SOLUTIONS MANUAL

CHAPTER 2

Problem 2.1

Given:

$$
\begin{align*}
& T_{n}=2 \pi \sqrt{\frac{m}{k}}=0.5 \mathrm{sec} \tag{a}\\
& T_{n}^{\prime}=2 \pi \sqrt{\frac{m+50 / \mathrm{g}}{k}}=0.75 \mathrm{sec} \tag{b}
\end{align*}
$$

1. Determine the weight of the table.

Taking the ratio of Eq. (b) to Eq. (a) and squaring the result gives

$$
\left(\frac{T_{n}^{\prime}}{T_{n}}\right)^{2}=\frac{m+50 / \mathrm{g}}{m} \Rightarrow 1+\frac{50}{m \mathrm{~g}}=\left(\frac{0.75}{0.5}\right)^{2}=2.25
$$

or

$$
m g=\frac{50}{1.25}=40 \mathrm{lbs}
$$

2. Determine the lateral stiffness of the table.

Substitute for m in Eq. (a) and solve for k :

$$
k=16 \pi^{2} m=16 \pi^{2}\left(\frac{40}{386}\right)=16.4 \mathrm{lbs} / \mathrm{in}
$$

Problem 2.2

1. Determine the natural frequency.

$$
\begin{aligned}
& k=100 \mathrm{lb} / \mathrm{in} . \quad m=\frac{400}{386} \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in} . \\
& \omega_{n}=\sqrt{\frac{k}{m}}=\sqrt{\frac{100}{400 / 386}}=9.82 \mathrm{rads} / \mathrm{sec}
\end{aligned}
$$

2. Determine initial deflection.

Static deflection due to weight of the iron scrap

$$
u(0)=\frac{200}{100}=2 \mathrm{in}
$$

3. Determine free vibration.

$$
u(t)=u(0) \cos \omega_{n} t=2 \cos (9.82 t)
$$

Problem 2.3

1. Set up equation of motion.

2. Solve equation of motion.
$u(t)=A \cos \omega_{n} t+B \sin \omega_{n} t+\frac{m g}{2 k}$

At $t=0, u(0)=0$ and $\dot{u}(0)=0$
$\therefore A=-\frac{m \mathrm{~g}}{2 k}, \quad B=0$
$u(t)=\frac{m \mathrm{~g}}{2 k}\left(1-\cos \omega_{n} t\right)$

Problem 2.4

$$
\begin{aligned}
& \text { m }=\frac{10}{386}=0.0259 \mathrm{lb}-\sec ^{2} / \mathrm{in} . \\
& m_{0}=\frac{0.5}{386}=1.3 \times 10^{-3} \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in} . \\
& k=100 \mathrm{lb} / \mathrm{in} .
\end{aligned}
$$

Conservation of momentum implies

$$
\begin{aligned}
& m_{0} v_{0}=\left(m+m_{0}\right) \dot{u}(0) \\
& \dot{u}(0)=\frac{m_{0} v_{0}}{m+m_{0}}=2.857 \mathrm{ft} / \mathrm{sec}=34.29 \mathrm{in} . / \mathrm{sec}
\end{aligned}
$$

After the impact the system properties and initial conditions are

Mass $=m+m_{0}=0.0272 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in}$.
Stiffness $=k=100 \mathrm{lb} / \mathrm{in}$.
Natural frequency:
$\omega_{n}=\sqrt{\frac{k}{m+m_{0}}}=60.63 \mathrm{rads} / \mathrm{sec}$
Initial conditions: $u(0)=0, \quad \dot{u}(0)=34.29 \mathrm{in} . / \mathrm{sec}$
The resulting motion is

$$
u(t)=\frac{\dot{u}(0)}{\omega_{n}} \sin \omega_{n} t=0.565 \sin (60.63 t) \mathrm{in} .
$$

Problem 2.5

With u measured from the static equilibrium position of m_{1} and k, the equation of motion after impact is

$$
\begin{equation*}
\left(m_{1}+m_{2}\right) \ddot{u}+k u=m_{2} g \tag{a}
\end{equation*}
$$

The general solution is

$$
\begin{align*}
& u(t)=A \cos \omega_{n} t+B \sin \omega_{n} t+\frac{m_{2} g}{k} \tag{b}\\
& \omega_{n}=\sqrt{\frac{k}{m_{1}+m_{2}}} \tag{c}
\end{align*}
$$

The initial conditions are

$$
\begin{equation*}
u(0)=0 \quad \dot{u}(0)=\frac{m_{2}}{m_{1}+m_{2}} \sqrt{2 g h} \tag{d}
\end{equation*}
$$

The initial velocity in Eq. (d) was determined by conservation of momentum during impact:

$$
m_{2} \dot{u}_{2}=\left(m_{1}+m_{2}\right) \dot{u}(0)
$$

where

$$
\dot{u}_{2}=\sqrt{2 \mathrm{~g} h}
$$

Impose initial conditions to determine A and B :

$$
\begin{align*}
& u(0)=0 \Rightarrow A=-\frac{m_{2} \mathrm{~g}}{k} \tag{e}\\
& \dot{u}(0)=\omega_{n} B \Rightarrow B=\frac{m_{2}}{m_{1}+m_{2}} \frac{\sqrt{2 \mathrm{~g} h}}{\omega_{n}} \tag{f}
\end{align*}
$$

Substituting Eqs. (e) and (f) in Eq. (b) gives
$u(t)=\frac{m_{2} g}{k}\left(1-\cos \omega_{n} t\right)+\frac{\sqrt{2 g h}}{\omega_{n}} \frac{m_{2}}{m_{1}+m_{2}} \sin \omega_{n} t$

Problem 2.6

1. Determine deformation and velocity at impact.

$$
\begin{aligned}
& u(0)=\frac{m g}{k}=\frac{10}{50}=0.2 \mathrm{in} . \\
& \dot{u}(0)=-\sqrt{2 g h}=-\sqrt{2(386)(36)}=-166.7 \mathrm{in} . / \mathrm{sec}
\end{aligned}
$$

2. Determine the natural frequency.

$$
\omega_{n}=\sqrt{\frac{k g}{w}}=\sqrt{\frac{(50)(386)}{10}}=43.93 \mathrm{rad} / \mathrm{sec}
$$

3. Compute the maximum deformation.

$$
\begin{aligned}
u(t) & =u(0) \cos \omega_{n} t+\frac{\dot{u}(0)}{\omega_{n}} \sin \omega_{n} t \\
& =(0.2) \cos 316.8 t-\left(\frac{166.7}{43.93}\right) \sin 316.8 t \\
u_{o} & =\sqrt{[u(0)]^{2}+\left[\frac{\dot{u}(0)}{\omega_{n}}\right]^{2}} \\
& =\sqrt{0.2^{2}+(-3.795)^{2}}=3.8 \mathrm{in} .
\end{aligned}
$$

4. Compute the maximum acceleration.

$$
\begin{aligned}
\ddot{u}_{o} & =\omega_{n}^{2} u_{o}=(43.93)^{2}(3.8) \\
& =7334 \mathrm{in} \cdot / \sec ^{2}=18.98 \mathrm{~g}
\end{aligned}
$$

Problem 2.7

Given:

$$
\begin{aligned}
m & =\frac{200}{32.2}=6.211 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{ft} \\
f_{n} & =2 \mathrm{~Hz}
\end{aligned}
$$

Determine $E I$:

$$
\begin{aligned}
& k=\frac{3 E I}{L^{3}}=\frac{3 E I}{3^{3}}=\frac{E I}{9} \mathrm{lb} / \mathrm{ft} \\
& f_{n}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}} \Rightarrow 2=\frac{1}{2 \pi} \sqrt{\frac{E I}{55.90}} \Rightarrow \\
& E I=(4 \pi)^{2} 55.90=8827 \mathrm{lb}-\mathrm{ft}^{2}
\end{aligned}
$$

Problem 2.8

Equation of motion:

$$
\begin{equation*}
m \ddot{u}+c \dot{u}+k u=0 \tag{a}
\end{equation*}
$$

Dividing Eq. (a) through by m gives

$$
\begin{equation*}
\ddot{u}+2 \zeta \omega_{n} \dot{u}+\omega_{n}^{2} u=0 \tag{b}
\end{equation*}
$$

where $\zeta=1$.
Equation (b) thus reads
$\ddot{u}+2 \omega_{n} \dot{u}+\omega_{n}^{2} u=0$
Assume a solution of the form $u(t)=e^{s t}$. Substituting this solution into Eq. (c) yields

$$
\left(s^{2}+2 \omega_{n} s+\omega_{n}^{2}\right) e^{s t}=0
$$

Because $e^{s t}$ is never zero, the quantity within parentheses must be zero:

$$
s^{2}+2 \omega_{n} s+\omega_{n}^{2}=0
$$

or

$$
s=\frac{-2 \omega_{n} \pm \sqrt{\left(2 \omega_{n}\right)^{2}-4 \omega_{n}^{2}}}{2}=-\omega_{n}
$$

(double root)
The general solution has the following form:

$$
\begin{equation*}
u(t)=A_{1} e^{-\omega_{n} t}+A_{2} t e^{-\omega_{n} t} \tag{d}
\end{equation*}
$$

where the constants A_{1} and A_{2} are to be determined from the initial conditions: $u(0)$ and $\dot{u}(0)$.

Evaluate Eq. (d) at $t=0$:

$$
\begin{equation*}
u(0)=A_{1} \Rightarrow A_{1}=u(0) \tag{e}
\end{equation*}
$$

Differentiating Eq. (d) with respect to t gives

$$
\begin{equation*}
\dot{u}(t)=-\omega_{n} A_{1} e^{-\omega_{n} t}+A_{2}\left(1-\omega_{n} t\right) e^{-\omega_{n} t} \tag{f}
\end{equation*}
$$

Evaluate Eq. (f) at $t=0$:

$$
\begin{align*}
& \dot{u}(0)=-\omega_{n} A_{1}+A_{2}(1-0) \\
& \therefore A_{2}=\dot{u}(0)+\omega_{n} A_{1}=\dot{u}(0)+\omega_{n} u(0) \tag{g}
\end{align*}
$$

Substituting Eqs. (e) and (g) for A_{1} and A_{2} in Eq. (d) gives

$$
\begin{equation*}
u(t)=\left\{u(0)+\left[\dot{u}(0)+\omega_{n} u(0)\right] t\right\} e^{-\omega_{n} t} \tag{h}
\end{equation*}
$$

Problem 2.9

Equation of motion:

$$
\begin{equation*}
m \ddot{u}+c \dot{u}+k u=0 \tag{a}
\end{equation*}
$$

Dividing Eq. (a) through by m gives

$$
\begin{equation*}
\ddot{u}+2 \zeta \omega_{n} \dot{u}+\omega_{n}^{2} u=0 \tag{b}
\end{equation*}
$$

where $\zeta>1$.
Assume a solution of the form $u(t)=e^{s t}$. Substituting this solution into Eq. (b) yields

$$
\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right) e^{s t}=0
$$

Because $e^{s t}$ is never zero, the quantity within parentheses must be zero:

$$
s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=0
$$

or

$$
\begin{aligned}
s & =\frac{-2 \zeta \omega_{n} \pm \sqrt{\left(2 \zeta \omega_{n}\right)^{2}-4 \omega_{n}^{2}}}{2} \\
& =\left(-\zeta \pm \sqrt{\zeta^{2}-1}\right) \omega_{n}
\end{aligned}
$$

The general solution has the following form:

$$
\begin{align*}
u(t) & =A_{1} \exp \left[\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{n} t\right] \\
& +A_{2} \exp \left[\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} t\right] \tag{c}
\end{align*}
$$

where the constants A_{1} and A_{2} are to be determined from the initial conditions: $u(0)$ and $\dot{u}(0)$.

Evaluate Eq. (c) at $t=0$:

$$
\begin{equation*}
u(0)=A_{1}+A_{2} \Rightarrow A_{1}+A_{2}=u(0) \tag{d}
\end{equation*}
$$

Differentiating Eq. (c) with respect to t gives

$$
\begin{align*}
\dot{u}(t) & =A_{1}\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{n} \exp \left[\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{n} t\right] \tag{e}\\
& +A_{2}\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} \exp \left[\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} t\right]
\end{align*}
$$

Evaluate Eq. (e) at $t=0$:

$$
\begin{aligned}
\dot{u}(0) & =A_{1}\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{n}+A_{2}\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} \\
& =\left[u(0)-A_{2}\right]\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{n}+A_{2}\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n}
\end{aligned}
$$

or

$$
\begin{array}{r}
A_{2} \omega_{n}\left[-\zeta+\sqrt{\zeta^{2}-1}+\zeta+\sqrt{\zeta^{2}-1}\right]= \\
\dot{u}(0)+\left(\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} u(0)
\end{array}
$$

or

$$
\begin{equation*}
A_{2}=\frac{\dot{u}(0)+\left(\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} u(0)}{2 \sqrt{\zeta^{2}-1} \omega_{n}} \tag{f}
\end{equation*}
$$

Substituting Eq. (f) in Eq. (d) gives

$$
\begin{align*}
A_{1} & =u(0)-\frac{\dot{u}(0)+\left(\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} u(0)}{2 \sqrt{\zeta^{2}-1} \omega_{n}} \\
& =\frac{2 \sqrt{\zeta^{2}-1} \omega_{n} u(0)-\dot{u}(0)-\left(\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} u(0)}{2 \sqrt{\zeta^{2}-1} \omega_{n}} \\
& =\frac{-\dot{u}(0)+\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} u(0)}{2 \sqrt{\zeta^{2}-1} \omega_{n}} \tag{g}
\end{align*}
$$

The solution, Eq. (c), now reads:

$$
u(t)=e^{-\zeta \omega_{n} t}\left(A_{1} e^{-\omega_{D}^{\prime} t}+A_{2} e^{\omega_{D}^{\prime} t}\right)
$$

where

$$
\begin{aligned}
& \omega_{D}^{\prime}=\sqrt{\zeta^{2}-1} \omega_{n} \\
& A_{1}=\frac{-\dot{u}(0)+\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} u(0)}{2 \omega_{D}^{\prime}} \\
& A_{2}=\frac{\dot{u}(0)+\left(\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} u(0)}{2 \omega_{D}^{\prime}}
\end{aligned}
$$

Problem 2.10

Equation of motion:

$$
\begin{equation*}
\ddot{u}+2 \zeta \omega_{n} \dot{u}+\omega_{n}^{2} u=0 \tag{a}
\end{equation*}
$$

Assume a solution of the form

$$
u(t)=e^{s t}
$$

Substituting this solution into Eq. (a) yields:

$$
\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right) e^{s t}=0
$$

Because $e^{s t}$ is never zero

$$
\begin{equation*}
s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}=0 \tag{b}
\end{equation*}
$$

The roots of this characteristic equation depend on ζ.
(a) Underdamped Systems, $\zeta<1$

The two roots of Eq. (b) are

$$
\begin{equation*}
s_{1,2}=\omega_{n}\left(-\zeta \pm i \sqrt{1-\zeta^{2}}\right) \tag{c}
\end{equation*}
$$

Hence the general solution is

$$
u(t)=A_{1} e^{s t}+A_{2} e^{s_{2} t}
$$

which after substituting in Eq. (c) becomes

$$
\begin{equation*}
u(t)=e^{-\zeta \omega_{n} t}\left(A_{1} e^{i \omega_{D} t}+A_{2} e^{-i \omega_{D} t}\right) \tag{d}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{D}=\omega_{n} \sqrt{1-\zeta^{2}} \tag{e}
\end{equation*}
$$

Rewrite Eq. (d) in terms of trigonometric functions:

$$
\begin{equation*}
u(t)=e^{-\zeta \omega_{n} t}\left(A \cos \omega_{D} t+B \sin \omega_{D} t\right) \tag{f}
\end{equation*}
$$

Determine A and B from initial conditions $u(0)=0$ and $\dot{u}(0)$:

$$
A=0 \quad B=\frac{\dot{u}(0)}{\omega_{D}}
$$

Substituting A and B into Eq. (f) gives

$$
\begin{equation*}
u(t)=\frac{\dot{u}(0)}{\omega_{n} \sqrt{1-\zeta^{2}}} e^{-\zeta \omega_{n} t} \sin \left(\omega_{n} \sqrt{1-\zeta^{2}}\right) t \tag{g}
\end{equation*}
$$

(b) Critically Damped Systems, $\zeta=1$

The roots of the characteristic equation [Eq. (b)] are:

$$
\begin{equation*}
s_{1}=-\omega_{n} \quad s_{2}=-\omega_{n} \tag{h}
\end{equation*}
$$

The general solution is

$$
\begin{equation*}
u(t)=A_{1} e^{-\omega_{n} t}+A_{2} t e^{-\omega_{n} t} \tag{i}
\end{equation*}
$$

Determined from the initial conditions $u(0)=0$ and $\dot{u}(0)$:

$$
\begin{equation*}
A_{1}=0 \quad A_{2}=\dot{u}(0) \tag{j}
\end{equation*}
$$

Substituting in Eq. (i) gives

$$
\begin{equation*}
u(t)=\dot{u}(0) t e^{-\omega_{n} t} \tag{k}
\end{equation*}
$$

(c) Overdamped Systems, $\zeta>1$

The roots of the characteristic equation [Eq. (b)] are:

$$
\begin{equation*}
s_{1,2}=\omega_{n}\left(-\zeta \pm \sqrt{\zeta^{2}-1}\right) \tag{l}
\end{equation*}
$$

The general solution is:

$$
\begin{equation*}
u(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} \tag{m}
\end{equation*}
$$

which after substituting Eq. (1) becomes

$$
\begin{equation*}
u(t)=A_{1} e^{\left(-\zeta+\sqrt{\zeta^{2}-1}\right) \omega_{n} t}+\mathrm{A}_{2} e^{\left(-\zeta-\sqrt{\zeta^{2}-1}\right) \omega_{n} t} \tag{n}
\end{equation*}
$$

Determined from the initial conditions $u(0)=0$ and $\dot{u}(0)$:

$$
\begin{equation*}
-A_{1}=A_{2}=\frac{\dot{u}(0)}{2 \omega_{n} \sqrt{\zeta^{2}-1}} \tag{o}
\end{equation*}
$$

Substituting in Eq. (n) gives

$$
\begin{equation*}
u(t)=\frac{\dot{u}(0) e^{-\zeta \omega_{n} t}}{2 \omega_{n} \sqrt{\zeta^{2}-1}}\left(e^{\omega_{n} t \sqrt{\zeta^{2}-1}}-e^{-\omega_{n} t \sqrt{\zeta^{2}-1}}\right) \tag{p}
\end{equation*}
$$

(d) Response Plots

Plot Eq. (g) with $\zeta=0.1$; Eq. (k), which is for $\zeta=1$; and Eq. (p) with $\zeta=2$.

Problem 2.11

$$
\begin{aligned}
& \quad \frac{1}{j} \ln \left(\frac{u_{1}}{u_{j+1}}\right) \approx 2 \pi \zeta \Rightarrow \frac{1}{j_{10 \%}} \ln \left(\frac{1}{0.1}\right) \approx 2 \pi \zeta \\
& \therefore j_{10 \%} \approx \ln (10) / 2 \pi \zeta \approx 0.366 / \zeta
\end{aligned}
$$

Problem 2.12

$$
\frac{u_{i}}{u_{i+1}}=\exp \left(\frac{2 \pi \zeta}{\sqrt{1-\zeta^{2}}}\right)
$$

(a) $\zeta=0.01: \quad \frac{u_{i}}{u_{i+1}}=1.065$
(b) $\zeta=0.05: \frac{u_{i}}{u_{i+1}}=1.37$
(c) $\zeta=0.25: \quad \frac{u_{i}}{u_{i+1}}=5.06$

Problem 2.13

Given:
$w=20.03 \mathrm{kips}$ (empty); $m=0.0519 \mathrm{kip}-\mathrm{sec}^{2} / \mathrm{in}$.
$k=2(8.2)=16.4 \mathrm{kips} / \mathrm{in}$.
$c=0.0359 \mathrm{kip}-\mathrm{sec} / \mathrm{in}$.
(a) $T_{n}=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{0.0519}{16.4}}=0.353 \mathrm{sec}$
(b) $\zeta=\frac{c}{2 \sqrt{k m}}=\frac{0.0359}{2 \sqrt{(16.4)(0.0519)}}=0.0194$

$$
=1.94 \%
$$

Problem 2.14

(a) The stiffness coefficient is

$$
k=\frac{3000}{2}=1500 \mathrm{lb} / \mathrm{in}
$$

The damping coefficient is

$$
\begin{aligned}
& c=c_{c r}=2 \sqrt{k m} \\
& c=2 \sqrt{1500 \frac{3000}{386}}=215.9 \quad \mathrm{lb}-\mathrm{sec} / \mathrm{in}
\end{aligned}
$$

(b) With passengers the weight is $w=3640 \mathrm{lb}$. The damping ratio is

$$
\zeta=\frac{c}{2 \sqrt{k m}}=\frac{215.9}{2 \sqrt{1500 \frac{3640}{386}}}=0.908
$$

(c) The natural vibration frequency for case (b) is

$$
\begin{aligned}
\omega_{D} & =\omega_{n} \sqrt{1-\zeta^{2}} \\
& =\sqrt{\frac{1500}{3640 / 386}} \sqrt{1-(0.908)^{2}} \\
& =12.61 \times 0.419 \\
& =5.28 \mathrm{rads} / \mathrm{sec}
\end{aligned}
$$

Problem 2.15

1. Determine ζ and ω_{n}.

$$
\zeta \approx \frac{1}{2 \pi j} \ln \left(\frac{u_{1}}{u_{j+1}}\right)=\frac{1}{2 \pi(20)} \ln \left(\frac{1}{0.2}\right)=0.0128=1.28 \%
$$

Therefore the assumption of small damping implicit in the above equation is valid.

$$
\begin{aligned}
& T_{D}=\frac{3}{20}=0.15 \mathrm{sec} ; T_{n} \approx T_{D}=0.15 \mathrm{sec} ; \\
& \omega_{n}=\frac{2 \pi}{0.15}=41.89 \mathrm{rads} / \mathrm{sec}
\end{aligned}
$$

2. Determine stiffness coefficient.

$$
k=\omega_{n}^{2} m=(41.89)^{2} 0.1=175.5 \mathrm{lbs} / \mathrm{in} .
$$

3. Determine damping coefficient.
$c_{c r}=2 m \omega_{n}=2(0.1)(41.89)=8.377 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.
$c=\zeta c_{c r}=0.0128(8.377)=0.107 \mathrm{lb}-\mathrm{sec} / \mathrm{in}$.

Problem 2.16

(a) $k=\frac{250}{0.8}=312.5 \mathrm{lbs} / \mathrm{in}$.

$$
\begin{aligned}
& m=\frac{w}{\mathrm{~g}}=\frac{250}{386}=0.647 \mathrm{lb}-\mathrm{sec}^{2} / \mathrm{in} . \\
& \omega_{n}=\sqrt{\frac{k}{m}}=21.98 \mathrm{rads} / \mathrm{sec}
\end{aligned}
$$

(b) Assuming small damping,
$\ln \left(\frac{u_{1}}{u_{j+1}}\right) \approx 2 j \pi \zeta \Rightarrow$
$\ln \left(\frac{u_{0}}{u_{0} / 8}\right)=\ln (8) \approx 2(2) \pi \zeta \Rightarrow \zeta=0.165$
This value of ζ may be too large for small damping assumption; therefore we use the exact equation:
$\ln \left(\frac{u_{1}}{u_{j+1}}\right)=\frac{2 j \pi \zeta}{\sqrt{1-\zeta^{2}}}$
or,

$$
\begin{aligned}
& \ln (8)=\frac{2(2) \pi \zeta}{\sqrt{1-\zeta^{2}}} \Rightarrow \frac{\zeta}{\sqrt{1-\zeta^{2}}}=0.165 \Rightarrow \\
& \zeta^{2}=0.027\left(1-\zeta^{2}\right) \Rightarrow \\
& \zeta=\sqrt{0.0267}=0.163
\end{aligned}
$$

(c) $\omega_{D}=\omega_{n} \sqrt{1-\zeta^{2}}=21.69 \mathrm{rads} / \mathrm{sec}$

Damping decreases the natural frequency.

Problem 2.17

Reading values directly from Fig. 1.1.4b:

Peak	Time, $t_{i}(\mathrm{sec})$	Peak, $\ddot{u}_{i}(\mathrm{~g})$
1	0.80	0.78
31	7.84	0.50

$$
\begin{aligned}
& T_{D}=\frac{7.84-0.80}{30}=0.235 \mathrm{sec} \\
& \zeta=\frac{1}{2 \pi(30)} \ln \left(\frac{0.78 g}{0.50 g}\right)=0.00236=0.236 \%
\end{aligned}
$$

Problem 2.18

1. Determine buckling load.

$$
\begin{aligned}
& w_{c r}(L \theta)=k \theta \\
& w_{c r}=\frac{k}{L}
\end{aligned}
$$

2. Draw free-body diagram and set up equilibrium equation.

$$
\begin{equation*}
\sum M_{O}=0 \Rightarrow f_{I} L+f_{S}=w L \theta \tag{a}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{I}=\frac{w}{\mathrm{~g}} L^{2} \ddot{\theta} \quad f_{S}=k \theta \tag{b}
\end{equation*}
$$

Substituting Eq. (b) in Eq. (a) gives

$$
\begin{equation*}
\frac{w}{\mathrm{~g}} L^{2} \ddot{\theta}+(k-w L) \theta=0 \tag{c}
\end{equation*}
$$

3. Compute natural frequency.

$$
\omega_{n}^{\prime}=\sqrt{\frac{k-w L}{(w / \mathrm{g}) L^{2}}}=\sqrt{\frac{k}{(w / \mathrm{g}) L^{2}}\left(1-\frac{w L}{k}\right)}
$$

or

$$
\begin{equation*}
\omega_{n}^{\prime}=\omega_{n} \sqrt{1-\frac{w}{w_{c r}}} \tag{d}
\end{equation*}
$$

Problem 2.19

For motion of the building from left to right，the governing equation is

$$
\begin{equation*}
m \ddot{u}+k u=-F \tag{a}
\end{equation*}
$$

for which the solution is

$$
\begin{equation*}
u(t)=A_{2} \cos \omega_{n} t+B_{2} \sin \omega_{n} t-u_{F} \tag{b}
\end{equation*}
$$

With initial velocity of $\dot{u}(0)$ and initial displacement $u(0)=0$ ，the solution of Eq．（b）is

$$
\begin{align*}
& u(t)=\frac{\dot{u}(0)}{\omega_{n}} \sin \omega_{n} t+u_{F}\left(\cos \omega_{n} t-1\right) \tag{c}\\
& \dot{u}(t)=\dot{u}(0) \cos \omega_{n} t-u_{F} \omega_{n} \sin \omega_{n} t \tag{d}
\end{align*}
$$

At the extreme right，$\dot{u}(t)=0$ ；hence from Eq．（d）

$$
\begin{equation*}
\tan \omega_{n} t=\frac{\dot{u}(0)}{\omega_{n}} \frac{1}{u_{F}} \tag{e}
\end{equation*}
$$

Substituting $\omega_{n}=4 \pi, \quad u_{F}=0.15 \mathrm{in}$ ．and $\dot{u}(0)=$ 20 in ．／sec in Eq．（e）gives

$$
\tan \omega_{n} t=\frac{20}{4 \pi} \frac{1}{0.15}=10.61
$$

or

$$
\sin \omega_{n} t=0.9956 ; \quad \cos \omega_{n} t=0.0938
$$

Substituting in Eq．（c）gives the displacement to the right：

$$
u=\frac{20}{4 \pi}(0.9956)+0.15(0.0938-1)=1.449 \mathrm{in} .
$$

After half a cycle of motion the amplitude decreases by

$$
2 u_{F}=2 \times 0.15=0.3 \mathrm{in} .
$$

Maximum displacement on the return swing is

$$
u=1.449-0.3=1.149 \mathrm{in} .
$$

Problem 2.20

Given:

$$
\begin{aligned}
F & =0.1 w, T_{n}=0.25 \mathrm{sec} \\
u_{F} & =\frac{F}{k}=\frac{0.1 w}{k}=\frac{0.1 \mathrm{mg}}{k}=\frac{0.1 \mathrm{~g}}{\omega_{n}^{2}}=\frac{0.1 \mathrm{~g}}{\left(2 \pi / T_{n}\right)^{2}} \\
& =\frac{0.1 \mathrm{~g}}{(8 \pi)^{2}}=0.061 \mathrm{in} .
\end{aligned}
$$

The reduction in displacement amplitude per cycle is

$$
4 u_{F}=0.244 \mathrm{in} .
$$

The displacement amplitude after 6 cycles is

$$
2.0-6(0.244)=2.0-1.464=0.536 \mathrm{in} .
$$

Motion stops at the end of the half cycle for which the displacement amplitude is less than u_{F}. Displacement amplitude at the end of the 7 th cycle is $0.536-0.244=$ 0.292 in.; at the end of the 8th cycle it is $0.292-0.244=$ 0.048 in.; which is less than u_{F}. Therefore, the motion stops after 8 cycles.

