


Chapter 2

2.3 Sincem is not a prime, it can be factored as the product of two integersa andb,

m = a · b

with 1 < a, b < m. It is clear that botha andb are in the set{1, 2, · · · , m − 1}. It follows

from the definition of modulo-m multiplication that

a ¡ b = 0.

Since0 is not an element in the set{1, 2, · · · ,m−1}, the set is not closed under the modulo-m

multiplication and hence can not be a group.

2.5 It follows from Problem 2.3 that, ifm is not a prime, the set{1, 2, · · · ,m − 1} can not be a

group under the modulo-m multiplication. Consequently, the set{0, 1, 2, · · · ,m− 1} can not

be a field under the modulo-m addition and multiplication.

2.7 First we note that the set of sums of unit element contains the zero element0. For any1 ≤
` < λ,

∑̀
i=1

1 +
λ−∑̀
i=1

1 =
λ∑

i=1

1 = 0.

Hence every sum has an inverse with respect to the addition operation of the field GF(q). Since

the sums are elements in GF(q), they must satisfy the associative and commutative laws with

respect to the addition operation of GF(q). Therefore, the sums form a commutative group

under the addition of GF(q).

Next we note that the sums contain the unit element 1 of GF(q). For each nonzero sum

∑̀
i=1

1

with 1 ≤ ` < λ, we want to show it has a multiplicative inverse with respect to the multipli-

cation operation of GF(q). Sinceλ is prime,` andλ are relatively prime and there exist two
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integersa andb such that

a · ` + b · λ = 1, (1)

wherea andλ are also relatively prime. Dividinga by λ, we obtain

a = kλ + r with 0 ≤ r < λ. (2)

Sincea andλ are relatively prime,r 6= 0. Hence

1 ≤ r < λ

Combining (1) and (2), we have

` · r = −(b + k`) · λ + 1

Consider

∑̀
i=1

1 ·
r∑

i=1

1 =
`·r∑
i=1

1 =

−(b+k`)·λ∑
i=1

+1

= (
λ∑

i=1

1)(

−(b+k`)∑
i=1

1) + 1

= 0 + 1 = 1.

Hence, every nonzero sum has an inverse with respect to the multiplication operation of GF(q).

Since the nonzero sums are elements of GF(q), they obey the associative and commutative

laws with respect to the multiplication of GF(q). Also the sums satisfy the distributive law.

As a result, the sums form a field, a subfield of GF(q).

2.8 Consider the finite field GF(q). Letn be the maximum order of the nonzero elements of GF(q)

and letα be an element of ordern. It follows from Theorem 2.9 thatn dividesq − 1, i.e.

q − 1 = k · n.

Thusn ≤ q − 1. Let β be any other nonzero element in GF(q) and lete be the order ofβ.
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Suppose thate does not dividen. Let (n, e) be the greatest common factor ofn ande. Then

e/(n, e) andn are relatively prime. Consider the element

β(n,e)

This element has ordere/(n, e). The element

αβ(n,e)

has orderne/(n, e) which is greater thann. This contradicts the fact thatn is the maximum

order of nonzero elements in GF(q). Hencee must dividen. Therefore, the order of each

nonzero element of GF(q) is a factor ofn. This implies that each nonzero element of GF(q)

is a root of the polynomial

Xn − 1.

Consequently,q − 1 ≤ n. Sincen ≤ q − 1 (by Theorem 2.9), we must have

n = q − 1.

Thus the maximum order of nonzero elements in GF(q) is q-1. The elements of orderq − 1

are then primitive elements.

2.11 (a) Suppose thatf(X) is irreducible but its reciprocalf ∗(X) is not. Then

f ∗(X) = a(X) · b(X)

where the degrees ofa(X) andb(X) are nonzero. Letk andm be the degrees ofa(X) and

b(X) respectivly. Clearly,k + m = n. Since the reciprocal off ∗(X) is f(X),

f(X) = Xnf ∗(
1

X
) = Xka(

1

X
) ·Xmb(

1

X
).

This says thatf(X) is not irreducible and is a contradiction to the hypothesis. Hencef ∗(X)

must be irreducible. Similarly, we can prove that iff ∗(X) is irreducible,f(X) is also

irreducible. Consequently,f ∗(X) is irreducible if and only iff(X) is irreducible.
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(b) Suppose thatf(X) is primitive butf ∗(X) is not. Then there exists a positive integerk less

than2n − 1 such thatf ∗(X) dividesXk + 1. Let

Xk + 1 = f ∗(X)q(X).

Taking the reciprocals of both sides of the above equality, we have

Xk + 1 = Xkf ∗(
1

X
)q(

1

X
)

= Xnf ∗(
1

X
) ·Xk−nq(

1

X
)

= f(X) ·Xk−nq(
1

X
).

This implies thatf(X) divides Xk + 1 with k < 2n − 1. This is a contradiction to the

hypothesis thatf(X) is primitive. Hencef ∗(X) must be also primitive. Similarly, iff ∗(X) is

primitive, f(X) must also be primitive. Consequentlyf ∗(X) is primitive if and only iff(X)

is primitive.

2.15 We only need to show thatβ, β2, · · · , β2e−1
are distinct. Suppose that

β2i

= β2j

for 0 ≤ i, j < e andi < j. Then,

(β2j−i−1)2i

= 1.

Since the orderβ is a factor of2m − 1, it must be odd. For(β2j−i−1)2i
= 1, we must have

β2j−i−1 = 1.

Since bothi andj are less thane, j − i < e. This is contradiction to the fact that thee is the

smallest nonnegative integer such that

β2e−1 = 1.
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Henceβ2i 6= β2j
for 0 ≤ i, j < e.

2.16 Let n′ be the order ofβ2i
. Then

(β2i

)n′ = 1

Hence

(βn′)2i

= 1. (1)

Since the ordern of β is odd,n and2i are relatively prime. From(1), we see thatn dividesn′

and

n′ = kn. (2)

Now consider

(β2i

)n = (βn)2i

= 1

This implies thatn′ (the order ofβ2i
) dividesn. Hence

n = `n′ (3)

From (2) and (3), we conclude that

n′ = n.

2.20 Note thatc ·v = c · (0+v) = c ·0+ c ·v. Adding−(c ·v) to both sides of the above equality,

we have

c · v + [−(c · v)] = c · 0 + c · v + [−(c · v)]

0 = c · 0 + 0.

Since0 is the additive identity of the vector space, we then have

c · 0 = 0.

2.21 Note that0 · v = 0. Then for anyc in F ,

(−c + c) · v = 0
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(−c) · v + c · v = 0.

Hence(−c) · v is the additive inverse ofc · v, i.e.

−(c · v) = (−c) · v (1)

Sincec · 0 = 0 (problem 2.20),

c · (−v + v) = 0

c · (−v) + c · v = 0.

Hencec · (−v) is the additive inverse ofc · v, i.e.

−(c · v) = c · (−v) (2)

From (1) and (2), we obtain

−(c · v) = (−c) · v = c · (−v)

2.22 By Theorem 2.22,S is a subspace if (i) for anyu andv in S, u + v is in S and (ii) for anyc

in F andu in S, c · u is in S. The first condition is now given, we only have to show that the

second condition is implied by the first condition forF = GF (2). Letu be any element inS.

It follows from the given condition that

u + u = 0

is also inS. Let c be an element in GF(2). Then, for anyu in S,

c · u =





0 for c = 0

u for c = 1

Clearlyc · u is also inS. HenceS is a subspace.

2.24 If the elements of GF(2m) are represented bym-tuples over GF(2), the proof that GF(2m) is
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a vector space over GF(2) is then straight-forward.

2.27 Let u andv be any two elements inS1 ∩ S2. It is clear theu andv are elements inS1, andu

andv are elements inS2. SinceS1 andS2 are subspaces,

u + v ∈ S1

and

u + v ∈ S2.

Hence,u + v is in S1 ∩ S2. Now letx be any vector inS1 ∩ S2. Thenx ∈ S1, andx ∈ S2.

Again, sinceS1 andS2 are subspaces, for anyc in the fieldF , c · x is in S1 and also inS2.

Hencec · v is in the intersection,S1 ∩ S2. It follows from Theorem 2.22 thatS1 ∩ S2 is a

subspace.
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