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CHAPTER 2

LINEAR EQUATIONS OF HIGHER ORDER

SECTION 2.1
INTRODUCTION: SECOND-ORDER LINEAR EQUATIONS

In this section the central ideas of the theory of linear differential equations are introduced and
illustrated concretely in the context of second-order equations. These key concepts include
superposition of solutions (Theorem 1), existence and uniqueness of solutions (Theorem 2),
linear independence, the Wronskian (Theorem 3), and general solutions (Theorem 4). This
discussion of second-order equations serves as preparation for the treatment of nth order linear
equations in Section 2.2. Although the concepts in this section may seem somewhat abstract to
students, the problems set is quite tangible and largely computational.

In each of Problems 1-16 the verification that y; and y, satisfy the given differential equation
is a routine matter. As in Example 2, we then impose the given initial conditions on the general
solution y = c¢iy; + cyy». This yields two linear equations that determine the values of the
constants ¢; and c¢».

1. Imposition of the initial conditions »(0) =0, y'(0)=5 on the general solution
¥(x) = ¢e” +c,e” yields the two equations ¢, +¢, =0, ¢, ~c, =0 with solution
¢, =5/2, ¢, =-5/2. Hence the desired particular solution is y(x) = 5(e¢* - e™)/2.

2. Imposition of the initial conditions »(0) =—1, »’(0) =15 on the general solution
Y(x) = ¢e™ +c,e” yields the two equations ¢, +¢, =—1, 3¢, —3¢, =15 with solution
¢ =2, ¢, =3. Hence the desired particular solution is y(x) = 2¢>* - 3¢,

3. Imposition of the initial conditions y(0) =3, y'(0) =8 on the general solution
¥(x) = ¢ cos2x+c,sin2x yields the two equations ¢, =3, 2¢, =8 with solution
¢, =3, ¢, =4. Hence the desired particular solution is y(x) = 3 cos 2x + 4 sin 2x.

4, Imposition of the initial conditions y(0) =10, 3'(0) =-10 on the general solution
¥(x) = ¢ cos5x +c,sin5x yields the two equations ¢, =10, 5¢, =10 with solution
¢; =3, ¢, =4. Hence the desired particular solution is y(x) = 10 cos 5x - 2 sin 5x.
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Imposition of the initial conditions y(0) =1, 3'(0)=0 on the general solution
Y(x) = ce” +c,e”” yields the two equations ¢, +c, =1, ¢, + 2¢, =0 with solution
¢, =2, ¢, =—1. Hence the desired particular solution is y(x) = 2¢° - ¢*.

Imposition of the initial conditions y(0) =7, 3'(0)=-1 on the general solution
Y(x) = ¢ +c,e™ yields the two equations ¢, +c¢, =7, 2¢, -3¢, = —1 with solution
¢, =4, ¢, =3. Hence the desired particular solution is y(x) = 4e** + 3¢~

Imposition of the initial conditions y(0)=-2, y'(0)=8 on the general solution
¥(x) = ¢ +c,e” yields the two equations ¢, +¢, =—2, —c, =8 with solution
¢, =6, ¢, =—8. Hence the desired particular solution is y(x) = 6 — 8¢™*.

Imposition of the initial conditions y(0) =4, 3'(0) = -2 on the general solution
¥(x) = ¢ +c,e’ yields the two equations ¢ +¢, =4, 3¢, =—2 with solution
¢, =14/3, ¢, =2/3. Hence the desired particular solution is y(x) = (14 - 2¢*)/3.

Imposition of the initial conditions »(0)=2, 3’(0) = -1 on the general solution
¥(x) = ce” +cxe” yields the two equations ¢, =2, —¢, +¢, =—1 with solution
¢, =2, ¢, =1. Hence the desired particular solutionis y(x) = 2e™ + xe™ .

Imposition of the initial conditions y(0) =3, y'(0) =13 on the general solution
Y(x) = ™ +c,xe™ yields the two equations ¢, =3, 5¢, + ¢, =13 with solution

¢, =3, ¢, =—2. Hence the desired particular solution is y(x) = 3¢ - 2xe™.

Imposition of the initial conditions y(0) =0, y'(0) =5 on the general solution
y(x) = ¢’ cosx+c,e’sinx yields the two equations ¢, =0, ¢, +¢, =5 with solution
¢, =0, ¢, =5. Hence the desired particular solution is y(x) = 5¢*sin x.

Imposition of the initial conditions y(0) =2, 3’(0)=0 on the general solution

y(x) = ce”* cos2x +c,e”* sin2x yields the two equations ¢ =2, =3¢, +2¢, =5 with
solution ¢, =2, ¢, =3. Hence the desired particular solution is y(x) =

e (2 cos 2x + 3 sin 2x).

Imposition of the initial conditions y(1)=3, y'(1)=1 on the general solution
¥(x) = ¢x+c,x* yields the two equations ¢ +¢, =3, ¢, +2c, =1 with solution
¢, =5, ¢, =—2. Hence the desired particular solution is p(x) = 5x - 2x°.
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Imposition of the initial conditions y(2) =10, 3'(2)=15 on the general solution
¥(x) = ¢x* +c,x” yields the two equations 4c, +c,/8=10, 4¢, —3c,/16 =15 with
solution ¢, =3, ¢, =-16. Hence the desired particular solution is y(x) = 3x* - 16/»x3 .

Imposition of the initial conditions y(1)=7, y'(1)=2 on the general solution
y(x¥) = ¢x+c,xlnx yields the two equations ¢, =7, ¢, +c¢, =2 with solution
¢, =7, ¢, =—5. Hence the desired particular solution is y(x) = 7x - 5x In x.

Imposition of the initial conditions y(1)=2, y'(1)=3 on the general solution
¥(x) = ¢ cos(Inx)+c,sin(Inx) yields the two equations ¢, =2, ¢, =3. Hence the
desired particular solution is y(x) = 2 cos(In x) + 3 sin(In x).

If y=c/xthen y'+y* = —c/x*+c*/x* = ¢(c—1)/x* # 0 unless either ¢ =0
or c=1.

4

If y=cx’then 3" = cx’-6cx = 6¢°x* # 6x* unless ¢® =1.

If y=1+x then 3"+ (¥')* = A+Vx)(=x"2/4)+(x"/2) = —x™2/4 » 0.
Linearly dependent, because

f%) = 7= a(cos’x + sin’x) = 7 2(x)
Linearly independent, because x° =+ x? lx[ if x>0, whereas x’=-x’ lxl if x<0.

Linearly independent, because 1+ x =c(1+|x|) would require that ¢ = 1 with x = 0,
but ¢ = 0 with x = -1. Thus there is no such constant c.

Linearly independent, because fx) = +g(x) if x>0, whereas fx) = —g(x) if x<0.
Linearly dependent, because g(x) = 2 f{x).

fx) = €'sinx and g(x) = €*cosx are linearly independent, because flx) = k g(x)
would imply that sinx = kcosx, whereas sinx and cosx are linearly independent.

To see that f{x) and g(x) are linearly independent, assume that fx) = ¢ g2(x), and then
substitute both x = 0 and x = #/2.

Let L[y] = y"+py +qy. Then L[y;] = 0 and L[y,] = £, so

Lye+ypl = Lyl + ] = 0+f = f.
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If y(x) = 1+cicosx+eysinx then y'(x) = —cisinx + cxcos x, so the initial conditions
W0) = y'(0) = -1 yield ¢; = -2,¢; = -1. Hence y = 1 - 2 cos x - sin x.

There is no contradiction because if the given differential equation is divided by ¥ to
get the form in Equation (8) in the text, then the resulting functions p(x) = -4/x and
g(x) = 6/x* are not continuous at x = 0.

(a) ¥, =% and W =lle are linearly independent because x? =C|x3| would
require that ¢ = 1 with x = 1, but ¢ = -1 with x = -1.

(b) The fact that W(y1,y,) = 0 everywhere does not contradict Theorem 3, because
when the given equation is written in the required form

V' - @/xy + @)y = 0,
the coefficient functions p(x) = -3/x and g(x) = 3/x* are not continuous at x = 0.

W, y2) = —2x vanishes at x = 0, whereas if y; and y, were (linearly independent)
solutions of an equation y” +py' +gy = 0 with p and g both continuous on an open
interval / containing x = 0, then Theorem 3 would imply that W0 on I.

@ W=y -y, so
AW'= A'yd' +y 132" = y1"y2 = yi'v2)
= y1(4y2") - yA(dy")
= 1(=By2' ~ Cy2) = yo(-By1' - Cy1)
= =By - »'y2)
and thus AW'= —-BW.

(b) Just separate the variables.

(c) Because the exponential factor is never zero.

In Problems 33-42 we give the characteristic equation, its roots, and the corresponding general
solution.

33.

34.

3s.

94

PP=3r+2=0; r=12 3x) = ¢ +ce”

PP4+2r-15=0;, r=3,-5 Y(x) = cre™* +cre™*

P +5r=0;, r=0,-5 wx) = ¢+ e
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36.  2r743r =0; r=0,-3/2;, px) = ¢ + e
37. 277 —r-2=0; r=1,-1/2; 3x) = cie™+cre”
38. 4r* +8r+3 = 0; r=—1/2,-3/2; Y(x) = cre™? +cre™?

39. 4r* +4r +1

0; r=-1/2,-1/2; yx) = (c1 +cx)e™

40. 97 -12r44 = 0; r=-2/3,-2/3 yx) = (c1+cm)e?”
1. 6r'=Tr-20 =0; r= —-4/3,5/2; px) = cre” ™ + ¢,
42, 35¢:—r~12 = 0, r=—4/7,3/5; Wx) = cie¥ + ¢

In Problems 4348 we first write and simplify the equation with the indicated characteristic
roots, and then write the corresponding differential equation.

43. (r-=0)(+10) = r*+10r = 0; y'+10y = 0

4.  (r-10)(r+10) = #2100 = 0; y"—100y = 0

45.  (r+10)(r+10) = r*+20r+100 = 0;  3"+20y'+100y = 0

46.  (r-10)(r—100) = #2—~110r+1000 = 0;  y"—110y'+1000y = 0
47.  -0)E-0=r> =0, " =0

48.  (r-1-2)(r—1+42) = P =2r=1=0; y"-2y'—p =0

49.  The solution curve with ¥(0)=1, y'(0)=6 is y(x) = 8¢*—~7e¢™  We find that
V' (x)=0 when x=1In(7/4) so e*=4/7 and e =16/49. It follows that

y(In(7/4)) = 16/7, so the high point on the curve is (In(7/4)),16/7) ~ (0.56,2.29)
which looks consistent with Fig. 2.1.6.

50.  The two solution curves with y(0)=a and y(0)=5 (aswellas y'(0)=1) are

y = QRa+De™ —(a+1e™,
y = Qb+De*—(b+1)e™.
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Subtraction and then division by a - b gives 2¢™ = €™ so it follows that x = -In 2.

Now substitution in either formula gives y = -2, so the common point of intersection is
(-In2, -2).

(a) The substitution v=Inx gives

by _dydy _1dy

dx dv dx x dv

Then another differentiation using the chain rule gives

, ﬂ_i(@) d(l dy)
VTR T w\a)  a\x v

Ll d (e

x> dv x dv\dv

@ 1.dy
dx 2 dv x* dv

1
T2

Substitution of these expressions for 3" and y" into Eq. (21) in the text then yields
immediately the desired Eq. (23):
d2

d —= +(b a)—+cy 0.

(b) Iftheroots x and r, of the characteristic equation of Eq. (23) are real and
distinct, then a general solution of the original Euler equation is

v

v v\ R I
y(x) = ce” +c,e? = cl(e) +c2(e) =cx" +c,x"

The substitution v =Inx yields the converted equation d’y/dv® —y =0 whose
characteristic equation 7> —1=0 hasroots 7 =1 and r, =—1. Because e’ =ux, the
corresponding general solution is

c
— ce' v 2
Yy =ce +ce’ = cox+ =

The substitution v=Inx yields the converted equation d*y/dv’ +dy/dv-12y =0
whose characteristic equation 7> +7—12=0 hasroots % =—4 and 7 =3. Because

e’ = x,the corresponding general solution is

— -4y v _ —4 3
Yy = e +Cze =X +C2x .

The substitution v =Inx yields the converted equation 4d>y/dv* +4dy/dv—-3y =0
whose characteristic equation 47 +4r—3=0 hasroots 7 =-3/2 and 7 =1/2.

Because e’ = x, the corresponding general solution is
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_ —-3v/2 v/i2 _ ~3/2 1/2
Yy =cqe T ree" = x4 x'

S5.  The substitution v=1Inx yields the converted equation o v/adv* =0 whose
characteristic equation 7 =0 has repeated roots n,% =0. Because v=Inx, the
corresponding general solution is

=¢+cVv =c¢ +c nx.
y 176 176

56.  The substitution v=Inx yields the converted equation d’y/dv: —4dy/dy+4 y=0
whose characteristic equation 7> —47+4 =0 has roots K.t =2. Because e’ =1x, the
corresponding general solution is

_ 2y v 2
Yy =cqe +eve” = x(¢ +c,lnv).

SECTION 2.2
GENERAL SOLUTIONS OF LINEAR EQUATIONS

Students should check each of Theorems 1 through 4 in this section to see that, in the case

n = 2, it reduces to the corresponding theorem in Section 2.1. Similarly, the computational
problems for this section largely parallel those for the previous section. By the end of Section
2.2 students should understand that, although we do not prove the existence-uniqueness theorem
now, it provides the basis for everything we do with linear differential equations.

The linear combinations listed in Problems 1-6 were discovered "by inspection" — that is, by
trial and error.

L (5/2)(2x) + (-8/3)3x) + (-1)(5x - 83 = 0

2. (-5 +(5)2 -3+ (1)(10+15¢%) = 0

3. (1)0)+ (0)sinx) + (0)(e) = 0

4. (1)(17) + (-17/2)(2 sin’) + (=17/3)(3 cos>) = 0, because sin’r + cos’x = 1.
5. (1)(17) + (=34)(cos’) + (17)(cos 2x) = 0, because 2 cos = 1 + cos 2.

6. (-1)(e") + (I)(cosh x) + (1)(sinh x) = 0, because coshx = (" +e™)/2 and
sinhx = (" - e™)/2.
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x
1 2x| = 2 isnonzero everywhere.
0

e
W = le* 2e** 3e¥*| = 2% isnever zero.
et 4e** 9¢¥

W = ¢*(cos’ +sin’x) = €= 0
W = x7e"(x + 1)(x + 4) is nonzero for x> 0.
W = x’¢” isnonzero if x # 0.

W = x72[2 cos’(In x) +2 sin’(Inx)] = 2x”% is nonzero for x> 0.

In each of Problems 13-20 we first form the general solution

YX) = eynilx) + eopa(x) + eays(x),

then calculate 3'(x) and »"(x), and finally impose the given initial conditions to determine the
values of the coefficients ¢1, ¢, c3.

13.

14.

15.
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Imposition of the initial conditions y(0) =1, y'(0)=2, »"(0) =0 on the general solution
¥(x) = ce* +c,e” +c,e”” yields the three equations

e +e,te =1, ¢-¢-2¢,=2, ¢ +c,+4c,=0

with solution ¢, =4/3, ¢, =0, ¢; =—1/3. Hence the desired particular solution is
given by y(x) = (4e" - e™)/3.

Imposition of the initial conditions y(0)=0, »'(0)=0, 3"(0) =3 on the general solution
¥(x) = e’ +c,e’ +ce’ yields the three equations

et +e;=1, ¢ +2c,+3c;=2, ¢ +4c,+9¢,=0

with solution ¢, =3/2, ¢, =—3, ¢; =3/2. Hence the desired particular solution is
given by y(x) = (3¢* - 6¢™ + 3¢%)/2.

Imposition of the initial conditions y(0)=2, 3'(0)=0, »"(0)=0 on the general

solution y(x) = ce* +c,xe* +cx’e’” yields the three equations

Chapter 2



16.

17.

18.

19.

20.

a=2, ¢+6=0, ¢+2¢c,+2,=0

with solution ¢, =2, ¢, =-2, ¢; =1. Hence the desired particular solution is given by
yx) = (2 - 2x+x)e".

Imposition of the initial conditions »(0)=1, y'(0)=4, y"(0)=0 on the general solution
Y(x) = " +c,e** +c;xe’” yields the three equations

ate, =1 c+2c+c;=4, ¢ +4c,+4c,=0

with solution ¢, =-12, ¢, =13, ¢, =—10. Hence the desired particular solution is
given by p(x) = -12e* + 13¢* - 10xe™.

Imposition of the initial conditions »(0)=3, y'(0)=-1, y"(0)=2 on the general
solution y(x) = ¢, +c¢,cos3x + ¢;sin3x yields the three equations

aq+c, =3, 3¢,=-1, -9c, =2

with solution ¢, =29/9, ¢, =-2/9, ¢; =—1/3. Hence the desired particular solution is
given by y(x) = (29 - 2 cos 3x - 3 sin 3x)/9.

Imposition of the initial conditions ¥(0)=1, y'(0)=0, y"(0)=0 on the general solution
¥(x) = € (¢, +¢,cosx+c;sinx) yields the three equations

a+e =1, ¢+e+e=0, ¢ +2¢,=0

with solution ¢, =2, ¢, =—1, ¢, =—1. Hence the desired particular solution is given
by ¥(x) = €2 - cos x - sin x).

Imposition of the initial conditions y()=6, y'1)=14, y"(1)=22 onthe general
solution y(x) = ¢x+c,x* + c,x’ yields the three equations

G+e+e;,=6, ¢ +2¢,+3¢,=14, 2c,+6¢c, =22

with solution ¢, =1, ¢, =2, ¢, =3. Hence the desired particular solution is given by
Yx) = x+2x% + 355,

Imposition of the initial conditions y(1) =1, Y'()=5, y"(1)=-11 on the general
solution y(x) = cx+c,x™ +c,x 7 Inx yields the three equations
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c+e, =1, ¢—-2¢c,+¢c;=5 6¢,-5¢,=-11

with solution ¢, =2, ¢, =—1, ¢, =1. Hence the desired particular solution is given by
y(x) = 2x - x 2+ x Inx.

In each of Problems 21-24 we first form the general solution

Wx) = Ye(x) +yp(X) = coix) + ca(x) + yp(x),

then calculate )/(x), and finally impose the given initial conditions to determine the values of
the coefficients ¢; and c;.

21.

22.

23.

24.

25.

26.

27.
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Imposition of the initial conditions y(0) =2, »'(0) =—2 on the general solution
y(x) = ¢ cosx+c,sinx +3x yields the two equations ¢, =2, ¢, +3=-2 with
solution ¢, =2, ¢, =-5. Hence the desired particular solution is given by

y(x) = 2cosx — 5sinx + 3x.

Imposition of the initial conditions y(0) =0, y'(0) =10 on the general solution

y(x) = c** +c,e”* =3 yields the two equations ¢, +¢, —3=0, 2¢, —2¢, =10 with
solution ¢, =4, ¢, =—1. Hence the desired particular solution is given by

Yx) = 4e¥ - e - 3.

Imposition of the initial conditions y(0)=3, »'(0) =11 on the general solution

y(x) = e +c,e’* —2 yields the two equations ¢, +¢,—2 =3, —¢,; +3¢c, =11 with
solution ¢, =1, ¢, =4. Hence the desired particular solution is given by

y(x) = e +4e> - 2.

Imposition of the initial conditions »(0)=4, y'(0)=8 on the general solution

y(x) = ce’cosx+c,e’ cosx +x+1 yields the two equations ¢, +1=4, ¢, +¢,+1=8
with solution ¢, =3, ¢, =4. Hence the desired particular solution is given by

y(x) = €(Bcosx+4sinx)+x+1.

Lyl = Lvitya] = Lyl +LDn] = f+g
@ y1=2andy =3x b y=yt+ty,=2+3%k
The equations

c1tex+ C3x2 = 0, ¢y +2¢3x +0, 2¢3 = 0
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32,

33.

(the latter two obtained by successive differentiation of the first one) evidently imply that
Cl = ¢ =¢c3 = 0.

If you differentiate the equation ¢, + CX+Cx +tex" = 0 repeatedly, » times in
succession, the result is the system

2 no__
Cotex+e,x" +-+cx" =0

o +2cx++nc,x"" =0

(n=Dlec, ,+nlcx =0

nlc, =0

of n+1 equations in the n+1 coefficients Cos €15 €35 =+, €, The last equation implies that

¢, =0, whereupon the preceding equation gives ¢, ; =0, and so forth. Thus it follows
that all of the coefficients must vanish.

If coe™+ cixe™ + - + c,x"e™ = 0, then division by €* yields
cotex+ o teox" =0,

so the result of Problem 28 applies.

When the equation x*)" - 2xy' +2y = 0 is rewritten in standard form
V' (=2/x) + Q) = 0,

the coefficient functions py(x) = -2/x and P2x) = 2/x* are not continuous at x = 0.
Thus the hypotheses of Theorem 3 are not satisfied.

(a) Substitution of x =a in the differential equation gives y"(a) = — py'(a)-q(a).

(b)  If (0) = 1 and y'(0) = 0, then the equation " - 2’ - 5y = 0 implies that
V'(0) = 2y/(0) +51(0) = 5.

Let the functions y, ys, -, ¥n be chosen as indicated. Then evaluation at
x = a ofthe (k- 1)st derivative of the equation crt et ey = 0 yields
¢k =0 Thus ¢; = ¢ = . = ¢, = 0, so the functions are linearly independent.

This follows from the fact that
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36.

37.
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1 1 1
a b c|=b-a)c-b)c-a).
a’ b

W1, fo, > fn) = Vexp(rx), and neither V nor exp(rix) vanishes.

If y=vy, then substitution of the derivatives

”

Y o= v +vy,, Y= vyl 2V +v"y,
in the differential equation y"+ py'+qy =0 gives

[vyy+2vy +v" |+ p[w + vy, |+ q[w] = 0,

v[¥[+ Dy + gy ] +v'y + 20y + pv'y, = 0.
But the terms within brackets vanish because y, is a solution, and this leaves the
equation
w2y +py)v = 0

that we can solve by writing

4

Y- —2&——]9 = Inv' = —2lny{—jp(x)dx+lnC,

’

N
) -[pxya
Vi(x) = %e Jroa Ly = | € _dc+K.
1 N
With C=1 and K =0 this gives the second solution
e—jp(x)dx
Y(x) = yl(x)J 3 dx.
34!

When we substitute y =vx’ in the given differential equation and simplify, we get the
separable equation xv"+v' =0 that we solve by writing

v_' — _l = Inv' = -Inx+In4,

A X

, A

v = = = v(x) = Alnx+B.
X

With 4=1 and B=0 we get v(x)=Inx and hence y,(x)=x"Inx.
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39.

40.

41.

42,

When we substitute y = vx® in the given differential equation and simplify, we get the
separable equation xv"+7v' =0 that we solve by writing

1,_ __7 = Inv' = —7Inx+In4,
v x

A A
v o= = — Wx) = ———4+ B,

With 4=-6 and B=0 we get v(x)=1/x° and hence y,(x)=1/x%

When we substitute y =ve*'? in the given differential equation and simplify, we
eventually get the simple equation v" =0 with general solution v(x) = Ax + B.

With 4=1 and B=0 we get v(x)=x and hence Yy (x)=xe*"2.

When we substitute y =vx in the given differential equation and simplify, we get the
separable equation v"—v' =0 that we solve by writing

— =1 = Inv' = x+In4,
vV = 4de’* = v(x) = de*+B.
With 4=1 and B=0 we get v(x)=e" and hence y,(x) = xe”.

When we substitute y =ve® in the given differential equation and simplify, we get the
separable equation (1+x)¥"+xv' =0 that we solve by writing

LA —1+L = Inv = —x+In(1+x)+In4,
p’ 1+x 1+x
Vo= A1+x)eT = v(x) = A [(1+x)eFde = — A2+ x)e + B,

With 4=-1 and B=0 we get v(x)=(2+x)e™™ and hence V,(x)=2+x.

When we substitute y =vx in the given differential equation and simplify, we get the
separable equation x (x* —1)v"=2v' that we solve by writing
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2 __2, 1t 1

v x(x*-1) x l+x 1-x’

Inv' = —2Inx+In(1+x)+In(1—x)+1n 4,
42

yo= A2 A(-IT1) ) =A(—l—xj+3.
x X x

With 4=-1 and B=0 weget v(x)=x+1/x and hence y,(x)=x"+1.

43. When we substitute y =vx in the given differential equation and simplify, we get the

separable equation x(x* —1)v" =(2—4x")v' that we solve by writing

o242 1,1
v’ x(x* =1) x l+x 1-x"
Inv' = =2Inx-In(1+x)-In(1-x)+1n 4,

, 4 i 1 1
V= g = A5 + ;
x(1-x%) x° 2(1+x) 2(1-x)

w(x) = A(—l+lln(1+ x)——l—ln(l —x))+ B.
x 2 2

With 4=-1 and B=0 we get

sy =t Lnaam+imi-x) =  y@) = 1=t
x 2 2 2

1-x

44.  When we substitute y =vx "?cosx in the given differential equation and simplify, we
eventually get the separable equation (cosx)v" =2(sinx)v' that we solve by writing

" 2sin
v_' e —2ln|cosx|+Ind = Insec’ x +1n 4,
v cosx

v = Asec’x = v(x) = Atanx+B.

With 4=1 and B=0 we get v(x) = tanx and hence

y,(x) = (tanx)(x"*cosx) = x*sinx.
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SECTION 2.3
HOMOGENEOUS EQUATIONS WITH CONSTANT COEFFICIENTS

This is a purely computational section devoted to the single most widely applicable type of
higher order differential equations — linear ones with constant coefficients. In Problems 1-20,
we write first the characteristic equation and its list of roots, then the corresponding general
solution of the given differential equation. Explanatory comments are included only when the
solution of the characteristic equation is not routine.

Lo 74 =(-2)(+2) = 0 r =22 y@)= o+ o™

2. 27 =3r = r(2r-3) = 0, r =0,3/2; Y(X)= ¢ + ¢

3 a0 = (r45)(r-2) = 0 r =52 y)= e o™
2T (r-)(-3) = 0 =123y e+ e
S A0 = (143 =00 r =303 y)= ce T opme™

6. Pases=0 r=(-5:45)02
¥(x) = e [ciexp(x/5 12) + crexp(-x~/5 /2)]

7. 4’ —12r+9 = (2r-3) = 0; r =-3/2,-3/2; y(x)= 1™ + coxe™?

8. r—6r+13 = 0, r =(6i\/:ﬁ)/2 = 3+2i;  y(x)= e3x(clcos 2x + ¢3sin 2x)

9. r48r425 =0 r =(-8x 36)/2 =—4%3i;  y(x)= ¢ (crc08 3+ cysin 3x)
10 543 = 42 (57+3) = 0; r =0,0, 0,-3/5  y(x) = c1+cox + 3 + e

11. rt =87 +16r2 = 52 (1’—4)2 =0, r=00,4,4 y(x)= ¢ +sz+C3€4x+C4_xe4x

12 rFH =343 -5 = r(r——l)3 =0, r=0LL1 yx)=¢ + 2" + c3xe” + cp’e”

13, 97 +127% +4r=r(3r+2) = 0; r =0,-2/3,-2/3

wx) = ¢+ cze‘ZX/ > cyxe 3
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15.

16.

17.

18.

19.

20.

21.

22.

23.
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43t -4 = (rz—l)(r2+4) =0, r=-11+2i

Y(x) = cie" + ce™ + c3c0s 2x + ¢45in 2x

4t —8r2 416 = (12 =4) = (r=2P(+2? = 0; r =2,2,-2,-2

(x) = ¢+ coxe™ + cseF + cxe

#1182 +81 = (;~2+9)2 0. ro=43i+3i

Y(x) = (c1 + cox)cos 3x + (¢35 + cax)sin 3x

6r* +1172 +4 = rr +DG3rP +4) = 0; r = +i/\2,£2i/43,
yx) = crcos(x/ 2 ) + ¢psin(x/ NG ) + ¢3cos(2x/ NE) ) + casin(2x/ NE) )

F 16 = (r2—4)(r2+4) =0, r=-22+2i

yx) = Cle2x + Cze'zx + ¢3¢08 2x + ¢481n 2%

) Y o (o A S g

y(x) = 1"+ e + csxe™

AP +32 4 +1 = (PHr+1P = 0; (—1iJ§i)/z, (—1iJ§i)/2

y = (e + exx)cos(x3 /2) + e (cs + cax)sin(x~/3 12)

Imposition of the initial conditions y(0)=7, »'(0)=11 on the general solution

y(x) = ¢’ +c,e’* yields the two equations ¢, +¢, =7, ¢ +3c, =11 with solution
¢, =5, ¢, =2. Hence the desired particular solution is y(x) = Se* + 2e*,

Imposition of the initial conditions y(0) =3, 3'(0) =4 on the general solution
y(x) = e I:c1 cos(x INE) ) +c, sin(x/ NE) )} yields the two equations
¢, =3, —¢/3+¢, /J3 =4 with solution ¢, =3, ¢, = 5+/3. Hence the desired particular

solutionis y(x) = e [3 cos (x /\/5) +53 sin(x/\/g)].

Imposition of the initial conditions y(0) =3, »'(0) =1 on the general solution

y(x) = € (c,cosdx +c,sin4x) yields the two equations ¢, =3, 3¢, +4c, =1 with
solution ¢, =3, ¢, =—2. Hence the desired particular solution is

(x) = (3 cos 4x — 2 sin 4x).
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24.

25.

26.

27.

28.

29.

30.

Imposition of the initial conditions ¥(0)=1, y'(0)=-1, y"(0)=3 on the general
solution y(x) = ¢, +c,e’ +c,e™? vyields the three equations

Gt te =1 2¢,-c,/2=-1, dc, +¢c,/4=3

with solution ¢, =-7/2, ¢, =1/2, ¢; =4. Hence the desired particular solution is
Yx) = (-7 + ™ +8e7)/2.

Imposition of the initial conditions ¥0)=-1, »'(0)=0, »"(0)=1 on the general
solution y(x) = ¢, +c,x+c,e™™” yields the three equations

Gte=-1 ¢ -2¢/3=0, 4¢,/9=1

with solution ¢, =-13/4, ¢, =3/2, ¢; =9/4. Hence the desired particular solution is
Yx) = (=13 + 6x+ 9¢72) /4,

Imposition of the initial conditions ¥(0)=1, y'(0)=-1, y"(0)=3 on the general
solution y(x) = ¢ +c,e™ +c,xe”™ yields the three equations

¢+c, =3, —5¢c,+c,=4, 25¢,-10¢, =5

with solution ¢, =24/5, ¢, =-9/5, ¢; =—=5. Hence the desired particular solution is
(x) = (24 - 9™ - 25x¢7)/5.

First we spot the root » = 1. Then long division of the polynomial #* + 37% —4
by r -1 yields the quadratic factor 72 +4r+4 = (r+2)* with roots
r = -2, -2. Hence the general solution is Yx) = 1€+ cre™ + cxe ™.

First we spot the root 7 = 2. Then long division of the polynomial 2/° - 72 - 55 - 2
by the factor » - 2 yields the quadratic factor 2% +3r+1 = (2r + 1)(r + 1) with roots
r = -1, -1/2. Hence the general solution is ¥(x) = cre™ + e + cze™?,

First we spot the root » = —3. Then long division of the polynomial 7*+27 by
r+ 3 vyields the quadratic factor 72 —37+9 with roots » = 3(1 +i3 )/ 2. Hence the

general solution is y(x) = ¢je™ + e [eycos(3x+/3 /2) + ¢3 sin(3x /3 /2)].

I

First we spot the root #» = ~1. Then long division of the polynomial

*-r+P-3r-6
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32.

33.

34.

3s.

36.
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by r+1 yields the cubic factor 7° - 22+ 37 - 6. Next we spot the root » = 2, and
another long division yields the quadratic factor 72 + 3 with roots » = +i~/3. Hence

the general solution is y(x) = cie™ + cpe®™ + c3c0s x/3 + cysin x V3.

The characteristic equation 7° + 37+ 47 - 8 = 0 has the evident root » = 1, and long
division then yields the quadratic factor 7* +4r + 8§ = (r+2)7°+4 corresponding to the
complex conjugate roots -2 + 2 i. Hence the general solution is

Yx) = c1€"+ e (crc08 2x + ¢3sin 2x).

The characteristic equation 7*+7° - 3/2-5.-2 = ¢ hasroot » = 2 that is readily
found by trial and error, and long division then yields the factorization

r-2r+17° = o.
Thus we obtain the general solution wx) = c1e” + (3 +e3x + C4x2)e'x.

Knowing that y = ¢** is one solution, we divide the characteristic polynomial
P +3r7 - 54 by 7 -3 and get the quadratic factor

PHer+18 = (r+3)>+09,
Hence the general solution is p(x) = ¢ + e'3x(cz cos 3x + c3sin 3x).

Knowing that y = ¢ is one solution, we divide the characteristic polynomial
g Y poly.

37 -2 +12r - 8 by 3r -2 and get the quadratic factor 72+ 4. Hence the general
solution is
wx) = c1e”” + €2€08 2x + ¢35in 2x.

The fact that y = cos 2x is one solution tells us that 7 + 4 is a factor of the
characteristic polynomial

6r + 51° +25/2 + 207 + 4,

Then long division yields the quadratic factor 67° +5r+1 = (Br+1)(2r +1) with roots
r=-1/2,-1/3. Hence the general solution is

Yx) = c1e™? + 6™ + 5008 2x + c4sin 2x

The fact that y = e¢™sinx is one solution tells us that r+1P+1 =rP+2r+2
is a factor of the characteristic polynomial

93 + 1172+ 4r - 14.
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38.

39.

40.

41.

42.

44.

Then long division yields the linear factor 97 — 7. Hence the general solution is

Tx/9

y(x) = cie™ +e™(cac0s x + c3sin x).

The characteristic equation is 7 - =rr-1)=0 , so the general solution is

y(x) = A+Bx+Cx’ +De”, Imposition of the given initial conditions yields the
equations

A+D =18, B+D =12, 2C+D =13, D=7
with solution 4=11, B=5, C=3, D=7. Hence the desired particular solution is
y(x) = 11+5x+3x* +7¢* .
Given that » =5 is one characteristic root, we divide (r—5) into the characteristic

polynomial #* —5r*+100r —500 and get the remaining factor 7*+100. Thus the
general solution is

y(x) = A&’ + Bcos10x +Csinl0x
Imposition of the given initial conditions yields the equations
A+B =0, 54+10C =10, 254-100B = 250

with solution A=2, B=-2, C=0. Hence the desired particular solution is
y(x) = 2¢”* —2cos10x .

(r-2) = r—6r>+12r-38, so the differential equation is
y"'-6y"+12y' -8y = 0,
(r=2)(7* +4) = r’ —=2r* +4r -8, so the differential equation is
Y -2y +4y 8y = 0.
(r* +4)(r* —4) = r* —16, so the differential equationis y® -16y = 0.
(7 +4)* = r*+127" +48r* + 64, so the differential equation is
YO +12y® +48y"+64y = 0.

(a) x = i,-2i (b) x = -i,3i
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46.

47.

48.

49.

50.
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The characteristic polynomial is the quadratic polynomial of Problem 44(b). Hence the
general solution is

¥(x) = ce ™ +c,e®™ = ¢(cosx—isinx)+c,(cos3x +isin3x).

The characteristic polynomial is 7> —ir+6 = (r+2i)(r —3i) so the general solution is

y(x) = ¢ +ce”™ = ¢(cos3x +isin3x)+c,(cos2x —isin2x).

The characteristic roots are r = -2+ 21\/5 =+(1+ i\/§ so the general solution is
g
y(x) = e Lo e ™T 2 ¢ (cos 3x+ isin\/gx) +c,e” (cos 3x—isin+/3 x)

The general solution is y(x) = Ae* + Be™ + Cé®™ where a = (-1 + i\3)/2 and
p=(1- i3 )/2. Imposition of the given initial conditions yields the equations

A+ B+ C =1
A+aB+ BC =0
A+o’B+pC =0

that we solve for 4 = B = C = 1/3. Thus the desired particular solution is given
by y(x) = %(e" T 2), which (using Euler's relation) reduces to the

given real-valued solution.

The general solutionis y = Ae* + Be™ + C cos x + D sin x. Imposition of the given
initial conditions yields the equations

A+ B+C =
24-B +D =0
44+B-C =0

84-B —-D = 30
that we solvefor 4 = 2, B = -5, C = 3, and D = -9. Thus

P(x) = 2e* - 5¢*+3 cosx - 9 sinx.

If x>0 then the differential equationis "+ y =0 with general solution
y=Acosx+ Bsinx. Butif x<0 itis »"—y =0 with general solution
y =C coshx + Dsinx. To satisfy the initial conditions y,(0)=1, y;(0)=0 we choose
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A=C=1 and B=D=0. Butto satisfy the initial conditions »,0)=0, y,(0)=1 we
choose 4=C=0 and B=D=1. The corresponding solutions are defined by

@ cosx if x>0, @ sinx if x>0,
X) = xX) =
N cosh x if x<0; 72 sinh x if x<0.
51. In the solution of Problem 51 in Section 2.1 we showed that the substitution v =Inx
gives
, dy 1d , o dy 1 dy 1 d%
= - = =~ and = —= ——.2 4 .77
Y dx xdv Y dx? v x* @

A further differentiation using the chain rule gives

y,”_f_y__z dy 3 d’y 1 d

Substitution of these expressions for Y, ¥", and »" into the third-order Euler equation
ax’y” +bx*y" + cx Y'+d y =0and collection of coefficients quickly yields the desired
constant-coefficient equation

3

dy
aﬁ+(b—3a)

2
fivf+(c—b+2a)%+dy = 0.

In Problems 52 through 58 we list first the transformed constant-coefficient equation, then its

characteristic equation and roots, and finally the corresponding general solution with v = In x
and e’ =x.

2
52. %+9y=0; PP +9=0; r=13i
v

Y(x) = ¢ cos(3v)+c,sin(3v) = ¢,cos(31Inx) + ¢, sin(31n x)

d’y  _dy

53. 5 F6—=+25y = 0; r’+6r+25=0; r=-3+4;
dv dav
¥(x) = e7"[c cos(4v) + ¢, sin(4v)] = x73 [c; cos(4Inx) + ¢, sin(41n x)]
d? d* '
54. 24322 — 0, Pa3i=0; r=0, 0,-3
dv dv
Y(x) = qtey+ee™ =g +e,lnx+ex”
3 2
55, ﬂ_4d y+4£¥ = 0; r3—4r2+4r=0; r=0, 2,2

v’ av’ dv
Y(X) = ¢ +ge” +ewe” = ¢ +x7(c, +c Inx)

Section 2.3 111



d’y

56. T =0, r=0 r=0,0,0
v
¥(x) = ¢+ey+ey’ = ¢ +c,Inx+c,(Inx)’
3 2
s7. 9Y 5dY 5D _ o 5 a2 iar=0, r=0,3+\3
dv v dv
y(x) = ¢+, 4o = c1+x3(c2x_‘/§+03x+*/§)
3 2
58. d{+3fl—%}—+3d_y+y = O; r3+3r2+3r+1=0; r=_1’_1’_1
dv v dv
y(x) = ce” +epe” +eye” = x7 |:cl+c2 lnx+c3(lnx)2:]
SECTION 2.4

Mechanical Vibrations

In this section we discuss four types of free motion of a mass on a spring — undamped,
underdamped, critically damped, and overdamped. However, the undamped and underdamped
cases — in which actual oscillations occur — are emphasized because they are both the most
interesting and the most important cases for applications.

1.

112

Frequency: w, =vk/m =+16/4 =2 rad/sec=1/7 Hz
Period: P=2n/w,=27/2= 7 sec

Frequency @, =~k/m =+/48/0.75=8 rad/sec=4/7 Hz
Period: P=27n/w,=2n/8= n/4 sec

The spring constantis £ = 15N/0.20m = 75 N/m. The solution of 3x" + 75x = 0
with x(0) = 0 and x’(0) = -10 is x(f) = -2 sin 5t. Thus the amplitude is 2 m; the
frequency is @, =vk/m =~75/3 =5 rad/sec =2.5/7 Hz; and the period is 27/5 sec.

(a) With m = 1/4kg and £ = (9 N)/(0.25 m) = 36 N/m we find that @y = 12
rad/sec. The solution of x" + 144x = 0 with x(0) = 1 and x'(0) = -5 is

x(®) = cos 12t - (5/12)sin 12¢
= (13/12)[(12/13)cos 12t - (5/13)sin 12f]
x(®) = (13/12)cos(12¢ - @)
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10.

where « = 27 - tan"'(5/12) ~ 5.8884.

(b) C = 13/12 = 1.0833m and T = 24/12 ~ 0.5236 sec.

The gravitational acceleration at distance R from the center of the earthis g = GM/ R
According to Equation (6) in the text the (circular) frequency @ of a pendulum is given

by o = g/L = GM/RL, soits periodis p = 27w = 27RL/GM.

If the pendulum in the clock executes # cycles per day (86400 sec) at Paris, then its
period is p; = 86400/n sec. At the equatorial location it takes 24 hr 2 min 40 sec =
86560 sec for the same number of cycles, so its period there is p, = 86560/n sec. Now
let Ry = 3956 mi be the Earth’s "radius" at Paris, and R, its "radius" at the equator.
Then substitution in the equation pi1/p>» = Ri/R, of Problem 5 (with L; = L) yields
R, = 3963.33 mi. Thus this (rather simplistic) calculation gives 7.33 mi as the thickness
of the Earth's equatorial bulge.

The period equation p = 3960~/100.10 = (3960 + x)v100 yields x ~ 1.9795 mi ~
10,450 ft for the altitude of the mountain.

Let #n be the number of cycles required for a correct clock with unknown pendulum
length L, and period p, to register 24 hrs = 86400 sec, so np, =86400. The given

clock with length L, = 30 in and period p, loses 10 min = 600 sec per day, so
np, =87000. Then the formula of Problem 5 yields

L _p _np 86400
L, p, nmp, 87000

so L, =(30)(86400/87000)* ~29.59 in.

The F = ma equation p7zr2hx" = pnrzhg - m’xg simplifies to
X"+ (g/ph)x = g.

The solution of this equation with x(0) = x'(0) = 0 is
x(t) = ph(1l - cos wt)

where @y = +/g/ph. With the given numerical values of p, &, and g, the amplitude of
oscillationis pk = 100 cm and the periodis p = 27./ph/g = 2.01 sec.
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14.
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The fact that the buoy weighs 100 Ib means that mg = 100 so m = 100/32 slugs.
The weight of water is 62.4 Ib/ft’, sothe F = ma equation of Problem 10 is

(100/32)x" = 100 - 62.4 .
It follows that the buoy's circular frequency o is given by
@ = (32)(62.4m)r*/100.

But the fact that the buoy’s period is p = 2.5 sec means that o = 27/2.5. Equating
these two results yields » ~ 0.3173 ft ~ 3.8 in.

(a) Substitution of M, = (*/R’M in F, = ~-GM,m/¥* yields
F, = ~(GMm/R%r.

(b) Because GM/R® = g/R, the equation mr"= F, yields the differential equation
r'"+(g/Ry = 0.

(c) The solution of this equation with #(0) = R and r'(0) = 0 is #(®) = Rcos apt
where @y = /g/R. Hence, with g = 32.2 ft/sec’® and R = (3960)(5280) ft, we find
that the period of the particle’s simple harmonic motion is

P =2mmy = 27\R/g =~ 5063.10 sec ~ 84.38 min.

(a) The characteristic equation 107 + 97 +2 = (57 +2)(2r +1)=0 has roots
r=-2/35,~1/2. When we impose the initial conditions x(0)=0, x'(0)=5 onthe
general solution x(1) = ¢,e™” +c,e™? we get the particular solution

x(t) — So(e—2t/5 _e—t/Z).

(b)  The derivative x'(f) = 25¢™/2 —20e2"5 = 5e‘2”5(5e"“°—4) =0
when ¢ = 101n(5/4) ~ 2.23144 . Hence the mass's farthest distance to the right
is given by x(10In(5/4)) = 512/125 = 4.096.

(@  The characteristic equation 25¢” +107 +226 = (57 +1)> +15 =0 has roots
r = (=1£15i)/5 = ~1/5+3i. When we impose the initial conditions

x(0) =20, x'(0)=41 on the general solution x(f) = e (A cos3t+ Bsin 3t) we
get 4 =20, B=15. The corresponding particular solution is given by
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16.

x(1) = ¢"*(20cos3t+15sin3r) = 25¢"° cos(3t— &) where
o = tan"1(3/4) ~ 0.6435,

(b)  Thus the oscillations are "bounded" by the curves x = +25¢7° and

the pseudoperiod of oscillationis 7 = 27/3 (because @ =3).

With damping The characteristic equation (1/2)7* +3r+4 =0 hasroots r=-2,—4.
When we impose the initial conditions x(0)=2, x'(0) =0 on the general solution

' we get the particular solution x(f) = 4e% - 2¢* that describes

x()=ce +cye
overdamped motion.

Without damping The characteristic equation (1/2)7? +4 =0 has roots » =+ 2i/2.
When we impose the initial conditions x(0) =2, x'(0)=0 on the general solution
u(t) = Alcos(2«/_2_ Hn+~B sin(2x/2— t) we get the particular solution u(¢) = 2cos(2\[,7: 1.

The graphs of x(#) and u(f) are shown in the following figure.

With damping The characteristic equation 37* +307+63 =0 hasroots r=-3,—7.
When we impose the initial conditions x(0) =2, x'(0) =2 on the general solution
x(t)=ce™ +c,e”’" we get the particular solution x(7) = 4e™> - 2¢” that describes
overdamped motion.

Without damping The characteristic equation 37° + 63 =0 has roots 7 = +i/21.
When we impose the initial conditions x(0) =2, x'(0) =2 on the general solution

u(t) = Acos(\/ﬁ H+B sin(\/ﬁ t) we get the particular solution

2 . 22
u(t) = 2cos(+21£) + Esm(«/é_l £~ 2\/; cos(~/21£-0.2149).

The graphs of x(¢) and u(f) are shown in the figure at the top of the next page.
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With damping The characteristic equation 72 +87+16 =0 has roots r=-4,—-4,
When we impose the initial conditions x(0)=35, x'(0)=-10 on the general solution

x(t) = (¢, + c;t)e™ we get the particular solution x(f) = 5¢™(2¢ +1) that describes
critically damped motion.

Without damping The characteristic equation 72 +16 =0 has roots » = + 4i. When
we impose the initial conditions x(0) =5, x'(0) =—10 on the general solution
u(t) = Acos(4t) + Bsin(4¢) we get the particular solution

u(t) =5cos(41)+ gsin(4t) ~ —;—\/gcos(4t —5.8195).

The graphs of x(¢) and u(¢) are shown in the following figure.
5
X
5 t
u

With damping The characteristic equation 2r? +127+50 = 0 has roots 7 = — 3 +4i.
When we impose the initial conditions x(0) =0, x'(0) = -8 on the general solution

x(f) =e™ (Acos4r + Bsin4t) we get the particular solution

x(f)=-2esin4t = 2¢™ cos(4t—37/2) that describes underdamped motion.
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Without damping The characteristic equation 2r* +50 =0 has roots 7 = +5i. When
we impose the initial conditions x(0) =0, x'(0)=—-8 on the general solution
u(t) = Acos(5t) + Bsin(5¢) we get the particular solution
8 . 8 3z
u(t)=——sin(5t) =—cos| 5t ——|.
(0 3 (51 3 ( 2 j

The graphs of x(¢) and u(¢) are shown in the following figure.

/ .

19.  The characteristic equation 47* +20r+169 =0 has roots 7 =—5/2+6;. When we
impose the initial conditions x(0) =4, x'(0) =16 on the general solution

x(t) = ™" (Acos6t + Bsin6t) we get the particular solution

x(®) = e"*[4 cos 6t + %gsm 6t] ~ —\/313 e™'"? cos(61 - 0.8254)

that describes underdamped motion.

Without damping The characteristic equation 47? +169 = 0 has roots » =+13i/2.
When we impose the initial conditions x(0) =4, x'(0) =16 on the general solution
u(t) = Acos(13t/2) + Bsin(137/2) we get the particular solution

) = 4cos 13t +3231n 13’ ~ 2 233 cos Er 05517).
X
-4 u
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21.
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With damping The characteristic equation 27> +167 +40 =0 has roots »=—4+72i.
When we impose the initial conditions x(0) =5, x'(0)=4 on the general solution

x(t) = e (Acos2t + Bsin2t) we get the particular solution
x(f) = e ¥(5 cos 2t + 12 sin 2¢) ~ 13 e ¥cos(2t - 1.1760)

that describes underdamped motion.
Without damping The characteristic equation 2r* +40 =0 has roots 7 = +2+/57.
When we impose the initial conditions x(0)=5, x'(0) =4 on the general solution

u(t)=4 cos(2\/§ H+B sin(2\/_5_ 1) we get the particular solution

u(t) = 5cos(2\/§t)+%sin(2\/§t) ~ \/1?005(2\/31‘—0.1770).

The graphs of x(¢) and u(f) are shown in the following figure.

With damping The characteristic equation r* +107+125=0 has roots r =—5+10i.
When we impose the initial conditions x(0) =6, x'(0) =50 on the general solution
x(t) = e (Acos10z + Bsin10t) we get the particular solution

x(f) = (6 cos 10t + 8 sin 107) ~ 10 e">cos(10¢ - 0.9273)

that describes underdamped motion.
Without damping The characteristic equation 7> +125=0 has roots » =+ 5/51.
When we impose the initial conditions x(0)=6, x'(0) =50 on the general solution

u(t) = Acos(S\/g H+B sin(S\/g t)we get the particular solution
u(t) = 6cos(5J§ t)+25 sin(sJE t) ~ 2J14 cos(5J§ t— 0.6405) .

The graphs of x(¢) and () are shown in the figure at the top of the next page.
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22.

23.

30.

23]

— . t
X
-5 u
(a) With m = 12/32 = 3/8slug, ¢ = 3 Ib-sec/ft, and k = 24 Ib/ft, the differential
equation is equivalent to 3x” +24x’ + 192x = 0. The characteristic equation

3r’ +24r +192 =0 hasroots r=—4+4+/3i. When we impose the initial conditions
x(0)=1, x'(0)=0 on the general solution x(r)=e™* (A cos4r/3 + Bsin 403 ) we get
the particular solution

x(1) = e ¥[cos 413 +(1//3)sin 413 ]
= (2/\3)e™[(V3 /2)cos 43 + (1/2)sin 41 +/3 ]
x(f) = (2/\3)e M eos(4t 3 -7 /6).

(b) The time-varying amplitude is 2/+/3 ~ 1.15 ft; the frequency is 4+/3 ~ 6.93
rad/sec; and the phase angleis 7/6.

(a) With m = 100 slugs we get @ = k/100. But we are given that
@ = (80 cycles/min)(27)(1 min/60 sec) = 8/3,
and equating the two values yields & ~ 7018 Ib/ft.

(b) With @ = 22(78/60) sec™”, Equation (21) in the text yields ¢ ~ 372.31
Ib/(ft/sec). Hence p = ¢/2m ~ 1.8615. Finally e® = 0.01 gives t ~ 2.47 sec.

In the underdamped case we have

x(f) = e'[4 cos wyt + B sin ant],

x'(f) = -pe”’[4 cos ant + B sin ant] + e P'[~Aonsin iyt + Bocos af].

The conditions x(0) = xo, x'(0) = v, yield the equations 4 = x, and
—pA+ By = vy, whence B = (vy+ pxo)/ on.
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32.

33.

34.
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The binomial series

(,Z(Ol—l)xz+a(a_l)(a_z)x3+...
2!

(1+x)a = l+ax+ 3

converges if lxl <1. (See, for instance, Section 10.8 of Edwards and Penney, Calculus:
Early Transcendentals, 7th edition, Prentice Hall, 2008.) With o=1/2 and
x =—c*/4mk in Eq. (21) of Section 2.4 in this text, the binomial series gives

fk c? /k / c*
W = 1/(02— 2 - |2 = |— ., /1-
! 0P m  4m? m Amk
k c? ¢ c?
= - e 1-C )
m 8mk  128m’k Smk

If x(1) = Ce*cos(ant - @) then

xX(5) = -pCe™'cos(ant - &) + Cane 'sin(ans - a) =0
vields tan(wit - @) = -p/wy.
If x1 = x(t;) and x; = x(t,) are two successive local maxima, then wt, = oty + 27

so
x1 = Cexp(-pty) cos(mty - a),

X2 = Cexp(-ph) cos(mty - @) = C exp(-pk) cos(mt; - o).

Hence x1/x; = exp[-p(t; - #,)], and therefore

In(x1/x%2) = -p(t - ) = 2/ ;.
With #; = 0.34 and #, = 1.17 we first use the equation wit, = ity + 27 from
Problem 32 to calculate @ = 27/(0.83) ~ 7.57 rad/sec. Next, with X1 = 6.73 and
X2 = 1.46, the result of Problem 33 yields

p = (1/0.83) In(6.73/1.46) ~ 1.84.
Then Equation (16) in this section gives

¢ = 2mp = 2(100/32)(1.84) ~ 11.51 Ib-sec/ft,

and finally Equation (21) yields

k= (4m’an* + A /dm ~ 189.68 Ib/tt.
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36.

37.

38.

The characteristic equation 7> +2r+1=0 hasroots r=—1,—1. When we impose the
initial conditions x(0) =0, x'(1)=0 on the general solution x(f) = (c1 + czt)e" we get

the particular solution x,(r) = te™.

The characteristic equation #* +2r+(1-102")=0 hasroots r=—1+10". When we
impose the initial conditions x(0) =0, x'(1) =0 on the general solution

(1) = ¢ exp[(-1+10“")f]+c2 exp[(—l—lO‘")t:l
we get the equations

G+e =0, (-1+107)¢ +(-1-10")c, = 1

with solution ¢, =2""'5", ¢, =2"'5". This gives the particular solution
1 2 p

exp(107"f) —exp(~107"r)
2

x,(t) = 10”e—’( ] = 10"e™ sinh(107"¢).

The characteristic equation 7* +2r +(1+102") =0 hasroots r=-1+10"i. When we
impose the initial conditions x(0) =0, x'(1) =0 on the general solution

x(t) = ¢ [A cos (1 0~ t) + Bsin(lO'”t)}
we get the equations ¢, = 0, —¢ +107"c, = 1 withsolution ¢, =0, ¢, =10". This

gives the particular solution x,(¢) = 10"¢™ sin(107"¢).

sinh(10™0) _

lim x,(¢) = lim10"e™ sinh(107™"¢) = te™ -lim = and
sin(107"¢)

lim x,(¢) = lim10"e”"sin(107"¢) = te™*-lim te”,

nso 107"t
using the fact that Lirr(} (sin@)/0 = Ling (sinh@)/8 = 0 (by L'Hopital's rule, for

instance).
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SECTION 2.5

NONHOMOGENEOUS EQUATIONS AND
THE METHOD OF UNDETERMINED COEFFICIENTS

The method of undetermined coefficients is based on "educated guessing". If we can guess
correctly the form of a particular solution of a nonhomogeneous linear equation with constant
coefficients, then we can determine the particular solution explicitly by substitution in the given
differential equation. It is pointed out at the end of Section 2.5 that this simple approach is not
always successful — in which case the method of variation of parameters is available if a
complementary function is known. However, undetermined coefficients does turn out to work
well with a surprisingly large number of the nonhomogeneous linear differential equations that
arise in elementary scientific applications.

In each of Problems 1-20 we give first the form of the trial solution Vuial, then the equations in
the coefficients we get when we substitute Vuia into the differential equation and collect like
terms, and finally the resulting particular solution y,.

1. Vo = A€ 254 =1, y, = (1/25)*

2. Via = A+Bx; —-24-B=4, -2B=3; y, = -(5+6x)/4

3. Vu = Acos3x+Bsin3x; -154-3B=0, 34-15B=2;
Yp = (cos 3x — 5 sin 3x)/39

4. Yo = Ae"+Bxe*; 94+12B=0, 9B=3; y, = (-4e" + 3xe")/9

5. First we substitute sin’c = (1 - cos 2x)/2 on the right-hand side of the differential
equation. Then: '

Vaia = A+ Bcos2x +Csin2x; A=1/2, -3B+2C=-1/2, —=2B-3C =0;
Yp = (13 +3 cos 2x - 2 sin 2x)/26

6. Veia = A+Bx+Cx*  TA+4B+4C =0, 7TB+8C=0, 7C=1;
Yo = (4 - 56x +49x%)/343

7. First we substitute sinhx = (¢* - ¢™)/2 on the right-hand side of the differential
equation. Then:

Vo = A€+ Be™™; -34=1/2, -3B=-1/2; y, = (¢ -¢€")/6 = —(1/3)sinh x
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10.

11.

12.

13.

14.

15.

16.

First we note that cosh 2x is part of the complementary function
Y. = ¢, cosh2x+c,sinh2x. Then:

Veia = x(Acosh2x+Bsinh2x); 44=0, 4B=1; y, = (1/4)x sinh 2x

First we note that ¢* is part of the complementary function Yo = c1€* + cre”>*. Then:
Vg = A+x(B+Cx)e*; -34=1, 4B+2C=0, 8C = 1

¥ = —(1/3) + 2x* - )e*/16.

First we note the duplication with the complementary function Y, = ¢,c083x +c,sin3x.

Then:

Y = %(Acos3x+Bsin3x); 6B=2, —64=3; Yp = (2x sin 3x - 3x cos 3x)/6

First we note the duplication with the complementary function

Y. =¢ +c¢,c082x +c,sin2x. Then:

Yo = X(A+Bx); 44=-18B=3; y, = (3 -20/8

First we note the duplication with the complementary function
Y. =¢ +c,cosx+c;sinx. Then:

Viial = Ax+x(Bcosx+Csinx); A=2, -2B=0, -2C=-1;
Yp = 2x+(1/2)x sinx

Vit = € (Acosx+Bsinx); TA+4B=0, -44+7B=1;
Y = €(7sinx - 4 cos x)/65
First we note the duplication with the complementary function

Yo =(¢ +ex)e™ +(c; +¢,x)e”. Then:

Yo = X' (4+Bx)e*; 84+24B=0, 24B=1, y, = (=37 +x°¢") /24

This is something of a trick problem. We cannot solve the characteristic equation

r’ +5r* ~1=0 to find the complementary function, but we can see that it contains no
constant term (why?). Hence the trial solution Yeim = A leads immediately to the
particular solution y, = -17.

Veial = .A+(B+Cx+Dx2)e3";
94=5, 18B+6C+2D=0, 18C+12D =0, 18D =2;

2
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17.

18.

19.

20.

Yo = @5+ &7 - 6xe® + 9x%e™)/81

First we note the duplication with the complementary function Y, =€, CoSXx+c,sinx.
Then:

Vi = %[(4+ Bx)cosx +(C+ Dx)sinx];

2B+2C=0, 4D=1,-24+2D=1,-4B=0;
Yp = (xzsinx—xcosx)/4

First we note the duplication with the complementary function

Y, =g +c,e" +ee +ce’. Then:

Vil = x(de”) +x(B+ Cx) ¢®; —6A4=1, 12B+38C =0, 24C = —1;
p = —(24xe* - 19xe™ + 6x%e™)/144

First we note the duplication with the part ¢, +¢,x of the complementary function
(which corresponds to the factor #* of the characteristic polynomial). Then:

Vel = x4 + Bx + Cx?); 44+12B=-1, 12B+48C =0, 24C = 3;
¥p = (10x* - 4 +x%)/8

First we note that the characteristic polynomial 7* —7 has the zero =1 corresponding
to the duplicating part e of the complementary function. Then: '

Vo = A+x(Be*); —4=7,3B=1; 3, = -7+ (13"

In Problems 21-30 we list first the complementary function y,, then the initially proposed trial
function y;, and finally the actual trial function y, in which duplication with the
complementary function has been eliminated.

21.

22.

23.

124

Y. = € (¢ cosx+c,sinx);

y; = " (Acosx+ Bsinx)

¥, = x-e*(Acosx+ Bsinx)

Ye
v, = (A+Bx+Cx2)+(Dex)
Y, = x3-(A+Bx+Cx2)+x-(De")

2 x -x\,
(cl+czx+c3x )+(c4e )+(cse ),

V. = ¢, Cosx+c,sinx;
¥y, = (A+Bx)cos2x +(C + Dx)sin2x
¥, = x-[(4+Bx)cos2x +(C + Dx)sin2x]
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2.y, = ¢+ +ee’
¥, = (A+Bx)+(C+Dx)e™
Y, = x-(A+Bx)+x-(C+Dx)e™

25. y, = qet +ce™
¥ = (A+Bx)e™ +(C + Dx)e™™
Y, = x-(A+Bx)e™ +x-(C+ Dx)e™*

26.  y, = (¢ cos2x+c,sin2x);
¥ = (4+Bx)e* cos2x + (C + Dx)e** sin2x
Yp = %[ (4+ Bx)e* cos2x +(C + Dx)e** sin 2x]

27. y, = (c1 cosx+c, sinx)+(c3 cos2x+c, sin2x)
¥ = (4cosx+ Bsinx)-+(Ccos2x + Dsin2x)
y, = x-[(Acosx+Bsinx)+(Ccost+Dsin2x)]

28.  y, = (¢ +6x)+(c;c083x +c,sin3x)
Y, = (A+Bx+Cx2)cos3x+(D+Ex+Fx2)sin3x
Y, = x-[(A+Bx+Cx2)0033x+(D+Ex+Fx2)sin3x:|

2. y = (c1 +¢,x + ¢ x ) e +c, " +ce ™

¥, = (4+Bx)e* +Ce™* + De™
Y, = x3-(A+Bx)e"+x-(Ce2")+x-(De"2")

30.  y, = (qtex)e” +(ctex)e”

=1y, =(A+Bx+sz)cosx+(D+Ex+Fx2)sinx

In Problems 31-40 we list first the complementary function y,, the trial solution yue for the
method of undetermined coefficients, and the corresponding general solution y, =y, +y, where
Yp results from determining the coefficients in y, so as to satisfy the given nonhomogeneous
differential equation. Then we list the linear equations obtained by imposing the given initial
conditions, and finally the resulting particular solution y(x).

31. Ve

€, €0S2x +c, sin2x; Vo = A+ Bx

Yy = € C082x+c,sin2x+x/2
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¢ =1 2¢,+1/2 =2
Y(x) = cos2x+(3/4)sin2x+x/2

32. y, = e +ce™ Ve = de

Ve = e +e,e e /6
¢ +e,+1/6 = 0, —¢ —2¢,+1/6 = 3
y(x) = (15e""—16e'2"+e")/6

33. Y, = ¢cos3x+c,sin3x; y, = Acos2x+ Bsin2x
Y, = ¢ c083x+c,sin3x+(1/5)sin2x
6 =1 3¢,+2/5=0
y(x) = (15c0s3x —2sin3x +3sin2x)/15
34.  y, = qeosx+esinxg  y, = x-(4cosx+ Bsinx)
Y, = ¢ Cosx+c,sinx+Lxsinx
=1 ¢ =-1 y(x) = cosx—sinx+Lxsinx
35. y, = e"(¢eosx+c,sinx);  y, = A+Bx
¥, = € (¢ cosx+c,sinx)+1+x/2
+1=3, ¢+c,+1/2 =0
y(x) = e*(4cosx—5sinx)/2+1+x/2
36. y, = ctoxtee e’ oy, = xz-(A+Bx+Cx2)
Y, = ¢ toxtee ™+, —x2/16—x"/48
ateste, =1 ¢ —-2¢,+2¢c, =1, 4¢;+4c,—1/8=-1, —8¢,+8¢c, =1

y(x) = (234+240x - 9e™ - 33¢? ~12x ~ 4x") /192

37. Yo = ¢ tce’+exe; oy, = x-(A)+x2-(B+Cx)ex

Ve = ¢ +ce" texe +x—xet 2+ x%e* /6
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38.

39.

40.

41.

at+e =0, g+ta+l =0, ¢,+2¢,-1 =1

y(x) = 4+x+e"(—24+18x—3x2+x3)/6

Yy, = e’ (c1 Cosx +c, sinx); Yo = Acos3x+ Bsin3x
Ve = €7 (¢ cosx+c, sinx)~(6cos3x +7sin3x)/85
¢ —6/185 =2, —¢ +c¢,-21/85 =0

y(x) = [e~ (176¢c0sx+197sin x) - (6¢os3x + 7sin3x) /85

Ve = qHex+ee™; oy, = xz-(A+Bx)+x-(Ce“")
Yo = q+ex+ce” —x2/24+x° /6+xe "
agte; =1 ¢-c+1=0, ¢,-3 =1

¥(x) = (~18+18x~3x> +x*)/6+(4+x)e”

—_ -X x 1 . —_
Y. = ¢e " +ce +ecosx+e,siny; y, = A
x x .
Yg = e +ce +ccosx+¢,sinx -5
G+6+e;=5=0, —¢ +c,+¢,=0, ¢, +c,—¢, = 0, ~¢+e,—-¢c, =0

y(x) = (Se"‘ +5e* +10cosx—20)/4

The trial solution y, = A+ Bx+Cx*+ Dx’ + Ex* + Fx® leads to the equations

24-B-2C—-6D+24E = 0
—2B-2C-6D-24E+120F = 0
—2C-3D-12E-60F = 0
—2D—-4E-20F = 0

—2E-5F =0

—2F =8

that are readily solved by back-substitution. The resulting particular solution is

Mx) = =255 - 450x + 30x% + 20x° + 10x* - 4x°.
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42.

43.

44.

45.

128

The characteristic equation #* -7’ —r*~r—2 = 0 hasroots r=-1,2,+i so the

complementary functionis y, = ce™ +c,e’* +c,c08x +¢, sinx. We find that the
coefficients satisfy the equations

¢ +e,+c,—255 =0
—¢,+2¢,+¢,—450 = 0
¢, +4c,—c;+60 = 0
—c,+8c,—¢c,+120 = 0

Solution of this system gives finally the particular solution y =y +y, where y, is the
particular solution of Problem 41 and

y, = 10e™™ +35¢° +210cosx +390sin x.

(a)  cos3x+isin3x = (cosx+isinx)’
= cos’ x +3icos® xsinx —3cosxsin® x —isin’ x
When we equate real parts we get the equation

cos’ x —3(cosx)(1 —cos? x) = 4cos’ x—3cosx

and readily solve for cos®x = 3cosx+ZXcos3x. The formula for sin’x is derived
similarly by equating imaginary parts in the first equation above.

(b)  Upon substituting the trial solution y, = Acosx + Bsinx+Ccos3x + Dsin3x

in the differential equation y"+4y = 2cosx+4cos3x, we find that 4 =1/4, B=0,
C =-1/20, D= 0. The resulting general solution is

¥(x) = cyco0s 2x + ¢psin 2x + (1/4)cos x — (1/20)cos 3x.

We use the identity sinxsin3x = lcos2x—4cos4x, and hence substitute the trial
solution y, = Acos2x+ Bsin2x +Ccos4x + Dsin4x in the differential equation

y"+y +y = Lcos2x—Lcosdx. We find that 4 =-3/26, B=1/13, C = 15/482,
D =2/241. The resulting general solution is

y(x) = e (c; cos x[3/2 + casinx~/3 /2)
+ (=3 cos 2x + 2 sin 2x)/26 + (15 cos 4x + 4 sin 4x)/482.

We substitute

sin'x = (1 - cos 2x)*/4
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= (1 - 2 cos 2x + cos’2x)/4 = (3 - 4 cos 2x + cos 4x)/8

on the right-hand side of the differential equation, and then substitute the trial solution
¥, = Acos2x + Bsin2x+Ccos4x + Dsin4x + E. We find that 4 =-1/10, B=0,

C=-1/56, D=0, E=1/24. The resulting general solution is
y = c1c08 3x + ¢5in 3x + 1/24 - (1/10)cos 2x - (1/56)cos 4x.

46. By the formula for cos’ x in Problem 43, the differential equation can be written as
y'+y = 2xcosx++xcos3x.

The complementary solution is y, = c¢jcos x + ¢;sin x, so we substitute the trial solution
y, = x [(A + Bx)cosx +(C + Dx)sinx] + [(E + Fx)cos3x + (G + Hx)sin3x:|.

We find that 4=3/16,B=C=0,D=3/16,E=0,F =-1/32,G=3/128,H =0. Hence
the general solution is given by y = y.+y; +y2 where

y1 = (B3xcosx+ 3x’sinx)/16 and y, = (3 sin 3x - 4x cos 3x)/128.

In Problems 47-49 we list the independent solutions y, and y, of the associated homogeneous
equation, their Wronskian W =W(y,, y,), the coefficient functions

M(JC) = —JyZ(x)f(x)dx and u (x) = J_yl(x)f(x) dx
1 W (x) i W (x)

in the particular solution y, = uy, +u,y, of Eq. (32) in the text, and finally y, itself.

47.  y1 = e, y =e7, W= ¢
u = —(4/3)e*, u, = 2e%,
yo = (213)€"

48. y =e”%, ¥y = e*, W = 6e™
u = -x/2, w = —e /12,

yp = —(6x+ 1)e /12

. 2 _ 4
49. = ¥, Vo = xe”, W =¢"
_ 2 —
U = -x, U = 2x,
5
yp — xLer
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50.

S1.

52.

53.

54.

55.

130

The complementary functionis y; = cjcosh 2x + ¢;sinh 2x, so the Wronskian is
W = 2 cosh®2x - 2 sinh®2x = 2,

so when we solve Equations (31) simultaneously for #; and u;, integrate each and
substitute in y, = yiu1 + yaur, the result is

¥, = —(cosh2x) [4(sinh2x)(sinh 2x) d + (sinh 2x) [4(cosh2x)(sinh2x)dx

Using the identities 2 sinh®x = cosh 2x - 1 and 2 sinhx coshx = sinh 2x, we evaluate
the integrals and find that

¥p = (4x cosh 2x - sinh 4x cosh 2x + cosh 4x sinh 2x)/16,
Yo = (4x cosh 2x - sinh 2x)/16.

¥, = cos2x, y, = sin2x, W =2

Liberal use of trigonometric sum and product identities yields

u, = (cos5x—5cosx)/20, u, = (sin5x—5sinx)/20

¥p = —(1/4)(cos 2x cos x — sin 2x sin x) + (1/20)(cos 5x cos 2x + sin 5x sin 2x)
= —(1/5)cos 3x (1)

y1 = cos 3x, vy = sin 3x, w=23

u, = —(6x—sin6x)/36, u, = —(l+cos6x)/36

Yp = —(x cos 3x)/6

y1 = cos 3x, y2 = sin 3x, W =3
u, = —(2/3)tan 3x, u, = 2/3

Yo = (2/9)[3x sin 3x + (cos 3x)In|cos 3x|]

Y1 = COSX, y, = sinx, w=1
U, = -CSCX, = cos x csc’x

¥, = =1 - (cosx) In|escx —cot x|

y; = cos 2x, yp = sin 2x, W =2

u = ~(1/2)sin’x sin 2x = —(1/4)(1 - cos 2x)sin 2x
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56.

57.

38.

59.

u, = (1/2)sin’x cos 2x = (1/4)(1 - cos 2x)cos 2x
yp = (1 - xsin2x)/8

-2x 2x

v =e", y = e, W =4
up = -(3x - 1)e**/36, w = —(x+ De™/4
¥ = —€(3x+2)/9

With y; = x, y, = x™', and fix) = 72x°, Equations (31) in the text take the form

’ -1 _
xu +xu, =0,

u - xul = 72,
Upon multiplying the second equation by x and then adding, we readily solve first for
u = 36x, so u = 9x*

and then

!
w, = -x*u; = -36x°, SO uy = —6x°,

Then it follows that
- - 4 -1 6y _ 2.5
Yo =yt +yaup = (X)(Ox7) + (x7)(-6x") = 3x".
Here it is important to remember that — for variation of parameters — the differential
equation must be written in standard form with leading coefficient 1. We therefore
rewrite the given equation with complementary function y. = ¢ix” + cox° as

V' =@/x)y + (6/x2)y = x.

Thus fix) = x, and W = x*, so simultaneous solution of Equations (31) as in Problem
50 (followed by integration of u, and u,) yields

y, = -x* J.x3~x-x'4dx+x3 J.xz-x-x"‘dx

= —x [de [(1/x)de = x*(lnx-1).

y1 = x°, y2 = x*Inx,
W=x, fx) = x*
u, = -xInx, u, = x

yp = x'/4
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1/2 3/2
Yy =X, Y, = X

fx) = 27, W=x
w = —12x°°/5, u, = —12x7"

y, = =72x*%/5

y1 = cos(In x), ¥ = sin(In x), W = 1/x,
fx) = (Inx)/x*
u; = (In x)cos(ln x) - sin(In x)

u; = (Inx)sin(ln x) + cos(ln x)

Yp = Inx (1)

y1 = X, J’Z = 1+x2>
w=1x-1, fx) =1

u = (1+x5)/(1 - x5, W, = x/(x* - 1)

yp = =% +xIn(1 +x)/(1 - x) + (1/2)(1 + x)In/1 - x]
This is simply a matter of solving the equations in (31) for the derivatives

ul = _yz(x)f(x) o yl(x)f(x)

4 and
W(x) Wxy °

integrating each, and then substituting the results in (32).
Here we have y,(x)=cosx, y,(x)=sinx, W(x)=1, f(x)=2sinx, so (33) gives
y,(x) = —(cosx) Jsinx -2sin x dx +(sin x) Jcosx 2sinx dx
= —(cosx) j (1-cos2x) dx +(sinx) j 2(sinx) - cos x dx
= —(cosx)(x —sinxcosx) + (sin x)(sin” x)

= —xcosx+(sinx)(cos’ x +sin” x)
y,(x) = —xcosx+sinx

But we can drop the term sin x because it satisfies the associated homogeneous
equation y"+y = 0.
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SECTION 2.6

FORCED OSCILLATIONS AND RESONANCE

1.

Trial of x = A cos 2t yields the particular solution Xp = 2 cos2¢t. (Can you see that —
because the differential equation contains no first-derivative term — there is no need to
include a sin 2¢ term in the trial solution?) Hence the general solution is

x(f) = c1cos 3t+ cysin 3¢ + 2 cos 2.

The initial conditions imply that ¢; = -2 and ¢, = 0, so x(f) = 2 cos 2t - 2 cos 3t.
The following figure shows the graph of x(7).

27
3
ML
v 3 5
-3 \/ \/ \/
Trial of x = A4 sin 3¢ yields the particular solution xp = —sin 3f. Then we impose the

initial conditions x(0) = x'(0) = 0 on the general solution
x(f) = cicos 2t + ¢ysin 2¢ - sin 3¢,

and find that x(#) = 3sin 2¢ - sin 3z. The following figure shows the graph of x(z).

: \//\V/\U”AV/\VAV |
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First we apply the method of undetermined coefficients — with trial solution
x = Acos5t+ Bsin5t— to find the particular solution

Xp = 3 cos 5¢+ 4 sin 5¢

5[—?—cos$t+§—sin5t] = 5cos(5t— B)

where f = tan~'(4/3) ~ 0.9273. Hence the general solution is
x() = cicos 10¢ + ¢;sin 10f + 3 cos 5t + 4 sin 5¢.

The initial conditions x(0) = 375, x'(0) = 0 nowyield ¢; = 372 and ¢; = -2, so
the part of the solution with frequency @ = 10 is

X, = 372 cos 10t — 2 sin 10¢

372 2
/138388 [——colez‘——-——sinlOt}
/138388 /138388

V138388 cos(10r — )

where o = 27 - tan"'(1/186) ~ 6.2778 is a fourth-quadrant angle. The following
figure shows the graph of x(¢). '

/5

375

VTV

Noting that there is no first-derivative term, we try x

= Acos4t and find the particular
solution x, = 10cos 4+ Then imposition of the initial conditions on the general

solution x(¢) = ¢, cos5t+c,sin5t+10cos4s yields

x(f) = (-10 cos 5¢+ 18 sin 5¢) + 10 cos 4¢
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2(-5cos5t + 9sin5t)+10cos4¢

2+/106 ( COS 5t + ——=sin 5t] +10cos4t

T

2+/106 cos(5¢t — ) +10cos 4¢

where @ = 7 - tan"'(9/5) ~ 2.0779 is a second-quadrant angle. The following figure
shows the graph of x(¢).

27T

|
’7

WA
W

Substitution of the trial solution x = Ccosat gives C = Fo/(k - ma”). Then
imposition of the initial conditions x(0)=x,, x'(0)=0 on the general solution

x(f) = ¢ cosmyt +c,sinm+Ccoswt  (where @, =Vk/m)
gives the particular solution x(f) = (xo - C)cos apt + C cos at.
First, let's write the differential equation in the form x"+ajx = (F,/m)cosa,t, which
is the same as Eq. (13) in the text, and therefore has the particular solution
x, = (Fy/2ma,)tsinwt given in Eq. (14). When we impose the initial conditions
x(0)=0, x'(0) =v, on the general solution

x(f) = ¢ cosayt +c,sinayt + (Fy/ 2mam,) tsin ¢

we find that ¢, =0, ¢, =v,/@,. The resulting resonance solution of our initial value
problem is
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In Problems 7-10 we give first the trial solution Xp involving undetermined coefficients 4 and
B, then the equations that determine these coefficients, and finally the resulting steady periodic

solution xg,. In each case the figure shows the graphs of x_(#) and the adjusted forcing
function F(¢) = F(t)/ mo.

7. x, = Acos3t+ Bsin3; —54+12B =10, 124+5B =0
x, (1) = —ﬂcos3z‘+1—293in3t = 1—0(—icos3t+1—2$in3t] = 1—Ocos(?at——cx)
P 169 169 13 13 13 13

a = w—tan"(12/5) ~ 1.9656  (2nd quadrant angle)

3 Xsp
7 ~t
F
-3
8. x, = Acos5t+ Bsin5t; ~204+15B = -4, 154+20B = 0

x, (1) = i6—cos51‘——12—s‘i115t = 4 icosSt—ésinSZ‘) = iL—cos(St-—a)
’ 125 125 25\5 5 25

a =2z —tan"'(3/4) ~ 5.6397  (4th quadrant angle)

ININININIY
/ vﬁ“/\“vv/\“vu “

F1

1
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X (1) =

10. X

X 1) =

——cos10f - 297

x, = Acosl0f+10sin 5z

" 40001

3

sin10¢
40001

199

~ J40001

0.1}

(-— 20 cos10r—
40001
a = m+tan"'(199/20) ~ 4.6122

(3rd quadrant angle)

———
—
>
—
-
—
——
———

-1994+20B = 0, 204+199B = -3

3
sinl0t | = ————
40001 ) \/40001

cos(107 — x)

-0.1 ¢

LUV VUV

b, = Acos10t +10sin 5¢;

o = m+tan(171/478) ~ 3.4851

h

_ 6 ostor— sin10¢
10309 10309
24257725 478 171 1
- cos10t — ————=sinl0¢ | =
10309 V257725 257725

(3rd quadrant angle)

Xsp

YRR

903 J61 cos(10f — &)

F
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—-974+30B =8, 304+97B =-6
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_ 5\/— ( Zcos3 \/__s1n3t) cos(31-0)

o = m+tan'(2/5) ~ 3.5221  (3rd quadrant angle)
x(t) = e (¢ cos2t +¢,sin20) +x,(6); ¢ —25/87 = 0, =3¢, +2¢,-50/87 = 0

|

Q
&

‘
(]
w2
[\
~
+
72}
=
=
[\V]
~

N—

X () =

5 25
e COS2f + —=== sin2t) = e cos(2t-
174 (\/29 V29 629 ( ﬂ)

B = tan"'(5/2) ~ 1.1903  (1st quadrant angle)

0.5+
X
- T
/ \/ \/ ’
-0.5 ¢
13. X, = Acos10t+ Bsinl0z; —~T744+20B = 600, 204+74B =0

11100 3000

x, () = ————cosl0¢+ sin10¢
P 1469 1469

300 37 10 . 300
= — c0s810f + —=sin10f | = ——=cos(l0f—
1469 ( V1469 J1469 j J1469 ( )

a = m—tan(10/37) ~ 2.9320 (2nd quadrant angle)
x(t) = e (c, cos5f+ ¢, sin5t) + x,, (1);

¢, —11100/1469 = 10,  —¢, +5¢, =—30000/1469

o
) = 1469
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_ 2+/166458266 e_,( 12895 421 ’)

€085t — —————sin35
1469 V166458266 V166458266
SRy LEC

B = 27 —tan"'(421/12895) ~ 6.2505 (4th quadrant angle)

?\\/ \//\vf\/\ N

14. x, = Acost+ Bsint; 244+8B = 200, —-8A4+24B = 520

X, (f) = cost+22sint = /48 (\/__cost+\/_smtJ \/485cos(t-a)

@ = tan”(22) ~ 1.5254  (Ist quadrant angle)
x() = e (¢ cos3t+c, sin3¢)+ x,, (1);

¢+l =-30, —4¢+3¢,+22 = -10

X, ()

e™"(~31cos3t—52sin 3r)

31

3665 ™ (—— s 08 3t -—3i6zgsin3t) = /3665 e™ cos (3t~ B)

B = m+tan”(52/31) ~ 4.1748  (3rd quadrant angle)

i

The figure at the top of the next page shows the graphs of x(¢) and X, (0).
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In Problems 15-18 we substitute x(f) = A(w)coswt + B(w)sinwt into the differential equation
mx" + cx'" + kx = F cos ot with the given numerical values of m, ¢, k, and F,. We give first
the equations in 4 and B that result upon collection of coefficients of coswt and sinw?, and
then the values of A(w) and B(w) that we get by solving these equations. Finally,

C = + 4% + B? gives the amplitude of the resulting forced oscillations as a function of the
forcing frequency @, and we show the graph of the function C(@).

15. (Q-0)A4+20wB =2, -20A4+(2-0")B =0

2(2—(02) 4o

4+ 4+’

C(w) = 2/VJ4+o* begins with C(0) =1 and steadily decreases as @ increases.
Hence there is no practical resonance frequency.

C
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16. (5-0*)A+40B =10, -40A+(5-0*)B =0

10(5—502) 40w

25460+ T 25460 + 0"

C(@) = 10/425+60w° +»* begins with C(0) =2 and steadily decreases as @
increases. Hence there is no practical resonance frequency.

C

17. (45-0*)A+6wB = 50, —6wA+(45-0*)B = 0

50(45 —~ 0)2) 300w
= 2 > B = 2 7
2025 -54o° + @ 2025-54o" + o

C(w) = 50/~/2025-540° +@* so, to find its maximum value, we calculate the
derivative

Clo) = ~100w (27 + &%)
(2025-540” + 0*y*"*’

Hence the practical resonance frequency (where the derivative vanishes) is
@ =27 =3/3. The graph of C(w) is shown at the top of the next page.

18. (650-0*)A4A+10wB = 100, -10wA+(650-w*)B = 0

100(650—*) 5 10000
T 42250012000 + 0’ "~ 422500-12000° + 00*

C(w) = 100/~/422500—12000> + &* so, to find its maximum value,
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we calculate the derivative

-200 »(—600 + @)

C'(w) = .
(@) (422500—1200a)2+a)4)3’2

Hence the practical resonance frequency (where the derivative vanishes) is
®=+/600 =10~/6.

C

19.  m = 100/32 slugs and k& = 1200 1b/f, so the critical frequency is @, = Vk/m
= /384 rad/sec = /384/27 ~ 3.12 Hz

20. Let the machine have mass m. Then the force F = mg = 9.8m (the machine's weight)
causes a displacement of x = 0.5 cm = 1/200 meters, so Hooke's law
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22,

23.
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F=kx, thatis, mg = k(1/200)

gives the spring constant is £ = 200mg (N/m). Hence the resonance frequency is

w = Jk/m = \J200g ~+200x9.8 ~ 44.27 rad/sec ~ 7.05Hz,
which is about 423 rpm (revolutions per minute).

If @ is the angular displacement from the vertical, then the (essentially horizontal)
displacement of the mass is x = L6, so twice its total energy (KE + PE) is

m(x'Y + ko + 2mgh = mIX @) + kL*6 + 2mgL(1 - cos 6) = C.
Differentiation, substitution of @ ~ sin 6, and simplification yields

O+ (kkm +g/L)d = 0

@, = \Jk/m+g/L.

Let x denote the displacement of the mass from its equilibrium position, v = x' its

velocity, and @ = v/a the angular velocity of the pulley. Then conservation of energy
yields

SO

mv? 12+ It (2 + kx*/2 —mgx = C.
When we differentiate both sides with respect to ¢ and simplify the result, we get the

differential equation
(m+1/d)" +kx = mg.

Hence o = k/(m+]/a2).

(a) In fi-Ib-sec units we have m = 1000 and k£ = 10000, so o, =10 rad/sec
~ 0.50 Hz.

(b) We are given that @ = 27/2.25 ~ 2.79 rad/sec, and the equation
mx" + kx = F(f) simplifies to

x"+10x = (1/4)0’sinwt.

Il

When we substitute x(f) = 4 sin ot we find that the amplitude is

A

w2/4(10—co2) ~ 0.8854 ft ~ 10.63 in.
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24.

25.

26.

27.

By the identity of Problem 43 in Section 2.5, the differential equation is

mx"+kx = F,(3coswt +cos3wt)/4.

Hence resonance occurs when either @ or 3w equals @, = vk/m, thatis, when

either w=a, or w=wm,/3.

Substitution of the trial solution x = Acoswt+ Bsinwt in the differential equation, and
then collection of coefficients as usual yields the equations

(k—ma)z)A+(ca))B =0, —(ca))A+(k—ma)2)B = F,

with coefficient determinant A = (k - ma’ )2 +(cw)’ and solution 4 = —(co)F,/A,

B = (k—ma)z)E)/A. Hence

R

2
x(t) = k=mo not—Zcosat | = Csin(ot —a),
Jal A JA

where C = F,/<J/A and sina = co/JA, cosa = (k—ma)z)/\/g.

Let G,=+E+F} and p= 1/J(k —mo*) +(cw)’. Then
x, () = pE,cos(ot—a)+ pFysin(wt —a)

E F o
= pG, [—G—Ocos(a)t —a)+ a"—sm(cot - a):l

0 0

= pG,[cos B cos(wt - a)+sin Bsin(wt - a)]
x,(t) = pG,cos(wf —a—-pf)

where tan B = F,/E,. The desired formula now results when we substitute the value
of p defined above.

The derivative of C(@) = Fy/ J(ik — mao’ )2 + (ca))2 is given by

oF, (c* —2km)+2(mw)
_ 0

2 [(k - ma’ )2 + (ca))2 T/Z .

C'(w) =
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29.

30.
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(@) Therefore, if ¢* > 2km, it is clear from the numerator that C'(w)<0 forall o,

so ((w) steadily decreases as @ increases.

(b)  Butif ¢ <2km, then the numerator (and hence C'(w) ) vanishes when

o = o, =kIm-c/2m* < Jkim = @,. Calculation then shows that

16 Fym’ (¢* — 2km)
C'(w,) = —2
c’ (4km —c? )3/2

< 0,

so it follows from the second-derivative test that C (@,) is a local maximum value.

(a) The given differential equation corresponds to Equation (17) with F, =
It therefore follows from Equation (21) that the amplitude of the steady periodic
vibrations at frequency @ is

F mAw*

C = 0 = .
@) \/(k —mw’)’ +(cw)? \/(k —mo’) + (cw)?

(b)  Now we calculate
mAw [Zk2 - (2mk - cz)a)z:l

[(k - mw* )2 + (ca))2 ]3/2

and we see that the numerator vanishes when

f 2k? k( 2mk ) fk
D=7 == > .= = o,
2mk—¢ m\ 2mk —c m

We need only substitute E, = aco and F, = ak in the result of Problem 26.

C(w) =

When we substitute the values @ =27v/ L, m=800, £=7x10*, ¢=3000 and

mAa’.

L =10, a=0.051n the formula of Problem 29, simplify, and square, we get the function

25(971%2 + 122500)
4.4 2.2 2
16(167: vt — 6437572y +76562500)

Csq(v) =
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giving the square of the amplitude C (in meters) as a function of the velocity v (in
meters per second). Differentiation gives

_ 507*v(97*v* +2450007°v* — 535937500)

Csq'(v) =
70) (167" — 643757V — 76562500)°

Because the principal factor in the numerator is a quadratic in V%, it is easy to solve the
equation Csq'(v) = 0 to find where the maximum amplitude occurs; we find that the

only positive solutionis v ~ 14.36 m/sec = 32.12 mi/hr. The corresponding
amplitude of the car's vibrations is /Csq(14.36) ~ 0.1364 m = 13.64 cm.

SECTION 2.7
ELECTRICAL CIRCUITS
1. With E(t)=0 we have the simple exponential equation 5/”+25] = 0 whose solution

with K0) = 4 is 1) = 4e™.

2. With E(¢) =100 we have the simple linear equation 57”7+ 25/ = 100 whose solution
with K0) = 0 is I(H) = 4(1 - e™).

3. Now the differential equation is 577+ 257 = 100 cos 60¢. Substitution of the trial
solution
I, = A cos 60¢ + B sin 60¢
yields
I

4(cos 601 + 12 sin 60¢)/145.
The complementary function is I, = ce™; the solution with I(0) = 0 is
I(#) = 4(cos 60t + 12 sin 60¢ — e~")/145.

4. The solution of the initial value problem 21'+40I = 100e™”, I(0)=0 is
1) = 5(e7*% - e72™). To find the maximum current we solve the equation
I'(t) = —50e™™ +100e™"" =-50e" (e2°’ —2) = 0 for t = (In2)/10. Then

I = I(n2)/10) = 5/4.

5. The linear equation /’+ 107 = 50 ¢ '%cos 60¢ has integrating factor p =e'". The
resulting general solution is I(f) = ¢ [(5/6)sin60r+C]. To satisfy the initial
condition 1(0) = 0, we take C=0 and get I() = (5/6)e™'"sin 60¢.
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Substitution of the trial solution I = Acos60¢+ Bsin60¢ in the differential equation
I'+101 = 30cos60zr+40sin60¢ gives the equations 104 + 608 = 30,-604+108 =40
with solution 4 =-21/37, B=22/37. The resulting steady periodic solution is

Isp(8) = (1/37)(=21 cos 60¢ + 22 sin 607) = (5/ V37 )cos(60t — ), where

@ = z-tan"'(22/21) ~ 2.3329 (2nd quadrant angle).

(a) The linear differential equation RQ’+ (1/C)Q = E, has integrating factor
p = €. The resulting solution with Q(0) = 0 is Q(f) = EoC(1 - e, Then
) = Q1) = (EJ/R)e™*C,

(b) These solutions make it obvious that %im O@)=E,C and ¥im I(t)=0.

(@)  The linear equation Q'+50 =10¢™ has integrating factor p =e*. The
resulting solution with Q(0)=0 is Q@) = 10te™, so I(¢) = o'(t) =10(1 - 59e™.
(b) L) = 0 when ¢ = 1/5, 50 Omar=0(1/5)= 2¢7".

Substitution of the trial solution Q = Acos1207+ Bsin120¢ into the differential equation
2000Q"+4000Q =100co0s120¢ yields the equations

40004 +24000B = 100, —240004 +4000B = 0

with solution 4 =1/1480, B = 3/740. The complementary functionis Q, = ce™”, and

imposition of the initial condition Q(0)=0 yields the solution
Q@) = (cos 1207 + 6 sin 120¢ — ¢72*)/1480. The current function is then
1) = Q'(t) = (36 cos 120t - 6 sin 1207 + e‘ZOt)/ 74. Thus the steady-periodic current is

I, = %(6cos120t—sin120t)
6J37( 6 1 . 3
———| —==¢0s120f - —=—=sin120¢ | = ——cos(1207 - o
[\/37 V37 ) 37 ( )

74
(with & =27z —tan™'1), so the steady-state amplitude is 3/+/37.

Substitution of the trial solution Q = Acoswt+ Bsinwt into the differential equation
RO'+(1/C)Q = E coswr yields the equations

A/C)A+orB = E,, ~-roA+(1/C)B =0

with solution 4 =E,C/(1+0’R’C?), B = E,0RC*/(1+ 0’ R°C?), so
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EC

Qsp (f) = W(COS ot + wRC sin C()f)
_ EC ( 1 wRC | )
= COS W + ————=SINn !
1+ 0*R2C? \ 1+ 0?R3C? J1+ 0*R*C?
EC

—=____cos(wt-p
N1+ o’ R*C? ( )
where f = tan” @RC (lst quadrant angle).

In Problems 11-16, we give first the trial solution I , = Acosat + Bsinwt, then the equations

in 4 and B that we get upon substituting this trial solution into the RLC equation
LI"+RI'+(1/C)I = E'(¢), and finally the resulting steady periodic solution.

11. I, = Acos2t+ Bsin2f; A+6B =10, —-64+B =0

60 . 10

10 1 6 . 10 .
I () = —cos2t+—sin2f = ——| ——c0s2ft+ ——=sin2t | = ——sin(2t -3
o) = Sgeosars Sinds = (- meots fmsint) = o)
8 = 2r—tan"'(1/6) ~ 6.1180  (4th quadrant angle)
12. I, = Acosl10t + Bsin10t, A+4B =2, —-44+B =0

2

1 4 2
—=| —=—=c0810f + —sinl10¢ | = —sin(10r—-&
17 (\/17 V17 ] 17 ( )

S = 2r—tan"'(1/4) ~ 6.0382  (4th quadrant angle)

I, = ~—colet+ 8 sinl0r =
17 17

13. I, = Acos5t+ Bsin5t; 34-2B =0, 24+3B =20

60 . 20

40 2 3 . 20 .
I_(t) = —cos5t+—sin5t = —| ——cos5t+——sins5t | = ——=sin(5¢ -3
o0 = fgeossts Zinst = o rcossiBrsins] = Fainci—o)

S = 2r—tan"'(2/3) ~ 5.6952  (4th quadrant angle)

14. I = Acosl00z+ Bsin100r; —2494+25B = 200, -254-249B = —150
25
I, = 3303 ( 921coleOt+847s1nlOOt)
= 21565650 (921 coleOt+Lsin100tJ ~ 0.9990sin(1007 — 5)
31313 V1565650 V1565650

S = tan™'(921/847) ~ 0.8272  (Ist quadrant angle)
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15. I, = Acos60xt+ Bsin60rt;
(1000-3672)4+307B = 337, 1574—(500-187%)B = 0

B 337(250-97%) B - 4957*
250000177757 +324x*’ 2(250000 —17775%* + 3247*)

337z

I (1) = I,sin(607t—-95); I, =
P ’ " 2J250000-177757% + 3247"

~0.1591

500 187>

S = 2w —tan™!
157z

j ~ 4.8576

16. I, = Acos377t+ Bsin377t;

~1321294+47125B = 226200, 471254+132129B = 0

_ 14943789900 B = 5329837500
9839419133 ° 9839419133

(@) ~ Lsin(377t-8); I, = | o83220000 55
v 9839419133

5 = g [ 132129
- 47215

J ~ 1.2282

In each of Problems 17-22, the first step is to substitute the given RLC parameters, the initial
values 1(0) and Q(0), and the voltage E(f) into Eq. (16) and solve for the remaining initial

value

I'0) = %[E(O) -RI(0)-(1/C)Q(0)]. *)

17.  With I(0) = 0 and Q(0) = 5, Equation (*) gives I'(0) = -75. The solution of the
RLC equation 2["+ 16I'+50I = 0 with these initial conditions is I(f) = -25¢ *sin 3.

18.  Our differential equation to solve is

21"+ 60I'+ 4001 = -100e”".

We find the particular solution I, = (-50/171)e™ by substituting the trial solution

A e”; the general solution is

K1) = cie”" + cpe™ - (50/171)e™.
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19.

20.

The initial conditions are /(0) = 0 and ['(0) = 50, the latter found by substituting
L =2,R=60,1C = 400, I(0) = Q) = 0, and E(0) = 100 into Equation (*).
Imposition of these initial values on the general solution above yields the equations
¢ +¢,—-50/171 = 0, —10¢, —20c, +50/171 = 50 with solution ¢, =50/9,

¢, =—100/19. This gives the solution

IH) = (50/171)(19e71% — 1872 — &7,
Now our differential equation to solve is
21"+ 601’ + 4007 = =1000e~1%,

We find the particular solution I, = -50¢ e % by substituting the trial solution
At ¢ the general solution is

1) = c1e7'%+ ¢ - 50 1717,
The initial conditions are (0) = 0 and I'(0) = —150, the latter found by substituting
L =2,R=60,1/C = 400, I(0) =0, Q(0) = 1, and E(0) = 100 into Equation (*).
Imposition of these initial values on the general solution above yields the equations
¢+c, =0, —10¢,—20c, —50 = —150 with solution ¢, =—10, ¢, =10. Thus we
get the solution '

It) = 10e7” - 10e7'% - 50771,

The differential equation 107"+ 30I'+ 50 = 100 cos 2¢ has transient solution

I.(t) = e (c1 cos t+/11/2 + ¢, sin tx/ﬁ/Z),
and in Problem 11 we found the steady periodic solution
10 )
1) = E(COSZI +6sin2¢).

When we impose the initial conditions (0) = I'(0) = 0 on the general solution
I(t) = I.(9)+I,(¢), we getthe equations

¢ +10/37 = 0, —3¢,/2+/11¢,/2+120/37 = 0

with solution ¢, = ~10/ 37, ¢, = =270/ 374/11. The following figure shows the
graphs of I(#) and I_(1).
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I:Isp+Itr

The differential equation 107"+ 207’ + 100/ = —1000 sin 5¢ has transient solution
1.(t) = e (¢ cos 3t +c,sin 3t),

and in Problem 13 we found the steady periodic solution
1,(t) = %(2%551‘ +3sin5r).

When we impose the initial conditions (0) =0, I'(0) = —10 on the general solution
I(t) = I.(t)+ I, (¢), we get the equations

¢ +40/13 = 0, —¢ +3¢,+300/13 = —10

with solution ¢, = ~40/13, ¢, = —470/39. The figure at the top of the next page
shows the graphs of I(r) and 1,(0).

The differential equation 27"+ 100’ + 2000001 = 66007 cos 607t has transient solution

L) = ™ (c,c05 251159 + ¢, sin 25159,

and in Problem 15 we found the steady periodic solution

1, (1) = Acos607xt+ Bsin60xt ~ 0.157444cos607z¢ +0.023017 sin 607t
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(with the exact values of 4 and B given there). When we impose the initial conditions
I(0) = I'0) = 0 onthe general solution I(¢) = I.(¢)+1,(¢), we find (with the aid of
a computer algebra system) that

337(250 - 97
¢ = - ( - ) - ~ —0.157444,
250000 —177757% + 324~

o 1172./159 (250 + 977) ~ —0.026249

C
2 53(250000 — 177757 + 3247")

The following figure shows the graphs of 1(#) and I (7).

WAAAN
WYV

The LC equation LI"+(1/C)] = 0 has general solution I(f) = c,cosa,t +c, sinw,t
with critical frequency @, = 1/VLC.
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25.

We need only observe that the roots

_ —R:+R*-4L/C

yr =
2L

both necessarily have negative real parts.

According to Eq. (8) in the text, the amplitude of the steady periodic current is

E,/ \/ R*> +(wL—-1/wC)*. Because the radicand in the denominator is a sum of squares,
it is obvious that the denominator is least when @wL—1/@wC = 0, that is, when

o = 1/JLC.

SECTION 2.8

ENDPOINT PROBLEMS AND EIGENVALUES

The material on eigenvalues and endpoint problems in Section 2.8 can be considered optional at
this point in a first course. It will not be needed until we discuss boundary value problems in the
last three sections of Chapter 8 and in Chapter 9. However, after the concentration thus far on
initial value problems, the inclusion of this section can give students a view of a new class of
problems that have diverse and important applications (as illustrated by the subsection on the
whirling string). If Section 2.8 is not covered at this point in the course, then it can be inserted
just prior to Section 8.5.
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If A = 0 then y" = 0 implies that y(x) = A + Bx. The endpoint conditions
y'(0) = 0 and y(1) = 0 yield B = 0 and 4 = 0, respectively. Hence A = 0 is
not an eigenvalue.

If A = o> 0, then the general solution of 3"+ &y = 0 is

y(x) = Acos ax+ Bsin ax,
S0
y'(x) = -Aasin ax + Ba cos ax.

Then y'(0) = 0 yields B = 0, so y(x) = 4 cos ax. Next y(1) = 0 implies that
cos @ = 0, so « is an odd multiple of 7/2. Hence the positive eigenvalues are
{(2n - 1)*##/4} with associated eigenfunctions {cos(2n - D)m/2} for n = 1,2,3,- - -.

If A = 0 then y” = 0 implies that y(x) = 4 + Bx. The endpoint conditions

y'(0) = y'(n) = 0 imply onlythat B = 0, so Ay = 0 is an eigenvalue with associated
eigenfunction yo(x) = 1.
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If 1 = >0, then the general solution of 3"+ %y = 0 is

Y(x) = A cos ax + B sin ax.
Then

Y(x) = -Aasin ox + Bacos ox,

so y(0) = 0 implies that B = 0. Next, Y (m) = 0 implies that o is an integral
multiple of 7z Hence the positive eigenvalues are {n*} with associated eigenfunctions
{cosmx}, n=1,2,3, -

Much as in Problem 1 we see that 4 = 0 is not an eigenvalue. Suppose that
A= a>0, so
Y(x) = A cos ax + B sin ax.

Then the conditions y(-7) = y(z) = 0 yield

A cos an+ Bsin ar = 0,
A cos ar - Bsin ar = 0.

It follows that
Acos ar = 0 = Bsin ar

Hence either 4 = 0 and B#0 with ax an even multiple of #/2, or 4#0 and
B = 0 with a7 an odd multiple of /2. Thus the eigenvalues are {n*/4} for n a
positive integer, and the nth eigenfunction is Yu(x) = cos(nx/2) if n is odd,
Ya(x) = sin(nx/2) if n is even.

Just as in Problem 2, 4y = 0 is an eigenvalue with associated eigenfunction yy(x) = 1.
If 2 = >0 and

Y(x) = A cos ax + Bsin ax,
then the equations

Y(-7) = o Asin ax+ Bcos an) = 0,

Y(7m) = o-Asin ar+ Bcos an) = 0

vield Asinaz = Becosar = 0. If 4 = 0 and B#0, then cos ax = 0 so ax must
be an odd multiple of #/2. If A% 0 and B = 0, then sin a7z = 0 so ar must be an
even multiple of 772. Therefore the positive eigenvalues are {n2/4} with associated
eigenfunctions y,(x) = cos(ux/2) if the integer n is even, y,(x) = sin(nx/2) if » is
odd.

If 2 = >0 and
y(x) = Acosax+ Bsin ox,
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y'(x) =-Aasin ax + Ba cos ox
then the conditions »(-2) = y'(2) = 0 yield

Acos2a-Bsin2a = 0,

-Asin2a+ Bcos2a = 0.

It follows either that 4 = B and cos 2« = sin2¢, orthat A = -B and
cos 2a = -sin 2. The former occurs if

20 = 4, 574,974, - - -,
the latter if
2 = 374, 774, 1144, - - -.

Hence the nth eigenvalue is
In = af = @n-1)7*7/64
for n = 1,2,3,- - -, and the associated eigenfunction is

Ya(X) = cos apx +sin gx  (n odd)
or

Yn(X) = cos ax - sin ax  (m even).

(a) If A =0 and y(x) = 4 + Bx, then y(0) = B = 0, so y(x) = 4. But
then y(1)+y(1) = 4 = 0 also,so A = 0 isnot an eigenvalue.

b)) Ifil=¢c">0 and
W(x) = A cos ax + Bsin ax,

then
Y'(x) = o-A4 sin ox + B cos ax),

so ¥'(0) = Ba = 0. Hence B = 0 so y(x) = 4 cos ox. Then
y(1)+y'(1) = A(cos a - asina) = 0,

so «a must be a positive root of the equation tan o = 1/a.

(a) If 2 =0 and y(x) = A+ Bx, then (0) = 4 = 0, so y(x) = Bx. Butthen
y1)+y(1) =2B =0,s04 = B =0 and 4 = 0 isnot an eigenvalue.

) IfA=2a">0and p(x) = Acos ax+ Bsin ax, then 3(0) = 4 = 0 so
y(x) = Bsin ax. Hence
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Y1) +y(1) = B(sin ¢+ axcos ) = 0.

S0« must be a positive root of the equation tan & = —¢, and hence the abscissa of a
point of intersection of the lines y =tanz and Yy =-z. We see from the figure below

that «, lies just to the right of the vertical line z = (2n—1)7 /2, and lies closer and
closer to this line as » gets larger and larger.

y

(a) If 2 =0 and y(x) = 4+ Bx, theny(0) = 4 = 0, so V(x) = Bx. Butthen
¥(1) = y(1) saysonlythat B = B. Hence 4 = 0 isan eigenvalue with associated
eigenfunction yo(x) = x.

(b) If A=4">0 and y(x) = Acos Bx + Bsin fx, then y(0) = 4 = 0 so
Wx) = Bsinfx. Then y(1) = y(1) says that Bsinf=Bficosf, so B mustbea
positive root of the equation tan # = g, and hence the abscissa of a point of
intersection of the lines y=tanz and y =z. We see from the figure above that g, lies
Just to the left of the vertical line z = (2n+1)7/2, and lies closer and closer to this line
as n gets larger and larger.
If y"+4y =0 and 1 = —#<0, then

Y(x) = Ae™ + Be™,
Then y(0) = A+B = 0, so B = -4 and therefore

y(x) = A(e™ -e™™),
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11.

12.
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Hence
Y'A) = Aofe™ + ™) = 0.

But @#0 and e” + e >0, 50 4 = 0. Thus A = —¢? isnotan eigenvalue.

If A=-a’<0, then the general solution of Y'+Ay=0 is
¥(x) = Acoshax+ Bsinhax. Then y(0) =0 implies that 4 =0, so y(x) = sinhax
(or a nonzero multiple thereof). Next,

y()+y'(1) = sinha+acosha = 0

implies that tanha = — . Butthe graph of y = tanhe lies in the first and third
quadrants, while the graph of y = —¢ lies in the second and fourth quadrants. It
follows that the only solution of tanhe = —« is @= 0, and hence that our eigenvalue
problem has no negative eigenvalues.

If A=-a”<0, then the general solution of " + Ay =0 is
¥(x) = Acoshax+ Bsinhax. Then y(0)=0 implies that B=0, so y(x)= coshax
(or a nonzero multiple thereof). Next,

y)+y'(1) = cosha +asinha = 0

implies that tanher = —1/¢. Butthe graph of y = tanhe lies in the first and third
quadrants, while the graph of y = —1/« lies in the second and fourth quadrants. It

follows that the only solution of tanha = —1/a is =0, and hence that our
eigenvalue problem has no negative eigenvalues.

(a) If A =0 and y(x) = 4 + Bx, then y(-7) = y(7) means that
A+Br = A-Bm so B=0 and y(x) = A. Butthen y'(-7) = y(n) implies nothing
about 4. Hence Ay = 0 is an eigenvalue with yo(x) = 1.

() If A= -0#<0 and
Y(x) = Ae®™ + Be™™,

then the conditions y(-7) = y(7) and y'(-7) = y'(n) yield the equations

Aea7I+Be—aﬂ' —_ Ae—(ZIF_I_Be(Zﬂ"

an -7 __ -an (249
Ae™” — Be = Ae — Be™”,

Addition of these equations yields 24e*” = 24e™*". Since e™ #e " because a =0, it
follows that 4 = 0. Similarly B = 0. Thus there are no negative eigenvalues.
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(© Ifil=c>0and

¥(x) = Acos ax + B sin ax,

then the endpoint conditions yield the equations

A cos ar+ Bsin ar = A cos ar - B sin ar,

-4 sin az+ B cos ar = A sin az+ B cos ar.
The first equation implies that B sin ar = 0, the second that 4 sin @z = 0. If 4 and
B are not both zero, then it follows that sin @z = 0, so a = n, an integer. In this
case 4 and B are both arbitrary. Thus cos nx and sin nx are two different
eigenfunctions associated with the single eigenvalue #°.
(a) With A4 = 1, the general solution of y"+2)'+y = 0 is
Y(x) = Ae™ + Bxe™.

But then »(0) = 4 = 0 and (1) = ¢’'(4 +B) = 0. Hence 4 = 1 isnotan
eigenvalue.

(b)  If A<1,then the equation y”+2y'+ Ay = 0 has characteristic equation
¥ +2r+ A = 0. This equation has the two distinct real roots (—2 tV4—-44 )/ 2; call

them 7 ands. Then the general solution is
y(x) = Ae™ + Be™,
and the conditions y(0) = y(1) = 0 yield the equations
A+B =0, Ae + Bef = 0.
If 4,B # 0, then it follows that ¢" = ¢’. But r = s, so there is no eigenvalue A<1.
(c) If A>11let A-1= ¢ so A = 1+ ¢ Then the characteristic equation
P+2r+A=(+1P+d =0
hasroots -1+ «i, so
Mx) = e™(4 cos ax + B sin ax).
Now y(0) = 4 = 0, so y(x) = Aesin ax. Next, y(1) = de 'sina = 0, so
a = nz with n aninteger. Thus the nth positive eigenvalue is 1, = n*7Z + 1.

Because 1 = o + 1, the eigenfunction associated with 4, is

Yn(x) = e sin nx.

Section 2.8 159



14.

15.

16.

17.
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If A =1+ ¢ then we first impose the condition 3(0) = 0 on the solution
Y(x) = e™(4 cos ax + B sin ax)
found in Problem 13, and find that 4 = 0. Hence

Y(x) = Be*sin ox,
¥'(x) = B(- e"sin ax + e ¥ cos ax),

so the condition 3'(1) = 0 yields -sin @+ acos & = 0, thatis, tan @ = «.
(a) The endpoint conditions are

¥0) = y'(0) = y"(L) = L) = 0.

With these conditions, four successive integrations as in Example 5 yield the indicated
shape function y(x).

(b) The maximum value ymax of y(x) on the closed interval [0, L] must occur either
at an interior point where y'(x) = 0 or at one of the endpoints x = 0 and x = L. Now

V() = k(dx® - 12Lx* + 120%) = 4kn(x* - 3Lx + 31%)

where k = w/24FI, and the quadratic factor has no real zero. Hence x = 0 is the only
zero of y(x). But y(0) = 0, so it follows that ym., = y(L).

(a) The endpoint conditions are
¥0) = »y(0) = 0 and y(L) = y'(L) = 0.
(b) The derivative
V() = k4x - 6Lx* + 2L%) = 2kx(2x - L)(x - L)

vanishes at x = 0, L/2, L. Because »(0) = y(L) = 0, the argument of Problem 15(b)
implies that yma, = y(L/2).

If y(x) = k(x* -2Lx* + I’x) with k=w/24EI, then
Y(x) = k(4x’ —6Lx*+ ) = 0

has the solution x = L/2 that we can verify by inspection. Now long division of the
cubic 4x>—6Lx*+I’ by 2x- L yields the quadratic factor 2x* —2Lx —I? whose

Zeros (ZLi\/12L2)/4 = (12+/3)L/2 both lie outside the interval [0, Z]. Thus

x = L/2 is, indeed, the only zero of y'(x) = 0 in this interval.
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(a) The endpoint conditions are

¥0) = y(0) = 0 and (L) = y"(L) = 0.
(b) The only zero of the derivative

y'(x) = 2k(8x” - 15Lx + 61%)

interior to the interval [0, ] is
xn = (15 -~/33)L/16,

and (0) = y(L) = 0, so it follows by the argument of Problem 15(b) that
Ymax = Y(Xm).
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