SOLUTIONS MANUAL

Chapter 2

2.3 Since m is not a prime, it can be factored as the product of two integers a and b,

$$
m=a \cdot b
$$

with $1<a, b<m$. It is clear that both a and b are in the set $\{1,2, \cdots, m-1\}$. It follows from the definition of modulo- m multiplication that

$$
a \sqsubseteq b=0 .
$$

Since 0 is not an element in the set $\{1,2, \cdots, m-1\}$, the set is not closed under the modulo- m multiplication and hence can not be a group.
2.5 It follows from Problem 2.3 that, if m is not a prime, the set $\{1,2, \cdots, m-1\}$ can not be a group under the modulo- m multiplication. Consequently, the set $\{0,1,2, \cdots, m-1\}$ can not be a field under the modulo- m addition and multiplication.
2.7 First we note that the set of sums of unit element contains the zero element 0 . For any $1 \leq$ $\ell<\lambda$,

$$
\sum_{i=1}^{\ell} 1+\sum_{i=1}^{\lambda-\ell} 1=\sum_{i=1}^{\lambda} 1=0
$$

Hence every sum has an inverse with respect to the addition operation of the field GF (q). Since the sums are elements in $\operatorname{GF}(q)$, they must satisfy the associative and commutative laws with respect to the addition operation of $\mathrm{GF}(q)$. Therefore, the sums form a commutative group under the addition of $\mathrm{GF}(q)$.
Next we note that the sums contain the unit element 1 of $\mathrm{GF}(q)$. For each nonzero sum

$$
\sum_{i=1}^{\ell} 1
$$

with $1 \leq \ell<\lambda$, we want to show it has a multiplicative inverse with respect to the multiplication operation of $\operatorname{GF}(q)$. Since λ is prime, ℓ and λ are relatively prime and there exist two
integers a and b such that

$$
\begin{equation*}
a \cdot \ell+b \cdot \lambda=1, \tag{1}
\end{equation*}
$$

where a and λ are also relatively prime. Dividing a by λ, we obtain

$$
\begin{equation*}
a=k \lambda+r \quad \text { with } \quad 0 \leq r<\lambda . \tag{2}
\end{equation*}
$$

Since a and λ are relatively prime, $r \neq 0$. Hence

$$
1 \leq r<\lambda
$$

Combining (1) and (2), we have

$$
\ell \cdot r=-(b+k \ell) \cdot \lambda+1
$$

Consider

$$
\begin{aligned}
\sum_{i=1}^{\ell} 1 \cdot \sum_{i=1}^{r} 1 & =\sum_{i=1}^{\ell \cdot r} 1=\sum_{i=1}^{-(b+k \ell) \cdot \lambda}+1 \\
& =\left(\sum_{i=1}^{\lambda} 1\right)\left(\sum_{i=1}^{-(b+k \ell)} 1\right)+1 \\
& =0+1=1 .
\end{aligned}
$$

Hence, every nonzero sum has an inverse with respect to the multiplication operation of $\mathrm{GF}(q)$. Since the nonzero sums are elements of $\operatorname{GF}(q)$, they obey the associative and commutative laws with respect to the multiplication of $\mathrm{GF}(q)$. Also the sums satisfy the distributive law. As a result, the sums form a field, a subfield of $\operatorname{GF}(q)$.
2.8 Consider the finite field $\operatorname{GF}(q)$. Let n be the maximum order of the nonzero elements of $\operatorname{GF}(q)$ and let α be an element of order n. It follows from Theorem 2.9 that n divides $q-1$, i.e.

$$
q-1=k \cdot n .
$$

Thus $n \leq q-1$. Let β be any other nonzero element in $\operatorname{GF}(q)$ and let e be the order of β.

Suppose that e does not divide n. Let (n, e) be the greatest common factor of n and e. Then $e /(n, e)$ and n are relatively prime. Consider the element

$$
\beta^{(n, e)}
$$

This element has order $e /(n, e)$. The element

$$
\alpha \beta^{(n, e)}
$$

has order $n e /(n, e)$ which is greater than n. This contradicts the fact that n is the maximum order of nonzero elements in $\operatorname{GF}(q)$. Hence e must divide n. Therefore, the order of each nonzero element of $\mathrm{GF}(q)$ is a factor of n. This implies that each nonzero element of $\mathrm{GF}(q)$ is a root of the polynomial

$$
X^{n}-1
$$

Consequently, $q-1 \leq n$. Since $n \leq q-1$ (by Theorem 2.9), we must have

$$
n=q-1 .
$$

Thus the maximum order of nonzero elements in $\operatorname{GF}(q)$ is $q-1$. The elements of order $q-1$ are then primitive elements.
2.11 (a) Suppose that $f(X)$ is irreducible but its reciprocal $f^{*}(X)$ is not. Then

$$
f^{*}(X)=a(X) \cdot b(X)
$$

where the degrees of $a(X)$ and $b(X)$ are nonzero. Let k and m be the degrees of $a(X)$ and $b(X)$ respectivly. Clearly, $k+m=n$. Since the reciprocal of $f^{*}(X)$ is $f(X)$,

$$
f(X)=X^{n} f^{*}\left(\frac{1}{X}\right)=X^{k} a\left(\frac{1}{X}\right) \cdot X^{m} b\left(\frac{1}{X}\right) .
$$

This says that $f(X)$ is not irreducible and is a contradiction to the hypothesis. Hence $f^{*}(X)$ must be irreducible. Similarly, we can prove that if $f^{*}(X)$ is irreducible, $f(X)$ is also irreducible. Consequently, $f^{*}(X)$ is irreducible if and only if $f(X)$ is irreducible.
(b) Suppose that $f(X)$ is primitive but $f^{*}(X)$ is not. Then there exists a positive integer k less than $2^{n}-1$ such that $f^{*}(X)$ divides $X^{k}+1$. Let

$$
X^{k}+1=f^{*}(X) q(X)
$$

Taking the reciprocals of both sides of the above equality, we have

$$
\begin{aligned}
X^{k}+1 & =X^{k} f^{*}\left(\frac{1}{X}\right) q\left(\frac{1}{X}\right) \\
& =X^{n} f^{*}\left(\frac{1}{X}\right) \cdot X^{k-n} q\left(\frac{1}{X}\right) \\
& =f(X) \cdot X^{k-n} q\left(\frac{1}{X}\right)
\end{aligned}
$$

This implies that $f(X)$ divides $X^{k}+1$ with $k<2^{n}-1$. This is a contradiction to the hypothesis that $f(X)$ is primitive. Hence $f^{*}(X)$ must be also primitive. Similarly, if $f^{*}(X)$ is primitive, $f(X)$ must also be primitive. Consequently $f^{*}(X)$ is primitive if and only if $f(X)$ is primitive.
2.15 We only need to show that $\beta, \beta^{2}, \cdots, \beta^{2^{e-1}}$ are distinct. Suppose that

$$
\beta^{2^{i}}=\beta^{2^{j}}
$$

for $0 \leq i, j<e$ and $i<j$. Then,

$$
\left(\beta^{2^{j-i}-1}\right)^{2^{i}}=1
$$

Since the order β is a factor of $2^{m}-1$, it must be odd. For $\left(\beta^{2^{j-i}-1}\right)^{2^{i}}=1$, we must have

$$
\beta^{2^{j-i}-1}=1 .
$$

Since both i and j are less than $e, j-i<e$. This is contradiction to the fact that the e is the smallest nonnegative integer such that

$$
\beta^{2^{e}-1}=1 .
$$

Hence $\beta^{2^{i}} \neq \beta^{2^{j}}$ for $0 \leq i, j<e$.
2.16 Let n^{\prime} be the order of $\beta^{2^{i}}$. Then

$$
\left(\beta^{2^{i}}\right)^{n^{\prime}}=1
$$

Hence

$$
\begin{equation*}
\left(\beta^{n^{\prime}}\right)^{2^{i}}=1 . \tag{1}
\end{equation*}
$$

Since the order n of β is odd, n and 2^{i} are relatively prime. From(1), we see that n divides n^{\prime} and

$$
\begin{equation*}
n^{\prime}=k n . \tag{2}
\end{equation*}
$$

Now consider

$$
\left(\beta^{2^{i}}\right)^{n}=\left(\beta^{n}\right)^{2^{i}}=1
$$

This implies that n^{\prime} (the order of $\beta^{2^{i}}$) divides n. Hence

$$
\begin{equation*}
n=\ell n^{\prime} \tag{3}
\end{equation*}
$$

From (2) and (3), we conclude that

$$
n^{\prime}=n .
$$

2.20 Note that $c \cdot \mathbf{v}=c \cdot(\mathbf{0}+\mathbf{v})=c \cdot \mathbf{0}+c \cdot \mathbf{v}$. Adding $-(c \cdot \mathbf{v})$ to both sides of the above equality, we have

$$
\begin{aligned}
c \cdot \mathbf{v}+[-(c \cdot \mathbf{v})] & =c \cdot \mathbf{0}+c \cdot \mathbf{v}+[-(c \cdot \mathbf{v})] \\
\mathbf{0} & =c \cdot \mathbf{0}+\mathbf{0}
\end{aligned}
$$

Since 0 is the additive identity of the vector space, we then have

$$
c \cdot \mathbf{0}=\mathbf{0} .
$$

2.21 Note that $0 \cdot \mathbf{v}=\mathbf{0}$. Then for any c in F,

$$
(-c+c) \cdot \mathbf{v}=\mathbf{0}
$$

$$
(-c) \cdot \mathbf{v}+c \cdot \mathbf{v}=\mathbf{0} .
$$

Hence $(-c) \cdot \mathbf{v}$ is the additive inverse of $c \cdot \mathbf{v}$, i.e.

$$
\begin{equation*}
-(c \cdot \mathbf{v})=(-c) \cdot \mathbf{v} \tag{1}
\end{equation*}
$$

Since $c \cdot \mathbf{0}=\mathbf{0}$ (problem 2.20),

$$
\begin{gathered}
c \cdot(-\mathbf{v}+\mathbf{v})=\mathbf{0} \\
c \cdot(-\mathbf{v})+c \cdot \mathbf{v}=\mathbf{0}
\end{gathered}
$$

Hence $c \cdot(-\mathbf{v})$ is the additive inverse of $c \cdot \mathbf{v}$, i.e.

$$
\begin{equation*}
-(c \cdot \mathbf{v})=c \cdot(-\mathbf{v}) \tag{2}
\end{equation*}
$$

From (1) and (2), we obtain

$$
-(c \cdot \mathbf{v})=(-c) \cdot \mathbf{v}=c \cdot(-\mathbf{v})
$$

2.22 By Theorem 2.22, S is a subspace if (i) for any \mathbf{u} and \mathbf{v} in $S, \mathbf{u}+\mathbf{v}$ is in S and (ii) for any c in F and \mathbf{u} in $S, c \cdot \mathbf{u}$ is in S. The first condition is now given, we only have to show that the second condition is implied by the first condition for $F=G F(2)$. Let u be any element in S. It follows from the given condition that

$$
\mathbf{u}+\mathbf{u}=\mathbf{0}
$$

is also in S. Let c be an element in $\mathrm{GF}(2)$. Then, for any \mathbf{u} in S,

$$
c \cdot \mathbf{u}=\left\{\begin{array}{lll}
\mathbf{0} & \text { for } & c=0 \\
\mathbf{u} & \text { for } & c=1
\end{array}\right.
$$

Clearly $c \cdot \mathbf{u}$ is also in S. Hence S is a subspace.
2.24 If the elements of $\mathrm{GF}\left(2^{m}\right)$ are represented by m-tuples over $\mathrm{GF}(2)$, the proof that $\mathrm{GF}\left(2^{m}\right)$ is
a vector space over $\mathrm{GF}(2)$ is then straight-forward.
2.27 Let \mathbf{u} and \mathbf{v} be any two elements in $S_{1} \cap S_{2}$. It is clear the \mathbf{u} and \mathbf{v} are elements in S_{1}, and \mathbf{u} and \mathbf{v} are elements in S_{2}. Since S_{1} and S_{2} are subspaces,

$$
\mathbf{u}+\mathbf{v} \in S_{1}
$$

and

$$
\mathbf{u}+\mathbf{v} \in S_{2}
$$

Hence, $\mathbf{u}+\mathbf{v}$ is in $S_{1} \cap S_{2}$. Now let \mathbf{x} be any vector in $S_{1} \cap S_{2}$. Then $\mathbf{x} \in S_{1}$, and $\mathbf{x} \in S_{2}$. Again, since S_{1} and S_{2} are subspaces, for any c in the field $F, c \cdot \mathbf{x}$ is in S_{1} and also in S_{2}. Hence $c \cdot \mathbf{v}$ is in the intersection, $S_{1} \cap S_{2}$. It follows from Theorem 2.22 that $S_{1} \cap S_{2}$ is a subspace.

