


Problems and Solutions for Section 1.2 and Section 1.3 (1.20 to 1.51) 
 
Problems and Solutions Section 1.2   (Numbers 1.20 through 1.30) 
 
1.20* Plot the solution of a linear, spring and mass system with frequency ωn =2 rad/s, 

x0 = 1 mm and v0 =  2.34 mm/s, for at least two periods. 

 Solution: From Window 1.18, the plot can be formed by computing: 

  

A =
1

!
n

!
n

2
x0

2
+ v0

2
= 1.54 mm,  " = tan

#1
(
!

n
x0

v0

) = 40.52
!  

x(t) = Asin(!
n
t + ")  

 This can be plotted in any of the codes mentioned in the text.  In Mathcad the 

program looks like.   

 
 In this plot the units are in mm rather than meters.



 

 

1.21* Compute the natural frequency and plot the solution of a spring-mass system with 

mass of 1 kg and stiffness of 4 N/m, and initial conditions of x0 = 1 mm and v0 =  

0 mm/s, for at least two periods. 

 Solution: Working entirely in Mathcad, and using the units of mm 

yields:

 
 Any of the other codes can be used as well. 

 



 

 

1.22  To design a linear, spring-mass system it is often a matter of choosing a spring 

constant such that the resulting natural frequency has a specified value.  Suppose 

that the mass of a system is 4 kg and the stiffness is 100 N/m.  How much must 

the spring stiffness be changed in order to increase the natural frequency by 10%? 

Solution:  Given m =4 kg and k = 100 N/m the natural frequency is  

!
n
=

100

4
= 5 rad/s  

Increasing this value by 10% requires the new frequency to be 5 x 1.1 = 5.5 rad/s.  

Solving for k given m and ωn yields: 

5.5 =
k

4
! k = (5.5)

2
(4) =121 N/m  

Thus the stiffness k must be increased by about 20%. 



 

 

 

 
 
 
1.23 Referring to Figure 1.8, if the maximum peak velocity of a vibrating system is 

200 mm/s at 4 Hz and the maximum allowable peak acceleration is 5000 mm/s2, 

what will the peak displacement be? 

 

  

mm/sec200=v

x (mm) a = 5000 mm/sec
2

f = 4 Hz

 
  

 Solution: 

 Given:  vmax = 200 mm/s   @  4 Hz 

              amax = 5000 mm/s  @  4 Hz 

 xmax = A 

 vmax = Aωn 

 amax = Aω n
 2 

 ! x
max

=
v
max

"n

=
v
max

2# f
=
200

8#
= 7.95 mm  

 

 At the center point, the peak displacement will be x = 7.95 mm 



1.24 Show that lines of constant displacement and acceleration in Figure 1.8 have 

slopes of +1 and –1, respectively.  If rms values instead of peak values are used, 

how does this affect the slope? 

 

 Solution: Let 
x = x
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 Peak values: 
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 Since xmax is constant, the plot of ln maxx!  versus ln 2πf is a straight line of slope 

+1.  If ln maxx!!  is constant, the plot of ln maxx!  versus ln 2πf is a straight line of 

slope –1.  Calculate RMS values 

 Let 
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Therefore, 
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 The last two equations can be rewritten as:  

rmsrmsrms xfxx !="= 2

.

 

rmsrmsrms xfxx
.

2

..

2!="=  

The logarithms are: 

 fxx !+= 2lnlnln
maxmax

.

 

 fxx !+= 2lnlnln max

.

max

..

 

The plots of rmsx

.

ln  versus f!2ln  is a straight line of slope +1 when xrms is constant, and 

–1 when rmsx

..

  is constant. Therefore the slopes are unchanged. 



 

 

 

1.25 A foot pedal mechanism for a machine is crudely modeled as a pendulum 
connected to a spring as illustrated in Figure P1.25.  The purpose of the spring is 
to keep the pedal roughly vertical.  Compute the spring stiffness needed to keep 
the pendulum at 1° from the horizontal and then compute the corresponding 
natural frequency.  Assume that the angular deflections are small, such that the 
spring deflection can be approximated by the arc length, that the pedal may be 
treated as a point mass and that pendulum rod has negligible mass. The values in 
the figure are m = 0.5 kg, g = 9.8 m/s2, 

 
!

1
= 0.2 m and !

2
= 0.3 m.    

 

 
Figure P1.25 

Solution: You may want to note to your students, that many systems with springs are 
often designed based on static deflections, to hold parts in specific positions as in this 
case, and yet allow some motion.  The free-body diagram for the system is given in 
the figure.   
 



 
For static equilibrium the sum of moments about point O yields (θ1 is the static 
deflection): 

 

 

M 0! = "!1#1(!1)k + mg!2 = 0

           $ !1

2
#1k = mg!2                                        (1)

            $ k =
mg!2

!1

2
#1

=
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(0.2)
2 &

180

=  2106 N/m

 

Again take moments about point O to get the dynamic equation of motion: 
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Next using equation (1) above for the static deflection yields: 
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1.26 An automobile is modeled as a 1000-kg mass supported by a spring of 

stiffness k = 400,000 N/m.  When it oscillates it does so with a maximum 

deflection of 10 cm.  When loaded with passengers, the mass increases to as much 

as 1300 kg.  Calculate the change in frequency, velocity amplitude, and 

acceleration amplitude if the maximum deflection remains 10 cm. 

 

 Solution: 

 Given: m1 = 1000 kg 

  m2 = 1300 kg 

k = 400,000 N/m  



xmax =  A  = 10 cm  

 

 

 

 

 

 

 

 

 

v1  =  Aωn1  = 10  cm  x  20  rad/s  = 200 cm/s 

v2  =  Aωn2  = 10  cm  x  17.54  rad/s  = 175.4 cm/s  

Δv  =  175.4 -  200  =  -24.6  cm/s 

 

a1  =  Aωn1
2  = 10  cm  x  (20  rad/s)2  = 4000 cm/s2 

a2  =  Aωn2
2  = 10  cm  x  (17.54  rad/s)2  = 3077 cm/s2  

Δa  =  3077 -  4000  =  -923  cm/s2 
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srad /46.22054.17 !=!="#  

!f =
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2#
=

$2.46

2#
= 0.392 Hz  



 

1.27 The front suspension of some cars contains a torsion rod as illustrated in Figure 
P1.27 to improve the car’s handling.  (a) Compute the frequency of vibration of 
the wheel assembly given that the torsional stiffness is 2000 N m/rad and the 
wheel assembly has a mass of 38 kg.  Take the distance x = 0.26 m.  (b) 
Sometimes owners put different wheels and tires on a car to enhance the 
appearance or performance.  Suppose a thinner tire is put on with a larger wheel 
raising the mass to 45 kg.  What effect does this have on the frequency? 

 
 
 

 
Figure P1.27 

 Solution:  (a) Ignoring the moment of inertial of the rod, and computing the 

moment of inertia of the wheel as   mx
2 , the frequency of the shaft mass system is  

!
n
=

k

mx
2
=

2000 N "m

38 "kg (0.26 m)2
= 27.9 rad/s  

 (b)  The same calculation with 45 kg will reduce the frequency to 

!
n
=

k

mx
2
=

2000 N "m

45 "kg (0.26 m)2
= 25.6 rad/s  

This corresponds to about an 8% change in unsprung frequency and could 
influence wheel hop etc.  You could also ask students to examine the effect of 
increasing x, as commonly done on some trucks to extend the wheels out for 
appearance sake. 

 



1.28 A machine oscillates in simple harmonic motion and appears to be well modeled 

by an undamped single-degree-of-freedom oscillation.  Its acceleration is 

measured to have an amplitude of 10,000 mm/s2 at 8 Hz.  What is the machine's 

maximum displacement?  

 

 Solution: 

 Given: amax = 10,000 mm/s2 @  8 Hz 

The equations of motion for position and acceleration are: 

  
 

x = Asin(!
n
t + ")             (1.3)

!!x = #A!
n

2
sin(!

n
t + ")      (1.5)

 

 The amplitude of acceleration is 000,10
2
=nA!  mm/s2 and ωn = 2πf = 2π(8) = 

16π rad/s, from equation (1.12). 

 The machine's displacement is 
( )22
16

000,10000,10

!"

==

n

A  

 A = 3.96 mm 

 

 

1.29 A simple undamped spring-mass system is set into motion from rest by giving it 

an initial velocity of 100 mm/s.  It oscillates with a maximum amplitude of 10 

mm.  What is its natural frequency? 

  

Solution: 

 Given: x0 = 0, v0 = 100 mm/s, A = 10 mm 

 From equation (1.9), 
n

v
A

!

0
=  or 

10

1000
==

A

v

n! ,  so that:   ωn= 10 rad/s 



1.30 An automobile exhibits a vertical oscillating displacement of maximum amplitude 

5 cm and a measured maximum acceleration of 2000 cm/s2.  Assuming that the 

automobile can be modeled as a single-degree-of-freedom system in the vertical 

direction, calculate the natural frequency of the automobile. 

  

Solution: 

 Given:  A = 5 cm.  From equation (1.15) 

  cm/s 2000
2
== nAx !!!  

 Solving for ωn yields: 

  

  

!
n
=

2000

A
=

2000

5

!
n
= 20rad/s

 



Problems Section 1.3  (Numbers 1.31 through 1.46) 
 
1.31 Solve 04 =++ xxx !!!  for x0 = 1 mm, v0 = 0 mm/s.  Sketch your results and 

determine which root dominates. 

 Solution: 

 Given 0 mm, 1  where04 00 ===++ vxxxx !!!  
 Let 

Substitute these into the equation of motion to get: 
ar

2
e
rt
+ 4are

rt
+ ae

rt
= 0

! r
2
+ 4r +1 = 0! r

1,2
= "2 ± 3

 

 So 

 
x = a

1
e

!2 + 3( ) t

+ a
2
e

!2 ! 3( ) t

˙ x = ! 2 + 3( )a1
e

!2+ 3( ) t

+ ! 2 ! 3( )a2
e

!2! 3( ) t

 

Applying initial conditions yields, 
 
 
 

Substitute equation (1) into (2) 
 

 
 
 Solve for a2 

      
 
Substituting the value of a2 into equation (1), and solving for a1 yields, 
 
 
 

! x(t) =
v
0
+ 2 + 3( )x0

2 3
e

"2+ 3( ) t
+

"v
0
+ " 2 + 3( )x0

2 3
e

"2" 3( ) t  

The response is dominated by the root:  !2 + 3    as the other root dies off 
very fast. 

x0 = a1 + a2 ! x0 " a2 = a1 (1)

v0 = " 2 + 3( ) a1 + " 2 " 3( )a2 (2)
 

v
0
= ! 2 + 3( )(x0 ! a2 ) + ! 2 ! 3( )a2

v
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a
2
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2 3
 

a
1
=
v
0
+ 2 + 3( ) x0

2 3
 

 x = ae
rt
! !x = are

rt
! !!x = ar

2
e
rt  



 

1.32 Solve 022 =++ xxx !!!  for x0 = 0 mm, v0 = 1 mm/s and sketch the response.  You 

may wish to sketch x(t) = e-t and x(t) =-e-t first. 

 Solution: 
 Given 02 =++ xxx !!!  where x0 = 0, v0 = 1 mm/s 

 Let: x = ae
rt
! !x = are

rt
! !!x = ar

2
e
rt  

 Substitute into the equation of motion to get 

 ar
2
e
rt
+ 2are

rt
+ ae

rt
= 0! r

2
+ 2r +1 = 0! r

1,2
= "1± i  

 So 
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1
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+ c

2
e

!1! i( ) t
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 Initial conditions: 

 

 

 

Substituting equation (1) into (2) 

  

 

 

 

 

Applying Euler’s formula 
 
 
 

 

Alternately use equations (1.36) and (1.38).  The plot is similar to figure 1.11.

x
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1
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1
(1)

v
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= ˙ x 0( ) = "1+ i( )c
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2
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v
0
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c
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1
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1

2
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cos t + isin t ! (cos t ! i sin t)( )  

x t( ) = e! t sin t  



1.33 Derive the form of λ1 and λ2 given by equation (1.31) from equation (1.28) 
and the definition of the damping ratio. 

 

 Solution: 

 Equation (1.28): kmc
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1.34 Use the Euler formulas to derive equation (1.36) from equation (1.35) and to 

determine the relationships listed in Window 1.4. 

 Solution: 

 Equation (1.35):  x t( ) = e!"# nt a
1
e( )

j# n 1!"
2
t

! a
2
e
! j# n 1!"

2
t  

 From Euler,  

  

x t( ) = e!"# nt(a1 cos #n 1 !" 2 t( ) + a1 j sin #n 1 !" 2 t( )

                        + a2 cos #n 1 !" 2
t( ) ! a2 j sin #n 1 !" 2

t( ))
= e

!"# nt a1 + a2( )cos#d t + j a1 ! a2( )sin#d t

 

  Let:  A1=( )
21
aa + , A2=( )

21
aa ! , then this last expression becomes 

  x t( ) = e!"# n
t
A
1
cos#

d
t + A

2
sin#

d
t  

  Next use the trig identity: 

  
2

11

21
tan,

A

A
AAA

!
="+=  

  to get: x t( ) = e!"#nt Asin(#
d
t + $)  

  



1.35 Using equation (1.35) as the form of the solution of the underdamped 

system, calculate the values for the constants a1 and a2 in terms of the initial 

conditions x0 and v0. 

 Solution: 

 Equation (1.35):  

x t( ) = e!"# nt a
1
e
j# n 1!"

2
t
+ a

2
e
! j# n 1!"

2
t( )  

˙ x t( ) = (!"#n + j#n 1! "2
)a1e

!"#n + j#n 1!" 2( )t
+ (!"#n ! j# n 1 !" 2

)a2 e
!"# n ! j#n 1!" 2( )t

 

 Initial conditions 

  x
0
= x(0 ) = a

1
+ a

2
! a

1
= x

0
" a

2
     (1) 

  v
0
= ˙ x (0) = (!"# n + j#n 1 !" 2

)a
1
+ (!"#n ! j#n 1 !" 2

)a
2
 (2) 

 Substitute equation (1) into equation (2) and solve for a2 

  
v
0
= !"#n + j# n 1!" 2( )(x0 ! a

2
) + !"#n ! j# n 1!" 2( )a2

v
0
= !"#n + j# n 1!" 2( )x0 ! 2 j# n 1! " 2 a

2

 

 

 Solve for a2 

  a
2
=
!v

0
!"#

n
x
0
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1!" 2 x

0

2 j#
n
1!" 2

 

 Substitute the value for a2 into equation (1), and solve for a1 

a
1
=
v
0
+ !"

n
x
0
+ j"

n
1#! 2 x

0

2 j"
n
1#! 2

  



1.36 Calculate the constants A and φ in terms of the initial conditions and thus 

verify equation (1.38) for the underdamped case. 

Solution:  

From Equation (1.36),  

x(t) = Ae
!"#

n
t
sin #

d
t + $( )  

 Applying initial conditions (t  = 0) yields, 

!= sin
0

Ax                   (1) 

        !"+!#"$== cossin
00

AAxv
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!           (2) 

Next solve these two simultaneous equations for the two unknowns A and φ.  

From (1),   

!sin

0
x
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Substituting (3) into (1) yields 
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+#"$=
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x
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x
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d

v
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n
x
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v
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)
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From (3),   
A

x
0

sin =!                                                      (5) 

and From (4),  cos! =
v
0
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n
x
0

x
0
#
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2
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0
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n
x
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2
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Substituting (5) and (6) into (2) yields, 

2

2

0

2

00 )()(

d

dn
xxv

A
!

!"! ++
=  

which are the same as equation (1.38)  

   



 

1.37 Calculate the constants a1 and a2 in terms of the initial conditions and thus verify  

equations (1.42) and (1.43) for the overdamped case. 

 

Solution:   From Equation (1.41) 

 x t( ) = e!"# n
t

a
1
e
#n "

2
!1 t

+ a
2
e
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2
!1 t( )  

taking the time derivative yields: 
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n
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n
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 Applying initial conditions yields, 

 

x
0
= x 0( ) = a1
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2
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0
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2
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1
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v
0
= !x 0( ) = "#$

n
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n
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n
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n
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   Substitute equation (1) into equation (2) and solve for a2 

                         
v
0
= !"#

n
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n
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n
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n
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v
0
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 Solve for a2 

a
2
=
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0
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n
x
0
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n
" 2 !1 x

0
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n
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 Substitute the value for a2 into equation (1), and solve for a1 

a
1
=
v
0
+!"

n
x
0
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n
! 2 #1 x

0

2"
n

! 2 #1
 

 

 

 

 

 

 

 



1.38     Calculate the constants a1 and a2 in terms of the initial conditions and thus verify  

equation (1.46) for the critically damped case. 

 

Solution: 

From Equation (1.45), 

 x(t) = (a
1
+ a

2
t)e

!"
n
t  

 
 
! !x

0
= "#

n
a
1
e
"#

n
t
" #

n
a
2
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n
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e
"#

n
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 Applying the initial conditions yields: 

10
ax =    (1) 

and 

  120 )0( aaxv
n

!"== !   (2) 

solving these two simultaneous equations for the two unknowns a1 and a2.  

Substituting (1) into (2) yields,   

 
01
xa =  

  
002
xva

n
!+=   

which are the same as equation (1.46). 



1.39 Using the definition of the damping ratio and the undamped natural frequency, 

derive equitation (1.48) from (1.47). 

 

Solution:  

m

k
n
=!   thus,  2

n

m

k
!=  

km

c

2

=!  thus,  
n

m

km

m

c
!"=

!
= 2
2  

Therefore, 0=++ x
m

k
x

m

c
x !!!  

becomes,  

 ˙ ̇ x (t) + 2!"
n

˙ x (t) +"
n

2
x(t ) = 0  

 

1.40 For a damped system, m, c, and k are known to be m = 1 kg, c = 2 kg/s, k = 10 

N/m. Calculate the value of ζ and ωn. Is the system overdamped, underdamped, or 

critically damped? 

 Solution: 

Given: m = 1 kg, c = 2 kg/s, k = 10 N/m 

 

Natural frequency: srad
m

k
n

/16.3
1

10
===!  

Damping ratio: 316.0
)1)(16.3(2

2

2
==

!
="

m

c

n

 

Damped natural frequency: 
  

!
d
= 10 1"

1

10

#

$%
&

'(

2

= 3.0  rad/s  

 
Since 0 < ζ < 1, the system is underdamped. 
 
 
 
 
 
 
 



 
 
 

1.41 Plot x(t) for a damped system of natural frequency ωn = 2 rad/s and initial 
conditions x0 = 1 mm, v0 = 1 mm, for the following values of the damping ratio: 

  ζ = 0.01, ζ = 0.2, ζ = 0.1, ζ = 0.4, and ζ = 0.8.  
 

 Solution: 
  
 Given: ωn = 2 rad/s, x0 = 1 mm, v0 = 1 mm, ζi = [0.01;  0.2;  0.1;  0.4;  0.8] 

 Underdamped cases: 
  
  !"

di
= "

n
1 # $

i

2  
 
 From equation 1.38, 
 

 A
i
=

v
0
+!

i
"

n
x
0( )

2

+ x
0
"

di( )
2

"
di

2
  !

i
= tan

"1 x
0
#

di

v
0
+ $

i
#

n
x
0

 

 
The response is plotted for each value of the damping ratio in the following using 
Matlab: 
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1.42 Plot the response x(t) of an underdamped system with ωn = 2 rad/s, ζ = 0.1, and  
v0 = 0 for the following initial displacements: x0 = 10 mm and x0 = 100 mm. 
 
Solution: 
 
Given: ωn = 2 rad/s, ζ = 0.1, v0 = 0, x0 = 10 mm and x0 = 100 mm. 
 
Underdamped case: 

  
 !"

d
= "

n
1 # $

i

2
= 2 1#0.12 = 1.99 rad/s  

 

 A =
v
0
+!"

n
x
0( )

2

+ x
0
"

d( )
2

"
d

2
= 1.01 x

0
  

 

 ! = tan
"1 x

0
#

d

v
0
+ $#

n
x
0

= 1.47 rad  

 
where 
 
 x(t) = Ae

!"#
n
t
sin #

d
t + $( )  

 
 
The following is a plot from Matlab. 
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1.43 Solve 0=+! xxx !!!  with x0 = 1 and v0 =0 for x(t) and sketch the response. 

Solution:  This is a problem with negative damping which can be used to tie into 
Section 1.8 on stability, or can be used to practice the method for deriving the 
solution using the method suggested following equation (1.13) and eluded to at 
the start of the section on damping.   To this end let x(t) = Ae!t  the equation of 
motion to get: 

(!
2
" ! +1)e

!t
= 0  

This yields the characteristic equation: 

!
2
" ! +1 = 0 #! =

1

2
±

3

2
j,   where  j = "1  

There are thus two solutions as expected and these combine to form 

x(t) = e
0.5t
(Ae

3

2
jt

+ Be
!
3

2
jt

)  
Using the Euler relationship for the term in parenthesis as given in Window 1.4, 
this can be written as 

x(t) = e
0.5t
(A1 cos

3

2
t + A2 sin

3

2
t)  

Next apply the initial conditions to determine the two constants of integration:  
x(0) = 1 = A

1
(1) + A

2
(0)! A

1
=1  

 
Differentiate the solution to get the velocity and then apply the initial velocity 
condition to get 

 

!x(t) =

1

2
e

0
(A1 cos

3

2
0 + A2 sin

3

2
0) + e

0 3

2
(!A1 sin

3

2
0 + A2 cos

3

2
0) = 0

" A1 + 3(A2 ) = 0 " A2 = !
1

3
,

                        " x(t) = e
0.5t

(cos
3

2
t !

1

3
sin

3

2
t)

 

This function oscillates with increasing amplitude as shown in the following plot 
which shows the increasing amplitude.  This type of response is referred to as a 
flutter instability. This plot is from Mathcad. 



 
 
 
 

 

1.44 A spring-mass-damper system has mass of 100 kg, stiffness of 3000 N/m and 

damping coefficient of 300 kg/s.  Calculate the undamped natural frequency, the 

damping ratio and the damped natural frequency.  Does the solution oscillate? 

 Solution: Working straight from the definitions: 

 

!
n
=

k

m
=

3000 N/m

100 kg
= 5.477 rad/s

" =
c

ccr

=
300

2 km
=

300

2 (3000)(100)
= 0.274

 

 

Since ζ is less then 1, the solution is underdamped and will oscillate.  The damped 

natural frequency is!
d
=!

n
1 "#2

= 5.27 rad/s. 

 

 
 



1.45 A sketch of a valve and rocker arm system for an internal combustion engine is 
give in Figure P1.45.  Model the system as a pendulum attached to a spring and a 
mass and assume the oil provides viscous damping in the range of ζ = 0.01. 
Determine the equations of motion and calculate an expression for the natural 
frequency and the damped natural frequency.  Here J is the rotational inertia of 
the rocker arm about its pivot point, k is the stiffness of the valve spring and m is 
the mass of the valve and stem.  Ignore the mass of the spring. 

 
 

 
Figure P1.45 

Solution: The model is of the form given in the figure. You may wish to give this figure 

as a hint as it may not be obvious to all students. 

 
 Taking moments about the pivot point yields: 

 

(J + m!
2
)""!(t) = "kx! " c"x! = "k!

2
! " c!

2 "!

             # (J + m!
2
)""!(t) + c!

2 "! + k!
2
! = 0

 

 Next divide by the leading coefficient to get; 

 

!!!(t) +
c"

2

J + m"
2

"
#$

%
&'
!!(t) +

k"
2

J + m"
2
!(t) = 0  



 From the coefficient of q, the undamped natural frequency is 

 

!
n
=

k!
2

J + m!
2

 rad/s  

 From equation (1.37), the damped natural frequency becomes 

 

!
d
=!

n
1"# 2 = 0.99995

k!
2

J + m!
2
"

k!
2

J + m!
2

 

 This is effectively the same as the undamped frequency for any reasonable 

accuracy.  However, it is important to point out that the resulting response will 

still decay, even though the frequency of oscillation is unchanged.  So even 

though the numerical value seems to have a negligible effect on the frequency of 

oscillation, the small value of damping still makes a substantial difference in the 

response.  

  

1.46 A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and 

damping coefficient of  200 kg/s.  Calculate the undamped natural frequency, the 

damping ratio and the damped natural frequency.  Is the system overdamped, 

underdamped or critically damped?  Does the solution oscillate? 

 Solution: Working straight from the definitions: 

 

!
n
=

k

m
=

1500 N/m

150 kg
= 3.162 rad/s

" =
c

ccr

=
200

2 km
=

200

2 (1500)(150)
= 0.211

 

This last expression follows from the equation following equation (1.29).  Since ζ 

is less then 1, the solution is underdamped and will oscillate.  The damped natural 

frequency is!
d
=!

n
1 "# 2

= 3.091 rad/s , which follows from equation (1.37). 



1.47* The system of Problem 1.44 is given a zero initial velocity and an initial 

displacement of 0.1 m.  Calculate the form of the response and plot it for as long 

as it takes to die out. 

Solution: Working from equation (1.38) and using Mathcad the solution is: 

 



1.48* The system of Problem 1.46 is given an initial velocity of 10 mm/s and an initial 

displacement of -5 mm.  Calculate the form of the response and plot it for as long 

as it takes to die out.  How long does it take to die out? 

Solution: Working from equation (1.38), the form of the response is programmed 
in Mathcad and is given by: 

 
 
It appears to take a little over 6 to 8 seconds to die out.  This can also be plotted in 
Matlab, Mathematica or by using the toolbox. 
 



1.49* Choose the damping coefficient of a spring-mass-damper system with mass of 

150 kg and stiffness of 2000 N/m such that it’s response will die out after about 2 

s, given a zero initial position and an initial velocity of 10 mm/s. 

Solution: Working in Mathcad, the response is plotted and the value of c is 

changed until the desired decay rate is meet: 

 
 
 

 
 

 In this case ζ = 0.73 which is very large!  
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1.50 Derive the equation of motion of the system in Figure P1.50 and discuss the effect 

of gravity on the natural frequency and the damping ratio. 

 
Solution: This requires two free body diagrams.   One for the dynamic case and 

one to show static equilibrium. 

!x

mg         x(t)            mg         y(t)

ky      cdy /dt                       k!x

 
    (a)   (b) 

From the free-body diagram of static equilibrium (b) we have that mg = kΔx, 
where Δx represents the static deflection.  From the free-body diagram of the 
dynamic case given in (a) the equation of motion is: 

m˙ ̇ y ( t) + c˙ y (t) + ky(t) ! mg = 0  
From the diagram, y(t) = x(t) + Δx.  Since Δx is a constant, differentiating and 
substitution into the equation of motion yields: 

  

˙ y (t) = ˙ x (t)  and  ˙ ̇ y ( t) = ˙ ̇ x ( t)!

m˙ ̇ x (t) + c ˙ x ( t) + kx(t) + (k"x # mg)

= 0

! " # $ # 
= 0  

where the last term is zero from the relation resulting from static equilibrium.  
Dividing by the mass yields the standard form 

˙ ̇ x (t) + 2!"
n
˙ x (t) +"

n

2
x(t ) = 0  

It is clear that gravity has no effect on the damping ratio ζ or the natural 
frequency ωn.  Not that the damping force is not present in the static case because 
the velocity is zero. 
 

  



 

1.51 Derive the equation of motion of the system in Figure P1.46 and discuss the effect 

of gravity on the natural frequency and the damping ratio.  You may have to make 

some approximations of the cosine.  Assume the bearings provide a viscous 

damping force only in the vertical direction. (From the A. Diaz-Jimenez, South 

African Mechanical Engineer, Vol. 26, pp. 65-69, 1976) 

 
 Solution: First consider a free-body diagram of the system: 

 x(t)

c ˙ x (t)
  k!!

 
Let α be the angel between the damping and stiffness force.  The equation of 

motion becomes 

  
m˙ ̇ x (t) = !c˙ x (t) ! k("! +#

s
)cos$  

From static equilibrium, the free-body diagram (above with c = 0 and stiffness 
force kδs) yields: Fx = 0 =mg ! k" s cos#$ .  Thus the equation of motion 
becomes 

  m˙ ̇ x + c ˙ x + k!!cos" = 0     (1) 
Next consider the geometry of the dynamic state: 



   h

   x        !

  

    !

"

  ! +# !

 
From the definition of cosine applied to the two different triangles: 

  

cos! =
h

!
   and  cos" =

h + x

! + #!
   

Next assume small deflections so that the angles are nearly the same cos α = cos 
θ, so that 

  

h

!
!
h + x

!+ "!
# "! ! x

!

h
# "! !

x

cos$
 

For small motion, then this last expression can be substituted into the equation of 
motion (1) above to yield: 

m˙ ̇ x + c ˙ x + kx = 0 , α and x small 
Thus the frequency and damping ratio have the standard values and are not 
effected by gravity.  If the small angle assumption is not made, the frequency can 
be approximated as 

 

!n =
k

m
cos

2" +
g

h
sin

2 " ,    # =
c

2m! n

 

as detailed in the reference above.  For a small angle these reduce to the normal 
values of 

!
n
=

k

m
,    and  " =

c

2m!
n

 

as derived here. 
 

 

 


