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Chapter 2

Linear Second-Order
Equations

2.1 Theory of the Linear Second-Order Equa-
tion
1. The general solution is y(z) = ¢; sin(6x) + ¢3 cos(6z). For the initial condi-

tions, we need y(0) = ¢; = —5 and 3’(0) = 6¢; = 2. Then ¢; = 1/3 and the
solution of the initial value problem is

y(x) = %sin(&r) — 5cos(6x).

2. The general solution is y(x) = c1e** + coe™**. For the initial conditions,

compute
y(0) = ¢1 + cg = 12 and y/(0) = 4c; — 4cp = 3.

Solve these algebraic equations to obtain ¢; = 51/8 and ¢z = 45/8. The solution

of the initial value problem is
51 45
y(x) = 5 et 4 3 e 4o,

3. The general solution is y(x) = c1e™2 + cpe 2. For the initial conditions,

we have
y(0) =c1 +co = —3 and 3'(0) = —2¢; — cp = —1.
Solve these to obtain ¢; = 4, c; = —7. The solution of the initial value problem
is
y(z) = 4e™ " —Te™".

4. The general solution is y(z) = c1€3* cos(2z) + c2€3® sin(22). We will need
Y (x) = 3c1€37 cos(2x) — 2¢1€37 sin(2x) + 3cpe3” sin(2x) 4 2c2¢3 cos(2x).

25
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26 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

From the initial conditions,
y(0) =c; = —1 and ¥'(0) = 3¢y + 2¢2 = 1.
Then ¢y = 2 and the solution of the initial value problem is
y(x) = —e3® cos(22) + 237 sin(2z).
5. The general solution is y(z) = c1€® cos(x) + coe” sin(z). Then y(0) =
c1 = 6. We find that y'(0) = ¢; + ¢2 = 1, so ¢ = —5. The initial value problem

has solution
y(x) = 6€” cos(z) — 5e” sin(z).

6.
1
y(x) = ¢y sin(6z) + ¢ cos(6x) + %(ac -1
7.
y(x) = cre®® + cpe™ 1 — —a? 4 —
8. 5
y(x) = cre " +coe™" + 5
9.
y(x) = 13 cos(2x) + o3 sin(2x) — 8e”
10.

5
y(x) = c1e” cos(x) + coe” sin(x) — 5372 —br—4

2.2 The Constant Coefficient Homogeneous Equa-
tion

1. The characteristic equation is A> — A — 6 = 0, with roots —2,3. The general
solution is
Y= cre 2 4 €37,

2. The characteristic equation is A2 — 2\ 4+ 10 = 0, with roots 1 & 3i. The
general solution is
y = c1€” cos(3x) + coe” sin(3z).

3. The characteristic equation is A\ + 6X + 9 = 0, with repeated root —3.
The general solution is
Y= cre 3% 4 cyre 37,
4. The characteristic equation is A2 — 3\ = 0, with roots 0,3. The general
solution is

y=c1+ e’
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2.2. THE CONSTANT COEFFICIENT HOMOGENEOUS EQUATION 27

5. The characteristic equation is A? + 10\ 4+ 26 = 0, with roots —5 4. The
general solution is

5 5

y = cre "% cos(x) + cae” " sin(x).

6. The characteristic equation is A% + 6\ — 40 = 0, with roots —10,4. The
general solution is

y=cre 9% 4 coe™®.

7. The characteristic equation is A +3A+18 = 0, with roots —3/243+/7i/2.
The general solution is

y = e 3%/2 [cl coS (3\?33) + ¢g sin (3\f$>] .

8. The characteristic equation is A% + 16\ + 64 = 0, with repeated root —8.
The general solution is

y=e 5 (c; + cou).

9. The characteristic equation is A2 — 14\ 4+ 49 = 0, with repeated root 7.
The general solution is
y=e"(c; + cox).

10. The characteristic equation is A2 — 6A + 7 = 0, with roots 3 + /2i. The
general solution is

y = €3%[cy cos(V2x) + cosin(v2x)].

In each of Problems 11 through 20, the solution is obtained by finding the
general solution of the differential equation and then solving for the constants
to satisfy the initial conditions. We give only the final solution of the initial
value problem.

11. y=5—2e73

12. y = 4e® + 2e737

13. y=0forall z

4. y=e**(3—1x)

15.

Y= %[963(3072) + 5e=i(z=2)]

16.

y= V0. oo _ o vee)

4

17. y = e*~1(29 — 17x)
18.

y = —4(5 — V23)e> @2/ Tgin <\/2273(x - 2))
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28 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

19.
_ (e42)/2 V15 5 . (V15
=e cos r+2)| + sin T+ 2
y [ ( = >> s Y@ +2)
20.
Yy = ae(fl+\/5)w/2 + be(—l—\/g):r/27
where
o= 9+ 7\/5)6—2+\/5
2v/5
and
b _ (7\/5_ 9) —2—\/5
=-——"¢
2v5

2.3 Solutions of the Nonhomogeneous Equation

1. Two independent solutions of y” +y = 0 are y; = cos(x) and yo = sin(x).
Using variation of parameters, integrate to obtain

u(z) = sin(z) — In|sec(x) + tan(z)| andv(x) = — cos(z).
This yields the general solution
y = ¢1 cos(x) + cosin(z) — cos(x) In | sec(z) + tan(x)|.

2. Two independent solutions of the associated homogeneous equation are
y1(x) = €3* and ya(x) = e®. These have Wronskian W (z) = —2¢**. Then

3 1
u(z) = /6_3’” cos(x + 3)dx = —l—oe_3’” cos(z + 3) + 1—06_3‘” sin(z + 3)

1 1
v(z) = /e*"” cos(x + 3)dx = ie*“” cos(x + 3) — §e*I sin(x + 3).
The general solution is
y(x) = c1€3® + coe”
— > cos(a+3) + = sin(z + 3)
1g cos(® 1g sin(@
1 1
+3 cos(z + 3) — 3 sin(x + 3).
This can be written
y(x) = c1€3® + coe®

1 2
+ 5 cos(z + 3) — E sin(z + 3).
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2.3. SOLUTIONS OF THE NONHOMOGENEOUS EQUATION 29
3. With details omitted, we obtain by variation of parameters that
. . 4
y(x) = ¢1 cos(3z) + cosin(3z) + 4a sin(3x) + 3 cos(3x) In | cos(3x)|.
4. Use the identity 2sin?(z) = 1 — cos(2x) to obtain

" .1 7 4
(@) = 163 + coe™® — 3 + & cos(2x) + oE sin(2z).

y(x) = c1e” + cpe®® — e** cos(e™™)

6. Use the identity 8sin?(4z) = 4 cos(8z) — 4 to obtain

2 58 40
y =1 + cpe®” + 3 + 941 cos(8x) + 941 sin(8x).

7. Two independent solutions of the associated homogeneous equation are
e?® and e~®. For a particular solution, try y,(z) = Az* + Bz + C. This yields

the general solution
_ 2z —x 2
y=cre’ +coe " —ax+x—4.

8. y= 1637 + cge 2% — 2¢27

9. y = e®[ey cos(3x) + cosin(3z)] + 222 + 2 — 1

10. y = e**[c;y cos(x) + casin(xw)] + 21e®

11. y = 16T 4 e 4 e*

12. y = e73%[c; + cox] + 3§ sin(3z)

13. y = c1€% + c2€?® + 3cos(x) + sin(x)

4. y=c1+cge ™ — 223 — Ja2 — Lo — 237

15. y = €*®[c1 cos(3x) + co8in(3x)] + $€2 — £e¥*

16. y = e”[c1 + cax] 4 3z + 6 + 3 cos(3z) — 2sin(3z)

17. As usual, up to this point, we solve an initial value problem by finding the
general solution of the differential equation and then using the initial conditions
to solve for the constants. We obtain

y= %62:6 o %6721 o %I’G&T o
18. y = 3+ 2e 4% — 2cos(z) + 8sin(z) + 2z
19. y=32e2 - Be bt lem 4+ L
20. y = £ + € — 2e*[cos(x) + 3sin(w)]
21. y = 2e%® 4 2727 — 27T — 27
22. The general solution is

3 3
Y= e*/? [Cl cos (?m) + ¢o sin ({m)

+1
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30 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

To make it easier to fit the initial conditions specified at x = 1, we can also
write this general solution as

Y= oT/2 [d1 cos ({(m — 1)) + dg sin ({(1‘ — 1)) +1.
Now
1 3
y(1) = e'/2d; + 1 =4 and y/(1) = 561/2d1 n gewde _ 9

Solve these to get dy = 3e~ /2 and dy = —76_1/2/\/3. The solution is

y=elz=D/2 l?) cos (?(z - 1)) - % sin (ég(:c — 1))

23. y = 4e™® —sin®(x) — 2
24. y = 4cos(z) 4+ 4sin(x) — cos(x) In | sec(x) + tan(x)]

+ 1.

2.4 Spring Motion
1. The solution with initial conditions y(0) = 5,3'(0) = 0 is
y1(t) = 5e2*[cosh(v/2t) 4+ V2sinh(v/2t)].

With initial conditions y(0) = 0,%'(0) = 5, we obtain

ya(t) = \%67% sinh(v/2t).

Graphs of these solutions are shown in Figure 2.1.

2. With y(0) = 5 and v/ = 0, y;(t) = 5e 2*(1 + 2t); with y(0) = 0 and
y'(0) =5, y2(t) = 5te~2t. Graphs are given in Figure 2.2.

3. With y(0) =5 and y' =0,

n(t) = ge_t[Q cos(2t) + sin(2t)].

With y(0) = 0 and 4/(0) = 5, y2(t) = 3e"sin(2t). Graphs are given in Figure
2.3.
4. The solution is

y(t) = Ae t[cosh(V/2t) + 1/(2) sinh(V/2t)].

Graphs for A =1,3,6,10,—4 and —7 are given in Figure 2.4.
5. The solution is

y(t) = \26% sinh(y/(2)t)
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2.4. SPRING MOTION 31
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Figure 2.1: Problem 1, Section 2.4.
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Figure 2.2: Problem 2, Section 2.4.
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Figure 2.3: Problem 3, Section 2.4.
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Figure 2.4: Problem 4, Section 2.4.
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2.4. SPRING MOTION 33
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Figure 2.5: Problem 5, Section 2.4.
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Figure 2.6: Problem 6, Section 2.4.
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34 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

Figure 2.7: Problem 7, Section 2.4.

and is graphed for A =1,3,6,10, —4 and —7 in Figure 2.5.

6. The solution is y(t) = Ae~2!(1 + 2t) and is graphed for A = 1,3,6,
10, —4, —7 in Figure 2.6.

7. The solution is y(t) = Ate=2!, graphed for A = 1,3,6,10, —4 and —7 in
Figure 2.7.

8. The solution is

y(t) = ge*t[2 cos(2t) + sin(2t)],

graphed in Figure 2.8 for A =1,3,6,10,—4 and —7.
9. The solution is

y(t) = ge_t sin(2t)

and is graphed for A =1,3,6,10, —4 and —7 in Figure 2.9.
10. From Newton’s second law of motion,

y” = sum of external forces = —29y — 10y’
so the motion is described by the solution of
y" +10y" +29y = 0;y(0) = 3,4'(0) = —1.

The solution in this underdamped problem is

y(t) = e *[3cos(2t) + Tsin(2t)].
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w1 R @

Figure 2.8: Problem 8, Section 2.4.

If the condition on y'(0) is 3/(0) = A, this solution is

y(t) = e [3 cos(2t) + (AJ; 15) sin(2t)] .

Graphs of this solution are shown in Figure 2.10 for A = —1,—-2,—4,7,—12
cm/sec (recall that down is the positive direction).

11. For overdamped motion the displacement is given by y(t) = e~ **(A4 +
Bef), where a is the smaller of the roots of the characteristic equation and
is positive, and § equals the larger root minus the smaller root. The factor
A + BeP! can be zero at most once and only for some t > 0 if —A/B > 1. The
values of A and B are determined by the initial conditions. In fact, if yo = y(0)
and v = y'(0), we have

A+ B=ypand —a(A+ B)+ 8B = v.

We find from these that
A Byo

B v+ ayy

No condition on only yo will ensure that —A/B < 1. If we also specify that
vg > —ayp, we ensure that the overdamped bob will never pass through the
equilibrium point.

12. For critically damped motion the displacement has the form y(t) =
e~ (A + Bt) with o > 0 and A and B determined by the initial conditions.
From the linear factor, the bob can pass through the equilibrium at most once,
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w1l

Figure 2.9: Problem 9, Section 2.4.
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Figure 2.10: Problem 10, Section 2.4.
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2.4. SPRING MOTION 37

and will do this for some ¢ > 0 if and only if B # 0 and AB < 0. Now
note that yo = A and vg = y’'(0) = —aA + B. Thus to ensure that the bob
never passes through equilibrium we need AB > 0, which becomes the condition
(vo 4+ ayo)yo > 0. No condition on yg alone can ensure this. We would also need
to specify vg > —ayyg, and this will ensure that the critically damped bob never
passes through the equilibrium point.

13. For underdamped motion, the solution has the appearance

y(t) = e/ [cy cos(v/Akm — ¢2t/2m) + co sin(v/4km — c2t/2m)]

having frequency
Vakm — 2
w=—.
2m

Thus increasing ¢ decreases the frequency of the the motion, and decreasing ¢
increases the frequency.
14. For critical damping,

y(t) = e~°/*™(A + Bt).

For the maximum displacement at time ¢* we need y'(t*) = 0. This gives us

o 2mB — cA
Be
Now y(0) = A and 3/(0) = B— Ac/2m. Since we are given that y(0) = ¢/(0) #£ 0,
we find that
. 4m?
© 2me+ 2

and this is independent of y(0). The maximum displacement is
y(t*) _ y(co) (2m + 0)672m/(2m+c).

15. The general solution of the overdamped problem

y" + 6y’ + 2y = 4 cos(3t)

y(t) = e=**[¢; cosh(V/Tt) 4 ¢o sinh(V/7t)]

2 72
- % cos(3t) + 373 sin(3t).

(a) The initial conditions y(0) = 6,y'(0) = 0 give us

2266 G582
~ 373 T 33T

C1
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Figure 2.11: Problem 15, Section 2.4.

Now the solution is

1 6582
o(t) = —[e 342266 cosh
Ya(t) 373[6 [ cos (\ﬁt) + 77

(b) The initial conditions y(0) = 0,3'(0) = 6 give us ¢; = 28/373 and
co = 2106/373 and the unique solution

sinh(v/7t)] — 28 cos(3t) + 72sin(3t)].

yp(t) = 3—;3[6_‘% 29 cosh(V/Tt) + L\}f sinh(v/7t)] — 28 cos(3t) + 72sin(3t)].

These solutions are graphed in Figure 2.11.
16. The general solution of the critically damped problem
y" + 4y’ + 4y = 4 cos(3t)

is
20 48
1) =e 2 - = — si )
y(t) = e "1 + cat] 169 cos(3t) + 169 sin(3t)

a) The initial conditions y(0) = 6,4’(0) = 0 give us the unique solution
g

1

= 160 [e™28[1034 + 1924t] — 20 cos(3t) + 48 sin(3t)].

Ya(t)
(b) The initial conditions y(0) = 0,4’(0) = 6 give us the unique solution

1
(1) = g [ [20 + 9101] — 20 cos(3¢) + 48sin(3t)].
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Figure 2.12: Problem 16, Section 2.4.

These solutions are graphed in Figure 2.12.
17. The general solution of the underdamped problem

y"(t) + ' + 3y = 4cos(3t)
is

11¢ 11¢ 24 12
y(t) = e /2 [cl cos (C) + co sin (C)] — cos(3t) + T sin(3t).

(a) The initial conditions y(0) = 6,y’(0) = 0 yield the unique solution

Ya(t) = %5 letm [98 cos <\/;>1t> + \Zilsin <\/;71t>] — 8cos(3t) + 4sin(3t)] .

(b) The initial conditions y(0) = 0,%'(0) = 6 yield the unique solution

yp(t) L [et/Q lS cos (mt> + 104 sin (mt>] — 8cos(3t) —|—4sin(3t)] .

15 2 Vi1 2

These solutions are graphed in Figure 2.13.
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Figure 2.13: Problem 17, Section 2.4.
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