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Chapter 1 
Econometrics 

There are no exercises or applications in Chapter 1. 
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Chapter 2  
The Linear Regression Model 

There are no exercises or applications in Chapter 2. 
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Chapter 3  
Least Squares 

 Exercises 
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d. The first derivative vector of ee is 2Xe. (The normal equations.) The second derivative matrix 

is 2(ee)/bb = 2XX. We need to show that this matrix is positive definite. The diagonal 

elements are 2n and 2
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         Note that a much simpler 

proof appears after (3-6). 

 2. Write c as b  (c  b). Then, the sum of squared residuals based on c is  

  (y  Xc)(y  Xc)  [y  X(b  (c  b))][y  X(b  (c  b))]  

     [(y  Xb)  X(c  b)][(y  Xb)  X(c  b)] 

     (y  Xb)(y  Xb)  (c  b)XX(c  b)  2(c  b)X(y  Xb). 

  But, the third term is zero, as 2(c  b)X(y  Xb)  2(c  b)Xe  0. Therefore, 

 (y  Xc)(y  Xc)  ee  (c  b)XX(c  b) 

  or         (y  Xc)(y  Xc)  e e  (c  b) X X(c  b). 

  The right-hand side can be written as dd where d = X(c  b), so it is necessarily positive. This 

confirms what we knew at the outset, least squares is least squares.  
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 3. In the regression of y on i and X, the coefficients on X are b  (XMX)1XMy. M  I  i(ii)1i  
is the matrix which transforms observations into deviations from their column means. Since M0 is 
idempotent and symmetric we may also write the preceding as [(XM)(MX)]1(XM)(My) which 
implies that the regression of My on MX produces the least squares slopes. If only X is transformed 
to deviations, we would compute [(XM)(MX)]1(XM)y, but, of course, this is identical. However, 
if only y is transformed, the result is (XX)1XMy, which is likely to be quite different. 

 4. What is the result of the matrix product M1M where M1 is defined in (3-19) and M is defined in (3-14)? 

 
1 1 1
   1 1 1

1 1 1 1 1
M M (I X (X X ) )(I X(X X) ) M X (X X ) X M        

  There is no need to multiply out the second term. Each column of MX1 is the vector of residuals in 

the regression of the corresponding column of X1 on all of the columns in X. Since that x is one of the 

columns in X, this regression provides a perfect fit, so the residuals are zero. Thus, MX1 is a matrix 

of zeroes which implies that M1M  M.  

 5. The original X matrix has n rows. We add an additional row, xs. The new y vector likewise has an 

additional element. Thus,  and .
n n
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 The new coefficient vector is 

 bn,s  (Xn,s Xn,s)1(Xn,syn,s). The matrix is Xn,s Xn,s  XnXn  xsxs. To invert this, use (A-66); 
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 (Xn,s Xn,s)1(Xn,syn,s)   

 bn  1

1

1
( )

1 ( )
n n s s n

s n n s




 

 
X X x x b

x X X x
 1( )

n n
X X  xsys 1 1

1

1
( ) ( )

1 ( )
n n s s n n

s n n s

 


  

 
X X x x X X

x X X x
xs  ys  

           bn  1( )
n n

X X  xsys  
1

1 1

1 1

( ) 1
( ) ( )

1 ( ) 1 ( )

s n n s

n n s s n n s s n

s n n s s n n s

y


 

 

 
  

    

x X X x
X X x X X x x b

x X X x x X X x
 

 bn  
1

1 1

1 1

( ) 1
1 ( ) ( )

1 ( ) 1 ( )

s n n s

n n s s n n s s n

s n n s s n n s

y


 

 

  
    

     

x X X x
X X x X X x x b

x X X x x X X x
 

 bn  1 1

1 1

1 1
( ) ( )

1 ( ) 1 ( )
n n s s n n s s n

s n n s s n n s

y 

 
  

    
X X x X X x x b

x X X x x X X x
 

 bn  


 

 
X X x x b

x X X x

1

1

1
( ) ( ).

1 ( )
n n s s s n

s n n s

y  

 6. Define the data matrix as follows:  1 1 2
,  and .

1 0 1 1

o

m
y

    
        
     

yi x 0 0
X X X X y   

(The subscripts on the parts of y refer to the “observed” and “missing” rows of X.)  

We will use Frish-Waugh to obtain the first two columns of the least squares coefficient vector.  

b1  (X1M2X1)1(X1M2y). Multiplying it out, we find that M2  an identity matrix save for  

the last diagonal element that is equal to 0. 

  X1M2X1  
1 1 1 1

.
1

 
    

0 0
X X X X

0
 This just drops the last observation. X1M2y is computed likewise.  

Thus, the coefficients on the first two columns are the same as if y0 had been linearly regressed on X1.  
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The denominator of R2 is different for the two cases (drop the observation or keep it with zero fill and  

the dummy variable). For the first strategy, the mean of the n  1 observations should be different from  

the mean of the full n unless the last observation happens to equal the mean of the first n  1. 

  For the second strategy, replacing the missing value with the mean of the other n  1 observations,  

we can deduce the new slope vector logically. Using Frisch-Waugh, we can replace the column of  

x’s with deviations from the means, which then turns the last observation to zero. Thus, once again, 

the coefficient on the x equals what it is using the earlier strategy. The constant term will be the same 

as well. 

 7. For convenience, reorder the variables so that X  [i, Pd, Pn, Ps, Y]. The three dependent variables are 

Ed, En, and Es, and Y  Ed + En  Es. The coefficient vectors are 

bd  (XX)1XEd, 

       bn  (XX)1XEn, and 

bs  (XX)1XEs. 

  The sum of the three vectors is 

b  (XX)1X[Ed  En  Es]  (XX)1XY. 

  Now, Y is the last column of X, so the preceding sum is the vector of least squares coefficients in the 

regression of the last column of X on all of the columns of X, including the last. Of course, we get a 

perfect fit. In addition, X[Ed  En + Es] is the last column of XX, so the matrix product is equal to 

the last column of an identity matrix. Thus, the sum of the coefficients on all variables except income 

is 0, while that on income is 1.  

 8. Let 
2

KR  denote the adjusted R2 in the full regression on K variables including xk, and let
2

1R denote the 

adjusted R2 in the short regression on K-1 variables when xk is omitted. Let 2
K
R and 2

1
R denote their 

unadjusted counterparts. Then, 

2
K
R  1  ee/yM0y 

           2
1
R  1  e1e1/yM0y 

  where ee is the sum of squared residuals in the full regression, e1e1 is the (larger) sum of squared 

residuals in the regression which omits xk, and yM0y = i (yi  2) .y  

  Then, 
2

KR = 1  [(n  1)/(n  K)](1  2 )
K
R  

  and 
2

1R  1  [(n  1)/(n-(K  1))](1  2
1

).R  

  The difference is the change in the adjusted R2 when xk is added to the regression, 

2 2

1KR R  [(n  1)/(n  K  1)][e1e1/yM0y]  [(n  1)/(n  K)][ee/yM0y]. 

  The difference is positive if and only if the ratio is greater than 1. After cancelling terms, we require 

for the adjusted R2 to increase that e1e1/(n  K  1)]/[(n  K)/ee]  1. From the previous problem, we 

have that e1e1  ee  2
K
b (xkM1xk), where M1 is defined above and bk is the least squares coefficient  

in the full regression of y on X1 and xk. Making the substitution, we require [(ee  2
K
b (xkM1xk)) 

(n  K)]/[(n  K )ee  ee]  1. Since ee  (n  K )s2, this simplifies to [ee  2
K
b (xkM1xk)]/ 

[ee  s2]  1. Since all terms are positive, the fraction is greater than one if and only 2
K
b (xkM1xk)  s2 

or 2
K
b (xkM1xk/s2)  1. The denominator is the estimated variance of bk, so the result is proved.  
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 9. This R2 must be lower. The sum of squares associated with the coefficient vector which omits the 

constant term must be higher than the one which includes it. We can write the coefficient vector  

in the regression without a constant as c  (0,b*) where b*  (WW)1Wy, with W being the other  

K  1 columns of X. Then, the result of the previous exercise applies directly.  

10. We use the notations ‘Var[.]’ and ‘Cov[.]’ to indicate the sample variances and covariances. Our 

information is  

     Var[N]  1, Var[D]  1, Var[Y]  1. 

Since C  N  D, Var[C]  Var[N]  Var[D]  2Cov[N, D]  2(1  Cov[N, D]). 

From the regressions, we have 

  Cov[C, Y]/Var[Y]  Cov[C, Y]  0.8. 

But,  Cov[C, Y]  Cov[N, Y]  Cov[D, Y]. 

Also, Cov[C, N]/Var[N]  Cov[C, N]  0.5, 

but,  Cov[C, N]  Var[N]  Cov[N, D]  1  Cov[N, D], so Cov[N, D]  0.5, 

so that Var[C]  2(1 + 0.5)  1. 

And, Cov[D, Y]/Var[Y]  Cov[D, Y]  0.4. 

Since     Cov[C, Y]  0.8  Cov[N, Y]  Cov[D, Y], Cov[N, Y]  0.4. 

Finally,   Cov[C, D]  Cov[N, D]  Var[D]  0.5  1  0.5. 

  Now, in the regression of C on D, the sum of squared residuals is (n  1){Var[C]  (Cov[C,D]/ 

Var[D])2Var[D]} based on the general regression result e2  (yi  y)2  b2 (xi  x )2. All of the 

necessary figures were obtained above. Inserting these and n  1  20 produces a sum of squared 

residuals of 15. 

11. The relevant submatrices to be used in the calculations are 

      Investment   Constant   GNP    Interest 

 Investment     *    3.0500    3.9926   23.521 

 Constant             15    19.310    111.79 

 GNP                                25.218    148.98 

 Interest                                         943.86 

  The inverse of the lower right 3  3 block is (XX)1, 

     7.5874  

  (XX)1    7.41859       7.84078 

       .27313        .598953 .06254637 

  The coefficient vector is  b = (XX)1Xy  (.0727985, .235622, .00364866). The total sum of 

squares is yy = .63652, so we can obtain ee  yy  bXy. Xy is given in the top row of the matrix. 

Making the substitution, we obtain ee  .63652  .63291  .00361. To compute R2, we require  

i (yi  y )2  .63652  15(3.05/15)2  .01635333, so R2  1  .00361/.0163533  .77925. 

12.  The results cannot be correct. Since log S/N  log S/Y  log Y/N by simple, exact algebra, the same 

result must apply to the least squares regression results. That means that the second equation estimated 

must equal the first one plus log Y/N. Looking at the equations, that means that all of the coefficients 

would have to be identical save for the second, which would have to equal its counterpart in the first 

equation, plus 1. Therefore, the results cannot be correct. In an exchange between Leff and Arthur 

Goldberger that appeared later in the same journal, Leff argued that the difference was a simple 

rounding error. You can see that the results in the second equation resemble those in the first, but  
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not enough so that the explanation is credible. Further discussion about the data themselves appeared 

in a subsequent discussion. [See Goldberger (1973) and Leff (1973).] 

Application  

 
?======================================================================= 

? Chapter 3 Application 1 

?======================================================================= 

Read $ 

(Data appear in the text.) 

Namelist ; X1 = one,educ,exp,ability$ 

Namelist ; X2 = mothered,fathered,sibs$ 

?======================================================================= 

? a. 

?======================================================================= 

Regress  ; Lhs = wage ; Rhs = x1$ 

+----------------------------------------------------+ 

| Ordinary    least squares regression               | 

| LHS=WAGE     Mean                 =   2.059333     | 

|              Standard deviation   =   .2583869     | 

| WTS=none     Number of observs.   =         15     | 

| Model size   Parameters           =          4     | 

|              Degrees of freedom   =         11     | 

| Residuals    Sum of squares       =   .7633163     | 

|              Standard error of e  =   .2634244     | 

| Fit          R-squared            =   .1833511     | 

|              Adjusted R-squared   =  -.3937136E-01 | 

| Model test   F[  3,    11] (prob) =    .82 (.5080) | 

+----------------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

 Constant|    1.66364000       .61855318     2.690   .0210 

 EDUC    |     .01453897       .04902149      .297   .7723   12.8666667 

 EXP     |     .07103002       .04803415     1.479   .1673   2.80000000 

 ABILITY |     .02661537       .09911731      .269   .7933    .36600000 

?======================================================================= 

? b. 

?======================================================================= 

Regress  ; Lhs = wage ; Rhs = x1,x2$ 

+----------------------------------------------------+ 

| Ordinary    least squares regression               | 

| LHS=WAGE     Mean                 =   2.059333     | 

|              Standard deviation   =   .2583869     | 

| WTS=none     Number of observs.   =         15     | 

| Model size   Parameters           =          7     | 

|              Degrees of freedom   =          8     | 

| Residuals    Sum of squares       =   .4522662     | 

|              Standard error of e  =   .2377673     | 

| Fit          R-squared            =   .5161341     | 

|              Adjusted R-squared   =   .1532347     | 

| Model test   F[  6,     8] (prob) =   1.42 (.3140) | 

+----------------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

 Constant|     .04899633       .94880761      .052   .9601 

 EDUC    |     .02582213       .04468592      .578   .5793   12.8666667 

 EXP     |     .10339125       .04734541     2.184   .0605   2.80000000 

 ABILITY |     .03074355       .12120133      .254   .8062    .36600000 

 MOTHERED|     .10163069       .07017502     1.448   .1856   12.0666667 
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 FATHERED|     .00164437       .04464910      .037   .9715   12.6666667 

 SIBS    |     .05916922       .06901801      .857   .4162   2.20000000 
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?======================================================================= 

? c. 

?======================================================================= 

Regress  ; Lhs = mothered ; Rhs = x1 ; Res = meds $  

Regress  ; Lhs = fathered ; Rhs = x1 ; Res = feds $  

Regress  ; Lhs = sibs     ; Rhs = x1 ; Res = sibss $  

Namelist ; X2S = meds,feds,sibss $ 

Matrix   ; list ; Mean(X2S) $ 

Matrix Result   has  3 rows and  1 columns. 

               1 

        +-------------- 

       1| -.1184238D-14 

       2|  .1657933D-14 

       3| -.5921189D-16 

The means are (essentially) zero.  The sums must be zero, as these new variables are 

orthogonal to the columns of X1. The first column in X1 is a column of ones, so this 

means that these residuals must sum to zero. 

?======================================================================= 

? d.  

?======================================================================= 

Namelist ; X = X1,X2 $ 

Matrix   ; i = init(n,1,1) $ 

Matrix   ; M0 = iden(n) - 1/n*i*i' $ 

Matrix   ; b12 = <X'X>*X'wage$ 

Calc     ; list ; ym0y =(N-1)*var(wage) $ 

Matrix   ; list ; cod = 1/ym0y * b12'*X'*M0*X*b12 $ 

Matrix COD      has  1 rows and  1 columns. 

               1 

        +-------------- 

       1|     .51613 

Matrix   ; e = wage - X*b12 $ 

Calc     ; list ; cod = 1 - 1/ym0y * e'e $ 

+------------------------------------+ 

 COD     =       .516134 

The R squared is the same using either method of computation. 

Calc     ; list ; RsqAd = 1 - (n-1)/(n-col(x))*(1-cod)$ 

+------------------------------------+ 

 RSQAD   =       .153235 

? Now drop the constant 

Namelist ; X0 = educ,exp,ability,X2 $ 

Matrix   ; i = init(n,1,1) $ 

Matrix   ; M0 = iden(n) - 1/n*i*i' $ 

Matrix   ; b120 = <X0'X0>*X0'wage$ 

Matrix   ; list ; cod = 1/ym0y * b120'*X0'*M0*X0*b120 $ 

Matrix COD      has  1 rows and  1 columns. 

               1 

        +-------------- 

       1|     .52953 

Matrix   ; e0 = wage - X0*b120 $ 

Calc     ; list ; cod = 1 - 1/ym0y * e0'e0 $ 

+------------------------------------+ 

| Listed Calculator Results          | 

+------------------------------------+ 

 COD     =       .515973 

The R squared now changes depending on how it is computed.  It also goes up, completely 

artificially. 
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?======================================================================= 

? e. 

?======================================================================= 

The R squared for the full regression appears immediately below. 

? f. 

Regress ; Lhs = wage ; Rhs = X1,X2 $ 

+----------------------------------------------------+ 

| Ordinary    least squares regression               | 

| WTS=none     Number of observs.   =         15     | 

| Model size   Parameters           =          7     | 

|              Degrees of freedom   =          8     | 

| Fit          R-squared            =   .5161341     | 

+----------------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

 Constant|     .04899633       .94880761      .052   .9601 

 EDUC    |     .02582213       .04468592      .578   .5793   12.8666667 

 EXP     |     .10339125       .04734541     2.184   .0605   2.80000000 

 ABILITY |     .03074355       .12120133      .254   .8062    .36600000 

 MOTHERED|     .10163069       .07017502     1.448   .1856   12.0666667 

 FATHERED|     .00164437       .04464910      .037   .9715   12.6666667 

 SIBS    |     .05916922       .06901801      .857   .4162   2.20000000 

Regress ; Lhs = wage ; Rhs = X1,X2S $ 

+----------------------------------------------------+ 

| Ordinary    least squares regression               | 

| WTS=none     Number of observs.   =         15     | 

| Model size   Parameters           =          7     | 

|              Degrees of freedom   =          8     | 

| Fit          R-squared            =   .5161341     | 

|              Adjusted R-squared   =   .1532347     | 

+----------------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |t-ratio |P[|T|>t]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

 Constant|    1.66364000       .55830716     2.980   .0176 

 EDUC    |     .01453897       .04424689      .329   .7509   12.8666667 

 EXP     |     .07103002       .04335571     1.638   .1400   2.80000000 

 ABILITY |     .02661537       .08946345      .297   .7737    .36600000 

 MEDS    |     .10163069       .07017502     1.448   .1856 -.118424D-14 

 FEDS    |     .00164437       .04464910      .037   .9715  .165793D-14 

 SIBSS   |     .05916922       .06901801      .857   .4162 -.592119D-16 

In the first set of results, the first coefficient vector is b1  (X1M2X1)1X1M2y and b2  

(X2M1X2)1X2M1y. 

In the second regression, the second set of regressors is M1X2, so b1  (X1M12 X1)1X1M12y  

where M12  I  (M1X2)[(M1X2)(M1X2)]1(M1X2). 

Thus, because the “M” matrix is different, the coefficient vector is different. The second set of coefficients 

in the second regression is b2  [(M1X2)M1(M1X2)]1 (M1X2)M1y  (X2M1X2)1X2M1y because M1 is 

idempotent. 
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