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Problems and Solutions for Section 1.2 and Section 1.3 (1.20 to 1.51)

Problems and Solutions Section 1.2 (Numbers 1.20 through 1.30)

1.20* Plot the solution of a linear, spring and mass system with frequency ®, =2 rad/s,

X, = 1 mm and v, = 2.34 mm/s, for at least two periods.

Solution: From Window 1.18, the plot can be formed by computing:
1 o1,0 .
A=—Jo’x2 +v2 = 1.54 mm, ¢=tan" (=222) = 40.52
0] Yo

x(t) = Asin(w, t + @)
This can be plotted in any of the codes mentioned in the text. In Mathcad the

program looks like.

l===———1.18 HH
=1 w0 =234 wi = 2 | |
| 2 4 2 - x0
(t) 1= —aJwmn -x0% + w0 sin [wn-t + atan
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In this plot the units are in mm rather than meters.




1.21* Compute the natural frequency and plot the solution of a spring-mass system with
mass of 1 kg and stiffness of 4 N/m, and initial conditions of x, = 1 mm and v, =
0 mm/s, for at least two periods.

Solution: Working entirely in Mathcad, and using the units of mm

yields:
DEIIIQ
®i=1 +w0:=0 m:=1 k=4
k
wn = | —
i
1 2 n wn = 2
x(t) = — Lun-xtlz+ﬁ.fﬂ2-sin(mn-t+—
bt z
1
g
=]
4
g b
3
E=]
_1_
t
time in seronds

Any of the other codes can be used as well.

| ¥ | mm




1.22

To design a linear, spring-mass system it is often a matter of choosing a spring
constant such that the resulting natural frequency has a specified value. Suppose
that the mass of a system is 4 kg and the stiffness is 100 N/m. How much must
the spring stiffness be changed in order to increase the natural frequency by 10%?

Solution: Given m =4 kg and k = 100 N/m the natural frequency is

/1
W, = % =5 rad/s

Increasing this value by 10% requires the new frequency to be 5 x 1.1 = 5.5 rad/s.

Solving for k given m and ®, yields:

55= ‘E = k =(5.5)°(4) =121 N/m

Thus the stiffness k must be increased by about 20%.



1.23  Referring to Figure 1.8, if the maximum peak velocity of a vibrating system is
200 mm/s at 4 Hz and the maximum allowable peak acceleration is 5000 mm/s’,

what will the peak displacement be?

y =200 mm/sec

x (mm) a = 5000 mm/sec’
f=4Hz

Solution:
Given: v,,, =200 mm/s @ 4 Hz
e = 5000 mm/s @ 4 Hz

xmax =
vmax = Aa)n
Ao =AM, 2
v v 200
Xy = 0= = = = 7.95 mm
w, 2nf 8=m

At the center point, the peak displacement will be x = 7.95 mm



1.24

Show that lines of constant displacement and acceleration in Figure 1.8 have

slopes of +1 and —1, respectively. If rms values instead of peak values are used,

how does this affect the slope?

Solution: Let

Peak values:

Location:

X = X,y SINW, T

X = X @, COSM, T

. 2 .
X ==X, sinw,t

xmax = 'xmaan = zﬂfx

max

_ 2 _ 2
Xnax = xmaan - (27Tf) X max

InXpax = Inx g +1n27f

InX . =In¥ . —In27f

Since x,,, 1s constant, the plot of In x,,,, versus In 27f is a straight line of slope

+1. If In X, 1s constant, the plot of In x.,,, versus In 2xf is a straight line of

slope —1. Calculate RMS values

Let

x(1)= Asin ¢t
x(r)= Aw, cosw,t

i(t)=—Aw,sinw,t



- 15
Mean Square Value: x > = lim —J x° (t) dt

T—oo
_ 2T 2
x’ 11m— A’ sma)tdt =lim —| (1-cos2w,t) dt =—
T— Toe T 0
- 1 T 2 2T Azw 2
= lim =] A @ cos’ w, tdt = lim L[ —(1 +cos 2w, 1) dt = s
T— oo TO T—oo 0 2 2

lT 5 4 ) 2. 4T A2w4
= lim =] Ao, sin"®,tdt = lim [ —(1+cos 2w, 1) dt = s
T— oo TO T— oo 0 2 2

Therefore,

Ib wlh N\s

)Crmv v

)Crmv v

The last two equations can be rewritten as:
Xrms — .x 0) anxm”

. , :
Xems = X, O = 2T X yms

The logarithms are:

In Xme = 1In x,_ + In 271f
IN Xmex = I Xmax + In 277

The plots of In Xms Versus In 2nf is a straight line of slope +1 when x,,, is constant, and

1 when X, is constant. Therefore the slopes are unchanged.



1.25 A foot pedal mechanism for a machine is crudely modeled as a pendulum
connected to a spring as illustrated in Figure P1.25. The purpose of the spring is
to keep the pedal roughly vertical. Compute the spring stiffness needed to keep
the pendulum at 1° from the horizontal and then compute the corresponding
natural frequency. Assume that the angular deflections are small, such that the
spring deflection can be approximated by the arc length, that the pedal may be
treated as a point mass and that pendulum rod has negligible mass. The values in
the figure are m =0.5kg, g =9.8 m/s’, /, =0.2 mand /, =0.3 m.

‘ 0 m =
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Figure P1.25
Solution: You may want to note to your students, that many systems with springs are
often designed based on static deflections, to hold parts in specific positions as in this
case, and yet allow some motion. The free-body diagram for the system is given in
the figure.



ke me

For static equilibrium the sum of moments about point O yields (8, is the static
deflection):

Y M, =—0,6,(/)k+mgl,=0

= 010,k = mg(, (M
0.5-0.3
o k=80 = 2106 N/m
36, (0_2)2 RO
180

Again take moments about point O to get the dynamic equation of motion:
Y M,=J0=mli0=-0k0+06)+mgl,=—0k0+ (;k0, — mg(,0

Next using equation (1) above for the static deflection yields:

mli0+02k6=0
2
:>é+( E'kJQ:O

2
ml;

:>a)n=£\/zzg‘/%=43.27 rad/s
,\m 03V 0.5

1.26  An automobile is modeled as a 1000-kg mass supported by a spring of
stiffness £ = 400,000 N/m. When it oscillates it does so with a maximum
deflection of 10 cm. When loaded with passengers, the mass increases to as much
as 1300 kg. Calculate the change in frequency, velocity amplitude, and

acceleration amplitude if the maximum deflection remains 10 cm.

Solution:
Given: m; = 1000 kg
m, = 1300 kg

k = 400,000 N/m



X, = A =10cm
_ K [A00.000 o s
m, 1000
/ 1/400000 =17.54 rad /s

Aw = 1754 - 20=-246rad/s
2.4
:}76‘:0.392 Hz
21

v, = Aw,, =10 cm x 20 rad/s =200 cm/s

v, = A®w,, =10 cm x 17.54 rad/s =175.4 cm/s
Av = 1754 - 200 = -24.6 cm/s

a, = Aw,’ =10 cm x (20 rad/s)* = 4000 cm/s’
a, = Aw,,’ =10 cm x (17.54 rad/s)* =3077 cm/s’
Aa = 3077 - 4000 = -923 cm/s’



1.27

The front suspension of some cars contains a torsion rod as illustrated in Figure
P1.27 to improve the car’s handling. (a) Compute the frequency of vibration of
the wheel assembly given that the torsional stiffness is 2000 N m/rad and the
wheel assembly has a mass of 38 kg. Take the distance x = 0.26 m. (b)
Sometimes owners put different wheels and tires on a car to enhance the
appearance or performance. Suppose a thinner tire is put on with a larger wheel
raising the mass to 45 kg. What effect does this have on the frequency?

Frame

Figure P1.27

Solution: (a) Ignoring the moment of inertial of the rod, and computing the

moment of inertia of the wheel as mx”, the frequency of the shaft mass system is

k 2000 N -
o, =\/ = = =27.9 rad/s
my® \38 kg (0.26 m)

(b) The same calculation with 45 kg will reduce the frequency to

k 2000 N -
, =\/ - = = ~ =25.6 rad/s
mx 45 -kg (0.26 m)

This corresponds to about an 8% change in unsprung frequency and could
influence wheel hop etc. You could also ask students to examine the effect of
increasing x, as commonly done on some trucks to extend the wheels out for
appearance sake.



1.28 A machine oscillates in simple harmonic motion and appears to be well modeled
by an undamped single-degree-of-freedom oscillation. Its acceleration is
measured to have an amplitude of 10,000 mm/s* at 8 Hz. What is the machine's

maximum displacement?

Solution:

Given: a,,,, = 10,000 mm/s* @ 8 Hz

The equations of motion for position and acceleration are:
x=Asin(m,t +¢) (1.3)
X= —Aa)f sin(w,t+¢)  (L.5)

The amplitude of acceleration is Aa),% =10,000 mm/s* and ®, = 2nf = 27(8) =

167 rad/s, from equation (1.12).
10,000 _ 10,000

The machine's displacement is 4 = 5=
w2 (6n)

A =3.96 mm

1.29 A simple undamped spring-mass system is set into motion from rest by giving it
an initial velocity of 100 mm/s. It oscillates with a maximum amplitude of 10

mm. What is its natural frequency?

Solution:
Given: x, =0, v, = 100 mm/s, A = 10 mm

From equation (1.9), 4 = Yo or w, = V70 = % , so that: ®,=10rad/s

n



1.30  An automobile exhibits a vertical oscillating displacement of maximum amplitude
5 cm and a measured maximum acceleration of 2000 cm/s*>. Assuming that the
automobile can be modeled as a single-degree-of-freedom system in the vertical

direction, calculate the natural frequency of the automobile.

Solution:

Given: A =35 cm. From equation (1.15)
i = A} =2000 co/s
Solving for ), yields:

J 2000 J 2000
. = =
" A 5

o, =20rad/s




Problems Section 1.3 (Numbers 1.31 through 1.46)

1.31 Solve ¥+4x+x=0 for x, =1 mm, v, =0 mm/s. Sketch your results and
determine which root dominates.
Solution:

Given X +4x+x =0 wherex; =1mm,vy =0

Let =ge" = x=are” = ¥=ar’e”

Substitute these nto the equation of motlon to get:

ar*e” +dare” +ae” =0

=l +dr+1=0=7,=-2%+3

So
(2+f3) (
xX=ae + a,e
( 2+J_)a1 (-2+3) 1 ( 5 J_)az (-2-B)1

Applymg initial conditions yields,

vo=(=2+43)a +(-2-3)a, 2)
Substitute equation (1) into (2)
v =(=2+3)(xy—a)+ (-2 -3 )a,
voz(—2+‘/§)x0 —2J§a2
Solve for a, v, + (_2+‘/§) X,
a, = B

Substituting the value of a, into equation (1), and solving for a, yields,

+ (2+J§)x0

al= 2‘/3
+(2+\ﬁ)xo o) —v0+(—2+x@)xo (2-43)
e

- )= 23 ¢ 23

The response is dominated by the root: —2 + /3 _ as the other root dies off

—Z—ﬁ)z

very fast.



1.32  Solve ¥+2x+2x =0 for x, =0 mm, v, = 1 mm/s and sketch the response. You
may wish to sketch x(z) = ¢” and x() =-¢" first.
Solution:
Given X+ 2x+x =0 where x, =0, v, =1 mm/s
Let:x=ae" = x=are” = ¥=ar’e"

Substitute into the equation of motion to get

ar’e" +2are” +ae" =0=r’'+2r+1=0=rn,=-1%i

So

x=ce ™ 4 ™ = = (=14+i)c, ™+ (<10,
Initial conditions:

x,=x(0)=¢ +¢,=0 = ¢, =— (1)

v, =x(0)=(-1+i)¢ +(-1—=i)c, =1 (2)

Substituting equation (1) into (2)

vy = (=l+i)¢ —(-1-i)q =1

1, 1
¢ ==7h =7
x(1)= —lie(fl”) o+ lie(fH)t =——ie (" —e™)
2 2
Applying Euler’s formula
1., - .
x(r)= — e (cos t+isint—(cost—isint))
x(t)=e"'sint

Alternately use equations (1.36) and (1.38). The plot is similar to figure 1.11.



1.33  Derive the form of A, and A, given by equation (1.31) from equation (1.28)
and the definition of the damping ratio.

Solution:

Equation (1.28): Ay 5 = _2L12L % —4km
m m

o= s ) ﬁ[

Rearrange, J, , = —( . j}c—m)[j%) * 2@[

Substitute:

o=y =i = b= st e[




1.34  Use the Euler formulas to derive equation (1.36) from equation (1.35) and to
determine the relationships listed in Window 1.4.

Solution:

jond1=¢71 —j@,1-C" 1

a,e

Equation (1.35): x(1)= e " (ae)

From Euler,

x(t)=e*"(a, cos(conﬁt) +a,j sin(a)nﬁt)
+a, cos(a)nmt) —a,j sin(a)n 1- Czt))
= e *(a, +a,)cosw,t + j(a, —a,)sinw,t
Let: Ai=(a, +a,), Ax=(a, — a, ), then this last expression becomes
x(t)= e " A cosw gt + A,sinw, t

Next use the trig identity:

A
A=,J4,+4,, ¢=tan” =

AZ

to get: x(¢)=e " Asin(w,t + §)




1.35 Using equation (1.35) as the form of the solution of the underdamped
system, calculate the values for the constants a, and a, in terms of the initial
conditions x, and v,

Solution:

Equation (1.35):

x([): e_cw"l‘(alejw,l 1-¢ ¢ +aze—jw,, 1-¢ t)
- ; 1-¢2 . p —
(1) = (Lo, +jo,y1- )ale( o, +io, 1L ) (o, —jo1-Ca, e( to,-jo 1T )

Initial conditions

x=x(0)=a, +a, =a,=x,—a, (1)

v, = #0) = (=Cw, +jo,J1-C)a, +(~o, — jo, J1-)a, )

Substitute equation (1) into equation (2) and solve for a;
VOZ(_gwn+jwnd1_§2 )(xo_%)-i_(_ca)n_jwn 1_C2 )aZ
vo=(~tw, + joN1-T )5, - 2jo1-C 4

Solve for a,

Vo — Cwnxo +ja)n 1- C2xo
2jo,1-¢

Substitute the value for a, into equation (1), and solve for a;

a, =

VY + Cwnxo + jwn 1- szo

B 2jo,\1-¢

1



1.36  Calculate the constants A and ¢ in terms of the initial conditions and thus
verify equation (1.38) for the underdamped case.
Solution:
From Equation (1.36),
x(f) = Ae** sin(@, + ¢)
Applying initial conditions (¢ = 0) yields,
X, = Asin® (1
vy = X, ==L, Asind+m, Acosd (2)

Next solve these two simultaneous equations for the two unknowns A and ¢.

From (1),
X
A=—"" 3
sin ¢ ©)
Substituting (3) into (1) yields
W, Xy XoWy
v, =—00 x, + = tanQ = .
) =50 tan ¢ ¢ v + 8w, x,

Hence,

0= tan~! {ﬂ} 4)

v, +40,x,
. X,
From (3), sin¢g = " (®))
vy + 80,

and From (4), cos¢ = (6)

(xowd)2 +(vo + gwnxo)z

Substituting (5) and (6) into (2) yields,

A:\/(Vo +{w,%,)" +(x,0,)’

w,

which are the same as equation (1.38)



1.37 Calculate the constants @, and a, in terms of the initial conditions and thus verify

equations (1.42) and (1.43) for the overdamped case.

Solution: From Equation (1.41)
X(t)= e—Cw"t(alew,, C -1t + aze—w,,JC‘—l z)
taking the time derivative yields:

i(r)= (o, + o, ¢ —l)ale(_gw"m"'kz__l)[ + (Lo, —o,F-Da, R G

Applying initial conditions yields,
xozx(O):a]+a2 = X,—a,=aq ()
v, = x(0) :(—gwn +wn\/ﬁ)a1 + (—Cwn —~ con\/ﬁ)a2 (2)
Substitute equation (1) into equation (2) and solve for a,
Yy =(—Ca)n + wn‘/é/z_—l)(xo— a2)+(— (o, —wn‘/m)az
V= ( —fo, + wn‘/ﬁ)xo - 260,1‘/{2_—1a2
Solve for a,

a = ) _Cwn'x0+wn gz -1 x,
’ 20,47 -1

Substitute the value for a, into equation (1), and solve for a,

Y +lw,x,+ ] —1 x,

20, -1




1.38 Calculate the constants a, and a, in terms of the initial conditions and thus verify

equation (1.46) for the critically damped case.

Solution:

From Equation (1.45),

1

x(t) = (a, + a,t)e "
=%, =—-0,aqe " —oate ™ +a,e ™
Applying the initial conditions yields:
X, =a, (D)
and
vy =x(0)=a, -0,q, (2
solving these two simultaneous equations for the two unknowns a, and a,.
Substituting (1) into (2) yields,
a, = x,
a,=v, +,x,

which are the same as equation (1.46).



1.39  Using the definition of the damping ratio and the undamped natural frequency,

derive equitation (1.48) from (1.47).

Solution:

. ¢ . k
Therefore, X+ —x+—x=0
m m

becomes,

$(0) + 28w (1) + @, x() =0

1.40 For a damped system, m, ¢, and k are known to be m = 1 kg, ¢ =2 kg/s, k = 10
N/m. Calculate the value of { and w,. Is the system overdamped, underdamped, or
critically damped?

Solution:

Given: m =1kg, c=2kg/s, k=10 N/m

Natural frequency: ®, = \/E = 1[% =3.16rad /s
m
c 2

Damping ratio: C

- - =0.316
20,m  2(3.16)(1)

2
1
Damped natural frequency: @, =v10,/1— [Tj =3.0 rad/s
10

Since 0 < { < 1, the system is underdamped.



1.41  Plot x(¢) for a damped system of natural frequency ®, = 2 rad/s and initial
conditions xp = 1 mm, vy = 1 mm, for the following values of the damping ratio:
£=0.01,{=02,{=0.1,£=0.4,and L= 0.8.

Solution:

Given: m, = 2 rad/s, xp=1 mm, vo= 1 mm, {; =[0.01; 0.2; 0.1; 0.4; 0.8]
Underdamped cases:

LWy = 0,41 - Ciz

From equation 1.38,

A= J(VO +8,0,%, )2 + ('xowdi)z

_ X, ;.
= ¢i — tan 1 #
Wy Vot Ciwnxo

The response is plotted for each value of the damping ratio in the following using
Matlab:

x10%

0 2 4 6 8 10 12 14 16 18 20



1.42

002 | ‘ i
I
004l 1 : B
006 | i
I
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Plot the response x(¢) of an underdamped system with ®, =2 rad/s, { = 0.1, and
vo = 0 for the following initial displacements: xo = 10 mm and xo = 100 mm.

Solution:
Given: m, =2 rad/s, { = 0.1, vo= 0, Xo = 10 mm and xo = 100 mm.

Underdamped case:

cw, = 0, \1- {2 = 2{J1-0.1> = 1.99 rad/s

where

x(f) = Ae** sin(@, + ¢)

The following is a plot from Matlab.

0.1

0.08 - I x0 =10 mm B

77777 X0 =100 mm
0.06 |- ! -

0.04 - | i

0021 | ‘ ! ) J




1.43

Solve X —x+x =0 with x, =1 and v, =0 for x(¢#) and sketch the response.

Solution: This is a problem with negative damping which can be used to tie into
Section 1.8 on stability, or can be used to practice the method for deriving the
solution using the method suggested following equation (1.13) and eluded to at
the start of the section on damping. To this end letx(7) = Ae™ the equation of
motion to get:

A =2+De” =0
This yields the characteristic equation:

1 3
12—/1+1=O:>l=5i§j, wherej:x/—_l

There are thus two solutions as expected and these combine to form
R By,

x(t)=e""(Ae’ +Be ')
Using the Euler relationship for the term in parenthesis as given in Window 1.4,

this can be written as

0.5t

x(1) =e (A cos% t+ A sin gt)

Next apply the initial conditions to determine the two constants of integration:
x(0)=1=A0)+A,0)= A =1

Differentiate the solution to get the velocity and then apply the initial velocity
condition to get

x(t) =
S B J3 J3

1 3 3
—e"(A cos£0 + A, sin—0)+ e’ —(—A, sin—0+ A, cos—0) =0
2 2 2 2 2 2

1
= A +V3(4,)=0=4, =———,
1 2 2 \/5
o5 N3, 1 V3
~'(cos—t — —=sin—t)
2 32
This function oscillates with increasing amplitude as shown in the following plot

which shows the increasing amplitude. This type of response is referred to as a
flutter instability. This plot is from Mathcad.

=x(t)=e




a0 T

x[t)

1.44 A spring-mass-damper system has mass of 100 kg, stiffness of 3000 N/m and
damping coefficient of 300 kg/s. Calculate the undamped natural frequency, the
damping ratio and the damped natural frequency. Does the solution oscillate?

Solution: Working straight from the definitions:

W, = "i = 3000 N/m = 5.477 rad/s
m 100 kg
300

c 300
{=—=
Ccr

2Jkm 2 J(3000)(100) 0.274

Since C is less then 1, the solution is underdamped and will oscillate. The damped

natural frequency isw, = @, ‘/1 - ? =5.27 radls.



1.45 A sketch of a valve and rocker arm system for an internal combustion engine is
give in Figure P1.45. Model the system as a pendulum attached to a spring and a
mass and assume the oil provides viscous damping in the range of {=0.01.
Determine the equations of motion and calculate an expression for the natural
frequency and the damped natural frequency. Here J is the rotational inertia of
the rocker arm about its pivot point, k is the stiffness of the valve spring and m is
the mass of the valve and stem. Ignore the mass of the spring.

Rocker arm 7] J

Valve spring

" 4
Figure P1.45
Solution: The model is of the form given in the figure. You may wish to give this figure

as a hint as it may not be obvious to all students.

J
m

' o
. (

»
»

Taking moments about the pivot point yields:
(J +ml*)(t) = —kxl — cil = —k(*0 — c(*6
= (J+ml)0) +cl’60+k’0=0

Next divide by the leading coefficient to get;

2 2

é(t)+( ct 0(1)=0
J+

— )9(1‘) +

J+m??



1.46

From the coefficient of g, the undamped natural frequency is

/ k(?
W, = — rad/s
J+ml

From equation (1.37), the damped natural frequency becomes

k0? k0?
0, =mw1-C =O.99995\/ ~\/
¢ " 6 J+ml* J+ml?

This is effectively the same as the undamped frequency for any reasonable

accuracy. However, it is important to point out that the resulting response will
still decay, even though the frequency of oscillation is unchanged. So even
though the numerical value seems to have a negligible effect on the frequency of
oscillation, the small value of damping still makes a substantial difference in the

response.

A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and
damping coefficient of 200 kg/s. Calculate the undamped natural frequency, the
damping ratio and the damped natural frequency. Is the system overdamped,
underdamped or critically damped? Does the solution oscillate?

Solution: Working straight from the definitions:

o = ‘/L 100N/m _ 3 162 radss
m Y 150 kg

200 200

RPN PN (SO

This last expression follows from the equation following equation (1.29). Since {
is less then 1, the solution is underdamped and will oscillate. The damped natural

frequency isw, = wn‘ll —¢? =3.091 rad/s,, which follows from equation (1.37).



1.47* The system of Problem 1.44 is given a zero initial velocity and an initial
displacement of 0.1 m. Calculate the form of the response and plot it for as long
as it takes to die out.

Solution: Working from equation (1.38) and using Mathcad the solution is:

NlaaD")")8)ff—————————————————— 12 =—————"—"[0H
m =100 kK :'=3000 ¢ = 300 =
k . .
W = — E= o = on gl — £
" 2-agm- k
vOi=0 x0:=0.1
1 5 Z
& 1= —,JI['F\H:I + q-;ﬂj.mnj + (KD'I'_L'IIj_II
v md-x0
¢ 1= atan | ————
vl + & wn-x0
& =0.104 4 = 1.293 .
wd = 5,268
¢ =027
Xx |:t:| = A-Sm(md.t + ¢|:|-E5't"'-'\-"n't
0.1 -
0.0s -+
x[t]
ﬁx_ér | |
D \/1 : 5 4
—.05L
r =
A [ sl




1.48* The system of Problem 1.46 is given an initial velocity of 10 mm/s and an initial
displacement of -5 mm. Calculate the form of the response and plot it for as long
as it takes to die out. How long does it take to die out?

Solution: Working from equation (1.38), the form of the response is programmed
in Mathcad and is given by:

[="————"—"— —1413—"+—————— [ B
F
k = 1500 m =150 ¥0 = -0.005 0 :=0.010 - 200 =
all units inm, kg, 5
[H
k q = —_—
T il . = 2
i m Zoafm k =021 od 1= wne a1l —f wid = 3.091
21
1 2 2 - Ti=—
A= —alv0 + oxtwn]” + (x0wd]® & = 5.445-10 wd
wod
. | ' od - x0
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It appears to take a little over 6 to 8 seconds to die out. This can also be plotted in
Matlab, Mathematica or by using the toolbox.



1.49* Choose the damping coefficient of a spring-mass-damper system with mass of
150 kg and stiffness of 2000 N/m such that it’s response will die out after about 2
s, given a zero initial position and an initial velocity of 10 mm/s.
Solution: Working in Mathcad, the response is plotted and the value of ¢ is

changed until the desired decay rate is meet:

¢ '= 800 k = 2000 0 1= 0,010 )
x0:=0
m := 150
c
{i= ———
2’\’1’111( _ k 2
on .= m od = on-all =
X(t) = A Sin(wn.t + q))_e—c.(l)n.t
od- x0
0 = atan
v0 + (- on-x0
In this case { = 0.73 which is very large!
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1.50

Derive the equation of motion of the system in Figure P1.50 and discuss the effect

of gravity on the natural frequency and the damping ratio.

: LI

Solution: This requires two free body diagrams. One for the dynamic case and

one to show static equilibrium.

ky cdy/dt kAx
i B

mg x() mg (1)

(a) (b)
From the free-body diagram of static equilibrium (b) we have that mg = kAx,
where Ax represents the static deflection. From the free-body diagram of the
dynamic case given in (a) the equation of motion is:
my(t)+cy (1) + ky(t) —mg =0
From the diagram, y(7) = x(f) + Ax. Since Ax is a constant, differentiating and
substitution into the equation of motion yields:
1) = x(r) and 3(1) = X(1) =
mx(t)+cx(t) + kx(t) + (kAx —mg) =0
—
where the last term is zero from the relation resulting from static equilibrium.
Dividing by the mass yields the standard form
3(0) + 28w (1) + @ x(t) = 0
It is clear that gravity has no effect on the damping ratio { or the natural
frequency ®,. Not that the damping force is not present in the static case because
the velocity is zero.



1.51 Derive the equation of motion of the system in Figure P1.46 and discuss the effect
of gravity on the natural frequency and the damping ratio. You may have to make
some approximations of the cosine. Assume the bearings provide a viscous
damping force only in the vertical direction. (From the A. Diaz-Jimenez, South

African Mechanical Engineer, Vol. 26, pp. 65-69, 1976)

Solution: First consider a free-body diagram of the system:
i) L s kas

v
x(1)

Let o be the angel between the damping and stiffness force. The equation of

motion becomes

mix(t) = —cx(t) — k(AL +6,)cos o
From static equilibrium, the free-body diagram (above with ¢ =0 and stiffness
force k9,) yields: X F, =0 =mg — kd,coso.. Thus the equation of motion

becomes
mx +cx+kAlcos o =0 (1)
Next consider the geometry of the dynamic state:



l+AY

X 0

From the definition of cosine applied to the two different triangles:
h+ x

1+ Al
Next assume small deflections so that the angles are nearly the same cos o = cos
0, so that

coso = z and cosf=

LNt Ny VIS V.
0 I+ Al h cos o
For small motion, then this last expression can be substituted into the equation of
motion (1) above to yield:

mx +cx+kx =0, o and x small
Thus the frequency and damping ratio have the standard values and are not
effected by gravity. If the small angle assumption is not made, the frequency can
be approximated as

C

k .

0, = J—cosza + §31n2 o, §=
m h 2mw,

as detailed in the reference above. For a small angle these reduce to the normal

values of
k c
0, = ‘,—, and {=
m 2mm,

as derived here.



