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Chapter 2

2.3 Sincem is not a prime, it can be factored as the product of two integenrsdb,

with 1 < a,b < m. Itis clear that bottu andb are in the se{1,2,--- ,m — 1}. It follows
from the definition of modulo» multiplication that

alldb=0.

Since0 is not an elementin the sét, 2, - - - ,m—1}, the setis not closed under the moduto-
multiplication and hence can not be a group.

2.5 It follows from Problem 2.3 that, ifn is not a prime, the seft1,2,--- ;m — 1} can not be a
group under the module: multiplication. Consequently, the sfi,1,2,--- ,m — 1} can not
be a field under the moduler addition and multiplication.

2.7 First we note that the set of sums of unit element contains the zero el@mEeot anyl <
<\,

Hence every sum has an inverse with respect to the addition operation of the field GiRce

the sums are elements in Gf}, they must satisfy the associative and commutative laws with
respect to the addition operation of . Therefore, the sums form a commutative group
under the addition of Gfg).

Next we note that the sums contain the unit element 1 af,isGFor each nonzero sum

with 1 < 7 < A, we want to show it has a multiplicative inverse with respect to the multipli-
cation operation of Gfg). Since) is prime,/ and \ are relatively prime and there exist two
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integersa andb such that
a-l+b-A=1, 1)

wherea and\ are also relatively prime. Dividing by A, we obtain

a=k\x+7r with 0<r <A (2)

Sincea and are relatively primey # 0. Hence

1<r<A

Combining (1) and (2), we have

Cor=—(b+kl)-A+1

Consider
l r Lr —(b+ke)-A
o> = >1= > 4
=1 =1 z:)l\ _(bsz)
= O D). D+1

i=1 =1

= 0+1=1.

Hence, every nonzero sum has an inverse with respect to the multiplication operatiofy of GF
Since the nonzero sums are elements of (3Rthey obey the associative and commutative
laws with respect to the multiplication of G&. Also the sums satisfy the distributive law.

As a result, the sums form a field, a subfield of(@f

2.8 Consider the finite field Gg). Letn be the maximum order of the nonzero elements ofGF

and leta be an element of order. It follows from Theorem 2.9 that dividesqg — 1, i.e.

q—1=Fk-n.

Thusn < g — 1. Let 8 be any other nonzero element in GFand lete be the order ofs.
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Suppose that does not divide:. Let (n, ) be the greatest common factorofande. Then
e/(n,e) andn are relatively prime. Consider the element

Bme)
This element has ordey/ (n, e). The element
aﬁ(w)

has ordeme/(n, e) which is greater than. This contradicts the fact thatis the maximum
order of nonzero elements in Gfj. Hencee must dividen. Therefore, the order of each
nonzero element of Gk) is a factor ofn. This implies that each nonzero element of(GF
is a root of the polynomial

X" -1

Consequentlyy — 1 < n. Sincen < ¢ — 1 (by Theorem 2.9), we must have
n=q—1.
Thus the maximum order of nonzero elements iN@Gks g-1. The elements of order— 1

are then primitive elements.

2.11 (a) Suppose that(X) is irreducible but its reciprocgl*(.X) is not. Then

where the degrees af X') andb(X) are nonzero. Let andm be the degrees af(.X) and
b(X) respectivly. Clearlyk + m = n. Since the reciprocal of*(X) is f(X),
F(X) = X" (=) = XFa(=) - X"b(~)
- X'~ %y X
This says thaf(X) is not irreducible and is a contradiction to the hypothesis. Hgt¢&)
must be irreducible. Similarly, we can prove thatfif(X) is irreducible, f(X) is also
irreducible. Consequently;*(X) is irreducible if and only iff (X) is irreducible.
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(b) Suppose that(X) is primitive butf*(X) is not. Then there exists a positive integdess
than2” — 1 such thatf*(X) dividesX* + 1. Let

X1 = f(X)g(X).

Taking the reciprocals of both sides of the above equality, we have

11
XF+1 = X'f (})(J(y)
1 1
= X"f*(y)'Xk_"Q(Y)
1

= (X)X ().

This implies thatf(X) divides X* + 1 with k& < 2" — 1. This is a contradiction to the
hypothesis thaf (X) is primitive. Hencg*(X') must be also primitive. Similarly, if*(X) is
primitive, f(X) must also be primitive. Consequenfly(X) is primitive if and only if f(X)
IS primitive.

2.15 We only need to show that 32, - - - , 3> " are distinct. Suppose that
g = p

for0 <i,7 < eandi < j. Then,
(B =1

i

Since the ordeg is a factor of2™ — 1, it must be odd. Fof5% '~1)* = 1, we must have
grl =1,

Since bothi and;j are less tham, j — i < e. This is contradiction to the fact that thes the
smallest nonnegative integer such that

=1
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Hences? + 32 for0 < i,j < e.

2.16 Letn’ be the order ofs?". Then
(B =1

Hence

(B™)* =1. (1)

Since the orden of 3 is odd,n and2’ are relatively prime. From(1), we see thatlividesn’

and
n = kn. (2)

Now consider

()= (8" =1

This implies that’ (the order of3?") dividesn. Hence
n=/In (3)

From (2) and (3), we conclude that

2.20 Note thatc- v =c¢- (0+v) = ¢-0+c¢-v. Adding—(c- v) to both sides of the above equality,

we have

c-v4[—(c-v)] = ¢-0+c-v+][—(c V)]
0 = c-0+0.

Since0 is the additive identity of the vector space, we then have

c-0=0.

2.21 Note that) - v = 0. Then for any in F,

(—c+c¢)-v=0



(—=¢)-v+c-v=0.

Hence(—c) - v is the additive inverse af - v, i.e.

—(c-v)=(=¢)-v 1)

Sincec - 0 = 0 (problem 2.20),
c-(—v+v)=0

c-(=v)+c-v=0.

Hencec - (—v) is the additive inverse aof - v, i.e.

—(c-v)=c-(=v) )

From (1) and (2), we obtain

eV = (=e) v = (V)

2.22 By Theorem 2.22S is a subspace if (i) for any andv in S, u + v isin S and (ii) for anyc
in F/anduin S, ¢-uisin S. The first condition is now given, we only have to show that the
second condition is implied by the first condition Br= GF'(2). Letu be any element iry.
It follows from the given condition that

ut+u=0

isalsoinS. Letc be an elementin GB). Then, for anyu in S,

0 for ¢=0

u for c=1

Clearlyc - uis also inS. HenceS is a subspace.

2.24 If the elements of GR2™) are represented by:-tuples over GR2), the proof that GR2™) is

6



a vector space over G is then straight-forward.

2.27 Letu andv be any two elements if; N .S,. Itis clear theu andv are elements i¥;, andu
andv are elements i¥,. SinceS; and.S, are subspaces,

ut+tves

and
u+ve Sg.

Henceu + v isin S; N .S,. Now letx be any vector inS; N S;. Thenx € S, andx € S,.
Again, sinceS; and.S, are subspaces, for amyin the field ', ¢ - x is in S} and also inS;.
Hencec - v is in the intersectionS; N S,. It follows from Theorem 2.22 that; N S, is a

subspace.



