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Preface

This manual provides answers for the computational exercises and a few of the
exercises requiring proofs in Elements of Modern Algebra, Fighth Edition, by Linda
Gilbert and the late Jimmie Gilbert. These exercises are listed in the table of contents.
In constructing proof of exercises, we have freely utilized prior results, including those
results stated in preceding problems.

My sincere thanks go to Danielle Hallock and Lauren Crosby for their careful man-
agement of the production of this manual and to Eric Howe for his excellent work on
the accuracy checking of all the answers.

Linda Gilbert
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Answers to Selected Exercises

Section 1.1

1. True
8. True

2. True 3. False 4. True 5. True 6. False 7. True
9. False 10. False

Exercises 1.1

1.

a.

C

a.

- 0o P 0@ P Rop

P

o ow

A = {z | = is a nonnegative even integer less than 12} b. {z|2? =1}
A = {z | z is a negative integer} d. {z|z=n?forneZt}
False b. True c. False d. False e. False f. True

True b. True c. True d. True e. True f. False
True h. True i. False j. False k. False 1. True

False b. True c. True d. False e. True f. False
False h. True i. False j. False k. False 1. False

{0,1,2,3,4,5,6,8,10}  b. {2,3,5} ¢ {0,2,4,6,7,8,9,10}  d. {2}
s fA g {02345 h {6810} i {1,35}
{6,8,10} k. {1,2,3,5) L C m {3,5} n. {1}

A b. A c. I d. U e. A f. o g A h. U i U
A k.U l. o m. A n o

[2,4} b {2,{0},{1},4)

{2, {a},{b},{c} {a,b} ;{a,c}, {b,c}, A}

{2, {1}, {2}, {3}, {4}, {1,2} ,{1,3}, {1,4} ,{2,3} ,{2,4} , {3,4} . {1,2,3},
{1,2,4},{1,3,4},{2,3,4} , A}

{o. {1}, {{1}}, 4y £ {2,4} g {24} h {g{2} {{g}}, 4}
Two possible partitions are:

X1 = {x | z is a negative integer} and Xy = {z | z is a nonnegative integer} ,
X1 = {z | = is a negative integer}, Xs = {x | x is a positive integer}, X3 =

{0}



10.

11.

36.

37.

38.

40.

41.

Answers to Selected Exercises

b. One possible partition is X7 = {a,b} and X3 = {c¢,d}. Another possible
partition is X7 = {a}, X2 = {b,c} , X5 = {d}.

c. One partition is X; = {1,5,9} and X5 = {11,15}. Another partition is
X1 = {1, 15},X2 = {11} and X3 = {5,9} .

d. One possible partition is X1 = {z | * = a + b4, where a is a positive real
number, b is a real number} and Xo = {x | * = a + bi, where a is a
nonpositive real number, b is a real number}. Another possible partition is
X1 = {x | x = a, where a is a real number}, Xo = {z | © = bi, where b is
a nonzero real number} and X5 = {« | © = a + bi, where a and b are both
nonzero real numbers}.

a. X7 ={1}, X, ={2}, X3 = {3};
X1 ={1}, Xy ={2,3};
X1 ={2}, X, ={1,3};
X1 ={3},Xa={1,2}

b. X; ={1},Xs ={2}, X3 = {3}, Xy = {4};
X1 ={1},Xs ={2}, X5 ={3,4}; X, ={1}, Xy ={3}, X5 ={2,4};
X1 ={1}, X2 = {4}, X3 = {2,3}; X1 ={2}, X = {3}, X3 = {1,4};
X1 ={2},Xo={4}, X3 ={1,3}; X1 ={3}, Xo={4}, X3 ={1,2};
X1 ={1,2},Xo = {3,4}; Xy ={1,3}, Xo = {2,4};
X12{1,4},X2:{2,3}; Xlz{l},X2={2,3,4};
X1 ={2}, X2 ={1,3,4}; Xy = {3}, Xo = {1,2,4};
X4 :{4},X2 :{1,2,3}.

n!

A L —
a Ly

a. ACB b. BCAor AUB=U c. BCA
d AnNB=@orACDB e. A=B=U f ACBorAuB=U
g A=U h. A=U

Let A={a,b},B={b} and C ={a}. Then AUB=A=AUC but B #C.
Let A={a},B ={a,b} and C = {a,c}. Then ANB ={a} =ANC but B+#C.

Let A = {a,b} and B = {a,c}. Then AU B = {a,b,c} and {a,b,c} € P(AUB)
but {a,b,c} ¢ P(A)UP(B).

Let A = {a,b} and B = {b} Then A — B = {a} and & € P(A— B) but & ¢
P(A)—P(B).

(ANBHYUA'NB)=(AUuB)N(A"UB)



Answers to Selected Exercises

42. a.
U
4
AU B : Regions 1,2,3 A — B: Region 1
AN B : Region 2 B — A: Region 3
(AUB)— (AN B): Regions 1,3 (A—B)U(B—A): Regions 1,3
A+ B: Regions 1,3
Each of A+ B and (A — B) U (B — A) consists of Regions 1,3.
b.
U
8
A : Regions 1,4,5,7 A+ B : Regions 1,2,4,6
B+ C : Regions 2,3,4,5 C' : Regions 3,4,6,7

A+ (B+C): Regions 1,2,3,7 (A+ B) + C: Regions 1,2,3,7

Each of A+ (B + C) and (A + B) + C consists of Regions 1,2,3,7.



4 Answers to Selected Exercises

c.
U
A : Regions 1,4,5,7 AN B : Regions 5,7
B+ C : Regions 2,3,4,5 ANC : Regions 4,7
AN (B+C): Regions 4,5 (ANB)+ (ANC): Regions 4,5

Each of AN (B+C) and (AN B) + (AN C) consists of Regions 4,5.

43. a. A+ A=(AUA)—(ANA)=A-A=AnA =0
b. A+o=(AUQ)—(AN@)=A-0=Ang =4

Section 1.2

1. False 2. False 3. False 4. False 5. False 6. True 7. True
8. False 9. True

Exercises 1.2

1L a {(a,0),(a1),0),0,1)} b {(0,a),(0,0),(1,a),(1,b)}
¢ {(2,2),(4,2),(6,2),(8,2)}
d. {(-1,1),(=1,5),(=1,9),(1,1),(1,5), (1,9}
e {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}

2. a. Domain = E, Codomain = Z, Range = Z
b. Domain = E, Codomain = Z, Range = E
c. Domain = E, Codomain = Z,
Range = {y | y is a nonnegative even integer} = (ZT N E) U {0}
d. Domain = E, Codomain = Z, Range =Z — E

3. a f(S)={1,3,5,..} =2 —E, f}(T)={-4,-3,-1,1,3,4}
b. f(5)={1,5,9},f (1) = Z c. f(9)={0,L,4},f ' (TN =92



Answers to Selected Exercises 5

. f(S)=1{0,2,14}, f~Y(T) = Z* U {0, -1, -2}

. The mapping f is not onto, since there is no x € Z such that f(z) =1. It is

one-to-one.

. The mapping f is not onto, since there is no x € Z such that f(z) =1. It is

one-to-one.

The mapping f is onto and one-to-one.

d. The mapping f is one-to-one. It is not onto, since there is no x € Z such

o A& o T

that f(z) = 2.

The mapping f is not onto, since there is no x € Z such that f (z) = —1. It
is not one-to-one, since f (1) = f(—1) and 1 # —1.

We have f(3) = f(2) =0, so f is not one-to-one. Since f(z) is always even,
there is no « € Z such that f(z) =1, and f is not onto.

The mapping f is not onto, since there is no « € Z such that f(z) = 3. It is
one-to-one.

The mapping f is not onto, since there is no © € Z such that f(z) = 1.
Neither is f one-to-one since f(0) = f(1) and 0 # 1.

The mapping f is onto. It is not one-to-one, since f (9) = f (4) and 9 # 4.

The mapping f is not onto, since there is no = € Z such that f(z) = 4. It is
one-to-one.

. The mapping is onto and one-to-one.
. The mapping is onto and one-to-one.
. The mapping is onto and one-to-one.
. The mapping is onto and one-to-one.

. The mapping is not onto, since there is no = € R such that f (z) = —1. It is

not one-to-one, since f (1) = f(—1) and 1 # —1.

. The mapping is not onto, since there is no € R such that f (z) = 1. It is

not one-to-one, since f (0) = f (1) =0 and 0 # 1.

. The mapping f is onto and one-to-one.

. The mapping f is one-to-one. Since there is no z € E such that f(z) = 2,

the mapping is not onto.

. The mapping f is onto. The mapping f is not one-to-one, since f (1) = f (—1)

and 1 # —1.

. The mapping f is not onto, since there is no x € Z™ such that f(z) = —1.

The mapping f is one-to-one.

. The mapping f is onto and one-to-one.

d. The mapping f is onto. The mapping f is not one-to-one, since f (1) = f (—1)

and 1 # —1.



10.

11.

. Let f: E — E where f (z) =

Answers to Selected Exercises

. The mapping f is not onto, since there is no x € Z such that |z + 4| = —1.

The mapping f is not one-to-one, since f (1) = f(—=9) =5 but 1 # —9.

. The mapping f is not onto, since there is no z € Z* such that |z + 4| = 1.

The mapping f is one-to-one.

. The mapping f is not onto, since there is no z € Z* such that 2* = 3. The

mapping f is one-to-one.

. The mapping f is not onto, since there is no z € ZT N E such that 2% = 6.

The mapping f is one-to-one.

. Let f: E — E where f(z) = z. b. Let f : E — E where f(x) = 2.

if z is a multiple of 4

ol

z if x is not a multiple of 4.

. Let f: E — E where f(z) = 22

. For arbitrary a € Z,2a is even and f (2a) = 22 = a. Thus f is onto. But f

2
is not one-to-one, since f (1) = f(—1) = 0.

. The mapping f is not onto, since there is no z in Z such that f (z) = 1. The

mapping f is not one-to-one, since f (0) = f(2) = 0.

. For arbitrary a in Z,2a — 1 is odd, and therefore

2a — 1 1
Co-1+1_

f2a—1) ===

Thus f is onto. But f is not one-to-one, since f(2) =5 and also f(9) = 5.

. For arbitrary a in Z, 2a is even and f(2a) = 2% = a. Thus f is onto. But f

2
is not one-to-one, since f(4) =2 and f(7) = 2.

. The mapping f is not onto, because there is no x in Z such that f (z) = 4.

Since f(2) =6 and f (3) = 6, then fis not one-to-one.

. The mapping f is not onto, since there is no = in Z such that f(z) = 1.

Suppose that f(a1) = f(az). It can be seen from the definition of f that the
image of an even integer is always an odd integer, and also that the image of
an odd integer is always an even integer. Therefore, f(a1) = f(a2) requires
that either both a; and as are even, or both a; and as are odd. If both a
and as are even,

f(a1) = f(ag) = 2a1 —1=2as — 1= 2a; = 2ay = a1 = as.
If both a1 and as are odd,
flar) = f(az) = 2a1 = 2a2 = a1 = as.

Hence, f(a1) = f(as) always implies a1 = as and f is one-to-one.
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12. a. The mapping fis not onto, because there is no z € R — {0} such that
f(x)=1.1f a1,a2 € R — {0},

fla)=fla) = o

= az(ag —1)=ay(az —1)
= aza1 — a2 = a1az — aq
= —as = —aq
= as = ag.

Thus f is one-to-one.

b. The mapping fis not onto, because there is no x € R — {0} such that
f(x)=2.1f a1,a2 € R — {0},

2&1—1_2&2—1

fla1) = f(a2) =

a a2
1 1
= 2—-—=2-—
aq as
1 1
al_ a2
= a] = as

Thus f is one-to-one.

c. The mapping f is not onto, since there is no x € R— {0} such that f (z) = 0.
It is not one-to-one, since f (2) = 2 and f (3) = 2.

d. The mapping f is not onto, since there is no € R—{0} such that f (z) = 1.
Since f (1) = f(3) = 3, then f is not one-to-one.

13. a. The mapping f is onto, since for every (y,z) € B = Z X Z there exists an
(z,y) € A=17 x Z such that f (z,y) = (y, ). To show that f is one-to-one,
we assume (a,b) € A=7Z xZ and (¢,d) € A=7Z x Z and

f(a7b) = f(ca d)

or
(b,a) = (d,c).
This means b = d and a = ¢ and
(a,b) = (¢, d) .

b. For any = € Z, (z,0) € A and f(x,0) = x. Thus f is onto. Since f(2,3) =
f(4,1) =5, f is not one-to-one.



14.

15.

16.

17.

18.

. The mapping f is one-to-one since f (ay)

Answers to Selected Exercises

. Since for every © € B = Z there exists an (z,y) € A = Z x Z such that

f(z,y) = x, the mapping f is onto. However, f is not one-to-one, since
f(1,0) = f(1,1) and (1,0) # (1,1).

2) (011,1) = (012,1) =
(0,0), then f is not onto.
The mapping f is not onto, since there is no (z,y) € ZxZ such that f (x,y) =

2. The mapping f is not one-to-one, since f (2,0) = f(2,1) =4 and (2,0) #
(2,1).

The mapping f is not onto, since there is no (z,y) € ZxZ such that f (z,y) =
3. The mapping is not one-to-one, since f (1,0) = f(—1,0) =1 and (1,0) #
(-1,0).

The mapping f is not onto, since there is no (z,y) in Z* x Z* such that

f(z,y) = £ =0. The mapping f is not one-to-one, since f (2,1) = f(4,2) =
2.

The mapping f is not onto, since there is no (z,y) in R x R such that
f(z,y) = 2*T¥ = 0. The mapping f is not one-to-one, since f(1,0) =
£(0,1) = 2%

The mapping f is obviously onto.

fla
) =

ay = ag. Since there is no x € Z such that f(z

. The mapping f is not one-to-one, since f (0) = f(2) = 1.

c. Let both z; and z3 be even. Then x; + x5 is even and f (z1 +a2) =1 =

o e

o o®

1-1=f(z1) f(x2). Let both 21 and x5 be odd. Then x; + x5 is even and
flx14+ax2) =1=(-1)(-1) = f(x1) f (z2) . Finally, if one of z1,z2 is even
and the other is odd, then 1 + x5 is odd and f (z1 +22) = -1= (1) (-1) =
f(x1) f (z2). Thus it is true that f (z1 + 22) = f (z1) f (22).

. Let both z; and x2 be odd. Then zyx2 is odd and f(x122) = —1 #

(=1 (=1) = f(21) f (z2).

The mapping f is not onto, since there is no a € A such that f(a) =9 € B.
It is not one-to-one, since f(—2) = f(2) and —2 # 2.

U@ = {14 ={-212} #5

With 7= {4,011 (1) = (2,2}, ond (57 (1) =/ (22D = {4} #
9(8) =1{2,4},97" (9(9)) = {2,3,4,7}

g (1) ={9,6,11} ,g (97" (1)) =T

f(S) = {_1a2,3}’f_1 (f(S)) =S
f7HT) = {0}, f (f7H(D) = {-1}
2z if z is even )
- (fog)(z) = b. (fog) () = 2a3

2(2x—1) if x is odd
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Lm if z is even
c. (fog)(x)= 2 d. (fog)(z) =2

|z| —2z if z is odd

(fog)(z)=(x—|z|)”

®

19. a (gof)(@)=22 b.(gof)(x)=82" ¢ (gof)(z)="7—

5 — 1, if z = 4k, for k an integer
- (go f) () = e. (gof)(z)=0

x, otherwise

o

20007 2nl 202wl =

28. Let f: A — B, where A and B are nonempty.

Assume first that f (f~! (T')) = T for every subset T of B. For an arbitrary ele-
ment b of B, let T' = {b} . The equality f (f~* ({b})) = {b} implies that f~* ({b})
is not empty. For any 2 € f~! ({b}), we have f (r) = b. Thus f is onto.

Assume now that f is onto. For an arbitrary y € f (f_l (T)) , we have

ye f(f7H(T)) = y=f(x) for some z € f~(T)
= y = f(x) for some f(z) e T
= yeT.

Thus f (f~'(T)) € T. For an arbitrary ¢t € T, there exists * € A such that
f(z) =t, since f is onto. Now

fley=teT = xec f~1(7)
= flz)e f(f71(D))
= tef(f7H (D).

Thus T C f (f~*(T)), and we have proved that f (f~' (T)) =T for an arbitrary
subset T" of B.

Section 1.3
1. False 2. True 3. False 4. False 5. False 6. False
Exercises 1.3

1. a. The mapping fog is not onto, since there is no x € Z such that (f o g) () =
1. Tt is not one-to-one, since (fog) (1) = (fog)(—1) and 1 # —1.
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. The mapping fog is not onto, since there is no « € Z such that (f o g) (z) =

0. The mapping f o g is one-to-one.

. The mapping fog is not onto, since there is no & € Z such that (f o g) (z) =

1. The mapping f o g is one-to-one.

. The mapping fog is not onto, since there is no « € Z such that (f o g) (z) =

1. The mapping f o g is one-to-one.

. The mapping fog is not onto, since there is no z € Z such that (f o g) () =

1. It is not one-to-one, since (f o g) (=2) = (f o g) (0) and —2 # 0.

f. The mapping f o g is both onto and one-to-one.

g.

a.

The mapping fog is not onto, since there is no « € Z such that (f o g) (z) =
—1. Tt is not one-to-one, since (fog) (1) = (fog)(2) and 1 # 2.

The mapping go f is not onto, since there is no x € Z such that (go f) (z) =
—1. Tt is not one-to-one since (go f) (0) = (go f) (2) and 0 # 2.

. The mapping go f is not onto, since there is no « € Z such that (go f) (z) =

1. The mapping g o f is one-to-one.

. The mapping go f is not onto, since there is no « € Z such that (go f) (z) =

1. The mapping g o f is one-to-one.

. The mapping go f is not onto, since there is no z € Z such that (go f) (x) =

1. The mapping g o f is one-to-one.

The mapping go f is not onto, since there is no « € Z such that (go f) (z) =
—1. It is not one-to-one, since (go f)(—1) = (go f) (—2) and —1 # —2.
The mapping go f is not onto, since there is no « € Z such that (go f) (z) =
0. The mapping g o f is not one-to-one, since (go f) (1) = (go f)(4) and
14 4.

The mapping go f is not onto, since there is no « € Z such that (go f) (z) =
1. It is not one-to-one, since (go f) (0) = (go f) (1) and 0 # 1.

Cf@)=atg(@) = o

. Let A={0,1},B={-2,1,2},C = {1,4}. Let g : A — B be defined by g (z) =
z+1and f : B — C be defined by f (z) = z2. Then g is not onto, since —2 ¢ g (A).
The mapping f is onto. Also f o g is onto, since (fog)(0) = f(1) = 1 and
(feg)(1)=f(2) =4

. Let f and g be defined as in Problem 1f. Then f is not one-to-one, g is one-to-one,
and f o g is one-to-one.

Let f:Z — Z and g : Z — Z be defined by

Z if x is even

@)=z g@)=1"2

x if x is odd.

The mapping f is one-to-one and the mapping g is onto, but the composition
f og =g is not one-to-one, since (fog)(1l) =(fog)(2) and 1 # 2.
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b.

9. a.
b.

Let f:Z — Z and g : Z — Z be defined by f(z) = 2% and g (z) = z.
The mapping f is one-to-one, the mapping ¢ is onto, but the mapping f o g
given by (fog)(x) = x3 is not onto, since there is no # € Z such that

(fog)(z) =2

. Let f:Z — Z and g : Z — Z be defined by

if z is even
f(z)= g(zx) =z

z if x is odd

ol

The mapping f is onto and the mapping g is one-to-one, but the composition
fog=f is not one-to-one, since (fog) (1) = (fog)(2) and 1 # 2.

.Let f:Z — Z and g : Z — Z be defined by f(z) = 2 and g(z) = 2°.

The mapping f is onto, the mapping ¢ is one-to-one, but the mapping f o g
given by (fog)(z) = z3 is not onto, since there is no x € Z such that
(fog)(z) =2

Let f (z) = 2,9 (z) = 22, and h(z) = |z|, for all z € Z.

Let f(x) =2?%,g(z) =z and h(z) = —=x, for all z € Z.

12. To prove that f is one-to-one, suppose f (a1) = f (a2), for a; and ay in A. Since

gof

is onto, there exist ar; and s in A such that

a1 =(go f)(a1) and az=(gof)(az).

Then f((go f) (1)) = f((go f)(az)), since f(a1) = f (az), or

This

since

Thus

and

(fog)(f () =(fog)(f(az).

implies that
fla1) = f(az2)

f o g is one-to-one. Since g is a mapping, then

9(f(an)) =g (f (a2)).

(go f)(ar) =(gof) ()

a; = as.

Therefore f is one-to-one.

To

show that f is onto, let b € B. Then g (b) € A and therefore g (b) = (g o f) (a)

for some a € A since g o f is onto. It follows then that

(fog)(®)=(fog)(f(a)).
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Since f o g is one-to-one, we have
b=f(a),
and f is onto.
Section 1.4
1. False 2. True 3. True 4. False 5. True 6. True 7. True
8. True 9. True

Exercises 1.4

1.

® - 0 &0

— K e - B

s B

F R m»wo o Tp

SE

The set B is not closed, since —1 € Band —1x—-1=1¢ B.

The set B is not closed, since 1 € Band2€ Bbut 1x2=1-2=-1¢ B.
The set B is closed.

The set B is closed.

The set B is not closed, since 1 € Band 1x1=0¢ B.

The set B is closed.

The set B is closed.

The set B is closed.

Not commutative, Not associative, No identity element
Not commutative, Associative, No identity element
Not commutative, Not associative, No identity element
Commutative, Not associative, No identity element
Commutative, Associative, No identity element

Not commutative, Not associative, No identity element

Commutative, Associative, 0 is an identity element. 0 is the only invertible
element and its inverse is 0.

Commutative, Associative, —3 is an identity element. —z — 6 is the inverse
of x.

Not commutative, Not associative, No identity element
Commutative, Not associative, No identity element
Not commutative, Not associative, No identity element
Commutative, Not associative, No identity element
Not commutative, Not associative, No identity element

Commutative, Not associative, No identity element

. The binary operation * is not commutative, since B x C # C x B.
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10.

11.

12.

. There is no identity element.

The operation * is commutative, since x xy = y xx for all z,y in S.

. A is an identity element.

. The elements B and C are inverses of each other and A is its own inverse.

The binary operation * is not commutative, since D x A # A x D.

. C is an identity element.

c. The elements A and B are inverses of each other and C is its own inverse.

a.
b.

C.

The binary operation * is commutative.
D is an identity element.

D is the only invertible element and its inverse is D.

The set of nonzero integers is not closed with respect to division, since 1 and 2
are nonzero integers but 1 + 2 is not a nonzero integer.

. The set of odd integers is not closed with respect to addition, since 1 is an odd

integer but 1 + 1 is not an odd integer.

a.

b.

a.

b.

The set of nonzero integers is not closed with respect to addition defined on
Z, since 1 and —1 are nonzero integers but 1+ (—1) is not a nonzero integer.

The set of nonzero integers is closed with respect to multiplication defined
on Z.

The set B is not closed with respect to addition defined on Z, since 1 €
B,8cBbut1l+8=9¢B.

. The set B is closed with respect to multiplication defined on Z.

The set Q— {0} is closed with respect to multiplication defined on R.
The set Q— {0} is closed with respect to division defined on R—{0}.

Section 1.5

1. True

2. False 3. False

Exercises 1.5

1.

SE

- 0 & 0

A right inverse does not exist, since f is not onto.
A right inverse does not exist, since f is not onto.
A right inverse g : Z — Z is defined by g (z) =2 — 2.
A right inverse g : Z — Z is defined by g (z) =1 — z.
A right inverse does not exist, since f is not onto.

A right inverse does not exist, since f is not onto.
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A right inverse does not exist, since f is not onto.
A right inverse does not exist, since f is not onto.

A right inverse does not exist, since f is not onto.

. A right inverse does not exist, since f is not onto.

T if x is even

. A right inverse g : Z — Z is defined by g (z) =

2x + 1 if z is odd.

A right inverse does not exist, since f is not onto.

2x if z is even

xz— 2 if z 1s odd.

A right inverse g : Z — Z is defined by g (z) =

2x — 1 if x is even

z—1 if z is odd.

. A right inverse g : Z — Z is defined by g (z) =

) . 5 if z is even
. A left inverse g : Z — Z is defined by g (z) =
1 if z is odd.
) ) 5 if z is a multiple of 3
. Aleft inverse g : Z — Z is defined by g (x) =

0 if x is not a multiple of 3.

A left inverse g : Z — Z is defined by g (z) =« — 2.

d. A left inverse g : Z — Z is defined by g (z) = 1 — x.

B

) y if x = y> for some y € Z
A left inverse g : Z — Z is defined by g (z) =
0 if z # y> for some y € Z.

A left inverse does not exist, since f is not one-to-one.

x if z is even
A left inverse g : Z — Z is defined by g (v) = ¢ 41
if z is odd.

. A left inverse does not exist, since f is not one-to-one.

. A left inverse does not exist, since f is not one-to-one.

A left inverse does not exist, since f is not one-to-one.

. A left inverse does not exist, since f is not one-to-one.

z+1 ifxisodd
A left inverse g : Z — Z is defined by: g (z) =

5 if z is even.

m. A left inverse does not exist, since f is not one-to-one.

A left inverse does not exist, since f is not one-to-one.
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3. n!

4. Let f: A — A, where A is nonempty.

f has a left inverse < f is one-to-one, by Lemma 1.24
& f7L(f(S)) = S for every subset S of A, by

Exercise 27 of Section 1.2.
5. Let f: A — A, where A is nonempty.

f has a right inverse < f is onto, by Lemma 1.25
& f(f7H(T)) =T for every subset T of A, by
Exercise 28 of Section 1.2.
Section 1.6

1. True 2. False 3. False 4. False 5. False 6. False 7. True

8. False 9. False 10. False 11. True 12. True

Exercises 1.6

r -1 -2
1 0
1 2 1 -1 1 -1
1 a A=|(3 2 b. A= c. B=
-1 -2 -1 1 -1 1
5 4
- 1 2
r 2 0 0 1 0 O
0 1 1 1
3 40 0 1 0
dB={0 0 1 1 e. C= £ C=
4 5 6 0 0 1
0 0 0 1
- 5 6 7 0 0 O
3 0 -4 1 9
2. a b. c. Not possible d. Not possible
8 -8 6 -3 2
r -10 2 1 7 —11
-5 7
3. a. b. | —14 6 —21 c. Not possible d. 12 6
8 —1

- 6 -1 -2 -2 20
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4 2 1 3 . )
e. f. g. Not possible h. Not possible
37 -4 10
—12 8 —4
i 4  j|-15 10 -5
18 =12 6

k=1
((+1DE2-5)+E+2)(4-4)+(@+3)(6-)
12i — 65 — 3ij + 28

w
1 6-3 2|2 9
6. =
4 -7 1 5|y 0
z

7. amn b. n(n—1) c. 0
d i, if1<i<n,1<k<n0ifi>nork>n

8.
I|A|B|C
I I |A| B|C
A|lA|B|C| I
B|B|C|I|A
clcl|I|A|B
9. (Answer not unique) A = ,B =
3 4 1 1

10. A trivial example is with A = I, and B an arbitrary 2 x 2 matrix. Another

1 1 2 3
example is provided by A = and B =
1 1 3 2
—6 —6

1 2
11. (Answer not unique) A = B =
1 2 3 3
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10 1 2 6
12. (A-B)(A+B) = and A2 — B? = ,(A—DB)(A+B) #
2 1 -4 9
A? — B2,
) 22 5 30 0 )
13. (A+B)" = ,A2+2AB+B? = ,(A+ B)” # A2 +2AB+ B2
30 7 36 —1

14. X =A"'B 15. X = A-1BC!

1 1
22. b. For each z in G of the form ¢ , then y = . For each z in G
0 0 0 0
0 0 0 0
of the form , then y =
a a 1 1
1 1 2 0
25. Let A = and B = . Then the product AB =
1 1 0o 7 2 7

diagonal even though B is diagonal.

0 0 0 1
26. Let A = and B = . Then the product AB =
1 1 0 1 0

diagonal but neither A nor B is diagonal .

1 1 1 -1
c. Let A= and B = . Then the product AB =
1 1 -1 1 0

is upper triangular but neither A nor B is upper triangular.

2

N

1 0 2 3
30. (Answer not unique) A = ,B = ,C =
0

Section 1.7
1. True 2. False 3. True 4. False 5. True 6. False

Exercises 1.7

1. a. This is a mapping, since for every a € A there is a unique b € A such that

(a,b) is an element of the relation.

b. This is a mapping, since for every a € A there is 1 € A such that (a,1) is an

element of the relation.
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. This is not a mapping, since the element 1 is related to three different values;

1R1, 1R3, and 1R5.

. This is a mapping, since for every a € A there is a unique b € A such that

(a,b) is an element of the relation.

. This is a mapping, since for every a € A there is a unique b € A such that

(a,b) is an element of the relation.

. This is not a mapping, since the element 5 is related to three different values:

5R1,5R3, and 5R5.

. The relation R is not reflexive, since 2#2. It is not symmetric, since 4R2 but

2R4. Tt is not transitive, since 4R2 and 2R1 but 4%1.

. The relation R is not reflexive, since 222. Tt is symmetric, since z = —y =

y = —x. It is not transitive, since 2R(—2) and (—2)R2, but 2R2.

. The relation R is reflexive and transitive, but not symmetric, since for arbi-

trary x,y, and z in Z we have:
(1) z=z-1withleZ
(2) 6 =3(2) with 2 € Z but 3 # 6k where k € Z

(3) y = xk; for some k1 € Z and z = yko for some ks € Z imply z = yko =
$(k1k2) with k1ky € Z.

. The relation R is not reflexive, since 121. It is not symmetric, since 1R2, but

211. Tt is transitive, since < y and y < z = x < z for all z,y, and z € Z.

. The relation R is reflexive, since z > x for all € Z. It is not symmetric,

since 5R3 but 3K5. It is transitive, since z > y and y > z imply > z for all
z,y, 2z in Z.

. The relation R is not reflexive, since (—1)Z(—1). It is not symmetric, since

1R (—1) but (—1)R1. It is transitive, since © = |y| and y = |z| implies
x =yl = ||z|| = |2| for all z,y, and z € Z.

. The relation R is not reflexive, since (—6)Z(—6) . It is not symmetric, since

3R5 but 5123. It is not transitive, since 4R3 and 3R2, but 472.

. The relation R is reflexive, since 22 > 0 for allz in Z. It is also symmetric,

since xy > 0 implies that yz > 0. It is not transitive, since (—2) R0 and 0R4
but (—2)%4.

i. The relation R is not reflexive, since 2R2. It is symmetric, since zy <

0
implies yx < 0 for all 2,y € Z. It is not transitive, since —1R2 and 2R (—3)

but (—1)R(—3).

. The relation R is not reflexive, since | — x| = 0 # 1. It is symmetric, since

|zt —y| =1= |y — x| = 1. It is not transitive, since |2 —1| =1 and |1 —2| =
1but |22/ =041

. The relation R is reflexive, symmetric and transitive, since for arbitrary x, y,

and z in Z, we have:
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&

10.
11.

12.

(1) |z -z =10 <1

2) [z -yl <1=ly—=[<1

B)lz—y|<land|y—z|<l=z=yandy=z=|z—z| <L
A

a. {~3,3}  b. {-5,-1,3,7,11} C [3]

b. [0]={...,—10,-5,0,5,10,...}, [1]=1{...,—-9,-4,1,6,11,...},
2 ={..,-8-32712,...}, [8=[3B={..,-7,-2,3,8,13,...}
4 =[1]={..,—9,-4,1,6,11,...}

b. [0]={...,—-14,-7,0,7,14,...}, []={...,—-13,-6,1,8,15,...}
3] ={..,—11,-4,3,10,17,...}, [9]=[2]={...,—12,-5,2,9,16,...}
2] =[5] ={...,—9,-2,5,12,19,.. .}

0] ={..,-2024,..}, [1]=4{.,-3-113,..}

0] = {0,45,+10,...}, {+1,+4,46,49} C 1], {+2,+3,47, 48} C[2]

0]=1{...,-4,0,4,8,...}, [1]={...,—-7,-3,1,5,...},

2 ={..,-6,-226,.}, [B={.,-5-1,37..1},

0 ={..,-7,0714,...}, [1]={..,-13,-6,1,8,...},

2] ={..,-12,-5,2,9,...}, [8]={...,—11,-4,3,10,...},

[4]={...,—10,-3,4,11,...}, [5]={..,-9,-2,5,12,...},

6] ={...,—8-1,6,13,...}

1] ={..,-3,-1,1,3,...}, [0]={...,-2,0,2,4,...}

The relation R is symmetric but not reflexive or transitive, since for arbitrary
integers z,y, and z, we have the following:

(1)  + x = 2z is not odd;
(2) x +y is odd implies y + z is odd;

(3) 4y is odd and y + z is odd does not imply that = + z is odd. For example,
take x =1,y =2 and z = 3.

Thus R is not an equivalence relation on Z.
a. The relation R is symmetric but not reflexive or transitive, since for arbitrary
lines [y, 5, and I3 in a plane, we have the following;:
(1) Iy is not parallel to [y, since parallel lines have no points in common;
(2) 1y is parallel to o implies that ls is parallel to ly;
(3) 1y is parallel to o and [y is parallel to I3 does not imply that Iy is parallel
to I3. For example, take [3 = [; with [; parallel to 5.

Thus R is not an equivalence relation on Z.
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. The relation R is symmetric but not reflexive or transitive, since for arbitrary

lines [y, 1> and I3 in a plane, we have the following:

(1) 1y is not perpendicular to ly;

(2) Iy is perpendicular to I3 implies that I3 is perpendicular to Iy;

(3) 1y is perpendicular to I and [y is perpendicular to I3 does not imply that

[ is perpendicular to 3.

Thus R is not an equivalence relation.

. The relation R is reflexive and transitive but not symmetric, since for arbi-

trary nonempty subsets x,y, and z of A we have:

(1) z is a subset of z;
(2) « is a subset of y does not imply that y is a subset of z;
(3) z is a subset of y and y is a subset of z imply that x is a subset of z.

. The relation R is not reflexive and not symmetric, but it is transitive, since

for arbitrary nonempty subsets z,y, and z of A we have:

(1) z is not a proper subset of x;

(2) x is a proper subset of y implies that y is not a proper subset of x;

(3) z is a proper subset of y and y is a proper subset of z imply that z is a
proper subset of z.

. The relation R is reflexive, symmetric and transitive, since for arbitrary non-

empty subsets x,y, and z of A we have:

(1) = and z have the same number of elements;

(2) If « and y have the same number of elements, then y and x have the
same number of elements;

(3) If z and y have the same number of elements and y and z have the same
number of elements, then x and z have the same number of elements.

. The relation is reflexive and symmetric but not transitive, since if x,y, and

z are human beings, we have:
(1) z lives within 400 miles of z;
(2) « lives within 400 miles of y implies that y lives within 400 miles of z;

(3) « lives within 400 miles of y and y lives within 400 miles of z do not
imply that x lives within 400 miles of z.

. The relation R is not reflexive, not symmetric, and not transitive, since if

z,y, and z are human beings we have:

(1) z is not the father of z;
(2) « is the father of y implies that y is not the father of x;

(3) =z is the father of y and y is the father of z imply that x is not the father
of z.
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15.

. The relation is symmetric but not reflexive and not transitive. Let x,y, and

z be human beings, and we have:

(1) « is a first cousin of z is not a true statement;

(2) « is a first cousin of y implies that y is a first cousin of z;

(3) « is a first cousin of y and y is a first cousin of z do not imply that x is
a first cousin of z.

. The relation R is reflexive, symmetric, and transitive, since if z,y, and z are

human beings we have:

(1) « and z were born in the same year;

(2) if z and y were born in the same year, then y and = were born in the
same year;

(3) if z and y were born in the same year and if y and z were born in the
same year, then z and z were born in the same year.

. The relation is reflexive, symmetric, and transitive, since if x,y, and z are

human beings, we have:

(1) x and z have the same mother;
(2) « and y have the same mother implies y and x have the same mother;

(3) « and y have the same mother and y and z have the same mother imply
that x and z have the same mother.

. The relation is reflexive, symmetric and transitive, since if x,y, and z are

human beings we have:

(1) « and 2 have the same hair color;

(2) = and y have the same hair color implies that y and z have the same
hair color;

(3) « and y have the same hair color and y and z have the same hair color
imply that = and z have the same hair color.

. The relation R is an equivalence relation on A x A. Let a, b, ¢, d, p, and ¢ be

arbitrary elements of A.
(1) (a,b) R(a,b) since ab = ba.
(2) (a,b) R(c,d) = ad =bc= (c¢,d)R(a,b).

(3) (a,b) R(c,d) and (c¢,d) R(p,q) = ad=bc and cq = dp
= adcq = bedp
= aq="bpsince c# 0 and d # 0
= (a,b) R(p,q).

. The relation R is an equivalence relation on A x A. Let (a,b), (¢c,d), (e, f)

be arbitrary elements of A x A .
(1) (a,b) R(a,b), since ab = ab.



22 Answers to Selected Exercises

(2) (a,b) R(c,d) = ab=cd = cd = ab= (c,d) R(a,b).
(3) (a,b) R(c,d) and (c,d)R(e,f) = ab=cd and ¢d = ef = ab = ef =
(a,b) R(e, f).

c. The relation R is an equivalence relation on A x A. Let a, b, ¢, d, p, and ¢ be
arbitrary elements of A.

(1) (a,b) R(a,b) since a® + b = a? + b2
(2) (a,b) R(c,d) = a?+ b2 =ct+d?> = c?+d?> =a®>+b* = (c,d) R(a,b).
(3) (a,b)R(c,d) and (c,d) R(p,q) = a®+b*=c?+d?and
Erd®=p+ @
= a2+ =p2+¢
= (a,0) R(p,q).

d. The relation R is an equivalence relation on A x A. Let (a,b), (c,d), and
(e, f) be arbitrary elements of A x A.
(

(1) (a,b) R(a,b), sincea—b=a—bh.
(2) (a,b)R(c,d)=a—-b=c—d=c—d=a—-b= (¢,d) R(a,b).
( b)

3) (a,b) R(c,d) and (¢,d)R(e,f) = a—-b=c—dandc—d=e— f =
a— b:e—f:>(ab)R( f).

16. The relation R is reflexive and symmetric but not transitive.

17. a. The relation is symmetric but not reflexive and not transitive. Let z,y, and
z be arbitrary elements of the power set P (A) of the nonempty set A.
(1) x N # @ is not true if z = @.
(2) x Ny # @ implies that y Nz # @.
(3) xNy # @ and y N z # & do not imply that z Nz # &. For example, let
A ={a,b,c,d}, x = {b,c},y ={c,d}, and z = {d,a}. Then Ny =
{c} £, yNz={d} #@butznNz=0
b. The relation R is reflexive and transitive but not symmetric, since for arbi-
trary subsets x,y, z of A we have:
(1) =z Ca;
(2) s C Abut A @;
(3) x Cyand y C z imply = C z.

18. The relation is reflexive, symmetric, and transitive. Let x,y, and z be arbitrary
elements of the power set P (A) and C a fixed subset of A.

(1) zRzx, since x NC =z NC.
(2) zRy=2nNC=yNnC=ynNnC=2nC = yRx.
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