals the work of expansion. Estimate the work done: 

2 2 2

1-2 2 1
1 1 1

m d
W  p d  RT d mRT  mRT ln( / ),

υυ υ υ υ
υ υ

= = = =� � �  

= ⋅ = ≈1-2 1-2or: W (0.296 kg)(2077 J/kg K)(293 K)ln(1.5/0.9) Q  (c)Ans.92000 J  
 

1.26 A tire has a volume of 3.0 ft3 and a ‘gage’ pressure of 32 psi at 75°F. If the 
ambient pressure is sea-level standard, what is the weight of air in the tire? 

Solution: Convert the temperature from 75°F to 535°R. Convert the pressure to psf: 

2 2 2 2 2p (32 lbf/in )(144 in /ft ) 2116 lbf/ft 4608 2116 6724 lbf/ft= + = + ≈  

From this compute the density of the air in the tire: 

2
3

air
p 6724 lbf/ft

0.00732 slug/ft
RT (1717 ft lbf/slug R)(535 R)

ρ = = =
⋅ ⋅° °

 

Then the total weight of air in the tire is 

3 2 3
airW g (0.00732 slug/ft )(32.2 ft/s )(3.0 ft ) Ans.ρ υ= = ≈ 0.707 lbf  
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1.27 Given temperature and specific volume data for steam at 40 psia [Ref. 13]: 
 

T, °F: 400 500 600 700 800 

v, ft3/lbm: 12.624 14.165 15.685 17.195 18.699 
 
Is the ideal gas law reasonable for this data? If so, find a least-squares value for the gas 
constant R in m2/(s2⋅K) and compare with Table A-4. 

Solution: The units are awkward but we can compute R from the data. At 400°F, 

2 2 2 3

400 F
p (40 lbf/in )(144 in /ft )(12.624 ft /lbm)(32.2 lbm/slug) ft lbf

“R” 2721 
T (400 459.6) R slug R°

⋅= = ≈
+ ° °

V
 

The metric conversion factor, from the inside cover of the text, is “5.9798”: Rmetric = 
2721/5.9798 = 455.1 m2/(s2⋅K). Not bad! This is only 1.3% less than the ideal-gas approxi-
mation for steam in Table A-4: 461 m2/(s2⋅K). Let’s try all the five data points: 

T, °F: 400 500 600 700 800 

R, m2/(s2⋅K): 455 457 459 460 460 

The total variation in the data is only ±0.6%. Therefore steam is nearly an ideal gas in 
this (high) temperature range and for this (low) pressure. We can take an average value: 

5

i
i=1

1
p 40 psia, 400 F T 800 F: R  .

5
Ans= ° ≤ ≤ ° ≈ ≈�steam

J
R 458 0.6%

kg K
±

⋅
 

With such a small uncertainty, we don’t really need to perform a least-squares analysis, 
but if we wanted to, it would go like this: We wish to minimize, for all data, the sum of 
the squares of the deviations from the perfect-gas law: 

25 5
i i

i ii 1 i 1

p E p
Minimize E R by differentiating 0 2 R

T R T

∂
∂= =

� � � �
= − = = −� � � �

� � � �
� �

V V
 

5
i

least-squares
ii 1

p 40(144) 12.624 18.699
Thus R (32.2)

5 T 5 860 R 1260 R=

� �= = + +� �° °� �
� �

V
 

For this example, then, least-squares amounts to summing the (V/T) values and converting 
the units. The English result shown above gives Rleast-squares ≈ 2739 ft⋅lbf/slug⋅°R. Convert 
this to metric units for our (highly accurate) least-squares estimate: 

steamR 2739/5.9798  .Ans≈ ≈ 458 0.6% J/kg K± ⋅  
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1.28 Wet air, at 100% relative humidity, is at 40°C and 1 atm. Using Dalton’s law of 
partial pressures, compute the density of this wet air and compare with dry air. 

Solution: Change T from 40°C to 313 K. Dalton’s law of partial pressures is 

υ υ
= = + = +a w

tot air water a w
m m

p 1 atm p p R T R T  

υ υ= + = +a w
tot a w

a w

p p
or: m m m for an ideal gas

R T R T
 

where, from Table A-4, Rair = 287 and Rwater = 461 m2/(s2⋅K). Meanwhile, from Table A-5, at 
40°C, the vapor pressure of saturated (100% humid) water is 7375 Pa, whence the partial 
pressure of the air is pa = 1 atm − pw = 101350 − 7375 = 93975 Pa. 

Solving for the mixture density, we obtain 

a w a w

a w

m m p p 93975 7375
1.046 0.051  

R T R T 287(313) 461(313)
Ans.ρ

υ
+= = + = + = + ≈

3

kg
1.10

m
 

By comparison, the density of dry air for the same conditions is 

dry air 3

p 101350 kg
1.13 

RT 287(313) m
ρ = = =  

Thus, at 40°C, wet, 100% humidity, air is lighter than dry air, by about 2.7%. 
 

1.29 A tank holds 5 ft3 of air at 20°C and 120 psi (gage). Estimate the energy in ft-lbf 
required to compress this air isothermally from one atmosphere (14.7 psia = 2116 psfa). 

Solution: Integrate the work of compression, assuming an ideal gas: 

2 2
2 2

1-2 2 2
1 11 1

mRT p
W  p d  d mRT ln p ln

p

υυ υ υ
υ υ

� � � �
= − = − = − =� � � �

� � � �
� �  

where the latter form follows from the ideal gas law for isothermal changes. For the given 
numerical data, we obtain the quantitative work done: 

32
1-2 2 2 2

1

p lbf 134.7
W p  ln 134.7 144 (5 ft ) ln .

p 14.7ft
Ansυ

� � � � � �= = × ≈� � � �� � � � � �� �
215,000 ft lbf⋅  

 



16 Solutions Manual • Fluid Mechanics, Fifth Edition 

1.30 Repeat Prob. 1.29 if the tank is filled with compressed water rather than air. Why 
is the result thousands of times less than the result of 215,000 ft⋅lbf in Prob. 1.29?  

Solution: First evaluate the density change of water. At 1 atm, ρ o ≈ 1.94 slug/ft3. At 
120 psi(gage) = 134.7 psia, the density would rise slightly according to Eq. (1.22):  

7
3

o

p 134.7
3001 3000, solve 1.940753 slug/ft ,

p 14.7 1.94

ρ ρ� �= ≈ − ≈� �
� �

 

3
waterHence m (1.940753)(5 ft ) 9.704 slugρυ= = ≈  

The density change is extremely small. Now the work done, as in Prob. 1.29 above, is 

2 2 2

1-2 avg2 2
avg1 1 1

m m d
W  pd  pd  p p m

ρ ρυ
ρ ρ ρ

� � ∆= − = = ≈� �
� �

� � �  for a linear pressure rise 

3

1-2 2 2

14.7 134.7 lbf 0.000753 ft
Hence W 144 (9.704 slug)  

2 slugft 1.9404
Ans.

� �+� �≈ × ≈� � � �� � � �
21 ft lbf⋅  

[Exact integration of Eq. (1.22) would give the same numerical result.] Compressing 
water (extremely small ∆ρ) takes ten thousand times less energy than compressing air, 
which is why it is safe to test high-pressure systems with water but dangerous with air. 

 

1.31 The density of water for 0°C < T < 100°C is given in Table A-1. Fit this data to a 
least-squares parabola, ρ = a + bT + cT2, and test its accuracy vis-a-vis Table A-1. 
Finally, compute ρ at T = 45°C and compare your result with the accepted value of ρ ≈ 
990.1 kg/m3. 

Solution: The least-squares parabola which fits the data of Table A-1 is: 

ρ (kg/m3) ≈ 1000.6 – 0.06986T – 0.0036014T2, T in °C Ans. 

When compared with the data, the accuracy is less than ±1%. When evaluated at the 
particular temperature of 45°C, we obtain 

ρ45°C ≈ 1000.6 – 0.06986(45) – 0.003601(45)2 ≈ 990.2 kg/m3 Ans. 

This is excellent accuracya good fit to good smooth data. 
The data and the parabolic curve-fit are shown plotted on the next page. The curve-fit 

does not display the known fact that ρ for fresh water is a maximum at T = +4°C. 
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1.32 A blimp is approximated by a prolate spheroid 90 m long and 30 m in diameter. 
Estimate the weight of 20°C gas within the blimp for (a) helium at 1.1 atm; and (b) air at 
1.0 atm. What might the difference between these two values represent (Chap. 2)? 

Solution: Find a handbook. The volume of a prolate spheroid is, for our data, 

2 2 32 2
LR (90 m)(15 m) 42412 m

3 3
υ π π= = ≈  

Estimate, from the ideal-gas law, the respective densities of helium and air: 

He
helium 3

He

p 1.1(101350) kg
(a) 0.1832 ;

R T 2077(293) m
ρ = = ≈  

air
air 3

air

p 101350 kg
(b) 1.205 .

R T 287(293) m
ρ = = ≈  

Then the respective gas weights are 

3
He He 3 2

kg m
W g 0.1832 9.81 (42412 m )  (a)

m s
Ans.ρ υ � �� �= = ≈� �� �

� �� �
76000 N  

air airW g (1.205)(9.81)(42412)   (b)Ans.ρ υ= = ≈ 501000 N  

The difference between these two, 425000 N, is the buoyancy, or lifting ability, of the 
blimp. [See Section 2.8 for the principles of buoyancy.] 
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1.33 Experimental data for density of mercury versus pressure at 20°C are as follows: 
 

p, atm: 1 500 1000 1500 2000 

ρ, kg/m3: 13545 13573 13600 13625 13653 
 
Fit this data to the empirical state relation for liquids, Eq. (1.19), to find the best values of 
B and n for mercury. Then, assuming the data are nearly isentropic, use these values to 
estimate the speed of sound of mercury at 1 atm and compare with Table 9.1. 

Solution: This can be done (laboriously) by the method of least-squares, but we can 
also do it on a spreadsheet by guessing, say, n ≈ 4,5,6,7,8 and finding the average B for 
each case. For this data, almost any value of n > 1 is reasonably accurate. We select: 

Mercury:   ,    .Ansn 7 B 35000 2%≈ ≈ ±  

The speed of sound is found by differentiating Eq. (1.19) and then taking the square root: 

o

n 1 1/ 2

o o

o o o

p n(B 1)pdp
n(B 1) , hence a

d ρ ρ
ρ

ρ ρ ρ ρ

−

=
� � � �+≈ + ≈� � � �
	 
 � �

|  

it being assumed here that this equation of state is “isentropic.” Evaluating this relation 
for mercury’s values of B and n, we find the speed of sound at 1 atm: 

1/ 22

mercury 3

(7)(35001)(101350 N/m )
a .

13545 kg/m
Ans

� �
≈ ≈� �
� �

1355 m/s  

This is about 7% less than the value of 1450 m/s listed in Table 9.1 for mercury. 
 

1.34 Consider steam at the following state near the saturation line: (p1, T1) = (1.31 MPa, 
290°C). Calculate and compare, for an ideal gas (Table A.4) and the Steam Tables (or the 
EES software), (a) the density ρ1; and (b) the density ρ2 if the steam expands 
isentropically to a new pressure of 414 kPa. Discuss your results. 

Solution: From Table A.4, for steam, k ≈ 1.33, and R ≈ 461 m2/(s2⋅K). Convert T1 = 
563 K. Then, 

1
1 2 2 3

1

1,310,000 
. (a)

(461 )(563 )

p Pa kg
Ans

RT m s K K m
ρ = = =

/
5.05  

1/ 1/1.33
2 2 2

2 3
1 1

414 
0.421, :  . (b)

5.05 1310 

k
p kPa kg

or Ans
p kPa m

ρ ρ ρ
ρ

� � � �= = = = =� �� � � �� �
2.12  
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For EES or the Steam Tables, just program the properties for steam or look it up: 

3 3
1 2EES real steam:  kg/m . (a),  kg/mAnsρ ρ= =5.23 2.16  Ans. (b) 

The ideal-gas error is only about 3%, even though the expansion approached the saturation line. 
 

1.35 In Table A-4, most common gases (air, nitrogen, oxygen, hydrogen, CO, NO) 
have a specific heat ratio k = 1.40. Why do argon and helium have such high values? 
Why does NH3 have such a low value? What is the lowest k for any gas that you know? 

Solution: In elementary kinetic theory of gases [8], k is related to the number of 
“degrees of freedom” of the gas: k ≈ 1 + 2/N, where N is the number of different modes 
of translation, rotation, and vibration possible for the gas molecule. 

Example: Monotomic gas, N = 3 (translation only), thus k ≈ 5/3 

This explains why helium and argon, which are monatomic gases, have k ≈ 1.67. 

Example: Diatomic gas, N = 5 (translation plus 2 rotations), thus k ≈ 7/5 

This explains why air, nitrogen, oxygen, NO, CO and hydrogen have k ≈ 1.40. 
But NH3 has four atoms and therefore more than 5 degrees of freedom, hence k will 

be less than 1.40 (the theory is not too clear what “N” is for such complex molecules). 
The lowest k known to this writer is for uranium hexafluoride, 238UF6, which is a very 

complex, heavy molecule with many degrees of freedom. The estimated value of k for 
this heavy gas is k ≈ 1.06. 

 

1.36 The bulk modulus of a fluid is defined as B = ρ(∂ p/∂ρ)S. What are the dimensions 
of B? Estimate B (in Pa) for (a) N2O, and (b) water, at 20°C and 1 atm. 

Solution: The density units cancel in the definition of B and thus its dimensions are the 
same as pressure or stress: 

2{B} {p} {F/L } .Ans
� �= = = � �
� �

2

M

LT
 

(a) For an ideal gas, p = Cρ 
k for an isentropic process, thus the bulk modulus is: 

k k 1 kd
Ideal gas: B (C ) kC kC

d
ρ ρ ρ ρ ρ

ρ
−= = = = kp  

22 N OFor N O, from Table A-4, k 1.31, so B 1.31 atm . (a)Ans≈ = = 1.33E5 Pa  
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For water at 20°C, we could just look it up in Table A-3, but we more usefully try to 
estimate B from the state relation (1-22). Thus, for a liquid, approximately, 

n n
o o o o o

d
B [p {(B 1)( / ) B}] n(B 1)p ( / ) n(B 1)p at 1 atm

d
ρ ρ ρ ρ ρ

ρ
≈ + − = + = +  

For water, B ≈ 3000 and n ≈ 7, so our estimate is 

water oB 7(3001)p 21007 atm≈ = ≈ 2.13E9 Pa  Ans. (b) 

This is 2.7% less than the value B = 2.19E9 Pa listed in Table A-3. 
 

1.37 A near-ideal gas has M = 44 and cv = 610 J/(kg⋅K). At 100°C, what are (a) its 
specific heat ratio, and (b) its speed of sound? 

Solution: The gas constant is R = Λ/Μ = 8314/44 ≈ 189 J/(kg⋅K). Then 

v v 2c R/(k 1), or: k 1 R/c 1 189/610  (a)   [It is probably N O]Ans.= − = + = + ≈ 1.31  

With k and R known, the speed of sound at 100ºC = 373 K is estimated by 

2 2a kRT 1.31[189 m /(s K)](373 K)= = ⋅ ≈ 304 m/s  Ans. (b) 
 

1.38 In Fig. P1.38, if the fluid is glycerin 
at 20°C and the width between plates is 
6 mm, what shear stress (in Pa) is required 
to move the upper plate at V = 5.5 m/s? 
What is the flow Reynolds number if “L” is 
taken to be the distance between plates?  

Fig. P1.38 

Solution: (a) For glycerin at 20°C, from Table 1.4, µ ≈ 1.5 N · s/m2. The shear stress is 
found from Eq. (1) of Ex. 1.8: 

V (1.5 Pa s)(5.5 m/s)
. (a)

h (0.006 m)
Ans

µτ ⋅= = ≈ 1380 Pa  

The density of glycerin at 20°C is 1264 kg/m3. Then the Reynolds number is defined by  
Eq. (1.24), with L = h, and is found to be decidedly laminar, Re < 1500: 

3

L
VL (1264 kg/m )(5.5 m/s)(0.006 m)

Re . (b)
1.5 kg/m s

Ans
ρ

µ
= = ≈

⋅
28  
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1.39 Knowing µ ≈ 1.80E−5 Pa · s for air at 20°C from Table 1-4, estimate its viscosity at 
500°C by (a) the Power-law, (b) the Sutherland law, and (c) the Law of Corresponding 
States, Fig. 1.5. Compare with the accepted value µ(500°C) ≈ 3.58E−5 Pa · s. 

Solution: First change T from 500°C to 773 K. (a) For the Power-law for air, n ≈ 0.7, 
and from Eq. (1.30a), 

0.7
n

o o
773

(T/T ) (1.80E 5)  . (a)
293

Ansµ µ � �= ≈ − ≈� �� �

kg
3.55E 5

m s
−

⋅
 

This is less than 1% low. (b) For the Sutherland law, for air, S ≈ 110 K, and from Eq. (1.30b), 

1.5 1.5
o o

o
(T/T ) (T S) (773/293) (293 110)

(1.80E 5)
(T S) (773 110)

 . (b)Ans

µ µ
� � � �+ += ≈ −� � � �+ +� �� �

= kg
3.52E 5

m s
−

⋅

 

This is only 1.7% low. (c) Finally use Fig. 1.5. Critical values for air from Ref. 3 are: 

c cAir: 1.93E 5 Pa s T 132 Kµ ≈ − ⋅ ≈  (“mixture” estimates) 

At 773 K, the temperature ratio is T/Tc = 773/132 ≈ 5.9. From Fig. 1.5, read µ/µc ≈ 1.8. 
Then our critical-point-correlation estimate of air viscosity is only 3% low: 

c1.8 (1.8)(1.93E 5)  . (c)Ansµ µ≈ = − ≈ kg
3.5E 5

m s
−

⋅
 

 

1.40 Curve-fit the viscosity data for water in Table A-1 in the form of Andrade’s equation, 

B
A exp

T
µ � �≈ � �

� �
   where T is in °K and A and B are curve-fit constants. 

Solution: This is an alternative formula to the log-quadratic law of Eq. (1.31). We have 
eleven data points for water from Table A-1 and can perform a least-squares fit to 
Andrade’s equation: 

11
2

i i
i 1

E E
Minimize E [ A exp(B/T )] , then set 0 and 0

A B

∂ ∂µ
∂ ∂=

= − = =�  

The result of this minimization is: A ≈ 0.0016 kg/m⋅s, B ≈ 1903°K. Ans. 
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The data and the Andrade’s curve-fit are plotted. The error is ±7%, so Andrade’s 
equation is not as accurate as the log-quadratic correlation of Eq. (1.31). 

 
 

1.41 Some experimental values of µ for argon gas at 1 atm are as follows: 

T, °K: 300 400 500 600 700 800 

µ, kg/m · s: 2.27E–5 2.85E–5 3.37E–5 3.83E–5 4.25E–5 4.64E–5 

Fit these values to either (a) a Power-law, or (b) a Sutherland law, Eq. (1.30a,b). 

Solution: (a) The Power-law is straightforward: put the values of µ and T into, say, 
“Cricket Graph”, take logarithms, plot them, and make a linear curve-fit. The result is: 

Power-law fit:  . (a)Ansµ � �≈ � �
� �

0.73
T K

2.29E 5
300 K

°−  

Note that the constant “2.29E–5” is slightly higher than the actual viscosity “2.27E–5” 
at T = 300 K. The accuracy is ±1% and would be poorer if we replaced 2.29E–5 by 
2.27E–5. 

(b) For the Sutherland law, unless we rewrite the law (1.30b) drastically, we don’t 
have a simple way to perform a linear least-squares correlation. However, it is no trouble 
to perform the least-squares summation, E = Σ[µi – µo(Ti/300)1.5(300 + S)/(Ti + S)]2 and 
minimize by setting ∂ E/∂ S = 0. We can try µo = 2.27E–5 kg/m⋅s for starters, and it works 
fine. The best-fit value of S ≈ 143°K with negligible error. Thus the result is: 

Sutherland law: . (b)
 /

Ans
−

µ 1.5(T/300) (300 143 K)
2.27E 5 kg m s (T 143 K)

+≈
⋅ +
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We may tabulate the data and the two curve-fits as follows: 
 

T, °K: 300 400 500 600 700 800 

µ × E5, data: 2.27 2.85 3.37 3.83 4.25 4.64 

µ × E5, Power-law: 2.29 2.83 3.33 3.80 4.24 4.68 

µ × E5, Sutherland: 2.27 2.85 3.37 3.83 4.25 4.64 
 

1.42 Some experimental values of µ of helium at 1 atm are as follows: 

T, °K: 200 400 600 800 1000 1200 

µ, kg/m ⋅ s: 1.50E–5 2.43E–5 3.20E–5 3.88E–5 4.50E–5 5.08E–5 

Fit these values to either (a) a Power-law, or (b) a Sutherland law, Eq. (1.30a,b). 

Solution: (a) The Power-law is straightforward: put the values of µ and T into, say, 
“Cricket Graph,” take logarithms, plot them, and make a linear curve-fit. The result is: 

He
 

Power-law curve-fit:  . (a)Ansµ � �≈ � �
� �

0.68
T K

1.505E 5
200 K

°−  

The accuracy is less than ±1%. (b) For the Sutherland fit, we can emulate Prob. 1.41 and 
perform the least-squares summation, E = Σ[µi – µo(Ti/200)1.5(200 + S)/(Ti + S)]2 and 
minimize by setting ∂ E/∂ S = 0. We can try µo = 1.50E–5 kg/m·s and To = 200°K for 
starters, and it works OK. The best-fit value of S ≈ 95.1°K. Thus the result is: 

Sutherland law:      . (b)Ans
µ 1.5

Helium (T/200) (200 95.1 K)
4%

1.50E 5 kg/m s (T 95.1 K)
+ °≈ ±

− ⋅ + °
 

For the complete range 200–1200°K, the Power-law is a better fit. The Sutherland law 
improves to ±1% if we drop the data point at 200°K. 

 

1.43 Yaws et al. [ref. 34] suggest a 4-constant curve-fit formula for liquid viscosity: 

2
10log A B/T CT DT , with T in absolute units.µ ≈ + + +  

(a) Can this formula be criticized on dimensional grounds? (b) If we use the formula 
anyway, how do we evaluate A,B,C,D in the least-squares sense for a set of N data points? 
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Solution: (a) Yes, if you’re a purist: A is dimensionless, but B,C,D are not. It would be 
more comfortable to this writer to write the formula in terms of some reference 
temperature To: 

2
10 o o olog A B(T /T) C(T/T ) D(T/T ) , (dimensionless A,B,C,D)µ ≈ + + +  

(b) For least squares, express the square error as a summation of data-vs-formula 
differences: 

N N22 2
i i i 10 i i

i 1 i 1

E A B/T CT DT log f for short.µ
= =

� �= + + + − =� �� �  

Then evaluate ∂ E /∂A = 0, ∂ E /∂ B  = 0, ∂ E /∂ C  = 0, and ∂ E /∂ D  = 0, to give four 
simultaneous linear algebraic equations for (A,B,C,D): 

2
i i i i i i i

2
i i i i 10 i

f 0; f /T 0; f T 0; f T 0,

where f A B/T CT DT log µ

� = � = � = � =

= + + + −
 

Presumably this was how Yaws et al. [34] computed (A,B,C,D) for 355 organic liquids. 
 

1.44 The viscosity of SAE 30 oil may vary considerably, according to industry-agreed 
specifications [SAE Handbook, Ref. 26]. Comment on the following data and fit the data 
to Andrade’s equation from Prob. 1.41. 
 

T, °C: 0 20 40 60 80 100 

µSAE30, kg/m · s: 2.00 0.40 0.11 0.042 0.017 0.0095 

Solution: At lower temperatures, 0°C < T < 60°C, these values are up to fifty per cent 
higher than the curve labelled “SAE 30 Oil” in Fig. A-1 of the Appendix. However, at 100°C, 
the value 0.0095 is within the range specified by SAE for this oil: 9.3 < ν < 12.5 mm2/s, 
if its density lies in the range 760 < ρ < 1020 kg/m3, which it surely must. Therefore a 
surprisingly wide difference in viscosity-versus-temperature still makes an oil “SAE 30.” 
To fit Andrade’s law, µ ≈ A exp(B/T), we must make a least-squares fit for the 6 data points 
above (just as we did in Prob. 1.41): 

26

i
ii 1

B E E
Andrade fit: With E A exp , then set 0 and 0

T A B

∂ ∂µ
∂ ∂=

� �� �
= − = =� �� �

	 
� �
�  

This formulation produces the following results: 

Least-squares of  versus T:   . 1Ansµ � �
� �� �

µ ≈ −
⋅ °

kg 6245 K
2.35E 10 exp  (# )

m s T K
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These results (#1) are pretty terrible, errors of ±50%, even though they are “least-
squares.” The reason is that µ varies over three orders of magnitude, so the fit is biased to 
higher µ. 

An alternate fit to Andrade’s equation would be to plot ln(µ) versus 1/T (°K) on, say, 
“Cricket Graph,” and then fit the resulting near straight line by least squares. The result is: 

1
Least-squares of ln( ) versus :   . (#2)

T
Ansµ � �

� �� �
µ ≈ −

⋅ °
kg 5476 K

3.31E 9 exp
m s T K

 

The accuracy is somewhat better, but not great, as follows: 
 

T, °C: 0 20 40 60 80 100 

µSAE30, kg/m ⋅ s: 2.00 0.40 0.11 0.042 0.017 0.0095 

Curve-fit #1: 2.00 0.42 0.108 0.033 0.011 0.0044 

Curve-fit #2: 1.68 0.43 0.13 0.046 0.018 0.0078 
 
Neither fit is worth writing home about. Andrade’s equation is not accurate for SAE 30 oil. 

 

1.45 A block of weight W slides down an 
inclined plane on a thin film of oil, as in 
Fig. P1.45 at right. The film contact area 
is A and its thickness h. Assuming a linear 
velocity distribution in the film, derive an 
analytic expression for the terminal velocity 
V of the block. 

 
Fig. P1.45 

Solution: Let “x” be down the incline, in the direction of V. By “terminal” velocity we 
mean that there is no acceleration. Assume a linear viscous velocity distribution in the 
film below the block. Then a force balance in the x direction gives: 

x x

terminal

V
F W sin A W sin A ma 0,

h

 
or: V .Ans

θ τ θ µ� �
� = − = − = =� �

� �

= hW sin
A

θ
µ

 

 

1.46 Find the terminal velocity in Prob. P1.45 if m = 6 kg, A = 35 cm2, θ = 15°, and the 
film is 1-mm thick SAE 30 oil at 20°C. 
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Solution: From Table A-3 for SAE 30 oil, µ ≈ 0.29 kg/m · s. We simply substitute these 
values into the analytical formula derived in Prob. 1.45: 

2

hW sin (0.001 m)(6 9.81 N)sin(15 )
V  .

A (0.29 kg/m s)(0.0035 m )
Ans

θ
µ

× °= = ≈
⋅

m
15

s
 

 

1.47 A shaft 6.00 cm in diameter and 40 cm long is pulled steadily at V = 0.4 m/s 
through a sleeve 6.02 cm in diameter. The clearance is filled with oil, ν = 0.003 m2/s and 
SG = 0.88. Estimate the force required to pull the shaft. 

Solution: Assuming a linear velocity distribution in the clearance, the force is balanced 
by resisting shear stress in the oil: 

i
wall i

o i

V V D L
F A ( D L)

R R R

µ πτ µ π� �= = =� �∆ −� �
 

For the given oil, µ = ρν = (0.88 × 998 kg/m3)(0.003 m2/s) ≈ 2.63 N · s/m (or kg/m · s). 
Then we substitute the given numerical values to obtain the force: 

2
i

o i

V D L (2.63 N s/m )(0.4 m/s) (0.06 m)(0.4 m)
F  .

R R (0.0301 0.0300 m)
Ans

µ π π⋅= = ≈
− −

795 N  

 

1.48 A thin moving plate is separated from two fixed plates by two fluids of unequal 
viscosity and unequal spacing, as shown below. The contact area is A. Determine (a) the 
force required, and (b) is there a necessary relation between the two viscosity values? 

 

Solution: (a) Assuming a linear velocity distribution on each side of the plate, we obtain 

1 2F A A . aAnsτ τ � �
= + = � �

� �

1 2

1 2

V V
A ( )

h h
µ µ+  

The formula is of course valid only for laminar (nonturbulent) steady viscous flow. 
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(b) Since the center plate separates the two fluids, they may have separate, unrelated 
shear stresses, and there is no necessary relation between the two viscosities. 

 

1.49 An amazing number of commercial and laboratory devices have been developed to 
measure fluid viscosity, as described in Ref. 27. Consider a concentric shaft, as in Prob. 1.47, 
but now fixed axially and rotated inside the sleeve. Let the inner and outer cylinders have 
radii ri and ro, respectively, with total sleeve length L. Let the rotational rate be Ω (rad/s) 
and the applied torque be M. Using these parameters, derive a theoretical relation for the 
viscosity µ of the fluid between the cylinders. 

Solution: Assuming a linear velocity distribution in the annular clearance, the shear stress is 

i

o i

rV

r r r
τ µ µ Ω∆= ≈

∆ −
 

This stress causes a force dF = τ dA = τ  (ri dθ)L on each element of surface area of the inner 
shaft. The moment of this force about the shaft axis is dM = ri dF. Put all this together: 

π πµµ θΩ Ω= = =
− −� �

2 3

0

2i i
i i i

o i o i

r r L
M r dF r r L d

r r r r
 

{ }Solve for the viscosity: .Ansοµ Μ π≈ − 2 Ω 3( )i ir r r L  

 

1.50 A simple viscometer measures the time t for a solid sphere to fall a distance L 
through a test fluid of density ρ. The fluid viscosity µ is then given by 

ρµ
π µ

≈ ≥ 2

3
netW t DL

if t
DL

 

where D is the sphere diameter and Wnet is the sphere net weight in the fluid. 
(a) Show that both of these formulas are dimensionally homogeneous. (b) Suppose that a 
2.5 mm diameter aluminum sphere (density 2700 kg/m3) falls in an oil of density 875 kg/m3. 
If the time to fall 50 cm is 32 s, estimate the oil viscosity and verify that the inequality is valid. 

Solution: (a) Test the dimensions of each term in the two equations: 
2

net

3

W ( / )( )
{ } and ,  dimensions OK.

(3 ) (1)( )( )

2 (1)( / )( )( )
{ } { } and { } ,  dimensions OK. . (a)

/

tM ML T T M

LT DL L L LT

DL M L L L
t T T Ans

M LT

µ
π

ρ
µ

� �� �� � � �= = =� � � � � � � �
� � � �� � � �

� �� �= = =� � � �
� � � �

Yes

Yes
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(b) Evaluate the two equations for the data. We need the net weight of the sphere in the fluid: 

3 2 3
net sphere fluid fluid( ) ( ) (2700 875 kg/m )(9.81 m/s )( /6)(0.0025 m)

0.000146 N

W g Volρ ρ π= − = −

=
 

net (0.000146 )(32 )
Then  . (b)

3 3 (0.0025 )(0.5 )

W t N s kg
Ans

DL m m m s
µ

π π
= = =

⋅
0.40  

32 DL 2(875 / )(0.0025 )(0.5 )
Check 32 compared to

0.40 /

5.5 OK,  is greater

kg m m m
t s

kg m s

s t

ρ
µ

= =
⋅

=
 

 

1.51 Use the theory of Prob. 1.50 for a shaft 8 cm long, rotating at 1200 r/min, with 
ri = 2.00 cm and ro = 2.05 cm. The measured torque is M = 0.293 N·m. What is the fluid 
viscosity? If the experimental uncertainties are: L (±0.5 mm), M (±0.003 N-m), Ω (±1%), 
and ri and ro (±0.02 mm), what is the uncertainty in the viscosity determination? 

Solution: First change the rotation rate to Ω = (2π/60)(1200) = 125.7 rad/s. Then the 
analytical expression derived in Prob. 1.50 directly above is 

o i
3

3i

M(R R ) (0.293 N m)(0.0205 0.0200 m)
 

rad2 R L 2 125.7 (0.02 m) (0.08 m)
s

Ansµ
π π

− ⋅ −= = ≈ .
� �Ω
� �� �

kg
0.29

m s⋅
 

It might be SAE 30W oil! For estimating overall uncertainty, since the formula involves 
five things, the total uncertainty is a combination of errors, each expressed as a fraction: 

3

M R

R LR

0.003 0.04
S 0.0102; S 0.08; S 0.01

0.293 0.5

0.02 0.5
S 3S 3 0.003; S 0.00625

20 80

∆ Ω= = = = =

� �= = = = =� �
� �

 

One might dispute the error in ∆R—here we took it to be the sum of the two (±0.02-mm) 
errors. The overall uncertainty is then expressed as an rms computation [Refs. 30 and 31 
of Chap. 1]: 

( )3
2 2 2 2 2
m R LR

2 2 2 2 2

S S S S S S

[(0.0102) (0.08) (0.01) (0.003) (0.00625) ] Ans

µ ∆ Ω= √ + + + +

= + + + + ≈ .0.082
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The total error is dominated by the 8% error in the estimate of clearance, (Ro – Ri). We 
might state the experimental result for viscosity as 

exp 0.29 8.2%  Ansµ ≈ ± = .kg
0.29 0.024

m s
±

⋅
 

 

1.52 The belt in Fig. P1.52 moves at steady velocity V and skims the top of a tank of oil 
of viscosity µ. Assuming a linear velocity profile, develop a simple formula for the belt-
drive power P required as a function of (h, L, V, B, µ). Neglect air drag. What power P in 
watts is required if the belt moves at 2.5 m/s over SAE 30W oil at 20°C, with L = 2 m, 
b = 60 cm, and h = 3 cm? 

 
Fig. P1.52 

Solution: The power is the viscous resisting force times the belt velocity: 

oil belt belt
V

P A V (bL)V .
h

Ansτ µ� �= ≈ =� �
� �

2 L
V b

h
µ  

(b) For SAE 30W oil, µ ≈ 0.29 kg/m ⋅ s. Then, for the given belt parameters, 

2 2
2

3

kg m 2.0 m kg m
P V bL/h 0.29 2.5 (0.6 m) 73  . (b)

m s s 0.03 m s
Ansµ � � ⋅� �= = ≈ =� �� �⋅ � �� �

73 W  

 

1.53* A solid cone of base ro and initial 
angular velocity ωo is rotating inside a 
conical seat. Neglect air drag and derive a 
formula for the cone’s angular velocity 
ω(t) if there is no applied torque. 

Solution: At any radial position r < ro on 
the cone surface and instantaneous rate ω, 

 
Fig. P1.53 

w
r dr

d(Torque) r  dA r 2 r ,
h sin

ωτ µ π
θ

� �� �= = � �� �
� �� �
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πµωµω π

θ θ
= =�

or 4
3 o

0

r
or: Torque M 2 r dr

h sin 2hsin
 

We may compute the cone’s slowing down from the angular momentum relation: 

2
o o o

d 3
M I , where I (cone) mr , m cone mass

dt 10

ω= − = =  

Separating the variables, we may integrate: 

o

w t4
o

o 0

rd
dt, or:  .

2hI sin
Ans

ω

πµω
ω θ

� �
= − � �

� �
� �

πµω ω
θ

= −
2
o

o
5 r t

exp
3mh sin

 

 

1.54* A disk of radius R rotates at 
angular velocity Ω inside an oil container 
of viscosity µ, as in Fig. P1.54. Assuming a 
linear velocity profile and neglecting shear 
on the outer disk edges, derive an expres-
sion for the viscous torque on the disk.  

Fig. P1.54 

Solution: At any r ≤ R, the viscous shear τ ≈ µΩr/h on both sides of the disk. Thus, 

w

R
3

0

r
d(torque) dM 2r dA 2r 2 r dr,

h

or: M 4 r dr
h

Ans

µτ

µπ

Ω= = = π

Ω= = .�
4R

h
Ωπµ

 

 

1.55 Apply the rotating-disk viscometer of Prob. 1.54, to the particular case R = 5 cm, 
h = 1 mm, rotation rate 900 rev/min, measured torque M = 0.537 N·m. What is the fluid 
viscosity? If each parameter (M,R,h,Ω) has uncertainty of ±1%, what is the overall 
uncertainty of the measured viscosity? 

Solution: The analytical formula M = πµΩR4/h was derived in Prob. 1.54. Convert the 
rotation rate to rad/s: Ω = (900 rev/min)(2π  rad/rev ÷ 60 s/min) = 94.25 rad/s. Then, 

4 4

hM (0.001 m)(0.537 N m) kg
  or 

m sR (94.25 rad/s)(0.05 m)
Ansµ

π π
⋅ � �= = = .� �� �⋅Ω 2

N s
0.29

m

⋅
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For uncertainty, looking at the formula for µ, we have first powers in h, M, and Ω and a 
fourth power in R. The overall uncertainty estimate [see Eq. (1.44) and Ref. 31] would be 

1/ 22 2 2 2
h M R

2 2 2 2 1/ 2

S S S S (4S )

[(0.01) (0.01) (0.01) {4(0.01)} ] 0.044 or: Ans

µ Ω� �≈ + + +� �

≈ + + + ≈ .4.4%±
 

The uncertainty is dominated by the 4% error due to radius measurement. We might 
report the measured viscosity as µ ≈ 0.29 ± 4.4% kg/m·s or 0.29 ± 0.013 kg/m·s. 

 

1.56* For the cone-plate viscometer in 
Fig. P1.56, the angle is very small, and the 
gap is filled with test liquid µ. Assuming a 
linear velocity profile, derive a formula for 
the viscosity µ in terms of the torque M 
and cone parameters. 

 
Fig. P1.56 

Solution: For any radius r ≤ R, the liquid gap is h = r tanθ. Then 

w
r dr

d(Torque) dM dA r 2 r r, or
r tan cos

τ µ π
θ θ

� �Ω � �= = = � �� �
� �� �

 

R 3
2

0

2 2 R
M r dr , or: .

sin 3sin
Ans

π µ π µ µ
θ θ

Ω Ω= = =� 3

3M sin

2 R

θ
πΩ

 

 

1.57 Apply the cone-plate viscometer of Prob. 1.56 above to the special case R = 6 cm, 
θ = 3°, M = 0.157 N ⋅ m, and a rotation rate of 600 rev/min. What is the fluid viscosity? If 
each parameter (M,R,Ω,θ) has an uncertainty of ±1%, what is the uncertainty of µ? 

Solution: We derived a suitable linear-velocity-profile formula in Prob. 1.56. Convert 
the rotation rate to rad/s: Ω  =  (600 rev/min)(2π rad/rev ÷ 60 s/min) = 62.83 rad/s. Then, 

3 3

3Msin 3(0.157 N m)sin(3 ) kg
 or .

m s2 R 2 (62.83 rad/s)(0.06 m)
Ans

θµ
π π

⋅ ° � �= = = � �� �⋅Ω 2

N s
0.29

m

⋅
 

For uncertainty, looking at the formula for µ, we have first powers in θ, M, and Ω and a 
third power in R. The overall uncertainty estimate [see Eq. (1.44) and Ref. 31] would be 

1/ 22 2 2 2
M R

2 2 2 2 1/ 2

S S S S (3S )

[(0.01) (0.01) (0.01) {3(0.01)} ] 0.035, or: Ans

µ θ Ω� �= + + +� �

≈ + + + = . .3 5± %
 

The uncertainty is dominated by the 3% error due to radius measurement. We might 
report the measured viscosity as µ ≈ 0.29 ± 3.5% kg/m·s or 0.29 ± 0.01 kg/m·s. 
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1.58 The laminar-pipe-flow example of Prob. 1.14 leads to a capillary viscometer [27], 
using the formula µ = πro

4∆p/(8LQ). Given ro = 2 mm and L = 25 cm. The data are 

Q, m3/hr: 0.36 0.72 1.08 1.44 1.80 

∆p, kPa: 159 318 477 1274 1851 

Estimate the fluid viscosity. What is wrong with the last two data points? 

Solution: Apply our formula, with consistent units, to the first data point: 

4 4 2
o

3 2

r p (0.002 m) (159000 N/m ) N s
p 159 kPa: 0.040 

8LQ 8(0.25 m)(0.36/3600 m /s) m

π πµ ∆ ⋅∆ = ≈ = ≈  

Do the same thing for all five data points: 

∆p, kPa: 159 318 477 1274 1851 

µ, N·s/m2: 0.040 0.040 0.040 0.080(?) 0.093(?) Ans. 

The last two estimates, though measured properly, are incorrect. The Reynolds number of the 
capillary has risen above 2000 and the flow is turbulent, which requires a different formula. 

 

1.59 A solid cylinder of diameter D, length L, density ρs falls due to gravity inside a tube of 
diameter Do. The clearance, o(D D) D,− �  is filled with a film of viscous fluid (ρ,µ). Derive 
a formula for terminal fall velocity and apply to SAE 30 oil at 20°C for a steel cylinder with 
D = 2 cm, Do = 2.04 cm, and L = 15 cm. Neglect the effect of any air in the tube. 

Solution: The geometry is similar to Prob. 1.47, only vertical instead of horizontal. At 
terminal velocity, the cylinder weight should equal the viscous drag: 

2
z z s

o

V
a 0: F W Drag g D L DL,

4 (D D)/2

πρ µ π
� �

= = − + = − + � �−� �
Σ  

or: V .Ans= s ogD(D D)
8

−ρ
µ

 

For the particular numerical case given, ρsteel ≈ 7850 kg/m3. For SAE 30 oil at 20°C, 
µ ≈ 0.29 kg/m·s from Table 1.4. Then the formula predicts 

3 2
s o

terminal
gD(D D) (7850 kg/m )(9.81 m/s )(0.02 m)(0.0204 0.02 m)

V
8 8(0.29 kg/m s)

 .Ans

ρ
µ

− −= =
⋅

≈   0.265 m/s  
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1.60 A highly viscous (non-turbulent) fluid fills the gap between two long concentric 
cylinders of radii a and b > a, respectively. If the outer cylinder is fixed and the inner 
cylinder moves steadily at axial velocity U, the fluid will move at the axial velocity: 

ln( / )

ln( / )z
U b r

v
b a

=  

See Fig. 4.2 for a definition of the velocity component vz. Sketch this velocity distribution 
between the cylinders and comment. Find expressions for the shear stresses at both the 
inner and outer cylinder surfaces and explain why they are different. 

Solution: Evaluate the shear stress at each cylinder by the Newtonian law, Eq. (1.23): 

inner
ln( / ) 1

.
ln( / ) ln( / ) /r a

d U b r U
Ans

dr b a b a r

µτ µ
=

� � � �= = � �� �
	 
� �

= µU
a b aln( )

 

µτ µ
=

� � � �= = � �� �
	 
� �

outer
ln( / ) 1

.
ln( / ) ln( / ) /r b

d U b r U
Ans

dr b a b a r

U
b b a

= µ
ln( )

 

They are not the same because the outer cylinder area is larger. For equilibrium, we need 
the inner and outer axial forces to be the same, which means τinnera = τouterb. 

A sketch of vz(r), from the logarithmic formula above, is shown for a relatively wide 
annulus, a/b = 0.8. The velocity profile is seen to be nearly linear. 

 

 

1.61 An air-hockey puck has m = 50 g and D = 9 cm. When placed on a 20°C air 
table, the blower forms a 0.12-mm-thick air film under the puck. The puck is struck 
with an initial velocity of 10 m/s. How long will it take the puck to (a) slow down to 1 m/s; 
(b) stop completely? Also (c) how far will the puck have travelled for case (a)? 

Solution: For air at 20°C take µ ≈ 1.8E−5 kg/m·s. Let A be the bottom area of the 
puck, A = πD2/4. Let x be in the direction of travel. Then the only force acting in the 
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x direction is the air drag resisting the motion, assuming a linear velocity distribution in 
the air: 

x
V dV

F A A m , where h air film thickness
h dt

τ µ= − = − = =�  

Separate the variables and integrate to find the velocity of the decelerating puck: 

o

V t
Kt

o
V 0

dV A
K dt, or V V e , where K

V mh

µ−= − = =� �  

Integrate again to find the displacement of the puck: 

t
Kto

0

V
x V dt [1 e ]

K
−= = −�  

Apply to the particular case given: air, µ ≈ 1.8E−5 kg/m·s, m = 50 g, D = 9 cm, h = 0.12 mm, 
Vo = 10 m/s. First evaluate the time-constant K: 

2
1A (1.8E 5 kg/m s)[( /4)(0.09 m) ]

K 0.0191 s
mh (0.050 kg)(0.00012 m)

µ π −− ⋅= = ≈  

(a) When the puck slows down to 1 m/s, we obtain the time: 
1Kt (0.0191 s )t

oV 1 m/s V e (10 m/s)e , or t
−− −= = = ≈ 121 s  Ans. (a) 

(b) The puck will stop completely only when e–Kt = 0, or: t = ∞ Ans. (b) 
(c) For part (a), the puck will have travelled, in 121 seconds, 

Kt (0.0191)(121)o
1

V 10 m/s
x (1 e ) [1 e ]  (c)

K 0.0191 s
Ans.− −

−= − = − ≈ 472 m   

This may perhaps be a little unrealistic. But the air-hockey puck does accelerate slowly! 
 

1.62 The hydrogen bubbles in Fig. 1.13 have D ≈ 0.01 mm. Assume an “air-water” 
interface at 30°C. What is the excess pressure within the bubble? 

Solution: At 30°C the surface tension from Table A-1 is 0.0712 N/m. For a droplet or 
bubble with one spherical surface, from Eq. (1.32), 

 
2Y 2(0.0712 N/m)

p  
R (5E 6 m)

∆ = = ≈
−

28500 Pa  Ans. 
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1.63 Derive Eq. (1.37) by making a 
force balance on the fluid interface in 
Fig. 1.9c. 

Solution: The surface tension forces 
YdL1 and YdL2 have a slight vertical 
component. Thus summation of forces in 
the vertical gives the result 

z 2 1

1 2

F 0 2YdL sin(d /2)

2YdL sin(d /2) pdA

θ
θ

= =
+ − ∆

�
 

 

 
Fig. 1.9c 

But dA = dL1dL2 and sin(dθ/2) ≈ dθ/2, so we may solve for the pressure difference: 

2 1 1 2 1 2

1 2 1 2

dL d dL d d d
p Y Y

dL dL dL dL

θ θ θ θ� � � �+∆ = = + =� � � �
� � � �1 2

1 1
Y

R R
+  Ans. 

 

1.64 A shower head emits a cylindrical jet of clean 20°C water into air. The pressure 
inside the jet is approximately 200 Pa greater than the air pressure. Estimate the jet 
diameter, in mm. 

Solution: From Table A.5 the surface tension of water at 20°C is 0.0728 N/m. For 
a liquid cylinder, the internal excess pressure from Eq. (1.31) is ∆p = Y/R. Thus, for 
our data, 

2/ 200 N/m (0.0728 N/m)/ ,

solve 0.000364 m,  

p Y R R

R Ans.

∆ = = =
= 0.00073 m=D

 

 

1.65 The system in Fig. P1.65 is used to 
estimate the pressure p1 in the tank by 
measuring the 15-cm height of liquid in 
the 1-mm-diameter tube. The fluid is at 
60°C. Calculate the true fluid height in 
the tube and the percent error due to 
capillarity if the fluid is (a) water; and 
(b) mercury. 

 
Fig. P1.65 
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Solution: This is a somewhat more realistic variation of Ex. 1.9. Use values from that 
example for contact angle θ: 
(a) Water at 60°C: γ ≈ 9640 N/m3, θ ≈ 0°: 

3

4Y cos 4(0.0662 N/m)cos(0 )
h 0.0275 m,

D (9640 N/m )(0.001 m)

θ
γ

°= = =  

or: ∆htrue = 15.0 – 2.75 cm ≈ 12.25 cm (+22% error) Ans. (a) 

(b) Mercury at 60°C: γ ≈ 132200 N/m3, θ ≈ 130°: 

3

4Y cos 4(0.47 N/m)cos130
h 0.0091 m,

D (132200 N/m )(0.001 m)

θ
γ

°= = = −  

trueor: h 15.0 0.91∆ = + ≈ 15.91cm( 6%error)−  Ans. (b) 
 

1.66 A thin wire ring, 3 cm in diameter, is lifted from a water surface at 20°C. What is 
the lift force required? Is this a good method? Suggest a ring material. 

Solution: In the literature this ring-pull device is called a DuNouy Tensiometer. The 
forces are very small and may be measured by a calibrated soft-spring balance. 
Platinum-iridium is recommended for the ring, being noncorrosive and highly wetting 
to most liquids. There are two surfaces, inside and outside the ring, so the total force 
measured is 

F 2(Y D) 2Y Dπ π= =  

This is crude—commercial devices recommend multiplying this relation by a correction 
factor f = O(1) which accounts for wire diameter and the distorted surface shape. 

For the given data, Y ≈ 0.0728 N/m (20°C water/air) and the estimated pull force is 

F 2 (0.0728 N/m)(0.03 m) .  π= ≈ 0 0137 N  Ans. 

For further details, see, e.g., F. Daniels et al., Experimental Physical Chemistry, 7th ed., 
McGraw-Hill Book Co., New York, 1970. 

 

1.67 A vertical concentric annulus, with outer radius ro and inner radius ri, is lowered 
into fluid of surface tension Y and contact angle θ < 90°. Derive an expression for the 
capillary rise h in the annular gap, if the gap is very narrow. 
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Solution: For the figure above, the force balance on the annular fluid is 

( )2 2
o i o icos (2 2 ) r rY r r g hθ π π ρ π+ = −  

Cancel where possible and the result is 

.Ans= −o i2 cos /{ (r r )}θ ρh Y g  
 

1.68* Analyze the shape η(x) of the 
water-air interface near a wall, as shown. 
Assume small slope, R−1 ≈ d2η/dx2. The 
pressure difference across the interface is 
∆p ≈ ρgη, with a contact angle θ at x = 0 
and a horizontal surface at x = ∞. Find an 
expression for the maximum height h. 

 

 
Fig. P1.68 

Solution: This is a two-dimensional surface-tension problem, with single curvature. The 
surface tension rise is balanced by the weight of the film. Therefore the differential equation is 

2

2

Y d d
p g Y 1

R dxdx

η ηρ η � �∆ = = ≈ � �
� �

�  

This is a second-order differential equation with the well-known solution, 

1 2C exp[Kx] C exp[ Kx], K ( g/Y)η ρ= + − =  

To keep η from going infinite as x = ∞, it must be that C1 = 0. The constant C2 is found 
from the maximum height at the wall: 

x 0 2 2h C exp(0), hence C hη =| = = =  

Meanwhile, the contact angle shown above must be such that, 

x 0
d cot

cot ) hK, thus h
dx K

η θθ= = − ( = − =|  
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The complete (small-slope) solution to this problem is: 

1/2where h (Y/ g) cot .Ansρ θ=η ρ= − 1/2h exp[ ( g/Y) x],  

The formula clearly satisfies the requirement that η = 0 if x = ∞. It requires “small slope” 
and therefore the contact angle should be in the range 70° < θ < 110°. 

 

1.69 A solid cylindrical needle of diameter 
d, length L, and density ρn may “float” on a 
liquid surface. Neglect buoyancy and assume 
a contact angle of 0°. Calculate the maxi-
mum diameter needle able to float on the 
surface. 

 
Fig. P1.69 

Solution: The needle “dents” the surface downward and the surface tension forces are 
upward, as shown. If these tensions are nearly vertical, a vertical force balance gives: 

2
zF 0 2YL g d L, or: . (a)

4
Ans

πρ= = −� max
8Y

d
g

≈
πρ

 

(b) Calculate dmax for a steel needle (SG ≈ 7.84) in water at 20°C. The formula becomes: 

max 3 2

8Y 8(0.073 N/m)
d 0.00156 m  . (b)

g (7.84 998 kg/m )(9.81 m/s )
Ans

πρ π
= = ≈ ≈

×
1.6 mm  

 

1.70 Derive an expression for the capillary-
height change h, as shown, for a fluid of 
surface tension Y and contact angle θ  be- 
tween two parallel plates W apart. Evaluate 
h for water at 20°C if W = 0.5 mm. 

Solution: With b the width of the plates 
into the paper, the capillary forces on each 
wall together balance the weight of water 
held above the reservoir free surface: 
 

 
Fig. P1.70 

gWhb 2(Yb cos ), or: h .Ansρ θ= ≈ 2Y cos
gW

θ
ρ
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For water at 20°C, Y ≈ 0.0728 N/m, ρg ≈ 9790 N/m3, and θ ≈ 0°. Thus, for W = 0.5 mm, 

3

2(0.0728 N/m)cos0
h 0.030 m  

(9790 N/m )(0.0005 m)
Ans.

°= ≈ ≈ 30 mm  

 

1.71* A soap bubble of diameter D1 coalesces with another bubble of diameter D2 to 
form a single bubble D3 with the same amount of air. For an isothermal process, express 
D3 as a function of D1, D2, patm, and surface tension Y. 

Solution: The masses remain the same for an isothermal process of an ideal gas: 

1 2 1 1 2 2 3 3 3

3 3 3a 1 a 2 a 3
1 2 3

m m m ,

p 4Y/r p 4Y/r p 4Y/ror: D D D
RT 6 RT 6 RT 6

ρ υ ρ υ ρ υ

π π π

+ = + = =

� �+ + +� � � � � �� � � �+ = � �� � � �� � � � � �
� �� � � �� � � � � �

 

The temperature cancels out, and we may clean up and rearrange as follows: 

( ) ( ) .Ans+ = + + +3 2 3 2 3 2
a 3 3 a 2 2 a 1 1p D 8YD p D 8YD p D 8YD  

This is a cubic polynomial with a known right hand side, to be solved for D3. 
 

1.72 Early mountaineers boiled water to estimate their altitude. If they reach the top and 
find that water boils at 84°C, approximately how high is the mountain? 

Solution: From Table A-5 at 84°C, vapor pressure pv ≈ 55.4 kPa. We may use this 
value to interpolate in the standard altitude, Table A-6, to estimate 

z  Ans.≈ 4800 m  
 

1.73 A small submersible moves at velocity V in 20°C water at 2-m depth, where 
ambient pressure is 131 kPa. Its critical cavitation number is Ca ≈ 0.25. At what 
velocity will cavitation bubbles form? Will the body cavitate if V = 30 m/s and the 
water is cold (5°C)? 

Solution: From Table A-5 at 20°C read pv = 2.337 kPa. By definition, 

a v
crit crit2 3 2

2(p p ) 2(131000 2337)
Ca 0.25 , solve V   a

V (998 kg/m )V
Ans.

ρ
− −= = = ≈ ( )32.1 m/s  
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If we decrease water temperature to 5°C, the vapor pressure reduces to 863 Pa, and the 
density changes slightly, to 1000 kg/m3. For this condition, if V = 30 m/s, we compute: 

2

2(131000 863)
Ca 0.289

(1000)(30)

−= ≈  

This is greater than 0.25, therefore the body will not cavitate for these conditions. Ans. (b) 
 

1.74 A propeller is tested in a water tunnel at 20°C (similar to Fig. 1.12a). The lowest 
pressure on the body can be estimated by a Bernoulli-type relation, pmin = po − ρV2/2, 
where po = 1.5 atm and V is the tunnel average velocity. If V = 18 m/s, will there be 
cavitation? If so, can we change the water temperature and avoid cavitation? 

Solution: At 20°C, from Table A-5, pv = 2.337 kPa. Compute the minimum pressure: 

2
2

min o 3

1 1 kg m
p p V 1.5(101350 Pa) 998 18 9650 Pa (??)

2 2 sm
ρ � �� �= − = − = −� �� �

� �� �
 

The predicted pressure is less than the vapor pressure, therefore the body will cavitate. 
[The actual pressure would not be negative; a cavitation bubble would form.] 

Since the predicted pressure is negative; no amount of cooling—even to T = 0°C, 
where the vapor pressure is zero, will keep the body from cavitating at 18 m/s. 

 

1.75 Oil, with a vapor pressure of 20 kPa, is delivered through a pipeline by equally-
spaced pumps, each of which increases the oil pressure by 1.3 MPa. Friction losses in the 
pipe are 150 Pa per meter of pipe. What is the maximum possible pump spacing to avoid 
cavitation of the oil? 

Solution: The absolute maximum length L occurs when the pump inlet pressure is 
slightly greater than 20 kPa. The pump increases this by 1.3 MPa and friction drops the 
pressure over a distance L until it again reaches 20 kPa. In other words, quite simply, 

max1.3 MPa 1,300,000 Pa (150 Pa/m)L, or L  Ans.= = ≈ 8660 m  

It makes more sense to have the pump inlet at 1 atm, not 20 kPa, dropping L to about 8 km. 
 

1.76 Estimate the speed of sound of steam at 200°C and 400 kPa, (a) by an ideal-gas 
approximation (Table A.4); and (b) using EES (or the Steam Tables) and making small 
isentropic changes in pressure and density and approximating Eq. (1.38). 
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Solution: (a) For steam, k ≈ 1.33 and R = 461 m2/s2·K. The ideal gas formula predicts: 

2 2(kRT) {1.33(461 m /s K)(200 273 K)} (a)a Ans. ≈ √ = √ ⋅ + ≈ 539 m/s  

(b) We use the formula a = √(∂p/∂ρ)s ≈ √{∆p|s/∆ρ|s} for small isentropic changes in p 
and ρ. From EES, at 200°C and 400 kPa, the entropy is s = 1.872 kJ/kg·K. Raise and 
lower the pressure 1 kPa at the same entropy. At p = 401 kPa, ρ = 1.87565 kg/m3. At 
p = 399 kPa, ρ = 1.86849 kg/m3. Thus ∆ρ = 0.00716 kg/m3, and the formula for sound 
speed predicts: 

2 3
s s{ / } {(2000 N/m )/(0.00358 kg/m )} . (b)a p Ansρ| |≈ √ ∆ ∆ = √ = 529 m/s  

Again, as in Prob. 1.34, the ideal gas approximation is within 2% of a Steam-Table solution. 
 

1.77 The density of gasoline varies with pressure approximately as follows: 

p, atm: 1 500 1000 1500 

ρ, lbm/ft3: 42.45 44.85 46.60 47.98 

Estimate (a) its speed of sound, and (b) its bulk modulus at 1 atm. 

Solution: For a crude estimate, we could just take differences of the first two points: 

ρ
� �−≈ ∆ ∆ ≈ ≈ ≈� �

−� �

2

3

(500 1)(2116) lbf/ft ft
a ( p/ ) 3760  . (a)

s(44.85 42.45)/32.2 slug/ft
Ans

m
1150

s
 

ρ≈ = ≈ ≈2 3 2
2

lbf
B a [42.45/32.2 slug/ft ](3760 ft/s) 1.87E7 . (b)

ft
Ans895 MPa  

For more accuracy, we could fit the data to the nonlinear equation of state for liquids, 
Eq. (1.22). The best-fit result for gasoline (data above) is n ≈ 8.0 and B ≈ 900. 

Equation (1.22) is too simplified to show temperature or entropy effects, so we 
assume that it approximates “isentropic” conditions and thus differentiate: 

n 2 n 1a
a a

a a

n(B 1)pp dp
(B 1)( / ) B, or: a ( / )

p d
ρ ρ ρ ρ

ρ ρ
−+≈ + − = ≈  

liquid a aor, at 1 atm, a n(B 1)p /ρ≈ +  

The bulk modulus of gasoline is thus approximately: 

1 atm a
dp

“ ” n(B 1)p (8.0)(901)(101350 Pa)  (b)
d

Ans.ρ
ρ

Β = = + = ≈| 731 MPa  
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And the speed of sound in gasoline is approximately, 

3 1/2
1 atma [(8.0)(901)(101350 Pa)/(680 kg/m )]  . (a)Ans= ≈ m

1040
s

 

 

1.78 Sir Isaac Newton measured sound speed by timing the difference between 
seeing a cannon’s puff of smoke and hearing its boom. If the cannon is on a mountain 
5.2 miles away, estimate the air temperature in °C if the time difference is (a) 24.2 s; 
(b) 25.1 s. 

Solution: Cannon booms are finite (shock) waves and travel slightly faster than sound 
waves, but what the heck, assume it’s close enough to sound speed: 

(a) 
x 5.2(5280)(0.3048) m

a 345.8 1.4(287)T, T 298 K . (a)
t 24.2 s

Ans
∆≈ = = = ≈ ≈
∆

25 C°  

(b) 
x 5.2(5280)(0.3048) m

a 333.4 1.4(287)T, T 277 K . (b)
t 25.1 s

Ans
∆≈ = = = ≈ ≈
∆

4 C°  

 

1.79 Even a tiny amount of dissolved gas can drastically change the speed of sound of a 
gas-liquid mixture. By estimating the pressure-volume change of the mixture, Olson [40] 
gives the following approximate formula: 

[ (1 ) ][ (1 ) ]
g l

mixture
g l l g

p K
a

x x xK x pρ ρ
≈

+ − + −
 

where x is the volume fraction of gas, K is the bulk modulus, and subscripts �  and g 
denote the liquid and gas, respectively. (a) Show that the formula is dimensionally 
homogeneous. (b) For the special case of air bubbles (density 1.7 kg/m3 and pressure 150 kPa) 
in water (density 998 kg/m3 and bulk modulus 2.2 GPa), plot the mixture speed of sound 
in the range 0 ≤ x ≤ 0.002 and discuss. 

Solution: (a) Since x is dimensionless and K dimensions cancel between the numerator 
and denominator, the remaining dimensions are pressure divided by density: 

ρ= = =

=

1/2 2 3 1/ 2 2 2 1/ 2
mixture{ } [{ }/{ }] [(M/LT )/(M/L )] [L /T ]

 (a)

a p

Yes, homogeneous Ans.L/T
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(b) For the given data, a plot of sound speed versus gas volume fraction is as follows: 

 

The difference in air and water compressibility is so great that the speed drop-off is quite sharp. 
 

1.80* A two-dimensional steady velocity field is given by u = x2 – y2, v = –2xy. Find 
the streamline pattern and sketch a few lines. [Hint: The differential equation is exact.] 

Solution: Equation (1.44) leads to the differential equation: 

2 2
2 2

dx dy dx dy
, or: (2xy)dx (x y )dy 0

u v 2xyx y
= = = + − =

−−
 

As hinted, this equation is exact, that is, it has the form dF = (∂F/∂x)dx + (∂F/∂y)dy = 0. 
We may check this readily by noting that ∂/∂y(2xy) = ∂/∂x(x2 − y2) = 2x = ∂ 2F/∂x∂y. Thus 
we may integrate to give the formula for streamlines: 

.Ans= − +2 3F x y y /3 constant  

This represents (inviscid) flow in a series of 60° corners, as shown in Fig. E4.7a of the 
text. [This flow is also discussed at length in Section 4.7.] 

 

1.81 Repeat Ex. 1.13 by letting the velocity components increase linearly with time: 

Kxt Kyt 0= − +V i j k  

Solution: The flow is unsteady and two-dimensional, and Eq. (1.44) still holds: 

dx dy dx dy
Streamline: , or:

u v Kxt Kyt
= =

−
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The terms K and t both vanish and leave us with the same result as in Ex. 1.13, that is, 

dx/x dy/y, or: Ans.= −� � xy C=  

The streamlines have exactly the same “stagnation flow” shape as in Fig. 1.13. 
However, the flow is accelerating, and the mass flow between streamlines is 
constantly increasing. 

 

1.82 A velocity field is given by u = V cosθ, v = V sinθ, and w = 0, where V and θ are 
constants. Find an expression for the streamlines of this flow. 

Solution: Equation (1.44) may be used to find the streamlines: 

dx dy dx dy dy
, or: tan

u v V cos V sin dx
θ

θ θ
= = = =  

Solution: Ans.y (tan )x constant= +θ  

The streamlines are straight parallel lines which make an angle θ with the x axis. In 
other words, this velocity field represents a uniform stream V moving upward at 
angle θ. 

 

1.83* A two-dimensional unsteady velocity field is given by u = x(1 + 2t), v = y. Find 
the time-varying streamlines which pass through some reference point (xo,yo). Sketch 
some. 

Solution: Equation (1.44) applies with time as a parameter: 

dx dx dy dy 1
, or: ln(y) ln(x) constant

u x(1 2t) v y 1 2t
= = = = +

+ +
 

1/(1 2t)or: y Cx , where C is a constant+=  

In order for all streamlines to pass through y = yo at x = xo, the constant must be 
such that: 

/ .Ansy y x x += 1/(1 2t)
o o( )  

Some streamlines are plotted on the next page and are seen to be strongly time-varying. 
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1.84* Modify Prob. 1.83 to find the equation of the pathline which passes through the 
point (xo, yo) at t = 0. Sketch this pathline. 

Solution: The pathline is computed by integration, over time, of the velocities: 

2t t
o

t
o

dx dx
u x(1 2t), or: (1 2t)dt, or: x x e

dt x

dy dy
v y, or: dt, or: y y e

dt y

+= = + = + =

= = = =

� �

� �
 

We have implemented the initial conditions (x, y) = (xo, yo) at t = 0. [We were very lucky, as 
planned for this problem, that u did not depend upon y and v did not depend upon x.] Now 
eliminate t between these two to get a geometric expression for this particular pathline: 

= + 2
o o ox x exp{ln(y/y ) ln (y/y )}  This pathline is shown in the sketch below. 
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1.85-a Report to the class on the achievements of Evangelista Torricelli. 

Solution: Torricelli’s biography is taken from a goldmine of information which I did not 
put in the references, preferring to let the students find it themselves: C. C. Gillespie (ed.), 
Dictionary of Scientific Biography, 15 vols., Charles Scribner’s Sons, New York, 1976. 

Torricelli (1608–1647) was born in Faenza, Italy, to poor parents who recognized his 
genius and arranged through Jesuit priests to have him study mathematics, philosophy, 
and (later) hydraulic engineering under Benedetto Castelli. His work on dynamics of 
projectiles attracted the attention of Galileo himself, who took on Torricelli as an 
assistant in 1641. Galileo died one year later, and Torricelli was appointed in his place as 
“mathematician and philosopher” by Duke Ferdinando II of Tuscany. He then took up 
residence in Florence, where he spent his five happiest years, until his death in 1647. In 
1644 he published his only known printed work, Opera Geometrica, which made him 
famous as a mathematician and geometer. 

In addition to many contributions to geometry and calculus, Torricelli was the first to 
show that a zero-drag projectile formed a parabolic trajectory. His tables of trajectories 
for various angles and initial velocities were used by Italian artillerymen. He was an 
excellent machinist and constructed—and sold—the very finest telescope lenses in Italy. 

Torricelli’s hydraulic studies were brief but stunning, leading Ernst Mach to proclaim 
him the ‘founder of hydrodynamics.’ He deduced his theorem that the velocity of efflux 
from a hole in a tank was equal to √(2gh), where h is the height of the free surface above 
the hole. He also showed that the efflux jet was parabolic and even commented on water-
droplet breakup and the effect of air resistance. By experimenting with various liquids in 
closed tubes—including mercury (from mines in Tuscany)—he thereby invented the 
barometer. From barometric pressure (about 30 feet of water) he was able to explain why 
siphons did not work if the elevation change was too large. He also was the first to 
explain that winds were produced by temperature and density differences in the atmo-
sphere and not by “evaporation.” 

 

1.85-b Report to the class on the achievements of Henri de Pitot. 

Solution: The following notes are abstracted from the Dictionary of Scientific Biography 
(see Prob. 1.85-a). 

Pitot (1695–1771) was born in Aramon, France, to patrician parents. He hated to study 
and entered the military instead, but only for a short time. Chance reading of a textbook 
obtained in Grenoble led him back to academic studies of mathematics, astronomy, and 
engineering. In 1723 he became assistant to Réamur at the French Academy of Sciences 
and in 1740 became a civil engineer upon his appointment as a director of public works in 
Languedoc Province. He retired in 1756 and returned to Aramon until his death in 1771. 

Pitot’s research was apparently mediocre, described as “competent solutions to 
minor problems without lasting significance”not a good recommendation for tenure 
nowadays! His lasting contribution was the invention, in 1735, of the instrument which 
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bears his name: a glass tube bent at right angles and inserted into a moving stream with 
the opening facing upstream. The water level in the tube rises a distance h above the 
surface, and Pitot correctly deduced that the stream velocity ≈ √(2gh). This is still a 
basic instrument in fluid mechanics. 

 

1.85-c Report to the class on the achievements of Antoine Chézy. 

Solution: The following notes are from Rouse and Ince [Ref. 23]. 
Chézy (1718–1798) was born in Châlons-sur-Marne, France, studied engineering at the Ecole 

des Ponts et Chaussées and then spent his entire career working for this school, finally being 
appointed Director one year before his death. His chief contribution was to study the flow in open 
channels and rivers, resulting in a famous formula, used even today, for the average velocity: 

V const AS/P≈  

where A is the cross-section area, S the bottom slope, and P the wetted perimeter, i.e., the 
length of the bottom and sides of the cross-section. The “constant” depends primarily on 
the roughness of the channel bottom and sides. [See Chap. 10 for further details.] 

 

1.85-d Report to the class on the achievements of Gotthilf Heinrich Ludwig Hagen. 

Solution: The following notes are from Rouse and Ince [Ref. 23].  
Hagen (1884) was born in Königsberg, East Prussia, and studied there, having among 

his teachers the famous mathematician Bessel. He became an engineer, teacher, and 
writer and published a handbook on hydraulic engineering in 1841. He is best known for 
his study in 1839 of pipe-flow resistance, for water flow at heads of 0.7 to 40 cm, 
diameters of 2.5 to 6 mm, and lengths of 47 to 110 cm. The measurements indicated that 
the pressure drop was proportional to Q at low heads and proportional (approximately) to 
Q2 at higher heads, where “strong movements” occurred—turbulence. He also showed 
that ∆p was approximately proportional to D−4. 

Later, in an 1854 paper, Hagen noted that the difference between laminar and turbulent 
flow was clearly visible in the efflux jet, which was either “smooth or fluctuating,” and in 
glass tubes, where sawdust particles either “moved axially” or, at higher Q, “came into 
whirling motion.” Thus Hagen was a true pioneer in fluid mechanics experimentation. 
Unfortunately, his achievements were somewhat overshadowed by the more widely 
publicized 1840 tube-flow studies of J. L. M. Poiseuille, the French physician. 

 

1.85-e Report to the class on the achievements of Julius Weisbach. 

Solution: The following notes are abstracted from the Dictionary of Scientific Biography 
(see Prob. 1.85-a) and also from Rouse and Ince [Ref. 23]. 
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Weisbach (1806–1871) was born near Annaberg, Germany, the 8th of nine children 
of working-class parents. He studied mathematics, physics, and mechanics at Göttingen 
and Vienna and in 1931 became instructor of mathematics at Freiberg Gymnasium. In 
1835 he was promoted to full professor at the Bergakademie in Freiberg. He published 
15 books and 59 papers, primarily on hydraulics. He was a skilled laboratory worker and 
summarized his results in Experimental-Hydraulik (Freiberg, 1855) and in the Lehrbuch 
der Ingenieur- und Maschinen-Mechanik (Brunswick, 1845), which was still in print 
60 years later. There were 13 chapters on hydraulics in this latter treatise. Weisbach 
modernized the subject of fluid mechanics, and his discussions and drawings of flow 
patterns would be welcome in any 20th century textbook—see Rouse and Ince [23] for 
examples. 

Weisbach was the first to write the pipe-resistance head-loss formula in modern form: 
hf(pipe) = f(L/D)(V2/2g), where f was the dimensionless ‘friction factor,’ which Weisbach 
noted was not a constant but related to the pipe flow parameters [see Sect. 6.4]. He was also 
the first to derive the “weir equation” for volume flow rate Q over a dam of crest length L: 

3/2 3/22 2
1/2 1/2 3/2

w w
2 V V 2

Q C (2g) H C (2g) H
3 2g 2g 3

� �� � � �
� �≈ + − ≈� � � �
	 
 	 
� �
� �

 

where H is the upstream water head level above the dam crest and Cw is a 
dimensionless weir coefficient ≈ O(unity). [see Sect. 10.7] In 1860 Weisbach received 
the first Honorary Membership awarded by the German engineering society, the Verein 
Deutscher Ingenieure. 

 

1.85-f Report to the class on the achievements of George Gabriel Stokes. 

Solution: The following notes are abstracted from the Dictionary of Scientific 
Biography (see Prob. 1.85-a). 

Stokes (1819–1903) was born in Skreen, County Sligo, Ireland, to a clergical family 
associated for generations with the Church of Ireland. He attended Bristol College and 
Cambridge University and, upon graduation in 1841, was elected Fellow of Pembroke 
College, Cambridge. In 1849, he became Lucasian Professor at Cambridge, a post once 
held by Isaac Newton. His 60-year career was spent primarily at Cambridge and resulted 
in many honors: President of the Cambridge Philosophical Society (1859), secretary 
(1854) and president (1885) of the Royal Society of London, member of Parliament 
(1887–1891), knighthood (1889), the Copley Medal (1893), and Master of Pembroke 
College (1902). A true ‘natural philosopher,’ Stokes systematically explored hydro-
dynamics, elasticity, wave mechanics, diffraction, gravity, acoustics, heat, meteorology, 
and chemistry. His primary research output was from 1840–1860, for he later became tied 
down with administrative duties. 
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In hydrodynamics, Stokes has several formulas and fields named after him: 

(1) The equations of motion of a linear viscous fluid: the Navier-Stokes equations. 
(2) The motion of nonlinear deep-water surface waves: Stokes waves. 
(3) The drag on a sphere at low Reynolds number: Stokes’ formula, F = 3πµVD. 
(4) Flow over immersed bodies for Re << 1: Stokes flow. 
(5) A metric (CGS) unit of kinematic viscosity, ν :  1 cm2/s = 1 stoke. 
(6) A relation between the 1st and 2nd coefficients of viscosity: Stokes’ hypothesis. 
(7) A stream function for axisymmetric flow: Stokes’ stream function [see Chap. 8]. 

Although Navier, Poisson, and Saint-Venant had made derivations of the equations of 
motion of a viscous fluid in the 1820’s and 1830’s, Stokes was quite unfamiliar with the 
French literature. He published a completely independent derivation in 1845 of the 
Navier-Stokes equations [see Sect. 4.3], using a ‘continuum-calculus’ rather than a 
‘molecular’ viewpoint, and showed that these equations were directly analogous to the 
motion of elastic solids. Although not really new, Stokes’ equations were notable for 
being the first to replace the mysterious French ‘molecular coefficient’ ε by the 
coefficient of absolute viscosity, µ. 

 

1.85-g Report to the class on the achievements of Moritz Weber. 

Solution: The following notes are from Rouse and Ince [Ref. 23]. 
Weber (1871–1951) was professor of naval mechanics at the Polytechnic Institute of 

Berlin. He clarified the principles of similitude (dimensional analysis) in the form used 
today. It was he who named the Froude number and the Reynolds number in honor of 
those workers. In a 1919 paper, he developed a dimensionless surface-tension (capillarity) 
parameter [see Sect. 5.4] which was later named the Weber number in his honor. 

 

1.85-h Report to the class on the achievements of Theodor von Kármán. 

Solution: The following notes are abstracted from the Dictionary of Scientific Biography 
(see Prob. 1.85-a). Another good reference is his ghost-written (by Lee Edson) auto-
biography, The Wind and Beyond, Little-Brown, Boston, 1967. 

Kármán (1881–1963) was born in Budapest, Hungary, to distinguished and well-
educated parents. He attended the Technical University of Budapest and in 1906 received 
a fellowship to Göttingen, where he worked for six years with Ludwig Prandtl, who had 
just developed boundary layer theory. He received a doctorate in 1912 from Göttingen 
and was then appointed director of aeronautics at the Polytechnic Institute of Aachen. He 
remained at Aachen until 1929, when he was named director of the newly formed 
Guggenheim Aeronautical Laboratory at the California Institute of Technology. Kármán 
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developed CalTech into a premier research center for aeronautics. His leadership spurred 
the growth of the aerospace industry in southern California. He helped found the Jet 
Propulsion Laboratory and the Aerojet General Corporation. After World War II, Kármán 
founded a research arm for NATO, the Advisory Group for Aeronautical Research and 
Development, whose renowned educational institute in Brussels is now called the Von 
Kármán Center. 

Kármán was uniquely skilled in integrating physics, mathematics, and fluid mechanics 
into a variety of phenomena. His most famous paper was written in 1912 to explain the 
puzzling alternating vortices shed behind cylinders in a steady-flow experiment conducted 
by K. Hiemenz, one of Kármán’s students—these are now called Kármán vortex streets 
[see Fig. 5.2a]. Shed vortices are thought to have caused the destruction by winds of the 
Tacoma Narrows Bridge in 1940 in Washington State. 

Kármán wrote 171 articles and 5 books and his methods had a profound influence on 
fluid mechanics education in the 20th century. 

 

1.85-i Report to the class on the achievements of Paul Richard Heinrich Blasius. 

Solution: The following notes are from Rouse and Ince [Ref. 23]. 
Blasius (1883–1970) was Ludwig Prandtl’s first graduate student at Göttingen. His 

1908 dissertation gave the analytic solution for the laminar boundary layer on a flat plate 
[see Sect. 7.4]. Then, in two papers in 1911 and 1913, he gave the first demonstration that 
pipe-flow resistance could be nondimensionalized as a plot of friction factor versus 
Reynolds number—the first “Moody-type” chart. His correlation, 1/4

df 0.316 Re ,−≈  is still 
is use today. He later worked on analytical solutions of boundary layers with variable 
pressure gradients. 

 

1.85-j Report to the class on the achievements of Ludwig Prandtl. 

Solution: The following notes are from Rouse and Ince [Ref. 23]. 
Ludwig Prandtl (1875–1953) is described by Rouse and Ince [23] as the father of modern 

fluid mechanics. Born in Munich, the son of a professor, Prandtl studied engineering and 
received a doctorate in elasticity. But his first job as an engineer made him aware of the lack 
of correlation between theory and experiment in fluid mechanics. He conducted research 
from 1901–1904 at the Polytechnic Institute of Hanover and presented a seminal paper in 
1904, outlining the new concept of “boundary layer theory.” He was promptly hired as 
professor and director of applied mechanics at the University of Gottingen, where he 
remained throughout his career. He, and his dozens of famous students, started a new 
“engineering science” of fluid mechanics, emphasizing (1) mathematical analysis based upon 
by physical reasoning; (2) new experimental techniques; and (3) new and inspired flow-
visualization schemes which greatly increased our understanding of flow phenomena. 
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In addition to boundary-layer theory, Prandtl made important contributions to 
(1) wing theory; (2) turbulence modeling; (3) supersonic flow; (4) dimensional analysis; and 
(5) instability and transition of laminar flow. He was a legendary engineering professor. 

 

1.85-k Report to the class on the achievements of Osborne Reynolds. 

Solution: The following notes are from Rouse and Ince [Ref. 23]. 
Osborne Reynolds (1842–1912) was born in Belfast, Ireland, to a clerical family and 

studied mathematics at Cambridge University. In 1868 he was appointed chair of 
engineering at a college which is now known as the University of Manchester Institute 
of Science and Technology (UMIST). He wrote on wide-ranging topics—mechanics, 
electricity, navigation—and developed a new hydraulics laboratory at UMIST. He was 
the first person to demonstrate cavitation, that is, formation of vapor bubbles due to high 
velocity and low pressure. His most famous experiment, still performed in the 
undergraduate laboratory at UMIST (see Fig. 6.5 in the text) demonstrated transition of 
laminar pipe flow into turbulence. He also showed in this experiment that the viscosity 
was very important and led him to the dimensionless stability parameter ρVD/µ now 
called the Reynolds number in his honor. Perhaps his most important paper, in 1894, 
extended the Navier-Stokes equations (see Eqs. 4.38 of the text) to time-averaged 
randomly fluctuating turbulent flow, with a result now called the Reynolds equations of 
turbulence. Reynolds also contributed to the concept of the control volume which forms 
the basis of integral analysis of flow (Chap. 3). 

 

1.85-l Report to the class on the achievements of John William Strutt, Lord Rayleigh. 

Solution: The following notes are from Rouse and Ince [Ref. 23]. 
John William Strutt (1842–1919) was born in Essex, England, and inherited the title 

Lord Rayleigh. He studied at Cambridge University and was a traditional hydro-
dynamicist in the spirit of Euler and Stokes. He taught at Cambridge most of his life and 
also served as president of the Royal Society. He is most famous for his work (and his 
textbook) on the theory of sound. In 1904 he won the Nobel Prize for the discovery of 
argon gas. He made at least five important contributions to hydrodynamics: (1) the 
equations of bubble dynamics in liquids, now known as Rayleigh-Plesset theory; (2) the 
theory of nonlinear surface waves; (3) the capillary (surface tension) instability of jets; 
(4) the “heat-transfer analogy” to laminar flow; and (5) dimensional similarity, especially 
related to viscosity data for argon gas and later generalized into group theory which 
previewed Buckingham’s Pi Theorem. He ended his career as president, in 1909, of the 
first British committee on aeronautics. 
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1.85-m Report to the class on the achievements of Daniel Bernoulli. 

Solution: The following notes are from Rouse and Ince [Ref. 23]. 
Daniel Bernoulli (1700–1782) was born in Groningen, Holland, his father, Johann, 

being a Dutch professor. He studied at the University of Basel, Switzerland, and taught 
mathematics for a few years at St. Petersburg, Russia. There he wrote, and published in 
1738, his famous treatise Hydrodynamica, for which he is best known. This text 
contained numerous ingenious drawings illustrating various flow phenomena. Bernoulli 
used energy concepts to establish proportional relations between kinetic and potential 
energy, with pressure work added only in the abstract. Thus he never actually derived the 
famous equation now bearing his name (Eq. 3.77 of the text), later derived in 1755 by his 
friend Leonhard Euler. Daniel Bernoulli never married and thus never contributed 
additional members to his famous family of mathematicians. 

 

1.85-n Report to the class on the achievements of Leonhard Euler. 

Solution: The following notes are from Rouse and Ince [Ref. 23]. 
Leonhard Euler (1707–1783) was born in Basel, Switzerland, and studied mathematics 

under Johann Bernoulli, Daniel’s father. He succeeded Daniel Bernoulli as professor of 
mathematics at the St. Petersburg Academy, leaving there in 1741 to join the faculty of 
Berlin University. He lost his sight in 1766 but continued to work, aided by a prodigious 
memory, and produced a vast output of scientific papers, dealing with mathematics, 
optics, mechanics, hydrodynamics, and celestial mechanics (for which he is most famous 
today). His famous paper of 1755 on fluid flow derived the full inviscid equations of fluid 
motion (Eqs. 4.36 of the text) now called Euler’s equations. He used a fixed coordinate 
system, now called the Eulerian frame of reference. The paper also presented, for the first 
time, the correct form of Bernoulli’s equation (Eq. 3.77 of the text). Separately, in 1754 
he produced a seminal paper on the theory of reaction turbines, leading to Euler’s turbine 
equation (Eq. 11.11 of the text). 
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FUNDAMENTALS OF ENGINEERING EXAM PROBLEMS: Answers 

FE-1.1 The absolute viscosity µ of a fluid is primarily a function of 
(a) density (b) temperature (c) pressure (d) velocity (e) surface tension 

FE-1.2 If a uniform solid body weighs 50 N in air and 30 N in water, its specific gravity is 
(a) 1.5 (b) 1.67 (c) 2.5 (d) 3.0 (e) 5.0 

FE-1.3 Helium has a molecular weight of 4.003. What is the weight of 2 cubic meters 
of helium at 1 atmosphere and 20°C? 

(a) 3.3 N  (b) 6.5 N  (c) 11.8 N  (d) 23.5 N  (e) 94.2 N 

FE-1.4 An oil has a kinematic viscosity of 1.25E–4 m2/s and a specific gravity of 0.80. 
What is its dynamic (absolute) viscosity in kg/(m · s)? 

(a) 0.08 (b) 0.10  (c) 0.125  (d) 1.0  (e) 1.25 

FE-1.5 Consider a soap bubble of diameter 3 mm. If the surface tension coefficient is 
0.072 N/m and external pressure is 0 Pa gage, what is the bubble’s internal gage pressure? 

(a) −24 Pa (b) +48 Pa  (c) +96 Pa  (d) +192 Pa  (e) −192 Pa 

FE-1.6 The only possible dimensionless group which combines velocity V, body size L, 
fluid density ρ, and surface tension coefficient σ  is: 

(a) Lρσ/V (b) ρVL2/σ (c) ρσV2/L (d) σLV2/ρ (e) ρLV2/σ 

FE-1.7 Two parallel plates, one moving at 4 m/s and the other fixed, are separated by 
a 5-mm-thick layer of oil of specific gravity 0.80 and kinematic viscosity 1.25E−4 m2/s. 
What is the average shear stress in the oil? 

(a) 80 Pa (b) 100 Pa (c) 125 Pa (d) 160 Pa (e) 200 Pa 

FE-1.8 Carbon dioxide has a specific heat ratio of 1.30 and a gas constant of 189 J/(kg·°C). 
If its temperature rises from 20°C to 45°C, what is its internal energy rise? 

(a) 12.6 kJ/kg (b) 15.8 kJ/kg (c) 17.6 kJ/kg (d) 20.5 kJ/kg (e) 25.1 kJ/kg 

FE-1.9 A certain water flow at 20°C has a critical cavitation number, where bubbles 
form, Ca ≈ 0.25, where Ca = 2(pa − pvap)/(ρV2). If pa = 1 atm and the vapor pressure is 
0.34 psia, for what water velocity will bubbles form? 

(a) 12 mi/hr (b) 28 mi/hr (c) 36 mi/hr (d) 55 mi/hr (e) 63 mi/hr 

FE-1.10 A steady incompressible flow, moving through a contraction section of length L, 
has a one-dimensional average velocity distribution given by u ≈ Uo(1 + 2x/L). What is its 
convective acceleration at the end of the contraction, x = L? 

(a) Uo
2/L (b) 2Uo

2/L (c) 3Uo
2/L (d) 4Uo

2/L (e) 6Uo
2/L 
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COMPREHENSIVE PROBLEMS 

C1.1 Sometimes equations can be developed and practical problems solved by knowing 
nothing more than the dimensions of the key parameters. For example, consider the heat 
loss through a window in a building. Window efficiency is rated in terms of “R value,” 
which has units of ft2·hr·°F/Btu. A certain manufacturer offers a double-pane window with 
R = 2.5 and also a triple-pane window with R = 3.4. Both windows are 3 ft by 5 ft. On 
a given winter day, the temperature difference between inside and outside is 45°F. 
(a) Develop and equation for window heat loss Q, in time period ∆t, as a function of 
window area A, R value, and temperature difference ∆T. How much heat is lost through the 
above (a) double-pane window, or (b) triple-pane window, in 24 hours? (c) Suppose the 
building is heated with propane gas, at $1.25 per gallon, burning at 80% efficiency. 
Propane has 90,000 Btu of available energy per gallon. In a 24-hour period, how much 
money would a homeowner save, per window, by installing a triple-pane rather than a 
double-pane window? (d) Finally, suppose the homeowner buys 20 such triple-pane 
windows for the house. A typical winter equals about 120 heating days at ∆T = 45°F. 
Each triple-pane window costs $85 more than the double-pane window. Ignoring interest 
and inflation, how many years will it take the homeowner to make up the additional cost of 
the triple-pane windows from heating bill savings? 

Solution: (a) The function Q = fcn(∆t, R, A, ∆T) must have units of Btu. The only 
combination of units which accomplishes this is: 

2

(24 )(45 )(3 5 )
. (a)

2.5 /
lost

T A hr F ft ft
Q Ans. Thus Q Ans

R ft hr F Btu

∆ ∆ ° ⋅= = =
⋅ ⋅°

t
6480 Btu  

(b) Triple-pane window: use R = 3.4 instead of 2.5 to obtain Q3-pane = 4760 Btu Ans. (b) 

(c) The savings, using propane, for one triple-pane window for one 24-hour period is: 

$1.25/ 1
(6480 4760 ) $0.030  . (c)

90000 / 0.80efficiency

gal
Cost Btu Ans

Btu gal
∆ = − = = 3 cents  

(d) Extrapolate to 20 windows, 120 cold days per year, and $85 extra cost per window: 

$85/
  . (d)

(0.030$/ / )(120 / )

window
Pay back time Ans

window day days year
− = = 24 years  

Not a good investment. We are using ‘$’ and ‘windows’ as “units” in our equations! 
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C1.2 When a person ice-skates, the ice surface actually melts beneath the blades, so 
that he or she skates on a thin film of water between the blade and the ice. (a) Find an 
expression for total friction force F on the bottom of the blade as a function of skater 
velocity V, blade length L, water film thickness h, water viscosity µ, and blade width W. 
(b) Suppose a skater of mass m, moving at constant speed Vo, suddenly stands stiffly with 
skates pointed directly forward and allows herself to coast to a stop. Neglecting air 
resistance, how far will she travel (on two blades) before she stops? Give the answer X 
as a function of (Vo, m, L, h, µ, W). (c) Compute X for the case Vo = 4 m/s, m = 100 kg, 
L = 30 cm, W = 5 mm, and h = 0.1 mm. Do you think our assumption of negligible air 
resistance was a good one? 

Solution: (a) The skate bottom and the melted ice are like two parallel plates: 

,  (a)
V VLW

F A Ans.
h h

µτ µ τ= = =  

 
(b) Use F = ma to find the stopping distance: 

2
x x

VLW dV
F F ma m

h dt

µ= − = − = =Σ  

(the ‘2’ is for two blades) 

Separate and integrate once to find the 
velocity, once again to find the distance 
traveled: 

 

2
o

o
0

2
  , : ,   (b)

2

LW
t

mh V mhdV LW
dt or V V e X V dt Ans.

V mh LW

µµ
µ

− ∞

= − = = =� � �  

(c) Apply our specific numerical values to a 100-kg (!) person: 

(4.0 / )(100 )(0.0001 )
 

2(1.788 3 / )(0.3 )(0.005 )

m s kg m
X

E kg m s m m
= =

− ⋅
7460 m (!)  Ans. (c) 

We could coast to the next town on ice skates! It appears that our assumption of 
negligible air drag was grossly incorrect. 

 

C1.3 Two thin flat plates are tilted at an angle α and placed in a tank of known surface 
tension Y and contact angle θ, as shown. At the free surface of the liquid in the tank, the 
two plates are a distance L apart, and of width b into the paper. (a) What is the total 
z-directed force, due to surface tension, acting on the liquid column between plates? (b) If 
the liquid density is ρ, find an expression for Y in terms of the other variables. 
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Solution: (a) Considering the right side of 
the liquid column, the surface tension acts 
tangent to the local surface, that is, along the 
dashed line at right. This force has 
magnitude F = Yb, as shown. Its vertical 
component is F cos(θ − α), as shown. There 
are two plates. Therefore, the total z-directed 
force on the liquid column is  

 
 

Fvertical = 2Yb cos(θ  – α) Ans. (a) 

(b) The vertical force in (a) above holds up the entire weight of the liquid column 
between plates, which is W = ρg{bh(L − h tanα)}. Set W equal to F and solve for 

U = [ρgbh(L − h tanα)]/[2 cos(θ − α)] Ans. (b) 
 

C1.4 Oil of viscosity µ and density ρ 
drains steadily down the side of a tall, wide 
vertical plate, as shown. The film is fully 
developed, that is, its thickness δ and 
velocity profile w(x) are independent of 
distance z down the plate. Assume that the 
atmosphere offers no shear resistance to the 
film surface. 
(a) Sketch the approximate shape of the 
velocity profile w(x), keeping in mind the 
boundary conditions. 
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(b) Suppose film thickness d is measured, along with the slope of the velocity profile at 
the wall, (dw/dx)wall, with a laser-Doppler anemometer (Chap. 6). Find an expression for 
µ as a function of ρ, δ, (dw/dx)wall, and g. Note that both w and (dw/dx)wall will be 
negative as shown. 

Solution: (a) The velocity profile must 
be such that there is no slip (w = 0) at the 
wall and no shear (dw/dx = 0) at the film 
surface. This is shown at right. Ans. (a) 
(b) Consider a freebody of any vertical 
length H of film, as at right. Since there is 
no acceleration (fully developed film), the 
weight of the film must exactly balance the 
shear force on the wall: 

( ) ( ),wall wall wall
dw

W g H b Hb
dx

ρ δ τ τ µ= = = − |  

Solve this equality for the fluid viscosity: 

ρ δµ −=
wall

g
dw dx( / )

 Ans. (b) 

 

 

 
 

C1.5 Viscosity can be measured by flow through a thin-bore or capillary tube if the 
flow rate is low. For length L, (small) diameter ,D L�  pressure drop ∆p, and (low) 
volume flow rate Q, the formula for viscosity is µ = D4∆p/(CLQ), where C is a 
constant. (a) Verify that C is dimensionless. The following data are for water flowing 
through a 2-mm-diameter tube which is 1 meter long. The pressure drop is held 
constant at ∆p = 5 kPa. 

T, °C: 10.0 40.0 70.0 

Q, L/min: 0.091 0.179 0.292 

(b) Using proper SI units, determine an average value of C by accounting for the variation 
with temperature of the viscosity of water. 

Solution: (a) Check the dimensions of the formula and solve for {C}: 

4 4 1 2

3

( )
{ } ,

{ }{ }( )( / )

M D p L ML T M

LT CLQ LT CC L L T
µ

− −� � � �∆ � �� �= = = =� � � � � � � �
� � � �� � � �

 

therefore {C} = {1} Dimensionless Ans. (a) 
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(b) Use the given data, with values of µwater from Table A.1, to evaluate C, with L = 1 m, 
D = 0.002 m, and ∆p = 5000 Pa. Convert the flow rate from L/min to m3/s. 

T, °C: 10.0 40.0 70.0 

Q, m3/s: 1.52E−6 2.98E−6 4.87E−6 

µwater, kg/m-s: 1.307E−3 0.657E−3 0.405E−3 

C = D4∆p/(µLQ): 40.3 40.9 40.6 

The estimated value of C = 40.6 ± 0.3. The theoretical value (Chap. 4) is C = 128/π = 40.74. 
 

C1.6 The rotating-cylinder viscometer in Fig. C1.6 shears the fluid in a narrow 
clearance, ∆r, as shown. Assume a linear velocity distribution in the gaps. If the driving 
torque M is measured, find an expression for µ by (a) neglecting, and (b) including the 
bottom friction. 

Solution: (a) The fluid in the annular region has the same shear stress analysis as 
Prob. 1.49: 

π

τ µ θ πµΩ Ω� �= = =� �∆ ∆� �
� � �

2 3

0

  ( )( )   2 ,

: (a)

R R L
M R dF R dA R RL d

R R

or Ans. 
M R

R L

∆=
Ω

µ
π 32

 

(b) Now add in the moment of the (variable) shear stresses on the bottom of the cylinder: 

0

4
3

0

3 4

  2

2 2
 

4

2 2

4

. (b)
/

R

bottom

R

total

r
M r dA r r dr

R

R
r dr

R R

R L R
Thus M

R R

 Solve for Ans

τ µ π

π µ π µ

π µ π µ

µ

Ω� �= = � �� �∆

Ω Ω= =
∆ ∆

Ω Ω= +
∆ ∆

=

� �

�

π
∆

Ω +
M R

R L R32 ( 4)

 

 

Fig. C1.6 
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C1.7 SAE 10W oil at 20°C flows past a flat surface, as in Fig. 1.4(b). The velocity 
profile u(y) is measured, with the following results: 

y, m: 0.0 0.003 0.006 0.009 0.012 0.015 

u, m/s: 0.0 1.99 3.94 5.75 7.29 8.46 

Using your best interpolating skills, estimate the shear stress in the oil (a) at the wall (y = 0); 
and (b) at y = 15 mm. 

Solution: For SAE10W oil, from Table A.3, read µ = 0.104 kg/m·s. We need to 
estimate the derivative (du/dy) at the two values of y, then compute τ = µ(du/dy). 

Method 1: Use a Newton-Raphson three-point derivative estimate. 
At three equally-spaced points,

oy o 1 2d /d ( 3 4 )/(2 ).u y u u u y| ≈ − + − ∆  Thus 

(a) 1
y 0at y 0: d /d [ 3(0.00) 4(1.99) (3.94)]/(2{0.003}) 670 su y −

=|= ≈ − + − =  

1Then (d d ) (670 s )(0.104 kg/m s)  (a)u y Ans.τ µ −= = ⋅ ≈/  70 Pa  

(b) 1
y 0at y 0.015 m: d /d [3(8.46) 4(7.29) (5.75)]/(2{0.003}) 328 su y −

== | ≈ − + =  

1Then (d /d ) (328 s )(0 104 kg/m s) . (b)u y Ansτ µ −= = ⋅ ≈.   34 Pa  

Method 2: Type the six data points into Excel and run a cubic “trendline” fit. The result is 

2 3656.2 4339.8 699163u y y y≈ + −  

Differentiating this polynomial at 0y =  gives 1d /d 656.2 s ,  u y τ−≈ ≈ 68 Pa  Ans. (a) 

Differentiating this polynomial at 0.015y =  gives 1d /d 314 s ,  u y τ−≈ ≈ 33 Pa  Ans. (b) 
 

C1.8 A mechanical device, which uses the rotating cylinder of Fig. C1.6, is the Stormer 
viscometer [Ref. 27 of Chap. 1]. Instead of being driven at constant Ω, a cord is wrapped 
around the shaft and attached to a falling weight W. The time t to turn the shaft a given number 
of revolutions (usually 5) is measured and correlated with viscosity. The Stormer formula is 

/( )t A W Bµ= −  

where A and B are constants which are determined by calibrating the device with a known 
fluid. Here are calibration data for a Stormer viscometer tested in glycerol, using a weight 
of 50 N: 

µ, kg/m·s: 0.23 0.34 0.57 0.84 1.15 

t, sec: 15 23 38 56 77 
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(a) Find reasonable values of A and B to fit this calibration data. [Hint: The data are not 
very sensitive to the value of B.] (b) A more viscous fluid is tested with a 100-N weight 
and the measured time is 44 s. Estimate the viscosity of this fluid. 

Solution: (a) The data fit well, with a standard deviation of about 0.17 s in the value of 
t, to the values 

A ≈ 3000 and B ≈ 3.5 Ans. (a) 

(b) With a new fluid and a new weight, the values of A and B should nevertheless be 
the same: 

3000
44 ,

100 3.5

A
t s

W B N

µ µ= ≈ =
− −

 solve for   new fluid
kg

m s
µ ≈

⋅
1.42  Ans. (b) 

 


