


P2 SOLUTIONS TO PROBLEMS

DIELECTRICS, CAPACITANCE, AND
ELECTRIC ENERGY

Section 2.3 Bound Volume and Surface Charge
Densities

PROBLEM 2.1 Nonuniformly polarized dielectric parallelepiped. This
problem is similar to Example 2.1.

(a) Combining Eqs.(2.19) and (1.167), the bound (polarization) volume charge den-
sity inside the parallelepiped is

ρp = −∇ ·P = −
(
∂Px
∂x

+
∂Py
∂y

+
∂Pz
∂z

)

= −P0

(
1

a
+

1

b
+

1

c

)

, (P2.1)

so it turns out to be constant throughout the volume (v) of the body.
With Eq.(2.23) in mind, we realize that there is no bound surface charge on

the parallelepiped sides belonging to planes x = 0, y = 0, and z = 0, respectively,
since P(0+, y, z) = P(x, 0+, z) = P(x, y, 0+) = 0. On the sides belonging to planes
x = a, y = b, and z = c, the bound surface charge density is given by

ρps1 = n̂d ·P = x̂ ·P(a−, y, z) = P0 , ρps2 = ŷ ·P(x, b−, z) = P0 ,

and ρps3 = ẑ ·P(x, y, c−) = P0 , (P2.2)

respectively; hence, ρps1 = ρps2 = ρps3 = ρps = const, as well, on the entire surface
(S) of the parallelepiped.

(b) By means of Eqs.(1.30), (P2.1), and (P2.2),

Qp = ρpv + ρpsS = ρpabc+ ρps(ab+ bc+ ac) = 0 , (P2.3)

which confirms that the total bound charge of the dielectric parallelepiped is zero.

Section 2.4 Evaluation of the Electric Field and
Potential Due to Polarized Dielectrics

PROBLEM 2.2 Uniformly polarized disk on a conducting plane. The
distribution of bound charges of the disk is determined in Example 2.2; the volume
bound charge density (ρp) is zero, the surface densities on the upper and lower disk
bases, ρps1 and ρps2, are those in Eqs.(2.28), while ρps3 = 0 on the side disk surface.

The electric field in both the disk and the air equals the field due to two circular
sheets of charge with densities ρps1 and ρps2 in free space, as well as their negative
images in the conducting plane in Fig.2.36. Namely, by image theory (Section 1.21),
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50 Branislav M. Notaroš: Electromagnetics (Pearson Prentice Hall)

the charges (of density ρps2) right on the plane, at the coordinate z = 0+, and their
images (of density −ρps2) right below the plane, at the coordinate z = 0−, cancel
each other, so we are left with the two circular sheets of charge (in free space) shown
in Fig.P2.1.

z

O

a
e0

e0

rps1

-rps1

e0

e0

d

d

Figure P2.1 Two circular sheets of charge ρps1 = P and −ρps1 = −P in free space
– equivalent, by virtue of image theory, to the uniformly polarized dielectric disk on
a conducting plane in Fig.2.36.

Like in Eq.(2.29), we then invoke the superposition principle and the expression
for the electric field due to a thin charged disk, Eq.(1.63), and obtain the total
electric field vector at a point defined by the coordinate z (0 < z < ∞) along the
z-axis in Fig.P2.1 (or Fig.2.36) as follows:

E = E1+E2 =
P

2ε0

[

z − d
|z − d| −

z − d
√

a2 + (z − d)2
− 1 +

z + d
√

a2 + (z + d)2

]

ẑ (z > 0) .

(P2.4)
In the conductor in the original structure, Fig.2.36, there is no electric field, so
E = 0 for z < 0.

PROBLEM 2.3 Uniformly polarized hollow dielectric cylinder. This is,
essentially, very similar to the analysis performed in Example 2.2; the only important
difference is that the two circular sheets of surface charge with densities ρps1 =
P and ρps2 = −P , which, for the electric field computation, can be considered
to be in free space, now have a circular hole. The field vectors E1 and E2 in
Eq.(2.29) at the center of the hollow dielectric cylinder (point O), where E1 = E2,
are computed, therefore, as an integral of fields due to elementary rings (as in
Fig.1.14), by merely changing the integration limits in Eq.(1.63) to a (starting) and
b (ending). Alternatively, we can represent the hollow disk (with inner and outer
radii a and b, respectively, and charge density ρs) as a superposition of a solid
(continuous) disk (as in Fig.1.14) with radius b and charge density ρs and another
one with radius a and charge density −ρs, use Eq.(1.63) for the fields due to each of
them, and add together the results. In either way, we obtain the following expression
for the total field at the point O, whose distance from the centers of each hollow
disk is h (Fig.P2.2):

E = E1 + E2 = 2E1 = −Ph
ε0

[
1√

a2 + h2
− 1√

b2 + h2

]

ẑ . (P2.5)
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Figure P2.2 Evaluation of the electric field intensity vector at the center of a
uniformly polarized hollow dielectric cylinder in Fig.2.37.

PROBLEM 2.4 Nonuniformly polarized thin dielectric disk. (a) By
means of Eq.(2.19) and the formula for the divergence in cylindrical coordinates,
Eq.(1.170), the bound volume charge density of the nonuniformly polarized dielec-
tric disk in Fig.2.38 amounts to

ρp = −∇ ·P = −1

r

∂

∂r
(rPr) = −2P0

a
. (P2.6)

From Eq.(2.23), the bound surface charge density on the lateral (cylindrical) surface
of the disk is

ρps = r̂ ·P(a−) = P0 , (P2.7)

while ρps = 0 on disk bases.

(b) Since the disk is very thin (d≪ a), its bound volume charge, also being uniformly
distributed (ρp = const) throughout the disk volume, can be considered as an
equivalent circular sheet of charge, with density ρs = ρpd = −2P0d/a; namely,
the total bound volume charge of the disk, ρpπa

2d, must be equal to the total
surface charge of the equivalent sheet, so ρsπa

2, which yields this expression for
ρs. By the same token, the belt of bound surface charge over the disk lateral
surface can be approximated by an equivalent circular line charge (ring) with density
Q′ = ρps2πad/(2πa) = ρpsd = P0d. Consequently, Eqs.(1.63) and (1.43) can be used
for the electric field at the axis of an infinitely thin disk and an infinitely thin ring
of charge, respectively, and, by the superposition of the two results, E at the z-axis
in Fig.2.38 comes out to be

E =
ρs

2ε0

(
z

|z| −
z√

a2 + z2

)

ẑ +
Q′az

2ε0 (z2 + a2)3/2
ẑ

= −P0d

ε0a

[(
z

|z| −
z√

a2 + z2

)

− a2z

2 (z2 + a2)3/2

]

ẑ (−∞ < z <∞) . (P2.8)
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PROBLEM 2.5 Uniformly polarized dielectric hemisphere. (a) The
bound surface charge density at the bottom (flat) surface of the polarized hemi-
sphere is that in Eqs.(2.28) – the second expression, and ρps at the upper (spherical)
surface in Fig.2.39 is given by Eq.(2.30), so ρps = P cos θ, where now 0 ≤ θ ≤ π/2.

(b) We remove the conducting plane in Fig.2.39 using the image theory. The cir-
cular sheet of bound surface charge right against the plane and its negative image
cancel each other. The hemispherical sheet, considered to be in a vacuum, is sup-
plemented with another hemispherical sheet below the plane of symmetry, which is
also described by the function in Eq.(2.30), but with π/2 ≤ θ ≤ π (note that the
function cos θ is antisymmetrical with respect to θ = π/2, which corresponds to a
negative image of the charge, exactly as required by the image theory). We thus
obtain the full spherical sheet of bound charge in Eq.(2.30), and conclude that the
polarized hemisphere on the conducting plane is equivalent to the polarized sphere
of Fig.2.7, in free space. Hence, the electric field intensity vector at the point O in
Fig.2.39 is given by E = −P/(3ε0), Eq.(2.32).

PROBLEM 2.6 Nonuniformly polarized large dielectric slab. (a) Refer-
ring to Fig.P2.3 and employing Eqs.(2.19), (1.167), and (2.23), the bound volume
and surface charge densities of the dielectric slab are given by

ρp = −∂Px
∂x

= −2P0x

a2
, ρps1 = x̂ ·P(a−) = P0 , ρps2 = − x̂ ·P(−a+) = −P0 .

(P2.9)

rp
rps2

0 xa-a

rps1

x

E

P

Figure P2.3 Evaluation of the bound charges and electric field of the infinitely
large nonuniformly polarized dielectric slab in Fig.2.40.

(b) We note that the volume charge distribution described by ρp(x) in Eqs.(P2.9) is
the same as that in Eq.(1.153), the difference being only the different multiplicative
constants. The electric field due to this charge, considered to be in free space, is
therefore given by Eqs.(1.155) and (1.154), with the adjustment of constants. On
the other side, the electric field due to two parallel oppositely charged sheets of
densities ρps1 and ρps2 in Eqs.(P2.9) and Fig.P2.3, obtained using Eq.(1.64) or the
result of Problem 1.60, amounts to (−ρps1/ε0) x̂. By the superposition of these
fields, the resultant field in Fig.P2.3 comes out to be

E(x) =
−P0

ε0a2

(
x2 − a2

)
x̂ +
−P0

ε0
x̂ = −P0x

2

ε0a2
x̂ (|x| < a) ; E(x) = 0 (|x| > a) .

(P2.10)
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(c) The voltage across the slab is

V =

∫ a

x=−a
E(x) dx = − P0

ε0a2

∫ a

−a
x2 dx = −2P0a

3ε0
. (P2.11)

Section 2.5 Generalized Gauss’ Law

PROBLEM 2.7 Electric flux density vector. (a) Combining Eqs.(2.41) and
(2.32), the electric flux density vector at the center (point O) of the polarized
dielectric sphere in Fig.2.7 turns out to be

D = ε0E + P = −P

3
+ P =

2P

3
. (P2.12)

(b) To find the vector D along the axis (z-axis) of the polarized dielectric disk lying
on a conducting plane in Fig.2.36, we apply Eq.(2.41) for points inside the dielectric,
for 0 < z < d, where |z− d| = −(z− d) and (z− d)/|z− d| = −1 in the electric field
expression from Problem 2.2, and obtain

D = ε0E + P =
P

2

[

− z − d
√

a2 + (z − d)2
+

z + d
√

a2 + (z + d)2

]

. (P2.13)

For d < z < ∞ along the z-axis in Fig.2.36, P = 0 and D = ε0E (air), as well
as |z−d| = z−d in the electric field expression (Problem 2.2), which gives the same
expression for D as in Eq.(P2.13), so it holds true for 0 < z <∞.

Finally, D = 0 for z < 0 (below the conducting plane).

PROBLEM 2.8 Total (free plus bound) volume charge density. (a) Using
Eqs.(2.45), (2.19), and (2.41), the total (free plus bound) volume charge density in
the dielectric can, indeed, be expressed (in terms of the electric field intensity vector,
E, only) as

ρtot = ρ+ ρp = ∇ ·D + (−∇ ·P) = ε0∇ ·E +∇ ·P−∇ ·P = ε0∇ · E . (P2.14)

(b) By means of the above expression and the formula for the divergence in Cartesian
coordinates, Eq.(1.167), ρtot for the given function E(x, y, z) comes out to be

ρtot = ε0

(
∂Ex
∂x

+
∂Ey
∂y

+
∂Ez
∂z

)

= 8.85
(
4yz − 3y2 + 3z2

)
pC/m3 (y, z in m) .

(P2.15)
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PROBLEM 2.9 Uniform field in a dielectric. From the relationship ρ+ρp =
ε0∇ · E (previous problem) and the fact that the divergence of the electric field
vector in this dielectric region (E) is zero, since the field is uniform, the bound
volume charge density (ρp) in the region equals the negative of the free volume
charge density (ρ) at the same point, namely,

ρp = ε0∇ · E− ρ = −ρ (E = const) . (P2.16)

PROBLEM 2.10 Closed surface in a uniform field. Applying Gauss’ law,
Eq.(1.133), to the closed surface S in Fig.2.41, over which the electric field vector
is constant (uniform electric field in the region), and can thus be taken out of the
flux integral, and inside which there is no charge (charge-free region), we obtain

∮

S

E · dS =
QS
ε0

−→ E ·
∮

S

dS = 0 (E = const , QS = 0) . (P2.17)

We can rotate the parallel-plate capacitor in Fig.2.41, together with its (uniform)
field, in an arbitrary way around the surface S, which is fixed, so that the vector
(result of the integration)

∮

S
dS does not change. Hence, the resulting relationship

in Eq.(P2.17) is satisfied (the dot product is zero) for an arbitrary direction of the
vector E and a fixed vector

∮

S
dS. This is possible only if

∮

S

dS = 0 , (P2.18)

which concludes our proof of this vector identity.

PROBLEM 2.11 Flux of the electric field intensity vector. With the use
of Eqs.(2.41) and (2.44), the flux of E through a closed surface S situated entirely
inside the polarized dielectric body can be expressed as

ΨE =

∮

S

E · dS =
1

ε0

(∮

S

D · dS−
∮

S

P · dS

)

=
1

ε0

(∫

v

ρ dv −
∮

S

P · dS

)

,

(P2.19)
where v denotes the volume enclosed by S.

Section 2.8 Electrostatic Field in Linear, Isotropic,
and Homogeneous Media

PROBLEM 2.12 Total enclosed bound and free charge. Combining
Eqs.(2.41), (2.47), (2.16), and (2.43), we obtain, similarly to Eqs.(2.60) and (2.61),
the following relationship between the total bound charge QpS and free charge QS
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enclosed by an imaginary closed surface S, via the permittivity ε of the homogeneous
dielectric (ε = const):

P =
ε− ε0
ε

D −→
∮

S

P · dS =
ε− ε0
ε

∮

S

D · dS −→ QpS = −ε− ε0
ε

QS .

(P2.20)

PROBLEM 2.13 Charge-free homogeneous medium. That there is no
bound volume charge in a homogeneous linear medium with no free volume charge
is obvious from Eq.(2.60):

ρ = 0 −→ ρp = −εr − 1

εr
ρ = 0 . (P2.21)

PROBLEM 2.14 Dielectric cylinder with free volume charge. This is
similar to Example 2.5 (dielectric sphere with free nonuniform volume charge).

(a) Applying the generalized Gauss’ law, Eq.(2.44), to the same cylindrical Gaussian
surface as in Problem 1.58 and Example 1.19, we obtain the following expression
for the electric flux density in the dielectric cylinder with ρ = const:

D(r) 2πrh = ρ πr2h
︸ ︷︷ ︸

v

−→ D(r) =
ρr

2
(0 ≤ r ≤ a) . (P2.22)

Having then in mind Eq.(2.47), the voltage between the axis and the surface of the
cylinder amounts to

V =

∫ a

r=0

E(r) dr =
1

εrε0

∫ a

0

D(r) dr =
ρa2

4εrε0
. (P2.23)

(b) As in Eqs.(2.67) and (2.68), the bound volume charge density inside the cylinder
and surface charge density on its surface [note that the polarization vector is zero
outside the cylinder, Eq.(2.21)] are

ρp(r) = −εr − 1

εr
ρ (0 ≤ r < a) and ρps = P (a−) =

εr − 1

εr
D(a−)

=
ρ(εr − 1)a

2εr
, (P2.24)

respectively.

PROBLEM 2.15 Linear-exponential volume charge distribution. (a) For
the field (observation) points in the p-type region of the semiconductor in Fig.2.42,
Eq.(2.74) now becomes

Ex(x) =
ρ0

εa

∫ x

x′=−∞
x′ ex

′/a dx′ = −ρ0a

ε

(

1− x

a

)

ex/a (−∞ < x ≤ 0) , (P2.25)
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where the integral is solved by integration by parts [
∫
x e−x dx = −(1+x) e−x+C].

Similarly, in the n-type region [see Eq.(2.75)] we have

Ex(x) =
ρ0

εa

(∫ 0

−∞
x′ ex

′/a dx′ +

∫ x

0

x′ e−x
′/a dx′

)

= −ρ0a

ε

(

1 +
x

a

)

e−x/a

(0 < x <∞) . (P2.26)

(b) Like in Eqs.(2.76) and (2.77), the potential at points in the p-type region in
Fig.2.42, for the reference point at the center of the junction (x = 0), is found as

V (x) =

∫ 0

x′=x

Ex(x
′) dx′ = −ρ0a

ε

∫ 0

x

(

1− x′

a

)

ex
′/a dx′

=
ρ0a

ε

[

2a
(

ex/a − 1
)

− x ex/a
]

(−∞ < x ≤ 0) , (P2.27)

and in the n-type region,

V (x) = −
∫ x

0

Ex(x
′) dx′ =

ρ0a

ε

∫ x

0

(

1 +
x′

a

)

e−x
′/a dx′

=
ρ0a

ε

[

2a
(

1− e−x/a
)

− x e−x/a
]

(0 < x <∞) . (P2.28)

(c) The voltage between the n-type and p-type ends (built-in voltage) of the pn

junction (diode) is

V (x→∞)− V (x→ −∞) =
4ρ0a

2

ε
. (P2.29)

Section 2.9 Dielectric-Dielectric Boundary
Conditions

PROBLEM 2.16 Dielectric-dielectric boundary conditions. (a) From the
boundary condition in Eq.(2.79), the tangential components of E1 and E2, namely,
their x- and y-components, must be the same on the two sides of the boundary
(plane z = 0), so

E2x = E1x = 4 V/m and E2y = E1y = −2 V/m . (P2.30)

As there is no free surface charge on the boundary, Eq.(2.83) gives the following for
the normal component (z-component) of E2 for z = 0−:

E2z = E2n =
εr1
εr2

E1n =
εr1
εr2

E1z = 10 V/m , (P2.31)

and hence

E2 = (4 x̂− 2 ŷ + 10 ẑ) V/m (ρs = 0) . (P2.32)
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(b) Now ρs in the plane z = 0 is nonzero, and we use the boundary condition in
Eq.(2.85) in place of Eq.(P2.31),

ε1E1n − ε2E2n = ρs −→ E2z =
1

εr2ε0
(εr1ε0E1z − ρs) = 7 V/m , (P2.33)

which, combined with Eqs.(P2.30), results in

E2 = (4 x̂− 2 ŷ + 7 ẑ) V/m (ρs 6= 0) . (P2.34)

PROBLEM 2.17 Conductor-dielectric boundary conditions. Conductor-
dielectric and conductor-free space boundary conditions in Eqs.(1.186), (2.58), and
(1.190) are obtained from dielectric-dielectric boundary conditions in Eqs.(2.84) and
(2.85) by specifying that E2 = 0 and D2 = 0 in the second medium (conductor) [see
Eq.(1.181)] and D = εE or D = ε0E in the first medium (dielectric or free space).

PROBLEM 2.18 Water-air boundary. Marking water as medium 2 and air as
medium 1 in Fig.2.11, the law of refraction of the electric field lines at the water-air
boundary in Eq.(2.87) gives

ε2 ≫ ε1 −→ ε1
ε2
≈ 0 −→ tanα1

tanα2
≈ 0 −→ α1 ≈ 0 (α2 = 45◦) ,

(P2.35)
meaning that the field lines in air are approximately normal to the water surface,
which is sketched in Fig.P2.4. Note that the exact angle α1 is

α1 = arctan

(
εr1
εr2

tanα2

)

= arctan
1

80
= 0.7◦ . (P2.36)

2

1

er2

er1

Figure P2.4 Refraction of electrostatic field lines at a water-air interface.
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Section 2.10 Poisson’s and Laplace’s Equations

PROBLEM 2.19 Poisson’s equation for inhomogeneous media. (a) Com-
bining Eqs.(2.45), (2.47), and (1.101), we obtain the following second-order differ-
ential equation:

∇ · (ε∇V ) = −ρ . (P2.37)

By means of the identity ∇· (fa) = f∇·a+(∇f) ·a (derived in Section 3.6), it can
be written also in the form

ε∇ · (∇V ) +∇V · ∇ε = −ρ −→ ∇2V +
1

ε
∇V · ∇ε = −ρ

ε
, (P2.38)

which we refer to as Poisson’s equation for an inhomogeneous medium. On the
other hand, if the dielectric medium is homogeneous, ε = const, so that ∇ε = 0,
and this equation becomes Eq.(2.93), namely, the standard Poisson’s equation.

(b) The version of Eq.(P2.38) for a charge-free region (ρ = 0), that is, Laplace’s
equation for an inhomogeneous medium, reads hence

∇2V +
1

ε
∇V · ∇ε = 0 , (P2.39)

which, in turn, reduces to the standard Laplace’s equation, Eq.(2.95), in the case
of a homogeneous medium.

PROBLEM 2.20 Vacuum diode. (a) We apply the one-dimensional Poisson’s
equation in the x-coordinate, Eq.(2.98), from which the volume charge density in
the vacuum (ε = ε0) diode in Fig.2.43 amounts to

ρ(x) = −ε0
d2V (x)

dx2
= −4ε0V0x

−2/3

9d4/3
(0 < x < d) . (P2.40)

(b)-(c) As in Eq.(2.101), the electric field intensity in the diode is given by

E(x) = −∇V = − dV (x)

dx
x̂ = −4V0x

1/3

3d4/3
x̂ (0 < x < d) . (P2.41)

Eq.(1.190) then tells us that the surface charge densities on the cathode and anode
(Fig.2.43) are

ρs1 = ε0 x̂ · E(0+) = 0 and ρs2 = ε0(− x̂) · E(d−) =
4ε0V0

3d
, (P2.42)

respectively.

(d) Performing a similar integration as in Eq.(1.149) and using the second expression
in Eqs.(1.30), the total charge of the diode turns out to be

Q =

∫

v

ρ(x)S dx
︸︷︷︸

dv

+ρs1S + ρs2S = −4ε0V0S

9d4/3

∫ d

x=0

x−2/3 dx+
4ε0V0S

3d
= 0 , (P2.43)
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where S stands for the (inner) surface area of the cathode or anode in Fig.2.43.

PROBLEM 2.21 Application of Poisson’s equation in spherical coordi-
nates. This is similar to the application of Poisson’s equation in Cartesian coordi-
nates in Example 2.7.

(a) Because of the spherical symmetry of the problem, the electric potential depends
only on the radial spherical coordinate r, so that the formula for the Laplacian in
spherical coordinates, Eq.(2.97), retains only the first term. Combining this formula
with Poisson’s equation, Eq.(2.93), we have

∇2V =
1

r2
d

dr

(

r2
dV

dr

)

= −ρ(r)
ε0

= −ρ0r

ε0a
(a < r < b) , (P2.44)

and the resulting second-order differential equation in r is solved by two integrations,
like in Eq.(2.99), as follows:

r2
dV

dr
=

∫ (

−ρ0r
3

ε0a

)

dr = −ρ0r
4

4ε0a
+ C1 −→ V (r) =

∫ (

−ρ0r
2

4ε0a
+
C1

r2

)

dr

= − ρ0r
3

12ε0a
− C1

r
+ C2 . (P2.45)

The integration constants, C1 and C2, are computed from the boundary conditions
at the surfaces of metallic electrodes,

V (a) = −ρ0a
2

12ε0
− C1

a
+ C2 = V0 and V (b) = − ρ0b

3

12ε0a
− C1

b
+ C2 = 0 . (P2.46)

Substituting the numerical data (note that ρ0 = 3 µC/m3), the two equations (in
two unknowns, C1 and C2) become

−100C1 + C2 = 12.82 and − 20C1 + C2 = 352.9 (C1 in V ·m; C2 in V) ,
(P2.47)

and their solution is C1 = 4.251 V ·m and C2 = 438 V. Hence, the potential at
an arbitrary point between the electrodes, for a < r < b, given with respect to the
outer electrode, which is at zero potential, comes out to be

V (r) =

(

−2.823× 106r3 − 4.251

r
+ 438

)

V (r in m) . (P2.48)

(b) In the same way as in Eq.(P1.81), we obtain the electric field vector between
the electrodes (a < r < b) from the result for V in Eq.(P2.48):

E(r) = −∇V = − dV

dr
r̂ =

(

8.47× 106r2 − 4.251

r2

)

r̂ V/m (r in m) . (P2.49)

PROBLEM 2.22 Application of Laplace’s equation in spherical coordi-
nates. Since ρ = 0 between the electrodes, we are now solving the one-dimensional
Laplace’s equation in the radial spherical coordinate r,

∇2V =
1

r2
d

dr

(

r2
dV

dr

)

= 0 (a < r < b) , (P2.50)
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and the two integrations result in

r2
dV

dr
= C1 −→ V (r) =

∫
C1

r2
dr = −C1

r
+ C2 . (P2.51)

From the boundary conditions,

V (a) = −C1

a
+ C2 = V0 and V (b) = −C1

b
+ C2 = 0 , (P2.52)

and hence C1 = −0.125 V ·m and C2 = −2.5 V, with which the solution for the
potential in Eq.(P2.51) becomes

V (r) =

(
0.125

r
− 2.5

)

V (r in m) . (P2.53)

(b) The electric field for a < r < b is given by

E(r) = − dV

dr
r̂ =

0.125

r2
r̂ V/m (r in m) . (P2.54)

Section 2.11 Finite-Difference Method for
Numerical Solution of Laplace’s Equation

PROBLEM 2.23 FD computer program – iterative solution. Computer
program for the finite-difference analysis of the coaxial cable of square cross section
(Fig.2.13) based on Eq.(2.107) is given in the associated MATLAB exercise.

(a) Simulation results for the distribution of the potential and the electric field
intensity in the space between the conductors and for the charge distribution of the
conductors of the square coaxial cable, taking the grid spacing to be d = a/10 and
the tolerance of the potential δV = 0.001 V, are shown in Fig.P2.5.

(b) The computed total charges per unit length of the inner and outer conductors of
the cable [Eq.(2.111)], taking d = a/N and N = 2, 3, 5, 7, 9, 10, and 12, respectively,
are tabulated in Table P2.1.

Table P2.1 Total charges p.u.l. of the
inner and outer conductors of the square
coaxial cable in Fig.2.13.

N Qinner[ C] Qouter[ C]

2 1.0625 × 10−10 −1.2103 × 10−10

3 1.0261 × 10−10 −1.1642 × 10−10

5 1.0219 × 10−10 −1.1374 × 10−10

7 1.0260 × 10−10 −1.1331 × 10−10

9 1.0281 × 10−10 −1.1380 × 10−10

10 1.0282 × 10−10 −1.1423 × 10−10

12 1.0265 × 10−10 −1.1544 × 10−10
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Figure P2.5 Electric potential and field intensity in the space between the con-
ductors, and the surface charge density on the surfaces of conductors, of the coaxial
cable of square cross section in Fig.2.13 – results by the iterative finite-difference
technique [Eqs.(2.107)-(2.110)] (FD computer program is provided in the associated
MATLAB exercise).

PROBLEM 2.24 FD computer program – direct solution. Computer pro-
gram for the finite-difference analysis of a square coaxial cable by directly solving
the system of linear algebraic equations with the potentials at interior grid nodes
in Fig.2.13(b) as unknowns is provided in the associated MATLAB exercise.

(a) The computed potential, field, and charge distributions, using the direct FD
technique, are shown in Fig.P2.6. A good agreement with the results by the iterative
FD technique (previous problem) is observed.

(b) Table P2.2 contains the results, obtained by the direct FD technique, for the
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Figure P2.6 Electric potential, field, and charge distributions of the square coax-
ial cable in Fig.2.13 – results by the direct finite-difference technique (computer
program is given in the associated MATLAB exercise).

total charges per unit length of the inner and outer conductors of the cable.

Table P2.2 Total p.u.l. charges of ca-
ble conductors obtained by the direct
FD technique.

N Qinner[ C] Qouter[ C]

2 1.0625 × 10−10 −1.2101 × 10−10

3 1.0267 × 10−10 −1.1620 × 10−10

5 1.0244 × 10−10 −1.1308 × 10−10

7 1.0317 × 10−10 −1.1197 × 10−10

9 1.0384 × 10−10 −1.1142 × 10−10

10 1.0414 × 10−10 −1.1124 × 10−10

12 1.0464 × 10−10 −1.1098 × 10−10

© 2011 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This publication is protected by Copyright and written permission should be 
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, 
mechanical, photocopying, recording, or likewise. For information  regarding permission(s), write to: Rights and Permissions Department, 
Pearson Education, Inc., Upper Saddle River, NJ 07458.



P2. Solutions to Problems: Dielectrics, Capacitance, Electric Energy 63

Section 2.13 Analysis of Capacitors with
Homogeneous Dielectrics

PROBLEM 2.25 Capacitance of the earth. Using Eq.(2.121), the capaci-
tance of the earth turns out to be

Cearth = 4πε0R = 709.6 µF (R = 6378 km) . (P2.55)

PROBLEM 2.26 Capacitance of a person. Taking the diameters of the
inscribed and overscribed spheres to be 2Rmin = 30 cm and 2Rmax = 170 cm,
respectively (note that these adopted dimensions are completely arbitrary, and are
just meant to be illustrative of an estimated value of the capacitance), that is,
Rmin = 15 cm and Rmax = 85 cm, we have 4πε0Rmin = 16.7 pF and 4πε0Rmax =
94.6 pF. Therefore, the capacitance of an average human body can be estimated to
be within the range 16.7 pF < C < 94.6 pF.

PROBLEM 2.27 Capacitance of a metallic cube, computed by the
MoM. The capacitance of the metallic cube numerically analyzed by the method
of moments in Problem 1.85 amounts to C = Q/V0 = 73.27 pF. The capacitances
of the metallic sphere [Eq.(2.119)] inscribed in the cube (sphere radius ra = a/2),
the sphere overscribed about the cube (rb = a

√
3/2), the one with rc = (ra + rb)/2,

the sphere having the same surface as the cube [rd = a
√

3/(2π)], and that with
the same volume as the cube {re = a[3/(4π)]1/3} come out to be Ca = 55.63 pF,
Cb = 96.36 pF, Cc = 76 pF, Cd = 76.88 pF, and Ce = 69.02 pF, respectively. We
see that the capacitance of the sphere whose radius equals the arithmetic mean of
the radii of spheres inscribed in and overscribed about the cube (Cc = 76 pF) is
quite close in value to the capacitance of the cube.

PROBLEM 2.28 RG-55/U coaxial cable. Using Eq.(2.123), the capacitance
per unit length of the RG-55/U coaxial cable amounts to C′ = 2πεrε0/ ln(b/a) =
70 pF/m.

PROBLEM 2.29 Capacitance p.u.l. of a square coaxial cable, FD anal-
ysis. The capacitance per unit length of the coaxial cable of square cross section
in Fig.2.13 numerically analyzed by the finite-difference technique presented in Sec-
tion 2.11 is obtained to be Citerative = 51.41 pF/m by the iterative FD technique
(Problem 2.23) and Cdirect = 52.07 pF/m by the direct FD technique (Problem
2.24), with the tolerance of the potential of δV = 0.001 V in the iterative solution
and the grid spacing of d = a/10 in both solutions. As a reference, the per-unit-
length capacitance of a (standard) coaxial cable (of circular cross section) having
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the same ratio of conductor radii (b/a = 3) and dielectric (air) as the square cable
is Cstandard coax = 50.61 pF/m [from Eq.(2.123)].

PROBLEM 2.30 Parallel-plate capacitor model of a thundercloud.
Based on Eqs.(2.127) and (2.126), the capacitance of the parallel-plate capacitor ap-
proximating a thundercloud, the voltage between the top and bottom of the cloud,
and the electric field intensity in the cloud come out to be C = ε0S/d = 132.8 nF,
V = Q/C = 2.26 GV, and E = V/d = 2.26 MV/m, respectively.

PROBLEM 2.31 MoM numerical analysis of a parallel-plate capacitor.
Computer program based on the method of moments for the analysis of the parallel-
plate capacitor in Fig.2.19 is given in the associated MATLAB exercise. Using the
MoM program, the capacitance (C) of this capacitor for d/a ratios of 0.1, 0.5, 1, 2,
and 10 is found to be 117 pF, 38.3 pF, 28.7 pF, 24 pF, and 20.6 pF, respectively.
The corresponding C values obtained from Eq.(2.127), which neglects the fringing
effects, turn out to be 88.5 pF, 17.7 pF, 8.85 pF, 4.43 pF, and 0.885 pF.

PROBLEM 2.32 Nonsymmetrical thin two-wire line. The only difference
with respect to the analysis of a symmetrical thin two-wire transmission line in air,
Fig.2.22, is the upper integration limit in computing the voltage between the line
conductors. Incorporating this change in Eqs.(2.140) and (2.141), we obtain the
following expression for the capacitance per unit length of a nonsymmetrical thin
two-wire line:

V =

∫ d−b

x=a

E dx =
Q′

2πε0

[
∫ d−b

a

dx

x
−
∫ d−b

a

d(d− x)
d− x

]

=
Q′

2πε0

[

lnx|d−ba − ln(d− x)|d−ba

]

=
Q′

2πε0

(

ln
d− b
a
− ln

b

d− a

)

=
Q′

2πε0
ln

(d− a)(d − b)
ab

≈ Q′

2πε0
ln
d2

ab
−→ C′ =

Q′

V
≈ πε0

ln(d/
√
ab)

(P2.56)

(since d− a ≈ d and d− b ≈ d).
Similarly, we can pursue an alternative way of obtaining C′ based on Eq.(1.197),

as in Eqs.(2.142) and (2.143), which now become

VM1 =
Q′

2πε0
ln
d− b
a

+
−Q′

2πε0
ln

b

d− a −→ C′ =
Q′

VM1

≈ πε0

ln(d/
√
ab)

. (P2.57)

Of course, for a = b, the result for C′ in Eq.(P2.56) or (P2.57) reduces to that
in Eq.(2.141).

PROBLEM 2.33 Thick symmetrical two-wire line. The capacitance per
unit length of a (thick or thin) symmetrical two-wire line with the wire distance to
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radius ratio d/a in air computed using the two expressions,

C′
1 =

πε0

ln{d/(2a) +
√

[d/(2a)]2 − 1}
and C′

2 =
πε0

ln(d/a)
, (P2.58)

for different values of d/a are given in Table P2.3. We see that the results obtained
with the thin-wire approximation of the line (C′

2) are quite accurate for d/a ≥ 10,
and are acceptable even for d/a ≥ 5.

Table P2.3 Capacitance p.u.l. of a two-wire
line computed by expressions in Eqs.(P2.58).

d/a C′

1 (pF/m) C′

2 (pF/m) Error (%)

3 28.9 25.32 14.15
5 17.754 17.283 2.72
10 12.134 12.08 0.443
20 9.2931 9.2853 0.084
100 6.04036 6.04023 0.0022

PROBLEM 2.34 Two small metallic spheres in air. The capacitor consist-
ing of two small metallic spheres in air can be analyzed as the thin two-wire line
in Fig.2.22, by just changing the field dependence Q′/(2πε0r) to Q/(4πε0r

2). With
this, Eq.(2.139) becomes

E = E1 + E2 =
Q

4πε0

[
1

x2
+

1

(d− x)2
]

, (P2.59)

and the voltage of the capacitor is, in place of Eq.(2.140), found as

V =

∫ d−a

x=a

E dx =
Q

4πε0

[
∫ d−a

a

dx

x2
−
∫ d−a

a

d(d− x)
(d − x)2

]

=
Q

4πε0

[
1

a
− 1

d− a −
(

1

d− a −
1

a

)]

=
Q

2πε0

(
1

a
− 1

d− a

)

≈ Q

2πε0a
(d≫ a) .

(P2.60)
Its capacitance is

C =
Q

V
= 2πε0a . (P2.61)

Note that, since d ≫ a, the voltage between the two spheres can alternatively
be obtained using the expression for the potential of an isolated metallic sphere,
Eq.2.120, twice. Namely, V can be computed as the voltage from the first sphere
(with charge Q) to the reference point for potential (at infinity) plus the voltage
from the reference point to the second sphere (the one with charge −Q), where the
two voltages equal the potential (with respect to infinity) of the first sphere and the
negative of the potential of the second sphere, respectively, so that

V = Vsphere with Q + (−Vsphere with −Q) =
Q

4πε0a
+

(

− −Q
4πε0a

)

=
Q

2πε0a
. (P2.62)
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PROBLEM 2.35 Four parallel wires in air. Let the first conductor of the
transmission line (the upper pair of wires) in Fig.2.44 be charged by Q′ and the
second conductor (the lower pair of wires) by −Q′ per unit of their length. Because
of symmetry, both charges, Q′ and −Q′, are distributed equally between the con-
nected wires, as shown in Fig.P2.7. Assuming that the second conductor of the line
(consisting of wires 3 and 4) is at a zero potential, the potential of the first conduc-
tor, namely, the potential at the point M1 on the surface of wire 1 (Fig.P2.7), with
respect to the reference point M2 taken on the surface of wire 3 (VM2 = 0) equals
the sum of the corresponding potentials (at M1, with respect to M2) due to charged
wires 1-4. Each of these potentials is computed using Eq.(1.197), as follows [also
see Eq.(2.144)]:

VM1 =
Q′/2

2πε0
ln
d

a
+
Q′/2

2πε0
ln
d
√

2

d
+
−Q′/2

2πε0
ln
a

d
+
−Q′/2

2πε0
ln

d

d
√

2
=

Q′

2πε0
ln
d
√

2

a
,

(P2.63)
so that the capacitance per unit length of the line amounts to

C′ =
Q′

VM1

=
2πε0

ln(d
√

2/a)
= 9.86 pF/m . (P2.64)
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Figure P2.7 Evaluation of the capacitance p.u.l. of the transmission line in Fig.2.44
(cross section of the structure).

PROBLEM 2.36 Two wires at the same potential and a foil. (a) We
assume that the first conductor (consisting of the two connected wires) of the trans-
mission line in Fig.2.45 (whose other conductor is the metallic foil) is charged by
Q′, i.e., that each of the wires is charged by Q′/2, and replace the foil by negative
images of the wires, as shown in Fig.P2.8. The voltage between wire 1 (or wire 2)
and the foil in the original system (Fig.2.45) equals a half of the voltage between
wires 1 and 3 in the equivalent system, so that, as in Eq.(2.146), the capacitance
per unit length of the original transmission line turns out to be twice that of the
equivalent line with wires 1 and 2 as one conductor and wires 3 and 4 as the other
conductor, in Fig.P2.8. This latter capacitance (C′

e) is evaluated using Eq.(1.197),
as in the previous problem,

VM1 =
Q′/2

2πε0
ln

2h

a
+
Q′/2

2πε0
ln
D

d
+
−Q′/2

2πε0
ln

a

2h
+
−Q′/2

2πε0
ln
d

D
=

Q′

2πε0
ln

2hD

ad

−→ C′
e =

Q′

VM1

=
2πε0

ln[2hD/(ad)]
= 13.25 pF/m , D =

√

d2 + (2h)2 , (P2.65)
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Figure P2.8 Equivalent (in the upper half-space) transmission line to that in
Fig.2.45, by virtue of image theory.

and thus the capacitance p.u.l. of the line in Fig.2.45 (between the short-circuited
two-wire line and the metallic foil) is C′ = 2C′

e = 26.5 pF/m.

(b) The induced surface charge density (ρs) at the point O on the foil (in Fig.2.45)
is obtained in a similar way to that carried out in Problem 1.88 or in Eqs.(1.220)
and (1.221). With reference to Fig.P2.8, we have

ρs = −ε0Etot = −ε0(4E1 cosα) , E1 =
Q′/2

2πε0(D/2)
, Q′ = C′V , cosα =

2h

D
(P2.66)

(V = 20 V), and hence ρs = −5.4 nC/m2.

PROBLEM 2.37 Capacitance per unit length of a wire-corner line. To
find the capacitance per unit length of the transmission line in Fig.1.57, whose
one conductor is the thin metallic wire and the other conductor is the 90◦ corner
metallic screen, we use the expression for the voltage V between the wire and the
screen obtained in Problem 1.89, and write

C′ =
Q′

V
=

2πε0

ln(h
√

2/a)
= 13.06 pF/m . (P2.67)

PROBLEM 2.38 Equivalent circuit with two spherical capacitors. (a)-
(b) The system in Fig.1.41 can be replaced by two air-filled spherical capacitors,
one with radii of electrodes a and b, as in Fig.2.16, and the other with radii c
and d → ∞ (in place of a and b), which gives rise to the equivalent circuit in
Fig.2.46. The capacitances of the capacitors in the schematic diagram are thus,
from Eq.(2.119),

Cab =
4πε0ab

b− a and Ccd = 4πε0c , (P2.68)
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where Ccd can also be obtained from Eq.(2.121), as the capacitance of an isolated
metallic sphere of radius c in air.

(c) The charge of the first (left) electrode of the first capacitor (of capacitance Cab)
in Fig.2.46 equals the charge of the metallic sphere in Fig.1.41, so Qa = Q. The
charge of the second electrode of this capacitor is opposite, hence Qb = −Qa =
−Q. Since the metallic shell in Fig.1.41 is uncharged, and it is represented by the
second electrode of the first capacitor and first electrode of the second capacitor (of
capacitance Ccd) in the equivalent circuit, we have Qb+Qc = 0 and Qc = −Qb = Q
in Fig.2.46, and then Qd = −Qc = −Q for the second capacitor.

From Fig.2.46, the potential at the point O in Fig.1.41, that is, the potential of
the metallic sphere, can be obtained, using Eqs.(2.113) and (P2.68), as

V = Vab + Vcd =
Qa
Cab

+
Qc
Ccd

=
Q(bc− ac+ ab)

4πε0abc
, (P2.69)

which, of course, is the same result as in Eq.(1.202).

PROBLEM 2.39 Equivalent circuit with three spherical capacitors. (a)
With a similar reasoning as in the previous problem, we replace the system of three
metallic shells from Problem 1.77 by an equivalent circuit shown in Fig.P2.9, where
the capacitances of the three spherical capacitors amount to

Cab =
4πε0ab

b− a = 8.34 pF , Ccd =
4πε0cd

d− c = 20 pF , Cef = 4πε0e = 11.13 pF .

(P2.70)
For the charges of individual electrodes of capacitors, we now have

Qa = Q = 10 nC , Qb = −Qa = −Q , Qb +Qc = Qm (unknown) ,

Qd = −Qc , Qd +Qe = 0 (outer shell uncharged) . (P2.71)

Vio

V+

+

O

Qa Qb
Qc Qd

Cab Ccd

Qe Qf

Cef

inner
shell Qm

middle
shell outer

shell

Figure P2.9 Equivalent circuit (with three spherical capacitors) for the system of
three spherical metallic shells from Problem 1.77.

From the schematic diagram in Fig.P2.9 and Eqs.(P2.71), the given potential of
the middle shell with respect to the reference point at infinity can be expressed as

V = Vcd + Vef =
Qc
Ccd

+
Qe
Cef

=
−Qd
Ccd

+
−Qd
Cef

= −Qd
Ccd + Cef
CcdCef

(V = 1 kV) ,

(P2.72)
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and hence, using Eqs.(P2.70) as well, the charge of the middle shell (Qm) turns out
to be

Qd = − CcdCefV

Ccd + Cef
= −7.15 nC −→ Qm = Qb +Qc = −Q−Qd = −2.85 nC .

(P2.73)
The voltage between the inner and outer shells equals

Vio = Vab + Vcd =
Qa
Cab

+
Qc
Ccd

=
Q

Cab
+
−Qd
Ccd

= 1.55 kV , (P2.74)

the same as in Eq.(P1.154).

(b) For changed conditions in the circuit in Fig.P2.9 (and a slightly different nota-
tion), set in Problem 1.78, the charges of capacitor electrodes are given by

Qa = Q1 = 2 nC , Qb = −Qa = −Q1 , Qb +Qc = Q2 = Qm (unknown) ,

Qd = −Qc , Qd +Qe = Q3 = −2 nC (outer shell is now charged) , (P2.75)

from which the charges of the second and third capacitors are Qc = Q1 + Q2 and
Qe = Q1 + Q2 + Q3, respectively. Since the voltage between the inner and outer
shells is zero, we obtain the charge of the middle shell (Q2) as follows:

0 = Vab + Vcd =
Qa
Cab

+
Qc
Ccd

=
Q1

Cab
+
Q1 +Q2

Ccd
−→ Q2 = −6.8 nC . (P2.76)

Finally, the potential of the inner and outer shells (V1 = V3) and that of the middle
shell (V2), with respect to the reference point at infinity, are

V1 = V3 = Vef =
Qe
Cef

=
Q1 +Q2 +Q3

Cef
= −611 V ,

V2 = Vcd + V3 =
Qc
Ccd

+ V3 =
(Q1 +Q2)

Ccd
+ V3 = −851 V , (P2.77)

which are the same results as in Problem 1.78.

PROBLEM 2.40 Equivalent circuit with parallel-plate capacitors. The
capacitors in the equivalent circuit in Fig.2.47 are parallel-plate capacitors, whose
capacitances are found from Fig.1.42 neglecting the fringing effects and using
Eq.(2.127):

C1 = C2 = C3 = ε0
S

d
= 442.7 pF . (P2.78)

We express the given potential V of the second electrode with respect to the ground
as the voltage, in Fig.2.47, between that electrode and the first one (which is
grounded) and as the voltage to the fourth electrode (also grounded), respectively.
We also express the given charge Q of the third electrode as the sum of charges of
the corresponding capacitor plates (in Fig.2.47). What we obtain are the following
three equations:

V = V2 = V21 = −V12 = −Q1

C1
, V = V23 + V34 =

Q2

C2
+
Q3

C3
, −Q2 +Q3 = Q ,

(P2.79)
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whose solution is Q1 = −885.4 nC, Q2 = −557.3 nC, and Q3 = 1.443 µC. By means
of Eqs.(2.126) and (2.113), the electric field intensities in capacitors in Fig.2.47, i.e.,
between the electrodes in Fig.1.42(b), amount to

E1 =
V12

d
=

Q1

C1d
= −100 kV/m , E2 =

V23

d
=

Q2

C2d
= −63 kV/m ,

E3 =
V34

d
=

Q3

C3d
= 163 kV/m . (P2.80)

Of course, E4 = 0 in Fig.1.42(b), as the field in the (fourth) capacitor with short-
circuited plates, which is not shown in Fig.2.47.

PROBLEM 2.41 Equivalent circuit with cylindrical capacitors. Fig.P2.10
shows an equivalent circuit with three cylindrical capacitors, whose capacitances per
unit length of the system in Fig.1.55 are computed using the expression for C′ of a
coaxial cable, Eq.(2.123),

C′
12 =

2πε0
ln[3d/(2d)]

= 137.2 pF/m , C′
23 =

2πε0
ln[5d/(4d)]

= 249.3 pF/m ,

C′
34 =

2πε0
ln[7d/(6d)]

= 360.9 pF/m . (P2.81)

Qa Qb Qc Qd
Qe

Qf

1 2 3 4
C12 C23 C34

+ V3

Q2 = 0

Figure P2.10 Equivalent circuit (with three cylindrical capacitors) for the system
of four cylindrical conductors (shells) in Fig.1.55.

From the given potential of the third conductor (cylindrical shell) in Fig.1.55
with respect to the ground, expressed, in the circuit in Fig.P2.10, via the voltage
between that conductor and the fourth one, we get

V3 =
Q′
e

C′
34

(V3 = 1 kV) −→ Q′
e = C′

34V3 = 360.9 nC/m . (P2.82)

Since the second conductor is uncharged, we see (in Fig.P2.10) that

Q′
b +Q′

c = Q′
2 = 0 −→ Q′

c = −Q′
b = Q′

a . (P2.83)

Expressing then V3 via the voltage on the other side, to the first conductor, gives

V3 = − Q
′
a

C′
12

− Q′
c

C′
23

= −Q′
a

C′
12 + C′

23

C′
12C

′
23

−→ Q′
a = −C

′
12C

′
23V3

C′
12 + C′

23

= 88.5 nC/m .

(P2.84)

© 2011 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This publication is protected by Copyright and written permission should be 
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, 
mechanical, photocopying, recording, or likewise. For information  regarding permission(s), write to: Rights and Permissions Department, 
Pearson Education, Inc., Upper Saddle River, NJ 07458.



P2. Solutions to Problems: Dielectrics, Capacitance, Electric Energy 71

Hence, the total charges p.u.l. of the first and third conductors (in Fig.1.55) come
out [from Fig.P2.10 and Eqs.(P2.82)-(P2.84)] to be

Q′
1 = Q′

a = −88.5 nC/m , Q′
3 = Q′

d+Q′
e = −Q′

c+Q′
e = −Q′

a+Q′
e = 450 nC/m ,

(P2.85)
and the results are the same as those obtained in Problem 1.79.

Section 2.14 Analysis of Capacitors with
Inhomogeneous Dielectrics

PROBLEM 2.42 Spherical capacitor with a solid and liquid dielectric.
In the first (old) electrostatic state, the charge of the capacitor is, from Eq.(2.164),

Q = 4πε0

(
b− a
εr1ab

+
c− b
εr2bc

)−1

V = 1.152 nC (V = Vsource = 100 V) . (P2.86)

Upon the voltage source is disconnected, and the capacitor is left to itself, this
charge remains the same in the new electrostatic state, in which the capacitance
of the capacitor is changed (oil is drained from the capacitor, so εr2 = 1), and the
voltage across open-circuited terminals of the capacitor turns out to be:

Vnew =
Q

4πε0

(
b− a
εr1ab

+
c− b
bc

)

= 136.5 V . (P2.87)

PROBLEM 2.43 Oil drain without disconnecting the source. The capac-
itor charge in the old electrostatic state is Q = 1.152 nC (previous problem), and
that in the new state (with εr2 = 1) amounts to

Qnew = 4πε0

(
b− a
εr1ab

+
c− b
bc

)−1

Vsource = 843.3 pC . (P2.88)

The difference equals the charge flow through the source circuit (in the direction
from the positive end of the source toward the positive electrode of the capacitor,
that with Q):

Qflow = ∆Q = Qnew −Q = −308.3 pC . (P2.89)

PROBLEM 2.44 Metallic sphere with dielectric coating. (a) This is a
D-system, and the electric flux density vector, D, in both the dielectric coating and
air is given by Eqs.(2.161) and (2.162), where Q is the charge of the metallic sphere.
The electric field intensity vector is E1 = D/(εrε0) in the coating and E2 = D/ε0 in
air. From this field, we can express, by integration, the potential of the sphere (with
respect to the reference point at infinity), V , in terms of Q, and find its capacitance
(C) employing Eq.(2.116). Alternatively, we can consider the dielectrically coated

© 2011 Pearson Education, Inc., Upper Saddle River, NJ.  All rights reserved. This publication is protected by Copyright and written permission should be 
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, 
mechanical, photocopying, recording, or likewise. For information  regarding permission(s), write to: Rights and Permissions Department, 
Pearson Education, Inc., Upper Saddle River, NJ 07458.
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metallic sphere in Fig.2.48 as a special case of the spherical capacitor with two
dielectric layers in Fig.2.27, and specialize Eq.(2.164) specifying εr1 = εr, εr2 = 1,
and c→∞, to obtain

C = 4πε0

(
b− a
εrab

+
1

b

)−1

=
4πεrε0ab

b− a+ εra
= 2.224 pF . (P2.90)

(b) Using Eq.(2.58) or (1.191), the density of free surface charge on the metallic
sphere in Fig.2.48 amounts to

ρs = D(a+) =
Q

4πa2
=

CV

4πa2
= 1.77 µC/m2 . (P2.91)

(c) Eq.(2.60) tells us that there is no bound volume charge in a homogeneous linear
medium with no free volume charge; so, in both the dielectric coating and air in
Fig.2.48, ρp = 0.

(d) By means of Eqs.(2.61) and (P2.91), the bound surface charge density on the
surface of the dielectric coating next to the metallic sphere equals

ρpsa = −εr − 1

εr
ρs = −1.327 µC/m2 , (P2.92)

while, from Eqs.(2.23), (2.59), and (2.47), the bound surface charge density on the
other surface of the coating is

ρpsb = P (b−) =
εr − 1

εr
D(b−) =

εr − 1

εr

CV

4πb2
= 147.6 nC/m2 . (P2.93)

Q

e

e0

E

a

r

b

rpsa

rpsb

rs1

rs2

rs3

rs4

Figure P2.11 Evaluation of the free and bound surface charges in the spherical
capacitor half filled with a liquid dielectric in Fig.2.29.

PROBLEM 2.45 Charge densities in a half-filled spherical capacitor.
(a) With the electric field intensity E(r) in the capacitor given in Eq.(2.175) and
notation in Fig.P2.11, Eq.(2.58) results in the following free surface charge densities
on metallic surfaces of the capacitor:

ρs1 = εrε0E(a+) =
εrQ

2π(εr + 1)a2
= 2.98 µC/m2 , ρs2 = ε0E(a+) =

Q

2π(εr + 1)a2
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= 995 nC/m2 , ρs3 = −εrε0E(b−) = − εrQ

2π(εr + 1)b2
= −119 nC/m2 ,

ρs4 = −ε0E(b−) = − Q

2π(εr + 1)b2
= −39.8 nC/m2 . (P2.94)

(b) From Eq.(2.61) and (P2.94), bound surface charge densities on dielectric surfaces
next to capacitor electrodes in Fig.P2.11 are

ρpsa = −εr − 1

εr
ρs1 = −1.99 µC/m2 , ρpsb = −εr − 1

εr
ρs3 = 79.6 nC/m2 ,

(P2.95)
while Eq.(2.23) tells us that there is no bound charge on the surfaces dielectric-air
in the capacitor, as vectors E and P are tangential on these surfaces.

PROBLEM 2.46 Empty and half-filled spherical capacitor. Using
Eq.(2.119), the charge of the empty (air-filled) spherical capacitor in the first elec-
trostatic state equals

Q = CV =
4πε0abV

b− a (V = Vsource = 15 kV) . (P2.96)

Eq.(2.176) then gives the following for the voltage across the open-circuited termi-
nals of the capacitor, half filled with a liquid dielectric, in the new state (Q is the
same):

Vnew =
Q

Cnew
=

(b− a)Q
2π(εr + 1)ε0ab

=
2V

εr + 1
= 8.571 kV . (P2.97)

PROBLEM 2.47 Metallic sphere half embedded in a dielectric. (a) This
is anE-system, and the electric field intensity vector (E) is entirely radial. Moreover,
it can be evaluated in the same way as in Fig.2.29 and Eq.(2.174), and is given in
Eq.(2.175). By integrating E(r) from the metallic sphere surface to the reference
point at infinity, we can obtain the potential of the sphere and its capacitance.
Alternatively, we can use Eq.(2.176) with b→∞. In either way, the capacitance of
the metallic sphere in Fig.2.49 comes out to be

C = 2π(εr + 1)ε0a . (P2.98)

(b) The two terms in the application of the generalized Gauss’ law in Eq.(2.174)
actually show how the charge Q of the metallic sphere in Fig.2.49 is distributed
between its two halves; the ratio of the charge on the lower half, Q1,to the charge
of the upper half, Q2, is thus

Q1

Q2
=
D1

D2
=
εrε0E

ε0E
= εr , (P2.99)

and hence the portion of Q that is located on the upper half of the sphere amounts
to

Q2

Q
=

1

εr + 1
. (P2.100)
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PROBLEM 2.48 Coaxial cable with two coaxial dielectric layers. This
is a cylindrical version of the structure in Fig.2.27, so Eq.(2.162) becomes

D(r) =
Q′

2πr
, a < r < c , (P2.101)

and the voltage between the conductors of the coaxial cable in Fig.2.50 is

V =

∫ b

r=a

D(r)

ε1
dr +

∫ c

r=b

D(r)

ε2
dr =

Q′

2π

(
1

ε1
ln
b

a
+

1

ε2
ln
c

b

)

. (P2.102)

Hence, the capacitance per unit length of the cable amounts to

C′ =
Q′

V
= 2πε0

(
1

εr1
ln
b

a
+

1

εr2
ln
c

b

)−1

= 114.7 pF/m . (P2.103)

Alternatively, we can find C′ of the cable in Fig.2.50 as the equivalent total
p.u.l. capacitance of a series connection, Eq.(2.156), of two coaxial cables with
homogeneous dielectrics, whose p.u.l. capacitances, from Eq.(2.123), are given by

C′
1 =

2πεr1ε0
ln(b/a)

and C′
2 =

2πεr2ε0
ln(c/b)

. (P2.104)

PROBLEM 2.49 Coaxial cable with a radial variation of permittivity.
(a) This, again, is a cylindrical version of the structure analyzed in Example 2.19.
The electric flux density vector in the dielectric is radial with respect to the cable
axis and its magnitude is given by D(r) = Q′/(2πr). Similarly to the integration in
Eq.(2.169), the voltage of the cable can be computed as

V =

∫ b

a

E(r) dr =

∫ b

a

D(r)

εr(r)ε0
dr =

Q′

2πε0

∫ b

a

dr

rεr(r)
, (P2.105)

and its per-unit-length capacitance as

C′ =
Q′

V
= 2πε0

[
∫ b

a

dr

rεr(r)

]−1

=
2πε0b

b− a = 69.54 pF/m . (P2.106)

(b) The volume and surface bound charge densities in the dielectric are found as
in Eqs.(2.170)-(2.172) [of course, here we use the formula for the divergence in
cylindrical coordinates, Eq.(1.170), to compute ρp]:

P (r) =
εr(r)− 1

εr(r)
D(r) =

εr(r)− 1

εr(r)

C′V

2πr
=
ε0bV

b− a

(
1

r
− a

r2

)

−→ ρp = −∇ ·P = −1

r

d

dr
[rP (r)] = − ε0abV

(b− a)r3 = −5ε0aV

4r3
,

ρpsa = −P (a+) = 0 , ρpsb = P (b−) =
ε0V

5a
. (P2.107)
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PROBLEM 2.50 Coaxial cable with four dielectric sectors. (a) This is
the same type of structure as the one in Fig.2.30, and we can modify (specialize),
according to the permittivity variation in Fig.2.51, either Eqs.(2.177) or just the
final result – the expression for the capacitance per unit length of the cable in
Eqs.(2.178) with the integral in φ, which now reduces to

C′ =

∫ 2π

0 ε(φ) dφ

ln(b/a)
=
εr1ε0π/2 + εr2ε0π/2 + εr3ε0π/2 + εr4ε0π/2

ln(b/a)

=
π (εr1 + εr2 + εr3 + εr4) ε0

2 ln(b/a)
= 211 pF/m . (P2.108)

(b) As explained in Example 2.21, the electric field intensity, E(r), in the dielectric
of the cable in Fig.2.51 is given in Eq.(2.124), so that its value near the inner
conductor of the cable amounts to

E(a+) =
V

a ln(b/a)
= 9.978 kV/m , for 0 ≤ φ ≤ 2π . (P2.109)

Similarly to Eqs.(2.179) and (2.180), the free surface charge densities on the inner
conductor of the cable – for the notation in Fig.P2.12 – are:

ρs1 = εr1ε0E(a+) = 530 nC/m2 , ρs2 = εr2ε0E(a+) = 176.7 nC/m2 ,

ρs3 = εr3ε0E(a+) = 88.35 nC/m2 , ρs4 = εr4ε0E(a+) = 883.5 nC/m2 . (P2.110)

er3 er2

er4 er1
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o
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rs1
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Figure P2.12 Free surface charge densities on the inner conductor of the coaxial
cable in Fig.2.51 (cross section of the structure).

PROBLEM 2.51 Charge distribution for two coated wires. Since d ≫ a
in Fig.2.31, we neglect the electric field due to the second conductor (which is far
away) while computing the charge distributions near the first conductor and its
dielectric coating, and vice versa.

(a) Using Eqs.(2.58), (2.181), and (2.183), the densities of free surface charges on
the wire conductors, for the notation in Fig.P2.13, amount to

ρs1 = D1|near wire 1 = D1(a
+) =

Q′

2πa
=
C′V

2πa
= 16.4 nC/m2 ,
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ρs2 = − D2|near wire 2 = −ρs1 = −16.4 nC/m2 (C′ = 10.3 pF/m) . (P2.111)
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Figure P2.13 Free and bound surface charge densities in the thin two-wire line
with dielectric coatings over conductors in Fig.2.31 (cross section of the structure).

(b) From Eq.(2.60), ρp = 0 (because ρ = 0) in the dielectric coatings. By means
of Eqs.(2.61), (2.23), (2.59), and (2.47), the bound surface charge densities on indi-
vidual surfaces of coatings (Fig.P2.13) are

ρps1 = −εr − 1

εr
ρs1 = −12.3 nC/m2 , ρps2 = −ρps1 = 12.3 nC/m2 ,

ρps3 = P (2a−) =
εr − 1

εr
D(2a−) =

εr − 1

εr

Q′

2π(2a)
=
εr − 1

εr

C′V

4πa
= 6.15 nC/m2 ,

ρps4 = −ρps3 = −6.15 nC/m2 . (P2.112)

PROBLEM 2.52 Two metallic spheres with dielectric coating. The volt-
age between the two dielectrically coated spheres can, since d≫ a, be computed as
the voltage from the positively charged sphere to the reference point for potential (at
infinity) plus the voltage from the reference point to the negatively charged sphere.
By the same token, the capacitance between the two spheres (C of the associated
capacitor) can be obtained as the equivalent capacitance of a series connection of
two equal capacitors, using Eq.(2.156), so as

C =
Cone sphereCone sphere

Cone sphere + Cone sphere
=
Cone sphere

2
= 1.112 pF , (P2.113)

where Cone sphere is the capacitance of one (isolated) metallic sphere with the di-
electric coating (Fig.2.48), found in Problem 2.44. Of course, the same result (for
voltage and capacitance) can be obtained by integrating the electric field vector, be-
tween the surfaces of the two metallic spheres, along the line connecting the centers
of the two spheres, as in Fig.2.31.

PROBLEM 2.53 Two metallic spheres half embedded in a dielectric. (a)
As in the previous problem, the capacitance of the capacitor in Fig.2.52 amounts to

C =
Cone sphere

2
= π(εr + 1)ε0a = 0.695 pF , (P2.114)

with Cone sphere now being the capacitance of one (isolated) metallic sphere (half
embedded in a dielectric half-space) in Fig.2.49, computed in Problem 2.47.

(b)-(c) Because d ≫ a, we evaluate the charge distributions on and near each of
the metallic spheres in Fig.2.52 neglecting the electric field due to the other charged
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electrode of the capacitor. Therefore, the electric field intensity E(r) around each
of the spheres can in this computation be considered to be that in Eq.(2.175), so

E(r) =
Q

2π(εr + 1)ε0r2
=

CV

2π(εr + 1)ε0r2
=
aV

2r2
. (P2.115)

Using Eqs.(2.58), (2.60), (2.61), and (2.23), the free and bound charge densities in
the system, for the notation in Fig.P2.14, are found to be

ρs1 = εrε0E(a+) =
εrε0V

2a
= 708 nC/m2 , ρs2 = ε0E(a+) =

ε0V

2a
= 177 nC/m2 ,

ρp = 0 , ρps1 = −εr − 1

εr
ρs1 = −531 nC/m2 , ρps2 = ρps3 = 0 . (P2.116)

e0

e

d

a aQ -Q

rs1

rs2

rps1

rps2

rps3

-rs1

-rs2

-rps1

-rps2

rp

Figure P2.14 Free and bound charge densities in the system of two charged metal-
lic spheres pressed into a dielectric half-space in Fig.2.52.

PROBLEM 2.54 Permittivity gradient normal to capacitor plates. Let
us subdivide the dielectric into thin slices of thicknesses dx as shown in Fig.P2.15.
As each thin layer (slice) can be considered as being homogeneous, of permittivity
ε(x), it is obvious that this capacitor represents a D-system and, moreover, a gen-
eralization of the parallel-plate capacitor in Fig.2.25(a), which has only two such
layers. Therefore, the electric flux density vector in all thin layers is the same, given
by Eq.(2.147), with the fringing neglected, that is,

D = D x̂ =
Q

ab
x̂ (0 ≤ x ≤ d) , (P2.117)

which can be confirmed, for instance, applying the generalized Gauss’ law, Eq.(2.43),
to a rectangular closed surface enclosing the first plate, with the right-hand side
positioned in either one of the slices in Fig.P2.15. The electric field intensity vector
in the dielectric is

E(x) =
D

ε(x)
x̂ =

Q

ε(x)ab
x̂ . (P2.118)

The voltage of the capacitor amounts to

V =

∫ d

x=0

E(x) dx =
Q

ab

∫ d

0

dx

ε(x)
=

Q

2ε0ab

∫ d

0

dx

1 + 3x/d
=
Qd ln 4

6ε0ab
, (P2.119)

and its capacitance to

C =
Q

V
=

6ε0ab

d ln 4
. (P2.120)

Alternatively, this capacitance can be obtained by modeling each thin layer
in Fig.P2.15 (boundary surfaces between layers can be metalized) by a parallel-
plate capacitor with a homogeneous dielectric, plate separation dx, and capacitance
[Eq.(2.127)]

Cthin layer = ε(x)
ab

dx
(0 ≤ x ≤ d) . (P2.121)
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x

b

d
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Q -Q
e(x)

dx

E( )x

D

Figure P2.15 Analysis of a parallel-plate capacitor with dielectric permittivity
gradient normal to plates [ε = ε(x) in Fig.2.53].

Of course, all these capacitors are connected in series, and, in the equivalent circuit
representing a generalization of the circuit in Fig.2.26(a), the equivalent resultant
capacitance of such a connection equals, having Eqs.(2.155) and (2.156) in mind,
the inverse of the sum (integral) of the inverses of individual capacitances,

1

C
=

∫ d

x=0

1

Cthin layer
=

∫ d

0

dx

ε(x)ab
=

1

2ε0ab

∫ d

0

dx

1 + 3x/d
=
d ln 4

6ε0ab
. (P2.122)

PROBLEM 2.55 Permittivity gradient parallel to capacitor plates. We
now subdivide the dielectric into thin layers of thicknesses dy as depicted in
Fig.P2.16, where each such layer can be considered as being homogeneous, of per-
mittivity ε(y), which implies that this is an E-system representing a generalization
of the parallel-plate capacitor with two homogeneous layers in Fig.2.25(b). The
electric field intensity vector in all layers, in both capacitors, equals [Eq.(2.151)]

E = E x̂ =
V

d
x̂ (0 ≤ y ≤ b) , (P2.123)

and the electric flux density vector is

D(y) = ε(y)E x̂ =
ε(y)V

d
x̂ . (P2.124)

The generalized Gauss’ law applied to a rectangular box surface positioned about
the first plate (Fig.P2.16) yields

∫ b

y=0

D(y) a dy
︸︷︷︸

dS

= Q −→ aV

d

∫ b

0

ε(y) dy = Q , (P2.125)

where dS is the area of an elemental strip of length a and width dy, and Q is the
charge of the capacitor, and hence the capacitance of the capacitor

C =
Q

V
=
a

d

∫ b

0

ε(y) dy =
2ε0a

d

∫ b

0

[

1 + 3 sin
(π

b
y
)]

dy =
2(π + 6)ε0ab

πd
.

(P2.126)
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dy e(y)

Figure P2.16 Analysis of a parallel-plate capacitor with dielectric permittivity
gradient parallel to plates [ε = ε(y) in Fig.2.53].

An alternative approach based on an equivalent circuit as in Fig.2.26(b) is also
possible, where every thin layer in Fig.P2.16 is modeled by an elementary parallel-
plate capacitor with a homogeneous dielectric, plate area a dy, and plate separation
d, whose capacitance, from Eq.(2.127), is

dC = ε(y)
a dy

d
(0 ≤ y ≤ b) . (P2.127)

According to Eq.(2.159), the total capacitance of the parallel connection of all the
elementary capacitors amounts to

C =

∫ b

y=0

dC =

∫ b

0

ε(y)
a dy

d
=

2(π + 6)ε0ab

πd
. (P2.128)

PROBLEM 2.56 Capacitor with a nonlinear dielectric layer. (a)-(b)
This is similar to Example 2.23. Referring to Fig.P2.17, the condition V = 0 across
the capacitor (it is short-circuited) gives

Ed+ E0d = 0 −→ E = −E0 . (P2.129)

From the boundary condition for the normal components of the vector D in
Eq.(2.81), applied to the interface between the air-filled region and the ferroelectric
layer in Fig.P2.17, midway between the capacitor plates, we have

D0 = D . (P2.130)

Air is a linear medium and the relationship between D and E in Eq.(2.51) holds
true. The ferroelectric is nonlinear and the relationship in Eq.(2.47) cannot be used,
but we can invoke the definition of D in Eq.(2.41), so that Eq.(P2.130) becomes

ε0E0 = ε0E + P . (P2.131)

Solving Eqs.(P2.129) and (P2.131), we obtain E0 = P/(2ε0) (in air) and E =
−P/(2ε0) (in the dielectric).
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D0
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Figure P2.17 Electric field intensities and flux densities in the nonlinear dielectric
layer and air region of the short-circuited parallel-plate capacitor in Fig.2.54.

Section 2.16 Electric Energy Density

PROBLEM 2.57 Energy of a spherical capacitor with two layers. (a)
Based on Eqs.(2.202), (2.199), and (2.162), the electric energy stored in the inner
dielectric layer in Fig.2.27 is obtained by integrating the electric energy density, we1,
over the volume (v1) of this layer as follows:

We1 =

∫

v1

we1 dv =

∫ b

r=a

D(r)2

2ε1
4πr2 dr
︸ ︷︷ ︸

dv

=

∫ b

a

Q2

2ε1(4πr2)2
4πr2 dr

=
Q2

8πε1

(
1

a
− 1

b

)

=
(b− a)Q2

8πεr1ε0ab
= 194.5 pJ , (P2.132)

where dv is adopted in the form of a thin spherical shell of radius r and thickness dr,
Eq.(1.33), and Q is the charge of the capacitor, computed in Eq.(2.164). Similarly,
the electric energy of the outer dielectric layer comes out to be

We2 =

∫

v2

we2 dv =

∫ c

b

D(r)2

2ε2
4πr2 dr =

(c− b)Q2

8πεr2ε0bc
= 74.1 pJ . (P2.133)

(b) Alternatively, the energies in each of the dielectric layers can be found by repre-
senting the capacitor as a series connection [Fig.2.26(a)] of two spherical capacitors
with homogeneous dielectrics, whose capacitances, C1 and C2, corresponding to the
individual layers, are given in Eqs.(2.165). Thus, using Eq.(2.192), we have

We1 =
Q2

2C1
=

(b − a)Q2

8πεr1ε0ab
= 194.5 pJ and We2 =

Q2

2C2
=

(c− b)Q2

8πεr2ε0bc
= 74.1 pJ .

(P2.134)
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PROBLEM 2.58 Change in energy of a spherical capacitor. With the
use of Eq.(2.192), the change in electric energy of the capacitor between the two
electrostatic states turns out to be

∆We = (We)new− (We)old =
1

2
QVnew−

1

2
QVsource =

1

2
Q (Vnew − Vsource) = 21 nJ ,

(P2.135)
where Q = 1.152 nC, Vnew = 136.5 V, and Vsource = 100 V (Problem 2.42).

PROBLEM 2.59 Energy of a coated metallic sphere. We can metalize the
equipotential surface r = b in the structure in Fig.2.48 and thus obtain two spherical
capacitors, with electrode radii of the second (air-filled) one being b and c → ∞.
Based on Eq.(2.192), the electric energies stored in the dielectric coating and in air
in Fig.2.48 can then, respectively, be expressed as

We1 =
Q2

2C1
and We2 =

Q2

2C2
, (P2.136)

where the charges of the two capacitors in the equivalent circuit in Fig.2.26(a)
are the same, Q, and their capacitances are obtained from Eqs.(2.165) specifying
εr1 = εr, εr2 = 1, and c→∞:

C1 =
4πεrε0ab

b − a and C2 = 4πε0b . (P2.137)

The required equality of two energies in Eqs.(P2.136), i.e., the requirement that 1/2
of the total energy of the system is stored in the coating, implies the equality of the
capacitances in Eqs(P2.137), which further leads to

We1 = We2 −→ C1 = C2 −→ εra

b− a = 1 −→ b = (εr + 1) a = 5 cm .

(P2.138)

PROBLEM 2.60 Energy of a coaxial cable with two coaxial layers. This
is a cylindrical version of the energy computation in Problem 2.57.

(a) Having in mind Eqs.(2.206) and (2.207) and the expression for the electric flux
density in the cable dielectric, D(r) = Q′/(2πr), we compute the electric energy
stored in the inner dielectric layer in Fig.2.50 per unit length of the coaxial cable by
integrating the electric energy density over the cross-sectional areas of the individual
layers, S1 and S2, which results in

W ′
e1 =

∫

S1

we1 dS =

∫ b

r=a

D(r)2

2ε1
2πr dr
︸ ︷︷ ︸

dS

=

∫ b

a

Q′2

2ε1(2πr)2
2πr dr =

Q′2

4πεr1ε0
ln
b

a

= 164 nJ/m , W ′
e2 =

∫

S2

we2 dS =

∫ c

b

D(r)2

2ε2
2πr dr =

Q′2

4πεr2ε0
ln
c

b
= 409 nJ/m ,

(P2.139)
where dS is the area of an elementary ring (adopted for integration) of radius r and
width dr, Eq.(1.60), Q′ = C′V , and C′ = 114.7 pF/m is the capacitance per unit
length of the cable, found in Problem 2.48.

(b) In the alternative approach, we represent the cable by the equivalent circuit
in Fig.2.26(a) and use the p.u.l. capacitances C′

1 = 2πεr1ε0/ ln(b/a) and C′
2 =
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2πεr2ε0/ ln(c/b) (Problem 2.48), to obtain [see also Eq.(2.208)]

W ′
e1 =

Q′2

2C′
1

=
Q′2

4πεr1ε0
ln
b

a
= 164 nJ/m , W ′

e2 =
Q′2

2C′
2

=
Q′2

4πεr2ε0
ln
c

b
= 409 nJ/m .

(P2.140)

PROBLEM 2.61 Energy of a half-filled spherical capacitor. This is a
spherical version of the energy computation in Example 2.26. With the electric
field intensity E(r) in the capacitor in Fig.2.29 given in Eq.(2.175), the electric
energy contained in the liquid, i.e., in the lower half of the space between electrodes
(volume v1), is computed as

We1 =

∫

v1

we1 dv =

∫ b

r=a

1

2
εrε0E(r)2

︸ ︷︷ ︸

we1

2πr2 dr
︸ ︷︷ ︸

dv

=

∫ b

a

1

2
εrε0

Q2

[2π(εr + 1)ε0r2]2
2πr2 dr

=
εr(b − a)Q2

4π(εr + 1)2ε0ab
, (P2.141)

where dv is the volume of a thin hemispherical shell of radius r and thickness dr
[1/2 of dv in Eq.(1.33)].

PROBLEM 2.62 Energy of a coaxial cable with four sectors. Like the
coaxial cable in Fig.2.33, this is an E-system, and the electric field (E) is the same
as in the air-filled coaxial cable, Eq.(2.124). Similarly to the energy computation in
Eq.(2.210), the per-unit-length electric energy contained in the 90◦ dielectric sector
of relative permittivity εr1 (εr1 = 6) in Fig.2.51 is found to be

E(r) =
V

r ln(b/a)
−→ W ′

e1 =

∫ b

r=a

1

2
ε1E(r)2

︸ ︷︷ ︸

we1

π

2
r dr

︸ ︷︷ ︸

dS1

=
πεr1ε0V

2

4 ln2(b/a)

∫ b

a

dr

r

=
πεr1ε0V

2

4 ln(b/a)
= 20.82 nJ/m , (P2.142)

with dS1 standing for the surface area of a quarter (determined by the angle π/2)
of a thin ring of radius r and width dr [ dS1 is 1/4 of dS in Eq.(1.60)]. In the same
way, the p.u.l. energies in the remaining three 90◦ dielectric sectors in Fig.2.51 are

W ′
e2 =

πεr2ε0V
2

4 ln(b/a)
= 6.94 nJ/m , W ′

e3 =
πεr3ε0V

2

4 ln(b/a)
= 3.47 nJ/m ,

W ′
e4 =

πεr4ε0V
2

4 ln(b/a)
= 34.7 nJ/m . (P2.143)

PROBLEM 2.63 Energy of a capacitor with a variable permittivity.
Based on Eqs.(2.202) and (2.199) and the fact that D = const in the capacitor
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dielectric (Problem 2.54), the total electric energy of the capacitor (We) can be
computed as

We =

∫

v

we dv =

∫ d

x=0

D2

2ε(x)
ab dx
︸ ︷︷ ︸

dv

=
abD2

2

∫ d

0

dx

ε(x)
=
abD2

4ε0

∫ d

0

dx

1 + 3x/d
,

(P2.144)
where dv is adopted in the form of a thin flat layer (slice) of thickness dx. By
the same token, the energy contained in the first half (from x = 0 to x = d/2) of
the dielectric, We1, can be obtained by replacing the upper limit (d) in the above
integrals by d/2. Hence, the percentage of We contained in the first half of the
dielectric turns out to be

We1

We
=

∫ d/2

0
dx

1+3x/d
∫ d

0
dx

1+3x/d

=
ln(5/2)

ln 4
= 66.1% . (P2.145)

PROBLEM 2.64 Energy of a capacitor with an inhomogeneous dielec-
tric. Given that now E = const in the dielectric of the capacitor (Problem 2.55),
we have

We =

∫

v

we dv =

∫ b

y=0

1

2
ε(y)E2 addy

︸ ︷︷ ︸

dv

=
adE2

2

∫ b

0

ε(y) dy

= ε0adE
2

∫ b

0

[

1 + 3 sin
(π

b
y
)]

dy , (P2.146)

so that the percentage of this energy stored in the lower half of the dielectric (from
y = 0 to y = b/2) amounts to

We1

We
=

∫ b/2

0
[1 + 3 sin (πy/b)] dy

∫ b

0 [1 + 3 sin (πy/b)] dy
=

1/2 + 3/π

1 + 6/π
= 50% . (P2.147)

PROBLEM 2.65 Energy of a system of spherical conductors. Using
Eq.(2.195), the energy of the system of three spherical conductors in Fig.1.56, in
which the third (outer) conductor is grounded (its potential is zero) and for which
the charges of the inner and middle conductors are, respectively, Q1 = 1.85 pC and
Q2 = 24.85 pC (Problem 1.80), is given by

We =
1

2
(Q1V1+Q2V2+Q3V3) =

1

2
(Q1V1+Q2V2) = 138 pJ (V3 = 0) . (P2.148)

PROBLEM 2.66 Energy of a system of flat electrodes. (a) Using the
electric field intensities between electrodes in the electrostatic system in Fig.1.42,
found in Example 1.28, the electric energy stored in the system is

We =
1

2
ε0E

2
1

︸ ︷︷ ︸

we1

Sd
︸︷︷︸

v1

+
1

2
ε0E

2
2Sd+

1

2
ε0E

2
3Sd+

1

2
ε0E

2
4Sd
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=
ε0Sd

2

(
E2

1 + E2
2 + E2

3

)
= 3.587 mJ (E4 = 0) . (P2.149)

(b) Using the equivalent circuit in Fig.2.47, for which the capacitances and charges
are computed in Problem 2.40, the energy of the system equals

We =
Q2

1

2C1
+

Q2
2

2C2
+

Q2
3

2C3
=

1

2C1

(
Q2

1 +Q2
2 +Q2

3

)
= 3.587 mJ (Q4 = 0) ,

(P2.150)
which, of course, is the same result as in Eq.(P2.149).

PROBLEM 2.67 Energy of a system with free volume charge. The elec-
tric flux density in the dielectric cylinder is given by D(r) = ρr/2 (Problem 2.14),
and, similarly to the computation in Eqs.(2.213), (2.206), and (2.207), the electric
energy stored in the cylinder per unit of its length is found to be

W ′
e1 =

∫ a

r=0

we(r) 2πr dr
︸ ︷︷ ︸

dS

=

∫ a

0

D(r)2

2εrε0
2πr dr =

πρ2

4εrε0

∫ a

0

r3 dr =
πρ2a4

16εrε0
,

(P2.151)
with dS being the area of an elementary ring of radius r and width dr, Eq.(1.60),
in the cross section of the cylinder. The electric field and flux density in air (outside
the cylinder), from Gauss’ law, are proportional to 1/r, and an integration like that
in Eq.(P2.151) results in W ′

e2 →∞ for the total per-unit-length energy contained in
the field outside the cylinder. This means that such a charged cylinder cannot exist
alone in space; in fact, the sum of all charges p.u.l. of very long metallic/dielectric
systems in reality must be zero, as expressed by Eq.(11.27) in the field analysis of
transmission lines.

PROBLEM 2.68 Energy of a pn junction. This is a planar version of the
energy calculation in Example 2.27.

The first way to calculate the electric energy contained in the pn junction is to
use Eq.(2.202) and the electric field expressions in Eqs.(2.74) and (2.75), as follows:

We =

∫

v

we dv =

∫ ∞

x=−∞

1

2
εEx(x)

2 S dx
︸︷︷︸

dv

=
ρ2
0a

2S

2ε

(∫ 0

−∞
e2x/a dx+

∫ ∞

0

e−2x/a dx

)

=
ρ2
0a

3S

2ε
, (P2.152)

where dv is an elementary volume for integration adopted in the form of a slice
of thickness dx across the junction [S is the area of the junction cross section
perpendicular to the x-axis in Fig.2.9(a)].

The second way is to employ Eq.(2.196) in a combination with the charge density
and potential expressions in Eqs.(2.69) and (2.76)-(2.77), respectively,

We =
1

2

∫

v

ρV dv =
1

2

∫ ∞

x=−∞
ρ(x)V (x)S dx

︸︷︷︸

dv

=
ρ2
0a

2S

2ε

[∫ 0

−∞

(

− ex/a
)(

ex/a − 1
)

dx+

∫ ∞

0

e−x/a
(

1− e−x/a
)

dx

]

=
ρ2
0a

3S

2ε
.

(P2.153)
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Of course, the results are the same.

Section 2.17 Dielectric Breakdown in Electrostatic
Systems

PROBLEM 2.69 Breakdown charge and energy of the earth. Based on
Eq.(1.193), dielectric breakdown of air near the earth’s surface occurs when

E(a+) =
Q

4πε0a2
= Ecr0 = 3 MV/m , a = R = 6378 km (P2.154)

[Ecr0 is the dielectric strength of air, Eq.(2.53)], from which, and Eq.(2.192) and
the fact that Cearth = 709.6 µF (Problem 2.25), the maximum possible charge and
electric energy that could be stored on the earth turn out to be

Q = 4πε0R
2Ecr0 = 1.36× 1010 C and We =

Q2

2C
= 1.3× 1023 J , (P2.155)

respectively.

PROBLEM 2.70 Maximum breakdown voltage of a spherical capacitor.
This is a spherical version of Example 2.29.

(a) Having in mind Eq.(2.117), the critical charge of the capacitor, at breakdown,
is given by

E(a+) =
Q

4πεrε0a2
= Ecr −→ Qcr = 4πεrε0a

2Ecr . (P2.156)

Employing also Eq.(2.119), the breakdown voltage of the capacitor, for a given
radius a, is

Vcr(a) =
Q

C
= −Ecr

b
a2 + Ecra . (P2.157)

To optimize a such that Vcr is maximum, assuming that b is fixed, we equate to zero
the derivative of Vcr with respect to a, which yields

dVcr

da
= 0 −→ Ecr

(

−2

b
a+ 1

)

= 0 −→ aopt =
b

2
= 5 cm . (P2.158)

As the second derivative of Vcr(a) for a = aopt is negative (equals −2Ecr/b), this is
indeed a maximum (and not a minimum) of the function.

(b) The maximum breakdown voltage of the capacitor amounts to

(Vcr)max = Vcr(aopt) =
Ecrb

4
= 625 kV . (P2.159)

(c) The corresponding value of the capacitor energy is

We =
1

2
C (Vcr)

2
max =

1

2

4πεrε0aoptb

b− aopt

E2
crb

2

16
=
πεrε0b

3E2
cr

8
= 10.87 J . (P2.160)
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PROBLEM 2.71 Breakdown in a wire-plane transmission line. (a) The
electric field intensity of the wire-plane transmission line, in Fig.2.24(a), is the
largest very close to the surface of the wire conductor, where it is given by Eq.(2.224).
Namely, from the analysis in Problem 1.88, on the other side, the maximum field
intensity near the ground plane, that straight below the wire (for x = 0), is

(Enear plane)max =
Q′

ε0πh
≪ Q′

2πε0a
(a≪ h) . (P2.161)

The capacitance per unit length of the line (C′) is computed in Eq.(2.146), so that
the breakdown voltage of the line equals

Emax =
Q′

cr

2πε0a
= Ecr0 = 3 MV/m −→ Vcr =

Q′
cr

C′ =
Q′

cr

2πε0
ln

2h

a

= aEcr0 ln
2h

a
= 159 kV . (P2.162)

(b) The maximum energy per unit length of the line is

W ′
e =

1

2
C′V 2

cr =
πε0V

2
cr

ln(2h/a)
= 132.6 mJ/m . (P2.163)

(c) Using Eqs.(1.224), the largest possible electric force on the wire conductor in
Fig.2.24(a) per unit of its length comes out to be

F ′
e =

Q′2
cr

4πε0h
=

(2πε0aEcr0)
2

4πε0h
=
πε0a

2E2
cr0

h
= 25 mN/m . (P2.164)

PROBLEM 2.72 Grounded metallic sphere as a lightning arrester. (a)
With Q denoting the charge of the grounded small (a≪ h) metallic sphere, as shown
in Fig.P2.18, the potential of the sphere due to Q and its image in the conducting
plane with respect to the plane, that is, the voltage between the surface of the
sphere and the plane (point 3 in Fig.P2.18), equals a half of the voltage between the
sphere and its image, so 1/2 of the voltage between two small metallic spheres in
air computed in Problem 2.34. It thus equals Q/(4πε0a), so that the total potential
V1 at point 1 in Fig.P2.18 is given, in place of Eq.(2.228), by

V1 =
Q

4πε0a
− E0h . (P2.165)

The condition that the sphere is grounded then yields

V1 = 0 −→ Q = 4πε0E0ah . (P2.166)

(b) Since h ≫ a, the electric field intensity on the surface of the sphere can be
evaluated using Eq.(1.193), neglecting the field due to the image of Q,

E1 =
Q

4πε0a2
=
E0h

a
= 1200E0 . (P2.167)
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a
E0

V=0e0

V1

Q

1

2

3

h

H

Figure P2.18 Grounded small metallic sphere in a uniform atmospheric electric
field above the surface of the earth (lightning arrester).

(c) Based on the electric field expression from Problem 2.34, the field intensities at
points 2 (H = 2 m) and 3 in Fig.P2.18 amount, for the reference direction of E2

upward, to

E2 = − Q

4πε0

[
1

r2
+

1

(2h− r)2
]

+ E0 = 0.9977E0 (r = h−H)

and E3 = − Q

2πε0h2
+ E0 = 0.9983E0 (r = h) , (P2.168)

respectively.
Paralleling the computation in Eqs.(2.233), the field intensities E2 and E3 cor-

responding to an eventual breakdown (in a thunderstorm) near the metallic sphere
in Fig.P2.18 [Eq.(2.232)] turn out to be

E2 = 0.9977E0 =
0.9977

1200
E1 =

Ecr0

1202.8
, E3 = 0.9983E0 =

0.9833

1200
E1 =

Ecr0

1202
,

(P2.169)
and they confirm the protective property of the grounded metallic sphere, serving
principally as a lightning arrester, in the same way as the grounded wire conductor
in Fig.2.34.

PROBLEM 2.73 Parallel-plate capacitor with two dielectric layers.
From Eq.(2.147), we obtain the following relationship between the electric field
intensities in the two dielectric layers in Fig.2.25(a):

εr1E1 = εr2E2 . (P2.170)

Let us first assume that, for a high enough voltage V of the capacitor, a breakdown
occurs in the first layer, which implies that E1 = Ecr1 = 20 MV/m. At the same
time, Eq.(2.236) gives E2 = εr1E1/εr2 = 12 MV/m > Ecr2 = 11 MV/m, which
is impossible. We conclude that the second dielectric layer of the capacitor must
break down first, in which case

E2 = Ecr2 = 11 MV/m and E1 =
εr2
εr1

E2 = 18.33 MV/m . (P2.171)

The breakdown voltage of the capacitor is thus

Vcr = E1d1 + E2d2 = 80.67 kV . (P2.172)
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PROBLEM 2.74 Parallel-plate capacitor with two dielectric sectors.
The electric field intensities in the two dielectric sectors in Fig.2.25(b) are the same,
Eq.(2.151), so it is obvious that, after a voltage of critical value is applied across
the capacitor plates, a breakdown will occur in the second sector (with a smaller
Ecr). The corresponding field values are

E2 = Ecr2 = 11 MV/m and E1 = E2 = 11 MV/m < Ecr1 = 20 MV/m ,
(P2.173)

and the capacitor breakdown voltage comes out to be

Vcr = E1d = 66 kV . (P2.174)

PROBLEM 2.75 Breakdown in a spherical capacitor with two layers.
(a) If the inner dielectric layer of the spherical capacitor in Fig.2.27 is made from
mica and the outer layer is oil, Eqs.(2.241) give

Q(1)
cr = 4πεr1ε0a

2Ecr1 = 48.07 µC and Q(2)
cr = 4πεr2ε0b

2Ecr2 = 24.57 µC .
(P2.175)

This means [see Eq.(2.242)] that the breakdown (for sufficiently high applied voltage
across the capacitor) occurs in the outer dielectric layer, and the breakdown value
of the capacitor charge amounts to

Qcr = Q(2)
cr = 24.57 µC . (P2.176)

The breakdown voltage is

Vcr =
Qcr

Cold
= 2.134 MV , (P2.177)

where Cold = 11.52 pF is the capacitance of the capacitor in the first (old) electro-
static state (Problem 2.42).

(b) After the oil is drained from the capacitor, so that the outer dielectric layer is
now air, the second charge in Eqs.(P2.175) becomes

Q(2)
cr = 4πε0b

2Ecr0 = 2.14 µC (εr2 = 1 , Ecr0 = 3 MV/m) , (P2.178)

indicating that the outer layer breaks down first, again. However, the breakdown
voltage changes, to

Qcr = Q(2)
cr = 2.14 µC −→ Vcr =

Qcr

Cnew
= 253.7 kV , (P2.179)

with Cnew = 8.44 pF being the capacitance of the capacitor in the new state (Prob-
lem 2.42).
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PROBLEM 2.76 Breakdown potential of a coated metallic sphere. (a)-
(b) For breakdown considerations, the value of the radius c in Fig.2.27 is actually

irrelevant, so it can even be c → ∞; hence, we can reuse the expressions Q
(1)
cr =

4πεr1ε0a
2Ecr1 and Q

(2)
cr = 4πε0b

2Ecr0 from the previous problem (for a spherical

capacitor with air as the second dielectric layer), which result in Q
(1)
cr = 1.33 µC

and Q
(2)
cr = 0.3 µC. We conclude that the breakdown would occur in air, near the

interface with the dielectric coating of the metallic sphere, and Qcr = Q
(2)
cr = 0.3 µC

[Eq.(2.242)]. Using the capacitance of the sphere computed in Problem 2.44, C =
2.224 pF, the breakdown potential of the sphere and the maximum electric energy
of this structure are

Vcr =
Qcr

C
= 135 kV and We =

Q2
cr

2C
= 20.2 mJ , (P2.180)

respectively.

PROBLEM 2.77 Breakdown in a coaxial cable with two layers. (a) Let
us pursue the first way (based on the direct evaluation of the electric field intensities
at characteristic locations in the structure) of the breakdown analysis presented for
a spherical capacitor with a two-layer dielectric in Example 2.32. For the coaxial
cable in Fig.2.50, Eqs.(2.234) and (2.235) take the following form:

E1(r) =
Q′

2πεr1ε0r
= E1(a

+)
a

r
(a < r < b) , (P2.181)

E2(r) =
Q′

2πεr2ε0r
= E2(b

+)
b

r
(b < r < c) , (P2.182)

and hence the relationship

εr1aE1(a
+) = εr2bE2(b

+) . (P2.183)

An assumption that a breakdown occurs in the inner layer leads to

E1(a
+) = Ecr1 = 40 MV/m −→ E2(b

+) = Ecr1
εr1a

εr2b
= 50 MV/m > Ecr2 ,

(P2.184)
which is impossible. Hence, an eventual breakdown must be in the outer layer,

E2(b
+) = Ecr2 = 20 MV/m −→ E1(a

+) = Ecr2
εr2b

εr1a
= 16 MV/m < Ecr1 .

(P2.185)
Similarly to Eq.(2.240), the breakdown voltage of the cable is computed, using

the field-intensity values in Eqs.(P2.185), as

Vcr = E1(a
+) a

∫ b

a

dr

r
+E2(b

+) b

∫ c

b

dr

r
= εr2bEcr2

(
1

εr1
ln
b

a
+

1

εr2
ln
c

b

)

= 38.8 kV .

(P2.186)

(b) The maximum energy that the cable can store per unit of its length amounts to

W ′
e =

1

2
C′V 2

cr = 86.4 mJ/m , (P2.187)
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where C′ = 114.7 pF/m is the capacitance p.u.l. of the cable, found in Problem
2.48.

PROBLEM 2.78 Simultaneous breakdown in two spherical layers. For
a sufficiently large applied voltage, dielectric breakdown will occur in both dielec-
tric layers in the capacitor in Fig.2.27 simultaneously if the two values of charges

Q
(1)
cr and Q

(2)
cr in Eqs.(2.241) are the same, which condition results in the following

relationship between the parameters of the capacitor:

Q(1)
cr = Q(2)

cr −→ εr1a
2Ecr1 = εr2b

2Ecr2 . (P2.188)

PROBLEM 2.79 Simultaneous breakdown in two coaxial layers. Let us
consider the critical value, for breakdown, of the charge Q′ per unit length of the
coaxial cable in Fig.2.50, and denote by Q′

cr1 and Q′
cr2 the charge Q′ in the case

of an eventual breakdown in the inner and outer dielectric layers, respectively, of
the cable. Based on the breakdown analysis in Problem 2.77, we then obtain the
following expressions for these charges, analogous to those in Eqs.(2.241) for the
corresponding spherical capacitor:

Q′
cr1 = 2πεr1ε0aEcr1 and Q′

cr2 = 2πεr2ε0bEcr2 . (P2.189)

Hence, we conclude that the breakdown will occur in both dielectric layers in
Fig.2.50 simultaneously if

Q′
cr1 = Q′

cr2 −→ εr1aEcr1 = εr2bEcr2 . (P2.190)

PROBLEM 2.80 Metallic sphere half immersed in a liquid dielectric.
Denoting by Vcr the maximum potential of the metallic sphere in Fig.2.49 such that
dielectric breakdown will not occur after it is removed from the liquid and raised
in air high above the interface, the corresponding critical value of the charge of the
sphere, using the expression for its capacitance from Problem 2.47, turns out to be

Qcr = CVcr = 2π(εr + 1)ε0aVcr . (P2.191)

This charge remains the same upon the elevation of the sphere above the liquid.

In the new electrostatic state, assuming that the sphere is isolated in air (as it
is high above the interface), the condition for a breakdown near the sphere surface,
expressed as in Problem 2.69, actually determines the value of Qcr, as follows:

Qcr = 4πε0a
2Ecr0 (Ecr0 = 3 MV/m) . (P2.192)

Substituted back in Eq.(P2.191), for the first electrostatic state, it leads to

Vcr =
2aEcr0

εr + 1
= 30 kV . (P2.193)
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Finally, we need yet to check whether the system in Fig.2.49 is safe from break-
down in the first state. The electric field intensity near the sphere surface in both
the liquid and air is, from Eqs.(2.175) and (P2.192),

E(a+) =
Qcr

2π(εr + 1)ε0a2
=

2Ecr0

εr + 1
=
Ecr0

2
= 1.5 MV/m . (P2.194)

Since E(a+) < Ecr0 (for air) and E(a+) < Ecr = 20 MV/m (for the liquid dielec-
tric), we conclude that setting the sphere to the potential Vcr or charging it with Qcr

while half in the liquid (in the first state) will not cause breakdown of the system,
which will occur only after the sphere is raised in air.

PROBLEM 2.81 Breakdown in a coaxial cable with a dielectric spacer.
(a) The electric field intensity near the inner conductor of the cable in Fig.2.33 is
given by the expression in Eq.(2.218). This, for r = a+, is the largest electric field
intensity in the cable. Since it is the same in both the dielectric spacer and the
air-filled part of the cable interior, an eventual dielectric breakdown will occur in
air (Ecr0 < Ecr), if

E(a+) =
Vcr

a ln(b/a)
= Ecr0 = 3 MV/m , (P2.195)

and hence the breakdown voltage of the cable

Vcr = Ecr0 a ln
b

a
= 6.59 kV . (P2.196)

(b) Having in mind Eqs.(2.178), as well as the capacitance found in Problem 2.50,
the capacitance per unit length of the cable (Fig.2.33) is

C′ =
εrε0α+ ε0(2π − α)

ln(b/a)
=

(εrπ/3 + 5π/3) ε0
ln(b/a)

= 84.4 pF/m , (P2.197)

so that the electric energy per unit length of the cable at breakdown amounts to

W ′
e =

1

2
C′V 2

cr = 1.83 mJ/m . (P2.198)
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