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CHAPTER 1
FUNDAMENTAL PRINCIPLES OF COUNTING

Sections 1.1 and 1.2

(a) By the rule of sum, there are 8 4 5 = 13 possibilities for the eventual winner.

{b) Since there are eight Republicans and five Democrats, by the rule of product we have
8 x 5 = 40 possible pairs of opposing candidates.

{¢) The rule of sum in part (a); the rule of product in part (b).

By the rule of product there avre 5 x5 x5 x 5x 5 x 5 == 5% license plates where the first
two symbols are vowels and the last four are even digits.

By the rule of product there are () 4 x 12 x 3 x 2 = 288 distinct Buicks that can be
manufactured. Of these, (b) 4 x 1 x3 x 2= 24 are blue.

(a) From the rule of product there are 10 x 9 x 8 x 7 = P(10,4) = 5040 possible slates.
(b) (i) There are 3 x 9 x 8 x 7 = 1512 slates where a physician is nominated for president.
(ii) The number of slates with exactly one physician appearing is 4 X [3 x 7 x 6 x 5] = 2520.
(iii) There are 7 X 6 X 5 X 4 = 840 slates where no physician is nominated for any of the
four offices. Consequently, 5040 — 840 = 4200 slates include at least one physician.

Based on the evidence supplied by Jennifer and Tiffany, from the rule of product we find
that there are 2 X 2 x 1 x 10 x 10 x 2 = 800 different license plates.

{a) Here we are dealing with the permutations of 30 objects (the runners) taken 8 (the first
eight finishing positions) at a time.. So the trophies can be awarded in P(30,8) = 30!/22!

ways.

{b) Roberta and Candice can finish among the top three runners in 6 ways. For each of
these 6 ways, there are P(28,8) ways for the other 6 finishers (in the top 8) to finish the
race. By the rule of product there are 6. P(28,6} ways to award the trophies with these
two runners among the top three.

By the rule of product theve are 2% possibilities.

By the rule of product there are (a) 12! ways to process the programs if there are no
restrictions; (b} {(4!)(8!) ways so that the four higher priority programs are processed first;
and (¢) (41}(81){3!) ways where the four top priority programs arve processed first and the
three programs of least priority are processed last.
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10.
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12.
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14.

15.

16.

17&

18.

19.

20.

(a) (14)(12) = 168
(b) (14)(12)(6)(18) = 18,144
(c) (8)(18)(6)(3)(14)(12)(14)(12) = 73,156,608

Cousider one such arrangement — say we have three books on one shelf and 12 on the
other. This can be accomplished in 15! ways. In fact for any subdivision (resulting in
two nonempty shelves) of the 15 books we get 15! ways to arrange the books on the two
shelves. Since there are 14 ways to subdivide the books so that each shelf has at least one
book, the total number of ways in which Pamela can arrange her books in this manner is

(14)(151).

(a) There are four roads from town A to town B and three roads from town B to town
C, so by the rule of product there are 4 X 3 = 12 roads from A to C that pass through B.
Since there are two roads from A to C directly, there are 12 + 2 = 14 ways in which Linda

can make the trip from A to C.
(b) Using the result from part (a), together with the rule of product, we find that there

are 14 x 14 = 196 different round trips (from A to C and back to A).
(c) Here there are 14 x 13 = 182 round trips.

(1) act (2) at.c (3) c,a,t (4) ct,a (5) t,ac (8) t,c,a
(a) 8= P(8,8) (b) 7! 6!

(a) P(7,2) = T1/(T—2)! = T1/5! = (7)(6) = 42
(b) P(8,4) = 8!/(8 — 4)! = 81/4! = (8)(7)(6)(5) = 1680

(c) P(10,7) = 101/(10 — 7)! = 10!/3! = (10)(9)(8)(7)(6)(5)(4) = 604,800
(d) P(12,3) = 12!/(12 — 3)! = 121/9! = (12)(11)(10) = 1320

Here we must place a,b,c,d in the positions denoted by x: exexexexe By therule
of product there are 4! ways to do this.

(a) With repetitions allowed there are 40%° distinct messages.
(b) By the rule of product there are 40 x 30 X 30 x ... x 30 x 30 x 40 = (40%)(30%%)

messages.

Class A: (27— 2)(2% — 2) = 2,113,928, 964
Class B: 21(2'€ — 2) = 1,073,709, 056
Class C: 2%(2° — 2) = 532, 676, 608

From the rule of product we find that there are (7T}(4)(3)(6) = 504 ways for Morgan to
coufigure her low-end computer system.

(a) 7! = 5040 - (b) 4x3x3x2x2x1x1={(41)3) =144
{e) (31)(5)(4h) = 720 (d) (31)(41)(2) = 288

(a) Since there are three A’s, there are 8!/3! = 6720 arrangements.



21.

22.

23,

24.

25.

26.

27.

289

{b) Here we arrange the six symbols D,T,G,R,M, AAA in 6! = 720 ways.

(a) 121/(31212121)

(b} [111/(31212121)] (for AG) + [111/(3121212!)] (for GA) ,

(¢) Consider one case where all the vowels are adjacent: S,CL,G,C,L, OIOOIA. These
seven symbols can be arranged in (71)/(2!2!) ways. Since 0,0,0,I,1,A can be arranged

in (61)/(3!2!) ways, the number of arrangements with all the vowels adjacent is

(71 /(2120)]6!/(3120)].

(Case 1: The leading digit is 5)  (6!)/(2!)

(Case 2: The leading digit is 6)  (61)/(2!)?

(Case 3: The leading digit is 7}  (6!)/(2!)? :

In total there are [{6!)/(2D][1 + (1/2) + (1/2)] = 6! = 720 such positive integers n.

Here the solution is the number of ways we can arrange 12 objects — 4 of the first type,
3 of the second, 2 of the third, and 3 of the fourth. There are 121/(4131213!) = 277,200
ways.

Pn+lr)=m+/{n+l-rii={n+1)/(n+1-r)] ni/(n—r)]=
(n+1)/(n+1-1)]P(n,r).

(a) n=10 (b)y n=15
(c) 2nl/(n —2)1 + 50 = (2n)l/(2n - 2)! = 2n(n — 1)+ 50 = (2n)(2n ~ 1) = n® = 25 =
n = 5.

Any such path from (0,0) to (7,7) or from (2,7) to (9,14) is an arrangement of 7 R’s and
7 U’s. There are (14!)/(7!7!) such arrangements.

In general, for m,n nonnegative integers, and any real numbers «, b, the number of such
paths from (a,8) to (a+m,b+n) is (m+n)l/{min!).

{(2) Bach path consists of 2 H’s, 1 V, and 7 A’s. There are 10!/(2!117!) ways to arrange
these 10 letters and this is the number of paths.

(b} 10t/(211171) ‘

{¢) I @,8, and ¢ are any real numbers and m,n, and p are nonnegative integers, then
the number of paths from {(g,d,¢) to (a+m, b+ n,c+p) is (m+n+p)l/(minip!).

(2} The for loop for £ is executed 12 times, while those for j and k are executed 10—5+41 = 6
and 13 - 8 4 1 == 8 times, respectively. Consequently, following the execution of the given
prograin segment, the value of counter is

0+ 12(1) + 6(2) + 8(3) = 48.

(b} Here we have three tasks — 7}, Ty, and T5. Task 7} takes place each {ime we traverse
the instructions in the ¢ loop. Similarly, tasks T, and T take place during each iteration
of the § and k loops, respectively. The final value for the integer variable counter follows
by the rule of sum. '



29.
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31.

32.

33.

34.

38,

36‘

37.

(a) & (b) By the rule of product the print statement is executed 12x 6 x 8 = 576 times.

(a) For five letters there are 26 x 26 x 26 x 1 x 1 = 26° palindromes. There are 26 x 26 x
26 x 1 x 1 x 1 =26 palindromes for six letters.

(b) When letters may not appear more than two times, there are 26 x 25 x 24 = 15,600
palindromes for either five or six letters.

By the rule of product there are (&) 9x 9 x 8 x 7 x 6 x5 = 136,080 six-digit integers
with no leading zeros and no repeated digit. (b) When digits may be repeated there are
9 x 10° such six-digit integers.

(i} (a) (Ix8xTx6x5x1) (for the integers ending in 0) + (8 X 8x 7T x 6 x5 x 4) (for
the integers ending in 2,4,6, or 8) = 68,800. (b} When the digits may be repeated there
are 9x 10 x 10 x 10 x 10 x 5 = 450,000 six-digit even integers.

(ii) (a) (9x8x7x6x5x1) (for the integers endingin 0) + (8x8x 7 x6 x5 x 1)
(for the integers ending in 5) = 28,560. {(b) 9 x 10 x 10 x 10 x 10 x 2 = 180, 0600.

(iii) We use the fact that an integer is divisible by 4 if and only if the integer formed by
the last two digits is divisible by 4. {a) (8 x 7x 6 x5 x6) (last two digits are 04, 08, 20,
40, 60, or 80) + (7 x 7 x 6 x 5 x 16) (last two digits are 12, 16, 24, 28, 32, 36, 48, 52, 56,
64, 68, 72, 76, 84, 92, or 96) = 33,600. (b) 9 x 10 x 10 x 10 x 25 = 225, 000.

(a) For positive integers n,k, where n = 3k, nl/(3!)* is the number of ways to arrange
the n objects @y, 2y, %y, %3, 29, 29,...,Tk, Tk, £¢. Lhis must be an integer.
(b) If n,k are positive integers with n = mk, then n!/(m!)* is an integer.

(a) With 2 choices per question there are 2'° = 1024 ways to answer the examination.
(b) Now there are 3 choices per question and 3'° ways,

(41721 (No 7’s} -+ (4!) (One 7 and one 3) + (2)(4!/2?) (One 7 and two 3's) + (41/21) (TWO
7’s and no 3's) + (2)(4!/2!) (Two 7’s and one 3) + (4!/(2!2!}) {(Two 7’s and two 3's). The
total gives us 102 such four-digit integers.

(a) 6! (b) Let A,B denote the two people who insist on sitting next to each other.
Then there are 5! (A to the right of B} 4 5! (B to the right of A) = 2(5!} seating
arrangements.

{a) Locate A. There are two cases to consider. (1) There is a person to the left of A on
the same side of the table. There are 7! such seating arrangements. {2} There is a person
to the right of A on the same side of the table. This gives 7! more arrangements. So there
are 2(7!) possibilities. (b) 7200

We can select the 10 people to be seated at the table for 10 in Gg) ways., For each such
selection there are 9! ways of arranging the 10 people around the table. The remaining six
people can be seated around the other table in 5! ways. Consequently, there are Gg) a5t
ways to seat the 16 people around the two given tables.



38. The nine women can be situated around the table in 8! ways. Each such arrangement
provides nine spaces (between women) where a man can be placed. We can select six

of these places and situate a man in each of them in (3)6! =0-8-7-6-5-4 ways.

Consequently, the number of s«éating arrangements under the given conditions is (83)(§) 6 =
2,438, 553, 600.

39.

procedure SumOfFaci(s, sum: positive integers; 7,k nonnegative integers;
factorsal: array [0..9] of ten positive integers)
begin : :
faciorial [0] := 1
fori:=1to9do
factorial [3] := § * factorial [i - 1]

fori:=1to 9 do
for j := 0 to 9 do
for k:= 0 to 9 do
begin '
sum = factorial [{] + factorial [j] + factorial [k]
if (100 * s + 10 * j + k) = sum then
print (100 * i + 10 * 5 + k)
end
end

The unique answer is 145 since (1) + (4!) + (81) = 1 + 24 + 120 = 145.

Section 1.3

L (8 =6Y[216-2))) = 61/(24)) = (6)(5)/2 = 15

2

a b b ¢ € e
a c b d e f
1 d b & d e
8 e b f a f
a f ¢ d e £

2. Order is not relevant here and Diane can make her selection in (22} = 792 ways.

3. () C(10,4) = 101/(4161) = (10)(D(BYT)/(4){(3)}2)(1) = 210
(b) (5) = 12/(718!) = (12)11)(10)OHBY/B)AEH2)(L) =792



16,

1.

12.

(¢) C(14,12) = 141/(12!21) = (14)(13)/(2)(1) = 61
(d) (13) = 15!/(10151) = (15)(14)(18)(12)(11)/(5)(4)(3)(2)(1) = 3003

(a) 2°—1=63 (b) (§) =20 © O+ +(=mn

(a) There are P(5,3) = 5I/(5— 3)! = 51/2! = (5)(4)(3) = 60 permutations of size 3 for the
five letters m, r, a, f, and t.
(b) There are C(5,3) = 5!/[34(5 — 3)!] = 5!/(3!2!) = 10 combinations of size 3 for the five
letters m, r, 8, f, and t. They are .

af,m afr af,t : a,1m,r a,n1,t

a,r,t fmr fim,t fr,t m,r,b

(”) " (" X 1) = D)= 1)+ (2)n = Dln = 2) = G~ D+ (n = 2)] =

2
G)n-1)(2n -2) = (n - 1)%
) ( g) 1 10 Eab)(m) (w) 0 ‘
(c) (2) (1 )(2 women)+( )( ) (4 women)+.. +( )( ) (10 women) = $°3_, (12?) (mlfzé)
(d) (1.,0) (1;3) (7 women) + ( )( ) (8 women) + ( )( ) (9 women) +

(i0) (5) (10 women) = 3z (7) (2.

(e) Tits (w) (12_-z)
@ () ® @) © FEOE) @ O
<@@®® ® (D) E) =374

(13) (g)( )( 4) /2 (Division by 2 is needed since no distinction is made for the order

in w%:izch the other two cards are drawn.} This result equals 54,912 = (1;3) (é) (428) 3744 =
HEGE)O6)-

m) (GGG | |
@ () ® @) © () @ (@+6)+6)

G G |
{(a) (2;’} = 120 {b) @) = 56 (e) (i} (g) (four of the first six) ~5~@ (;f)

{five of the first six) %(g) (:} (all of the first six) = (15)(4) + (6)(6) + {1}(4) = 100.

{(a) The first three books can be selected in (?) ways. The next three in (g} ways.
The third set of three in (g} ways and the fourth set in @) ways. Consequently, the 12

books can be distributed in (i,f} (g) (g} @) = (120)/1(31)*] ways.

8
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15.

16.

1&.

19.

o) (DG 6 = a2/ierer).

The letters M,LLLP,PI can be arranged in [71/{4)){(2)] ways. Each srrangement provides
eight locations (one at the start of the arrangement, one at the finish, and six between
letters) for placing the four nonconsecutive §’s. Four of these locations can be selected in
{i} ways. Henee, the tolal number of these arrangements is (z} [71/(48(2h].

{;;) == 12,378 when n = 17,

{a) Two distinct points determine a line. With 15 points, no three collinear, there
e (15 ihle Fies
ave ( 2} possible lines.

(b} There are {2;) possible triangles or planes, and (?} possible tetrabedra.

(a) z(z +1) = (P2 DB DA+ DB+ 1)+ (6541) = 245+ 10+ 1T+ 26437

= 97
2
(b} 2 (=1 =[(-2P U+ [~ 1 -+ (O - D+ (1* 1) +(2" = 1) = =02 14 0+7
s P
2 -5
1
(e} S 4(-1)]=2404+2+4+0+2+04+24042+0+2=12
g3

n
{E‘é,} E{~1}k - i{"“}*}ﬂ + (__M}_)M-l} + {(~l)ﬁ+2 + (Mi)n-ﬁij R [{Mi}znmi + {wi}m}
= 0404...40=

4
(&) Y (-1 =-142-344-546=3

PP
"1 e vin L
& 2o o) Y7 () 2A-1Y75% e 3 (=1 e
= A #d Fusl B}
~itl . ‘iﬁ“ AL ?;i’f
(d) 2;;7; + 2 \®) fgg{ D {i?z}‘}
(s) 10'/(4l3131) m) ()2 + (V)2+ (B

{c) {m} (four 1's, six 0's) + {?} (f) {two 1's, one 2, seven 0's) +
{gf } {two 25, eight s}

é::% {three 1's, seven 0's} + @:E;}} {f} {one 1, one 2, eight 0's) +
{one 3, nine §'s) = 220
{m} 4 g’w} + {w} (@} + g;ifﬁ} {? = 705



20'

21.

22.

23.

24.

25.

26.

2?0

(2", {;?)) ~ Select an even number of locations for 0,2. This is done in (12?) ways

for 0 <i < 5. Then for the 2¢ positions selected there are two choices; for the 10— 2
remaining positions there are also two choices — namely, 1,3.

(8) We can select 3 vertices from A, B, C,D,E,F, G, Hin ( ) ways, so there are ( ) = 56
distinct inscribed triangles.
(b) (f) = 70 quadrilaterals.

{(c) The total number of polygons is (g) + (i) + (2} + (2) + (g) + (g} =98 E(g) + (f) + (Z)] -
956 — [1 + 8 + 28] = 219,

There are (’;} triangles if sides of the n-gon may be used. Of these (3} triangles,
when n > 4 there are n triangles that use two sides of the n-gon and n(n — 4)
triangles that use only one side. So if the sides of the n-gon cannot be used, then there

are ';) —n - n{n —4), n > 4, triangles.

(a) From the rule of product it follows that there are 4 X 4 X 6 = 96 terms in the complete
expansionof (a+b+c+d)e+ f+g+h)utv+w+z+y+2).
(b) The terms dbvz and egu do not occur as summands in this expansion.

@ (5) ®) (5)@)

(¢) Let ¢ =2z and b= —3y. By the binomial theorem the coefficient of ®b® in the
expansion of {a+ b)'? is (192) But (1:) a®b® = (”)(2:0)9( 3y)° = ( 12)(2'3)( 3)° 2%, s0
the coefficient of 2% is (}92)(29)(-3)3.

@) ) ) =
(metsy) st (=) - (2%)
™ nalngtuglomd” .
@ (i) =12 () (o,h,) =12
() (1 ! 3)(2)( “H(-1) =24 (d) (1,;,2)(“‘2)(3)2 = —216
(e} (3,2 1,2){2)3( ~1)*(3)(~2)* = 161,280

(a) (2 2 2 \ 2) = (100)/(2!)° = 113,400
{b) {2 5. g 2 4)(9)2(*“3}2(3}2{3}2(“2}@ = {(120)/1(21* (4D]}(2)*(3)*(2)* = 718,502,400

() (g 2,2,2,2, 4)“)2( 21} )Y = [(12)/(0)(2)* (4D1(2)*(5)*(3)* = 10,103,940, 000

In each of parts (a)}{e) replace the variables by 1 and evaluate the results,
(a) 2° (b) 2%¢ , (e} 3¢ - (dy 4° (e} 4%

10



28.

29.

30.

31’

32.

33.

34Q

Y S A s e ) =T

= =0

n 1 1 1
b) Zi;((n ) i Zgﬁ(n)”’_ :L;(mz)( )z;;;(@):
o) = il = SR =

(m + 1)ty = (m + DBy = m+ (04

The sum is the binomial expansion of (1 4 2)* = 3™,

@) 1=[142) o = (Lo = (Ja(4ar 4 (20 42yt ()
(b) 1=[2+=2)—(z+1)" () 2*=[2+z)—2]"

20 ()8 = (1+8)% = 9% = [(£3)]* = (£3)'%, s0 & = 3.

(a) D (@i —aiy)=(ar —ao) + (a2 — a1) + (a3 — a3) = a3 — ap

i1

(b) Z(Gz“az 1)—-(051 —ag)+{ay—ar)+(az—a3)+ ...+ (@ney — Gz} + (Gn —apq) =

o — a0
(c)g(iiz z+1)w(“"’"") (”““)H “‘ +(101 13)0“(1(1)2”1(1)1):

1 i 1-51 -850 25

102 2 102 102 Bl

procedure Selectf(i,5: positive integers)
begin
fori:=1tobdo
- forj:=i+1to6do
print (i,j)
end

procedure Selectd(i,j,k: positive integers)
begin
fori:=1ta4do
for j:=¢41to 85 do
for k== j-+1to6do
print (i,5,k)
end

i1
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8.

9.

Section 1.4

Let z;,1 <: < 5, denote the amounts given to the five children.

{a) The number of integer solutions of z; 4z + s+ w4+ 25 =10, 0 <7, 1 <i <5, is
(5"';2‘“1) = (;3) Here n =235, r = 10.

(b) Giving each child one dime results in the equation z; + 2+ 23+ 24+ 25 =5, 0 <
z;, 1 <1 < 5. There are (54-:—1) = (g) ways to distribute the remaining five dimes.

{(c) Let =5 denote the amount for the oldest child. The number of solutions to z; +
ot zat s+ zs =10, 0 €2y, 1 €4 <4, 2 € 25 is the number of solutions to

hi+vetUsHyatys =8 0<y, 1<i <5, whichis (M57) = ().

Let z;, 1 <1 < 5, denote the number of candy bars for the five children with =z,
the number for the youngest. (x; = 1) : @y + 23 + 24 -+ z5 = 14. Here there are

('Hiﬁ“’) = (i;) distributions. (2; = 2): %3+ 23+ z4+ 25 = 13. Here the number of

distributions is (4+;§—~1) = Gg) The answer is GZ) + (ﬁ) by the rule of sum.
(5= )
@ (%) » ®) () = ()

{¢) There are 31 ways to have 12 cones with the same flavor. So there are (
to order the 12 cones and have at least two flavors.

42

12) — 31 ways

(a) 2°

(b) For each of the n distinct objects there are two choices. If an object is not selected,
then one of the n identical objects is used in the selection. This results in 2" possible
selections of size n.

()
44321y __ (35 4428-1) _ {3
(a) ( 32 ) - (32) (b) ( 28 ) - (2;)
(Q} (4%-:»-1) . (183) (d) 1
() it zetastag =232 2,22, 1 <154 Let yy=2;+2,1<4 <4 The
pumber of solutions to the given problem is then the same as the number of solutions to
yi+ya+yatys =40, 1% 26, 1<i <4 Thisis (Y57} = ().

(£ (‘M"gg”l} - {‘H’g“l} 2tz ‘zé} - (g), where the term ( g} accounts for the solutions where
X4 > 26.

S

For the chocolate donuts there are (’Mg"’"i} = (;) distributions. There are (Mi“}) e (fz)

ways o distribute the jelly donuis. By the rule of product there are (;) @) ways to

distribute the donuts as specified.

, _fa+20-1y  fn+19 _
Zﬁﬁ,zﬁﬁm< 2% )..._( 29 )mnw?

12



10.

11.

12.

13.

14.

15.

Here we want the number of integer solutions for z; + 29 + z3 + 24 + 25 + 25 = 100,
2, > 3,1 <¢<86 (Forl < ¢ <6, z; counts the number of times the face with 3
dots is rolled.} This is equal to the number of nonnegative integer solutions there are to
vi+ystyatyatus+ye = 82, y; 2 0,1 <4 £ 6. Consequently the answer is (6*"82 1) (g).

(a) (1025-—1) = (154) (b) (V+§w1) + 3(7+3~1) + 3(7+:;-1) + (7+§-'-1) —
(n) + 3(“}) + 3( ) + (z) where the first summand accounts for the case where none of
1,3,7 appears, the second summand for when exactly one of 1,3,7 appears once, the third
summand for the case of exactly two of these digits appearing once each, and the last
summand for when all three appear.

the number for oy 422+ ...+ 25 < 39,2; 20, 1 £ <5, and this equals the number of
solutions for zy + 23+ ...+ x5+ 26 = 3%, 2; 2> 0, 1 < ¢ < 6. There are (6"“39"‘1 E (gg)

such solutions.

(b) Let yi ==i+3, 1 <t <5, and consider the inequality y;+yo+...4+ys < 54, y; 2> 0.

There are [as in part (a)] (‘H'g: 1) = (?i) solutions.

@ ()= ()

(b) (3”"1) (container 4 has one marble) +(3+5"1) (container 4 has three marbles)

+ 3+g«—1) (container 4 has five marbles) «gm("“ 1) (container 4 has seven marbles)

=32, (7).
(@) (a0 J(s)z(zr
b .c.d

(b) The terms in the expansion have the form viwbz y*z® where a,b,c,d,e are
nonnegative integers that sum to 8. There are (5+2' ) = (1:) terms.

(a) The number of solutions for z3-+2z2+...+ 25 < 40,2; 2 0, 1 <i <5, is the same as

Consider one such distribution - the one where there are six books on each of the four
shelves. Here there are 24! ways for this to happen. And we see that there are also 24!
ways to place the books for any other such distribution.

The number of distributions is the number of positive integer solutions to
21+ 2 4 23 + 14 = 24,

This is the same as the nwmber of nonnegative integer solutions for
Vit ye b ys b ye =20

[Here y; + 1 =2; for all 1 <4< 4]
So there are (4+§g~1) = @ﬁ) such distributions of the books, and consequently, (;ﬁ) {241)
ways in which Beth can arrange the 24 books on the four shelves with at least one book

on each shelf.
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16.

17.

185

19.

20 -

21.

22.

23.

24.

For equation {1} we need the number of nonnegative integer solutions for

wy +wytws+...+we=n—18, where w; > 0 forall 1 <:¢ < 19. This is (19‘2{“"3}“1) =

{” 19> The number of positive integer solutions for equation {2) is the number of nonneg-
ative integer solutions for

i+ zgt ...k 2g =n - 64,

and this is (64"“{2‘::;‘?”1) == (::(:4).
So (") = (%) = ("%) and n — 19 = 63. Hence n = 82.

(a) (5+12-— } = GZ) (b) 512

(a) There are (3"’”2"1) = (g) solutions for z;+2z9+23 =6 and g“gi"l) = (gf) solutions
for z4+ 25 + x5 + 77 = 31, where z; > 0, 1 <i £ 7. By the rule of product the pair of

equations has 2) (g‘;) solutions.
5 /34
®) ()6)
Here there are r = 4 nested for loops, so 1 < m <k < j <7 < 20. We are making
selections, with repetition, of size r = 4 from a collection of size n = 20. Hence the

print statement is executed (2‘}+44"1) = (ia) times.

Here there are r = 3 nested for loops and 1 < ¢ < j < k£ £ 15. So we are making
selections, with repetition, of size r = 3 from a collection of size n = 15. Therefore the

statement .
counter := counter +1

is executed (15‘23”1) = (1.;) times, and the final value of the variable counteris 104 @7) =
690.

3
this segment the value of the variable sum is ¥.720 ¢ = (220)(221)/2 = 24, 310.

(wsz) =56 (zﬂ} mey (AR L (5 41)) ey (AR DR DI

3

The begin-end segment is executed (“’*‘3“”’) = ("32) = 220 times. After the execution of

Ly, = """‘”‘;‘““"““ ~ ‘“‘i;“" = Tiai* = n(n + D2 ~ 1] = a(n + 1){M--% =
ningl Hindl}
3 .

(a) Put one object into each container. Then there are m — n identical objects o place
into n distinet containers. This yields (””i”{:::z}"ﬁ s 2;’) - m”) distributions,
{b} Place r objects into each container. The remaining m —rn objects can then be dis-

tributed among the n disiinct containers in (”*“{;’t:;}‘”i) . (m“:ﬁ:;’}f") - (m’“:ﬁ‘“f}”}
WaYE. ‘

{a)

procedure Selections!(1j: nonnegative integers)

14



25.

26.

27.

begin
for i :== § to 10 do

for j:=0to 10~¢ do
print (ij, 10 — i — 7}

end ‘

(b) Forall 1<:<4 let y, = x;+2 > 0. Then the number of integer solutions to
zy + &3 + &3 + 24 = 4, where —2 < z; for 1 <1 < 4, is the number of integer solutions
to y1 +ys +ys + ya = 12, where y; > 0 for 1 < ¢ < 4. We use this observation in the
following. ~

procedure Selections2(i,j,k: nonnegative integers)
begin
fori:=0to 12 do
forj:=01%012~: do
fork:=0to12-:-~jdo
print (i,5,k, 12 —¢— 5 — k)
end

If the sumnands must all be even, then consider one such composition - say,
0=10+4+24+4=205+2+1+2).

Here we notice that 5+ 24 1+ 2 provides a composition of 10. Further, each composition
of 10, when multiplied through by 2, provides a composition of 20, where each summand is
evenn. Consequently, we see that the number of compositions of 20, where each summand
is even, equals the number of compositions of 10 — namely, 2%~ = 29,

Each such composition can be factored as k times a composition of m. Consequently,
there are 2™~ compositions of n, where n = mk and each summand in a composition is 2
multiple of k.

2) Here we want the number of integer solutions for @y + a3+ 23 = 12, 24,25 > 0, 23 = 7.
The nmumber of integer solutions for z¢ + 23 == 5, with z;, 23 > 0, is the same as the number
of integer solutions for gy, 4+ y3 = 3, with yy,y3 > 0. This is {M‘g‘”’ 1} = (;) o= 4,

b} Now we must also consider the integer solutions for wy + wy 4 ws = 12, wy, wy > §,
wy = §. The number here is (”g‘":} - (g) = 6,

Consequently, there arve 4 + 6 = 10 arrangements that result in three runs.

¢} The number of arrangements for four runs requires two cases [as above in part (b)].

15



28.

If the first run consists of heads, then we need the number of integer solutions for z, +
Ty 4 x5+ x4 = 12, where 23 + 23 = 5, 23,23 > 0 and @y + 24 = 7, 29,24 > 0. This

number is (“‘3’1) (2"'?“1) = (:g) (g} = 4.6 = 24. When the first run consists of tails we get

{?} G) = 6 - 4 = 24 arrangements.

In all there are 2{24) = 48 arrangements with four runs.

d) If the first run starts with an H, then we need the number of integer solutions for
Tyt 2o+ 2z X+ 25 = 12 where ¢y + 23+ 25 = 5, #1,23,25 > 0 and x4 + 24 = T,

Z3,24 > 0. This is (3+§'"1) (2"”2'}) = (z) (g) = 36. For the case where the first run starts

with & T, the number of arrangements is (3“"1) (24‘"3"1) = (6) (g) = 60.

4 3 4

In total theve are 36 4+ 60 = 96 ways for these 12 tosses to determine five runs.

e) (3*’4‘" )(3+§ 1) ( )( ) = 30 - the number of arrangements which result in six runs, if

the first run starts with an H. But this is also the number when the first run staris with
a T. Consequently, six runs come about in 2 - 90 = 180 ways.

f) 2(1+4~1) (1‘4»2—1) +2(2+§'1) (2+§-1> +2(3+§-—1) (3+:-1) +2(4+;»1) (4—;«2-4) +2<5+g—-1) (5+§«-1) -
25 (1) (e3) =2[1-1+4-6+6-15+4-20+1-15] = 420.

{a) For n > 4, consider the strings made up of n bits — that is, a total of n O’s and 1’s.
In particular, consider those strings where there are (exactly) two occurrences of 01. For
example, if n = 6 we want to include strings such as 010010 and 100101, but not 101111
or 010101. How many such strings are there?

{(b) For n > 6, how many strings of n 0’s and 1's contain (exactly) three occurrences of 017
{c) Provide a combinatorial proof for the following:

| w1 podd
For n > 1, 2“3(”“)+(”“)+ e
1 3 nii)s 1 EVen.

{(a) A string of this type consists of z; 1’s followed by z; 0’s followed by x5 1’s followed by
z4 0's followed by z5 1's followed by z¢ 0's, where,

1t Tt Tzt Tt 2 b Te =0, 21,26 20, 22,%3,284,25 > 0.
The number of solutions to this equation equals the number of solutions to
ittt utystye=n—4, where y; 20 for 1 < <6
This number is (6%:::}”3} z= {::"fi) = {“?E).

{b) For n > 6, a string with this structure has z; 1’s followed by 2, 0’s followed by z3 1's
.. followed by z3 0’s, where

Tyt xrytazto-tag=mn, 5,23 >0 x5,23,...,27 >0
The number of solutions to this equation equals the nurmber of solutions to

mtptmtooo+ys=n-—6 where y; 20 for igég&
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