


Chapter 2

Linear Second-Order
Equations

2.1 Theory of the Linear Second-Order Equa-
tion

1. The general solution is y(x) = c1 sin(6x) + c2 cos(6x). For the initial condi-
tions, we need y(0) = c2 = −5 and y′(0) = 6c1 = 2. Then c1 = 1/3 and the
solution of the initial value problem is

y(x) =
1
3

sin(6x)− 5 cos(6x).

2. The general solution is y(x) = c1e
4x + c2e

−4x. For the initial conditions,
compute

y(0) = c1 + c2 = 12 and y′(0) = 4c1 − 4c2 = 3.

Solve these algebraic equations to obtain c1 = 51/8 and c2 = 45/8. The solution
of the initial value problem is

y(x) =
51
8

e4x +
45
8

e−4x.

3. The general solution is y(x) = c1e
−2x + c2e

−x. For the initial conditions,
we have

y(0) = c1 + c2 = −3 and y′(0) = −2c1 − c2 = −1.

Solve these to obtain c1 = 4, c2 = −7. The solution of the initial value problem
is

y(x) = 4e−2x − 7e−x.

4. The general solution is y(x) = c1e
3x cos(2x)+ c2e

3x sin(2x). We will need

y′(x) = 3c1e
3x cos(2x)− 2c1e

3x sin(2x) + 3c2e
3x sin(2x) + 2c2e

3x cos(2x).

25
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26 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

From the initial conditions,

y(0) = c1 = −1 and y′(0) = 3c1 + 2c2 = 1.

Then c2 = 2 and the solution of the initial value problem is

y(x) = −e3x cos(2x) + 2e3x sin(2x).

5. The general solution is y(x) = c1e
x cos(x) + c2e

x sin(x). Then y(0) =
c1 = 6. We find that y′(0) = c1 + c2 = 1, so c2 = −5. The initial value problem
has solution

y(x) = 6ex cos(x)− 5ex sin(x).

6.

y(x) = c1 sin(6x) + c2 cos(6x) +
1
36

(x− 1)

7.

y(x) = c1e
4x + c2e

−4x − 1
4
x2 +

1
2

8.

y(x) = c1e
−2x + c2e

−x +
15
2

9.
y(x) = c1e

3x cos(2x) + c2e
3x sin(2x)− 8ex

10.

y(x) = c1e
x cos(x) + c2e

x sin(x)− 5
2
x2 − 5x− 4

2.2 The Constant Coefficient Homogeneous Equa-
tion

1. The characteristic equation is λ2 − λ− 6 = 0, with roots −2, 3. The general
solution is

y = c1e
−2x + c2e

3x.

2. The characteristic equation is λ2 − 2λ + 10 = 0, with roots 1 ± 3i. The
general solution is

y = c1e
x cos(3x) + c2e

x sin(3x).

3. The characteristic equation is λ2 + 6λ + 9 = 0, with repeated root −3.
The general solution is

y = c1e
−3x + c2xe−3x.

4. The characteristic equation is λ2 − 3λ = 0, with roots 0, 3. The general
solution is

y = c1 + c2e
3x.
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2.2. THE CONSTANT COEFFICIENT HOMOGENEOUS EQUATION 27

5. The characteristic equation is λ2 + 10λ + 26 = 0, with roots −5± i. The
general solution is

y = c1e
−5x cos(x) + c2e

−5x sin(x).

6. The characteristic equation is λ2 + 6λ − 40 = 0, with roots −10, 4. The
general solution is

y = c1e
−10x + c2e

4x.

7. The characteristic equation is λ2+3λ+18 = 0, with roots −3/2±3
√

7i/2.
The general solution is

y = e−3x/2

[
c1 cos

(
3
√

7x

2

)
+ c2 sin

(
3
√

7x

2

)]
.

8. The characteristic equation is λ2 + 16λ + 64 = 0, with repeated root −8.
The general solution is

y = e−8x(c1 + c2x).

9. The characteristic equation is λ2 − 14λ + 49 = 0, with repeated root 7.
The general solution is

y = e7x(c1 + c2x).

10. The characteristic equation is λ2 − 6λ + 7 = 0, with roots 3±√2i. The
general solution is

y = e3x[c1 cos(
√

2x) + c2 sin(
√

2x)].

In each of Problems 11 through 20, the solution is obtained by finding the
general solution of the differential equation and then solving for the constants
to satisfy the initial conditions. We give only the final solution of the initial
value problem.

11. y = 5− 2e−3x

12. y = 4ex + 2e−3x

13. y = 0 for all x
14. y = e2x(3− x)
15.

y =
1
7
[9e3(x−2) + 5e−4(x−2)]

16.

y =
√

6
4

ex
[
e
√

6x − e−
√

6x
]

17. y = ex−1(29− 17x)
18.

y = −4(5−
√

23)e5(x−2)/7 sin

(√
23
2

(x− 2)

)
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28 CHAPTER 2. LINEAR SECOND-ORDER EQUATIONS

19.

y = e(x+2)/2

[
cos

(√
15
2

(x + 2)

)
+

5√
15

sin

(√
15
2

(x + 2)

)]

20.
y = ae(−1+

√
5)x/2 + be(−1−√5)x/2,

where

a =
(9 + 7

√
5)

2
√

5
e−2+

√
5

and

b =
(7
√

5− 9)
2
√

5
e−2−√5

2.3 Solutions of the Nonhomogeneous Equation

1. Two independent solutions of y′′ + y = 0 are y1 = cos(x) and y2 = sin(x).
Using variation of parameters, integrate to obtain

u(x) = sin(x)− ln | sec(x) + tan(x)| andv(x) = − cos(x).

This yields the general solution

y = c1 cos(x) + c2 sin(x)− cos(x) ln | sec(x) + tan(x)|.
2. Two independent solutions of the associated homogeneous equation are

y1(x) = e3x and y2(x) = ex. These have Wronskian W (x) = −2e4x. Then

u(x) =
∫

e−3x cos(x + 3) dx = − 3
10

e−3x cos(x + 3) +
1
10

e−3x sin(x + 3)

and

v(x) =
∫

e−x cos(x + 3) dx =
1
2
e−x cos(x + 3)− 1

2
e−x sin(x + 3).

The general solution is

y(x) = c1e
3x + c2e

x

− 3
10

cos(x + 3) +
1
10

sin(x + 3)

+
1
2

cos(x + 3)− 1
2

sin(x + 3).

This can be written

y(x) = c1e
3x + c2e

x

+
1
5

cos(x + 3)− 2
5

sin(x + 3).
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2.3. SOLUTIONS OF THE NONHOMOGENEOUS EQUATION 29

3. With details omitted, we obtain by variation of parameters that

y(x) = c1 cos(3x) + c2 sin(3x) + 4x sin(3x) +
4
3

cos(3x) ln | cos(3x)|.

4. Use the identity 2 sin2(x) = 1− cos(2x) to obtain

y(x) = c1e
3x + c2e

−x − 1
3

+
7
65

cos(2x) +
4
65

sin(2x).

5.
y(x) = c1e

x + c2e
2x − e2x cos(e−x)

6. Use the identity 8 sin2(4x) = 4 cos(8x)− 4 to obtain

y = c1e
3x + c2e

2x +
2
3

+
58

1241
cos(8x) +

40
1241

sin(8x).

7. Two independent solutions of the associated homogeneous equation are
e2x and e−x. For a particular solution, try yp(x) = Ax2 + Bx + C. This yields
the general solution

y = c1e
2x + c2e

−x − x2 + x− 4.

8. y = c1e
3x + c2e

−2x − 2e2x

9. y = ex[c1 cos(3x) + c2 sin(3x)] + 2x2 + x− 1
10. y = e2x[c1 cos(x) + c2 sin(x)] + 21e2x

11. y = c1e
2x + c2e

4x + ex

12. y = e−3x[c1 + c2x] + 1
2 sin(3x)

13. y = c1e
x + c2e

2x + 3 cos(x) + sin(x)
14. y = c1 + c2e

−4x − 2
3x3 − 1

2x2 − 1
4x− 2

3e3x

15. y = e2x[c1 cos(3x) + c2 sin(3x)] + 1
3e2x − 1

2e3x

16. y = ex[c1 + c2x] + 3x + 6 + 3
2 cos(3x)− 2 sin(3x)

17. As usual, up to this point, we solve an initial value problem by finding the
general solution of the differential equation and then using the initial conditions
to solve for the constants. We obtain

y = 7
4e2x − 3

4e−2x − 7
4xe2x − 1

4x.

18. y = 3 + 2e−4x − 2 cos(x) + 8 sin(x) + 2x

19. y = 3
8e−2x − 19

120e−6x + 1
5e−x + 7

12

20. y = 1
5 + e3x − 1

5e2x[cos(x) + 3 sin(x)]
21. y = 2e4x + 2e−2x − 2e−x − e2x

22. The general solution is

y = ex/2

[
c1 cos

(√
3

2
x

)
+ c2 sin

(√
3

2
x

)]
+ 1
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To make it easier to fit the initial conditions specified at x = 1, we can also
write this general solution as

y = ex/2

[
d1 cos

(√
3

2
(x− 1)

)
+ d2 sin

(√
3

2
(x− 1)

)]
+ 1.

Now

y(1) = e1/2d1 + 1 = 4 and y′(1) =
1
2
e1/2d1 +

√
3

2
e1/2d2 = −2.

Solve these to get d1 = 3e−1/2 and d2 = −7e−1/2/
√

3. The solution is

y = e(x−1)/2

[
3 cos

(√
3

2
(x− 1)

)
− 7√

3
sin

(√
3

2
(x− 1)

)]
+ 1.

23. y = 4e−x − sin2(x)− 2
24. y = 4 cos(x) + 4 sin(x)− cos(x) ln | sec(x) + tan(x)|

2.4 Spring Motion

1. The solution with initial conditions y(0) = 5, y′(0) = 0 is

y1(t) = 5e−2t[cosh(
√

2t) +
√

2 sinh(
√

2t)].

With initial conditions y(0) = 0, y′(0) = 5, we obtain

y2(t) =
5√
2
e−2t sinh(

√
2t).

Graphs of these solutions are shown in Figure 2.1.
2. With y(0) = 5 and y′ = 0, y1(t) = 5e−2t(1 + 2t); with y(0) = 0 and

y′(0) = 5, y2(t) = 5te−2t. Graphs are given in Figure 2.2.
3. With y(0) = 5 and y′ = 0,

y1(t) =
5
2
e−t[2 cos(2t) + sin(2t)].

With y(0) = 0 and y′(0) = 5, y2(t) = 5
2e−t sin(2t). Graphs are given in Figure

2.3.
4. The solution is

y(t) = Ae−t[cosh(
√

2t) +
√

(2) sinh(
√

2t)].

Graphs for A = 1, 3, 6, 10,−4 and −7 are given in Figure 2.4.
5. The solution is

y(t) =
A√
2
e−2t sinh(

√
(2)t)
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Figure 2.1: Problem 1, Section 2.4.
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Figure 2.2: Problem 2, Section 2.4.
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Figure 2.3: Problem 3, Section 2.4.
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Figure 2.4: Problem 4, Section 2.4.
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Figure 2.5: Problem 5, Section 2.4.
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Figure 2.6: Problem 6, Section 2.4.
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Figure 2.7: Problem 7, Section 2.4.

and is graphed for A = 1, 3, 6, 10,−4 and −7 in Figure 2.5.
6. The solution is y(t) = Ae−2t(1 + 2t) and is graphed for A = 1, 3, 6,

10,−4,−7 in Figure 2.6.
7. The solution is y(t) = Ate−2t, graphed for A = 1, 3, 6, 10,−4 and −7 in

Figure 2.7.
8. The solution is

y(t) =
A

2
e−t[2 cos(2t) + sin(2t)],

graphed in Figure 2.8 for A = 1, 3, 6, 10,−4 and −7.
9. The solution is

y(t) =
A

2
e−t sin(2t)

and is graphed for A = 1, 3, 6, 10,−4 and −7 in Figure 2.9.
10. From Newton’s second law of motion,

y′′ = sum of external forces = −29y − 10y′

so the motion is described by the solution of

y′′ + 10y′ + 29y = 0; y(0) = 3, y′(0) = −1.

The solution in this underdamped problem is

y(t) = e−5t[3 cos(2t) + 7 sin(2t)].
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Figure 2.8: Problem 8, Section 2.4.

If the condition on y′(0) is y′(0) = A, this solution is

y(t) = e−5t

[
3 cos(2t) +

(
A + 15

2

)
sin(2t)

]
.

Graphs of this solution are shown in Figure 2.10 for A = −1,−2,−4, 7,−12
cm/sec (recall that down is the positive direction).

11. For overdamped motion the displacement is given by y(t) = e−αt(A +
Beβt), where α is the smaller of the roots of the characteristic equation and
is positive, and β equals the larger root minus the smaller root. The factor
A + Beβt can be zero at most once and only for some t > 0 if −A/B > 1. The
values of A and B are determined by the initial conditions. In fact, if y0 = y(0)
and v0 = y′(0), we have

A + B = y0 and − α(A + B) + βB = v0.

We find from these that

−A

B
= 1− βy0

v0 + αy0
.

No condition on only y0 will ensure that −A/B ≤ 1. If we also specify that
v0 > −αy0, we ensure that the overdamped bob will never pass through the
equilibrium point.

12. For critically damped motion the displacement has the form y(t) =
e−αt(A + Bt) with α > 0 and A and B determined by the initial conditions.
From the linear factor, the bob can pass through the equilibrium at most once,
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Figure 2.9: Problem 9, Section 2.4.
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Figure 2.10: Problem 10, Section 2.4.
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2.4. SPRING MOTION 37

and will do this for some t > 0 if and only if B 6= 0 and AB < 0. Now
note that y0 = A and v0 = y′(0) = −αA + B. Thus to ensure that the bob
never passes through equilibrium we need AB > 0, which becomes the condition
(v0 +αy0)y0 > 0. No condition on y0 alone can ensure this. We would also need
to specify v0 > −αy0, and this will ensure that the critically damped bob never
passes through the equilibrium point.

13. For underdamped motion, the solution has the appearance

y(t) = e−ct/2m[c1 cos(
√

4km− c2t/2m) + c2 sin(
√

4km− c2t/2m)]

having frequency

ω =
√

4km− c2

2m
.

Thus increasing c decreases the frequency of the the motion, and decreasing c
increases the frequency.

14. For critical damping,

y(t) = e−ct/2m(A + Bt).

For the maximum displacement at time t∗ we need y′(t∗) = 0. This gives us

t∗ =
2mB − cA

Bc
.

Now y(0) = A and y′(0) = B−Ac/2m. Since we are given that y(0) = y′(0) 6= 0,
we find that

t∗ =
4m2

2mc + c2

and this is independent of y(0). The maximum displacement is

y(t∗) =
y(0)

c
(2m + c)e−2m/(2m+c).

15. The general solution of the overdamped problem

y′′ + 6y′ + 2y = 4 cos(3t)

is

y(t) = e−3t[c1 cosh(
√

7t) + c2 sinh(
√

7t)]

− 28
373

cos(3t) +
72
373

sin(3t).

(a) The initial conditions y(0) = 6, y′(0) = 0 give us

c1 =
2266
373

and c2 =
6582

373
√

7
.
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Figure 2.11: Problem 15, Section 2.4.

Now the solution is

ya(t) =
1

373
[e−3t[2266 cosh(

√
7t) +

6582√
7

sinh(
√

7t)]− 28 cos(3t) + 72 sin(3t)].

(b) The initial conditions y(0) = 0, y′(0) = 6 give us c1 = 28/373 and
c2 = 2106/373 and the unique solution

yb(t) =
1

373
[e−3t[29 cosh(

√
7t) + 2106√

7
sinh(

√
7t)]− 28 cos(3t) + 72 sin(3t)].

These solutions are graphed in Figure 2.11.
16. The general solution of the critically damped problem

y′′ + 4y′ + 4y = 4 cos(3t)

is
y(t) = e−2t[c1 + c2t]− 20

169
cos(3t) +

48
169

sin(3t).

(a) The initial conditions y(0) = 6, y′(0) = 0 give us the unique solution

ya(t) =
1

169
[e−2t[1034 + 1924t]− 20 cos(3t) + 48 sin(3t)].

(b) The initial conditions y(0) = 0, y′(0) = 6 give us the unique solution

yb(t) =
1

169
[e−2t[20 + 910t]− 20 cos(3t) + 48 sin(3t)].
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Figure 2.12: Problem 16, Section 2.4.

These solutions are graphed in Figure 2.12.
17. The general solution of the underdamped problem

y′′(t) + y′ + 3y = 4 cos(3t)

is

y(t) = e−t/2

[
c1 cos

(√
11t

2

)
+ c2 sin

(√
11t

2

)]
− 24

45
cos(3t) +

12
45

sin(3t).

(a) The initial conditions y(0) = 6, y′(0) = 0 yield the unique solution

ya(t) =
1
15

[
e−t/2

[
98 cos

(√
11t

2

)
+

74√
11

sin

(√
11t

2

)]
− 8 cos(3t) + 4 sin(3t)

]
.

(b) The initial conditions y(0) = 0, y′(0) = 6 yield the unique solution

yb(t) =
1
15

[
e−t/2

[
8 cos

(√
11t

2

)
+

164√
11

sin

(√
11t

2

)]
− 8 cos(3t) + 4 sin(3t)

]
.

These solutions are graphed in Figure 2.13.
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Figure 2.13: Problem 17, Section 2.4.
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