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Chapter 2

DISCRETE SIGNALS

2.1 (Dlscrete Slgnals) Sketch each signal and ﬁnd 1ts energy or power as appropnate

(a) z[n] = {6 4, 2, 2} (b) y[n] = {-3, =2, 1 0, 1}
() fln) =10, 2, 4, 6} () gln] = uln] — ul — 4]
(e) pln] = cos(nm/2)  (f) gln] = 8(0.5)"uln] |
[Hints and Suggestions: Only p[n] is a power signal. The rest ha.ve ﬁmte energy]
(Solution) See the following figure for sketches,
(@)

(a) :1:[1 {6 4, 2, 2} Energy51gnal E= E:c[] 36+16+4+4 60 -
(b) yln| = { 3, =2, 1 0, 1} Energy51gna1 E e Zy[}*9+4+1+1m15

(<) fin]= {0, 2, 4, 6} Energy51gnal E=3% fln]=4+16+36=56
.(d) g[n] —-u[n].— uln —4] E__nergy slgnal. E_—Eg [n ]_-?_: 1+1+1+1—4 .

(e) p[n] = cos(mr/2) Period N = 4. Power engna} P ¥ Z P’ln) =1 Zpg = ;11- 1 + 1) 0.5
T n=0 - . .
. 64
(f) gln] = 8(0.5)"uln] Energy signal. E = Z%q [n] = 64647;) (0.25)" = 5 = 85.3333

2.2 (Signal Duratlon) Use examples to argue that the product of a rlght»SIded and a left—mded discrete-
time signal is always time- hrmted or identically zero. ' .

[Hints and Suggestions: Select simple signals that either overlap or do not overl&p ]

(Sclution) The product of & right-sided and a left-sided discrete-time signal is always time-limited
or identiecally zero,

Example 1: w|n — 3] and u]-n]. Their product is zero.
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§
Example 2: w[n 4 2} and w]—nj. Their product is {...,0,0,1,1,1,0,0,...}

4
2.3 (Operations) Let z[n] = {6, 4, 2, 2}. Sketch the following signals and find their signal energy.

(@) yll=aln—2 () flnl=aln+2 () gln) = zl—n+2)  (d) hla] = al-n 2]
[Hints and Suggestions: Note that g[n] is a folded version of f[n])]

(Solution) See the following figure for sketches.

| () b)
[
4

22
i

8

4
2z

STn

-35—-———6“

1 123

4
With zjn] = {6, 4, 2, 2}, we find

(a) yln] = zfn — 2] = {0,0,6,4,2, 2} (shift right by 2).
(b) fln] = zfn +2] = {6,4, 3,2} (shift left by 2).

() i) = al~n+2) = {2,53,4,6} (fold Fln)

(@) hln] = a]—n— 2] = {2,2,4,6,0,0} (fold y[n])

The energy in each signal is F =36+ 16+ 4+4 =160 =

2.4 {Operations) Let 2[n| = 8(0_5)”‘(.@[7.7, + 1] — u[n - 3]). Sketcﬁ the following signals.
“@ull=aln -3 (b) flrl=zln+1]  (c) gl =wl-n+4]  (d) hin] = 2]—n 2]

[Hints and Suggestions: Note that z[n] contains 5 éé,mpies (from n = —1 to n = 3). To display the
marker for y[n] (which starts at n = 2), we include two zeros at » = 0 (the marker) and n = 1.]

(Solution) Note that =[] = 8(0.5) (uln + 1] — ulp — 3]) = {16, 8, 4, 2, 1}. Then

(a) yln) = zfn — 3] = {0, 0, 16, 8, 4, 9, 1} (shift right by 3)
(b) fin]=z[n +1] = {16,8, ﬁ, 2, 1} (shift lefs by 1)
(€) gln) = a[—n+4] = {0, 1, 2, 4, 8, 16} (shift left by 4, then fold)

(@) hln] = a[—n—92] = {1, 2, 4, 8, 16, 0} (shift right by 2, then fold)
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2.5 (Energy and Power)} Classify the following as energy signals, power signals, or neither and find the
energy or power as appropriate.

() aln) = 2'aln] (0 yio] = 2ul-n 1] (©) Jln] = cc;s(mr)
(@) gin) = cos(rm/2) () pl) = Leln=1] (1) gl] = —ube 1)

1 )
(&) rlnl = —guln 1] (h) sln] = " (i) dln] = /2
() tln] = TP (k) ofn] = 774 B wlp] = (VH™ + VH™
[Hints and Suggestions: For z[n] and y[n], 22" = 4* = (0.25)"". Sum this from n = —oo to n =0
(or n = —1} using a change of variable (n — —n) in the summation. For pin|, sum 1/n? over n = 1

to 1 = oo using tables. For g|n], the sum of 1/n from n == 1 to n = oo does not converge! For i[n],
separate the exponentials. To compute the power for s[n} and d[n], note that {s[n}| = |d[n}| = 1. For
vin), use 7 = &/™/2, For win), set /7 = ¢/"/* and use Euler’s relation to convert to a sinusoid.]

(Solution)
0 0 1 4

2 __aln, [ — —ng, [ R - . -
(a) #%[n] = 2*"u[-n] = (0.25)"u[-n]. So, B n;m(o-%) ;(0 B =T T3

1.3333

~1 i 0.25

2l — 92 [y o 1] = ~gy [y — — - 25) e
() ¥2[n] = 22ul-n ~ 1] = (0.25) " u[-n — 1]. So, E n;m(&%) 2(02) o

1

- =033

5 =0.3333

(¢) fin] = cos{nw). Periodie, F = 0.5 and N =2. z[nj = {1, — 1} for one period.
1
So, P=4 > fin]=05(1+1)=1
=0

(d) g[n]= cos(mr/.?)'. Periodie, F' = 0.25 and N = 4. g[n] = {1,0, —1,0} for one period.

3
So, P=+4% > g°[n] = 0.25(1+1) =05

nw=0
(®) pln] = {n —1]. So, E == z iy (frorn tables)
(£) ¢qln] = ——%u{n ~1]. Neither a power signal nor an energy signal {(because g°[n] does not decay

faster than 1/n and 37 ¢%[n] = 1+ £ + 1 + - - does not converge).

(g) rln] = suln—1]. So, E = Z i 4 (from tables)

(h) s|n| = ™ . Periodic, ' = 0.5 and N = 2 and [s|n]l = 1.

1
So, P=4 > [sl]l* =051 +1) =1
n=0
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(i) din] = e"™™/2. Periodic, F" = 0.25 and N = 4 and |dfn]| = 1.

3
SD,Pm—J{}-Z ) = 0251+ 14+1+1)=1

() tln] = eli+bnw/d o gnu/tginm/4 Neither power nor energy ("4 = (2.1933)" is a growing
exponential).

(k) vn] = 4"/4 = 7™/8, Periodic, F = {x and N = 16 and |v[n]| = 1.

. So, P = NZQ) = (16) = 1
.m=0 K L . B
)] w[n] = (\/_) + (/7)™ = "/ 4 eI/ = Qcos(nn/2). Periodic, F = 0.25 and N = 4 and
wln] = {2,0,—2,0} for one period. '
3
So, P =% > win] = 0.25(4+4) =2
. n=0

2.8 (Energy and Power) Sketch each of the following signals, classify as an energy signal or power
_ -sigr_lal, and find the energy or power as appropriate.

.(a) wlnj = Z yln — kN, Wheré yln] = ulnj —un—3land N = 6
koo

(b) flnl= Y (2" *(uln — 5k] — uln — 5k — 4])
k= —o00

[Hints and Suggestions: The period of z[n] is N = 6. With y[n] = u|[n] — u[r — 3], one period of
x[n] (starting at n=0) is {1, 1, 1, 0, 0, 0}. The period of f|n{ is N = 5. Its one period (starting at
n = 0) contains four samples from 2™{uln] — u[n — 4]) and one trailing zero.|

(Solution) Refer to the sketch.

(2)
4 111
I~ alal
n ] - aARENEA »
123456 12345
(a) x[n] = i y[n — kN| where y[n] = u[n] — uln — 3] and N == 6. Thus z[r] = {1,1,1,0,0,0} for
k==—00

one period.

5
So, P=%> &) =11+1+1)=05
n=0

oo

(b) fln) = Z‘ (2" (uln ~ Bk] — uln ~ Bk~ 4]) = > gln— EN]

k= o0 k=—00

where N — 5 and g|n] = 2" (u[n| — u[n ~ 4]).
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4
Thus, f[n] = {1,2,4,8,0} for one period and P = £ > f?[n] = L(1 +4+ 16+ 64) = 17

n=0

2.7 (Decimation and Interpolation) Let x[n] = {4, 0, %, —1, 3}. Find and sketch the following
signals and compare their signal energy with the energy in z[n).
{a) The decimated signal dn] = z{2n]
{(b) The zero-interpolated signal f[n] = z[%]
(¢) The siep-interpolated signal g[n] = z(%]
(d) The linearly interpolated signal hln| = z|%]

[Hints and Suggestions: To get d|n}, retain the samples of z{n] at n = 0, &2, 4, .. .. Assuming that
the interpolated signals will be twice the length of z[n], the last sample will be 0 for f [n] 3 f01 gln]
and 1.5 (the linearly 1nterpolated velue with z[n] =0, n > 2) for h{n] ] :

(Solution) Let z[n] = {4, 0, 2 —1, 3}. Find and sketch each of the following s;gnals and compare
their signal energy with the energy in zinl.

4
(a) d[n| = z[2n| = {4, 2, 3}.
(b} zero-interpolated fn] = x{3]= {4, 0, 0, 0, 5, 0, -1,0, 3, 0}.
(c)} step-interpolated g[n] = z[2] = {4, 4, 0, 0, 2, 2, -1, —1, 3, 3}

2

4
(d) linearly-interpolated hln] = x[3] = {4, 2, 0, 1, 2, 0.5, —1, 1, 3, 1.5} (last value interpolated
assuming next sample is zero).

2.8 (Interpolation and Decimation) Let zin| = 4tri(n/4). Sketch the following signals and describe
how they differ.
(a) a:[% , using zero interpolation followed by decimation
(b) z[3n], using step interpolation followed by decimation
(c) zlZn), using decimation followed by zero interpolation
(d) z{%n], using decimation followed by step interpolation
(Solution) [n] = dtri(n/d) = {0,1,2,3,4,3,2,1,0} B
(a) z[n/3] = {0,0,0,1,0,0,2,0,0,3,0,0, 2,0,0, 3,0,0,2,0,0,1,0,0,0,0,0} (zero interpolation)

z[2n/3] = {0,0,0, 2,0,0, i,(}, 0,2,0,0,0,0} (decimation)

(b) z[n/3]= {0,0,0,1,1,1,2,2,2,3,3, 3,2,4,4,3, 3,3,2,2,2,1,1,1,0,0,0} (step interpolation)
z[2n/3} = {0,0,1,2,2,3, 2, 4,3,2,2,1,0,0} (decimation)

{¢) z[2n] = {0, 2, i, 2,0} (decimation)

4
z[2n/3] = {0,0,0,2,0,0,4,0,0,2,0,0,0,0,0} (zero interpolation)
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(d) {211,] ={0,2 ,4 2,0} {demmatmn)

2n/3] = {0,0,0, 22,2, 4 4,4, 2 2,2,0,0, 0} (step interpolation}.

2.9 (Fr&étlonai Delay) Starting with z[n], we can generate the signal z[n — 2] (u51ﬁg a delay of 2) or
2|2n — 3] (usmg a delay of 3 followed by decimation). However, to generate a fractional delay of the
form z[n — —] requires a delay, interpolation, and decimation!

(a) Describe the sequence of operations required to generate z[n — 2] from z{n).

U ) g
(b) Let z[n] = {1, 4, 7, 10, 13}. Sketch zln] and z{n 2]. Use linear interpolation where required.
(c) Genei ahze the results of part (a) to generate z[n— ——] from z[n]. Any restrictions on M and N7

[Hmts and Suggestxons In part (a ( a) the sequance of operations requires interpolation, delay (by 2)
and decnna,tlon The interpolation and decimation factors are identical.]

(Solutmn)
(a) zfn] = (interpolate by 3) z[§| — (delay by 2) z[252%] — (decimate by 3) z[n — 3}.
(b) zfn] = {i, 4, 7, 10, 13}.
z(% ]w{l 2,3, 4,5 6,7 89,10, 11, 12, 13, 2, 1 0} (linear interpolation).
x[“_T“?}z{_o, 0,1,2 3,4,5 6,7 8 9,10, 11, 12, 13, 2 18 0}
..sc_[.ﬁ—_.?-]:{g 2, 5, 8, 11,

(c) [n] z> (mterpoiate by N) :.v:[N] — (delay by M) [%] — (decimate by N) z[n — ¥].

Restricuon M and N must be integers.

2.10 (Symmétry) Sketch each signal and its even and odd paits.
() z[n] = 8(0.5)"u[n] (b) yln] = uln] (e) flnl =1+ }f[n}
(d) gln] = uln] ~ulp—4] (&) pln] = tri(252) (£} q[n] = {6, 4, 2, 2}
[Hints and Suggestions: Confirm the appropriate symmetry for each even part and each odd part.

For each even part, the sample at » = 0 must equal the original sample value. For each odd part, the
sa.mple at n = 0 must equal zero.]

(Solutron) See the following figures (not to scale). We find the even part as z.[n| = 0.5(z|n] + z{—n])
and the odd part as z,[n] = 0.5(z[n] — z[—n]) etc.
Slgnal (a) 4Even part Od(i part
8
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Signal (k) " AEven part . Odd part

it e

1234 e 1234 TN V2 JE N B
Signal () 4 Even part Odd part

1
il i Syt
Signal ét:l)2 3 Even ;ari e —LQ o hOdd part .
, T
1 111 12|12 1” .
123 * ]‘I 123 g 1;2111 e
Signal ) R pa# R Bt 7 S
s ;m dll; e
12 3456 TR R .
e Cafzh e s
Sigaal (f) Even part . 0Odd part
6 ) 4-4] 4 21 .
1 'lt{' . » A fsz :

S 12 T 12

2.11 (Sketchiﬁg Discret'e Signals) Sket;c_h ea,c_h_o_f_ the following sigﬁa.ls_:

(a) zln }“*T[n+2]"—7[n 2] 4uln 6] (b) yin }: ect( ).
“Ae) fn ]mrect(“wz) S (D) gln] = " B

{Hmts and Suggestmns Note that f [n] isa rectangular pulse ceutered at n == 2 with 5 samples Also,
gin]is a trlangular pulse centered at n =4 with 7 samples (mcludmg the zero-valued end samples). ]

(Solution) See the following ﬁgure for sketches. We note that

(a) z[n]=rln+2] —r[n 2] —4u[n - 6] is easily sketched as a'é_um of steps and ramps.
(b) y[n] = rect(}) is a 7—sampie 'r.'ectangular jmlse from n = —3 Lo n=3
(c) fln] = rect(252) is a 5-sample rectangular pulse centered ab = 2.

(Q) g[n] = 6tri(1‘—§i) is & T-sample triangular pulse centered at n = 4 {with end values of zero).
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() ®) © | @

2.12 {Sketching Signals) Sketch the following signals and describe how they are related.
(a) z|n] = &|n] () flnl = rect{n) (c) glnl = tri{n) (d) h|n] = sinc({n)

{Sclution) All represent the same signal because
z[n] = d[n] = {...,O,G,%,0,0,...}

fln] = rectln] = {...,0,0,1,0,0,. .}

gfn] = tein] = {...,0,0,1,0,0,.. }

Bin] = sincln] = {...,0,0,1,0,0, ..}

2.13 (Signal Description) For each signal shown in Figure P2.13,
(a) Write out the numeric sequence, and mark the index n == 0 by an arrow.
(b) Write an expression for each signal using impulse functions.
(¢) Write an expression for each signal using steps and/or ramps.
(d) Find the signal energy.
{e) Find the signal power, assuming that the sequence shown repeats itself.

Signal 2 - xfn]l4 Signal 3 x{n] 4 Signal 4

e L PR R
8 : 5 4 8
Figure P2.13 Signals for Problem 2.13 '

{Hints and Suggestions: In part (c), all signals must be turned off (by step functions) and any
ramps must be first flattened out (by other ramps) . For example, signal 3 = r{n] —r[r — 5] — bu[n — 6.
The second term flattens out the first ramp &nd last term turns the sfgnal off after n = 5]

(Solution) Refer to the sketches

x{nl4 Signal 1 x[n]

x[al} Signal 1 xjn}} _Sié"al 5 xn] Si_gha} 3 x[n Ss-;gn.a.]-a;
m RSt & 121 Ilj” _ﬁm . ”ﬁmm
3 8 5 4 8

Figure P2,13. Signals for Problem 2.13.
{a) Signals as a numeric sequence:
i .
o (Signal 1:) z{n] ={2,2,2,2,1,1,1,1,1,1,1,1}
4
e (Signal 2:) zn| = {-2,-2,4,4,4, -2, -2}
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§
e (Signal 3:) =zin]={0,1,2,3,4,5}
e (Signal 4:) zinl = {%,5,4, 3,2,2,2,2,2}
(b) Signal representation by impulses

e (8ignal 1:) z[n| =2(6[n+ 3] +48[n+ 2]+ &fn+ 1]+ 8[n}) + Sn — 1]+ 8jn - 21 + ... + d[n — §]
¢ (Signal 2:) =[n]= —26ln+ 3] - 24[n + 2] + 48n -+ 1] »l—_.z_lc_S{ |+ 46[n—1] — 28[n — 2] — 26[n — 3]
e (Bignal 8:) z[n] = é[n — 1} + 26in — 2| + 36]n — 3| +46[n — 4] +56[n 5]

. '(S_igﬁak 4:) zn| = 63[n] + 58[n — 1]+ 4d[n — 2] +35[n 3} +2(5[n 4] +5§n 5]+ ...+dln—8]

(¢) Slgnal representation by steps and ramps:

e (S;gnal 1:) z[n] = 2uln + 3] — ulnp — 1] ~ u[n — 9]

e (Signal 2:) z[n| = —-2uln+ 3]+ 6uln + 1} — 6uln — 2]+ 2u[n — 4]
e (Signal 3:) z[n| =r[n] —r[n — 5] — 5uln — 6]

e (Signal 4:) z[n| = 6u[n| — r[n] + r[n — 4] — 2u[n — 9]

(d) and (e) Signal encrgy and signal power (if periodic)

Signal 1: E=3"z%n]=24 N =12 =4 Y a?n] = 2
Signal 22 E=Y"2[n] =64 N=7 P= 123:2[72,} 74 9.1429
Signal 3: E=3"2%[n] =55 N=86 =+ E:n [n] = 82 = 9.1667

Signal 4; E=3"2%[n] =106 N=9 P= 1 Z:r [n] %_11,777’8

2.14 '(Di_s'crete Exponentials) A causal discrete exponential has the form m[n] = o"uln).

(a) Assume that o is real and positive. Pick convenient values for & > 1, & = 1;'and o < 1; sketch
zln]; and describe the nature of the sketch for each choice of c.

(b) Assume that « is real and negative. Pick convenient values for o < —1, a = mi, and o > —1;
sketch z[n]; and describe the nature of the sketch for each choice of a.

(c) Assume that o is complex and of the form a = Ae’®, where A is a positive constant. Pick
convenient values for # and for A < 1, A= 1, and A > 1, sketch the resl part and imsginary
part of z[n] for each choice of A; and describe the nature of each sketch.

(d) Assume that « is complex and of the form a = Ae?®, where A is a positive constant. Pick
convenient values for @ and for A < 1, A =1, and 4 > 1; sketch the magnitude and imaginary
phase of z[n] for each choice of 4; and descr:be the nature of each sketch,

(Selution)
(a) a=05 (0.5)"u[n] = {1,0.5,0.25,0.125, .. .}. This is a decaying exponential.
a=1 (D™un] = {1,1,1,1,...}. This is a unit step (constant).
o= 2 (2)™u[n] = {1,2,4,8,...}. This is a growing exponential.
(b) a=-05  (-0.5)"u[n] = {1, -0.5,0.25,—0.125,...}. This is a decaying exponential.
a=1 (—=1)™u[n] = {1,-1,1, ~1,...}. This is an alternating step.
=2 (—2)*uln] = {1, ~2,4, ~8,...}. This is a growing exponential.
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(¢) a=05e%  (0.567%)" = (0.5)"f. This is an exponentially damped sinusoid.

a=e? (9% = ¢/ This is a sinusoid.
a=2e"" (269" = (2)"e". This is an exponentially growing sinusoiel.
(d) a=-0.5e% (0.5 )" = (-0.5)"¢"? Damped sinusoid with samples alternating in sign.
a=e? (9" = (—1)"e/f Sinusoid with samples alternating in sign.
o= <267 (~2690)" = (—2)"e/?. Growing sinusoid with samples alternating in sign.

_ ':2.15 '_(Si_gl_lal Representation) The two signals shown in Figure P2.15 may be expressed as

(2) alo] = Ao*(@l] ~ufn ~ N)) () yln] = Acos(2nFn + 0)

Find the constants in each expression and then find the signal energy or power as appropfiate.

xfn] 2y inl 2 2,
4 : ‘[

] E -4 ;

Bty 117“11 -
| N L R

Figure P2.15 Signals for Problem 2.15

b
345

' "[Hints and Suggestions: For yfn], first find the period to compute F. Then, evaluate yn] at two
values of n to get two equations for, say y[0] and y[1]. These will yield ¢ (from their ratio) and 4]

. {Solution) Refer to the sketch.
: . x[n] . : I 1 2 1 2 1
' Al
L A A

Figure P2.15. Signals for Problem 2.15.

I

1
345

(a) z[n] = Ao™(uln] — uln —N]) From the figure, N = 4. Also z[0] =4 = A
Also, z[2) = 1 = 4a?, 50 a = 0.5.

(b) yin] = Acos(2nFn+ 8). From the figure, N =6 or F = 1/6. At n =0 and n = 1, we have
y[0] = 1= Acos® y[1] = ~1= Acos(¥ +6) = £ cos0 — 43 sin 0

Asin @

Thus, ~1 = 0.5 — 4¥36in or Asiné = /3. So, ‘o
Acost

= tanf = /3.

This gives § =% and A= —L- =2

cos P
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it

common period N if periodic.

(a) z[n] = cos(%") (b) y[n] = cos(§)

(c) fln] =sin(%) ~ 2cos(BF)  (d) gln] = 2cos(4T) + cos®(ZF)
(e} p[n] = 4 — 3sin(127) (f) gq[n] = cos( 5”“) + cos(f»i—g’ﬁ)
(g) rln] = cos(g—n'ir) + cos(%n) (h) sn} = cos(gg’r)cos(%’l}

(i) d[n] = gf0-3nw (J) e[n — 9eil-dnm -+ 3ed0-4nw
(k) v[n] = 3" (1) wln] = ()72

2.16 {Discrete-Time Harmonics) Check for the periodicity of the following signals, and compute the

[Hints and Suggestions: There is no periodicity if F' is not a rational fraction for any component.

Otherwise, work with the periods and find their LCM. For wn], note that j = &9™/2 ]

{Solution)
(a) z[n] = cos{0.5n7). So, F = 0.25 = 1, so periodic with N =4,
(b) y[n] = cos(0.5n). So, F = 4, so not periodic (F is not a rational fraction)
(¢} fln] =sin(®F) ~2cos(2F). So, Fy =L, F =35
So, N1 = 8, Ny = 12. So, periodic with N = LCM(8,12) = 24
(d) gin] = 2c08(2E) + cos?(2E) = 2cos(%E) + 0.5 + 0.5 cos(2E).
So, F| = %, = ;11-, so Ny =8 Np =4, so periodic with N = LCM(8,4) = 8

(e) p[n) =4 — 3sin(12%) Periodic with F'= [ and N = 8.

(£) qln] = cos(3fF) -+ cos(23). So, Fy = &, Fy= & =%
So, Ny = 24, Ny = 9. So, periodic with N = LCM{24,9) = 72

(e) rln] = cos(88E) + cos(%’l). Not periodic because Fy = & is not rational, |

(h) s[n] = cos(35=) cos(ZL) = 0.5cos(L22T) + 0.5 cos( 1322 ). So, Fy =

Se, Ny == 12, N3 = 12. So, periodic with N = 12,

12 ! 12

(i) din] = e/ So, F'=0.15 = % = & So, periodic with N = 20.

(G) e[n] = 267037 1 360407 G, By = 0.15 = & = & By =0.2 =
So, Ni =20, Ny =5 and N = LCM(20,5) = 20

Gt

(k) v[n] = €i%37. So, F' = &8 Not periodic because F' is not rational,

(1) w[n] = (5)™/? = (e#™/2)M/2 = In™/4 Go, F' = L. So, periodic with N = 8.

R=1
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2.17 (The Roots of Unity) The N roots of the equation z" = 1 can be found by writing it as 2% = 727,
to give z = &/2**/N p —0.1,...,N — 1. What is the magmtude and angle of each root? The roots
can be displayed as Vectors directed from the origin whose txps lie on a circle.

{a} What is the length of each vector and the anguiar spacmg between adjacent vectors? Sketch for
N=5and N = 6. _
{b) Extend this concept to find the roots of z_N e -1 and sketeh for N = a_nd N =8.

[Hints and Suggestions: In part (b), note that 2% = —1 = f"e27 — (I{(2k41)7 |
(Sclution) Refer to the sketches. -
N=5 (1) N=6 S =5 (b) - N=6

Al ALY e A

(a) V=1 2=V k=01,...,N -1 with |2] = 1.
N =5 Angular spacing = %’T = —5’5 = 720 w1th k=0 at 0°).
20 = 60° (with k = 0 at 0°).

N = 6: Angular spacing = %r-

H

(b) 2V = 1 = &ITeI2hm = IRy GIRRADTN -} — 01, N —1 with |z] = 1.
Anguler spacing = 27 = 28 = 72° (with k = 0 at 36°).
Ir . 2n . §0° (with k = 0 at 30°).

5
=6 Angular spacing == £ =

2.18 (D;gltal Frequency) Set up an expression for each signal, using a digital frequency |F| < 0.5, and
another expression using a digital frequency in the range 4 < F < 5.

(a) z[n] = cos(42=)  (b) :x[n] = sin( ) 4 351n(8§”)

[Hints and Suggestions: First find the digital frequency of each component in the prmmpal range
(0.5 < F' £0.5). Then, add 4 or 5 as appropriate to bring each frequency into the required range.]

{Solution) C
(a) zln] = cos(dnn/3). So, F = 4/6=2/3. So, F=2/3 —1 = —1/3.
So, z[n| = cos(—2nn/3) = cos(2nx/3).
For 4 < I" < 5, we have I" = —1/3+ 5 = 14/3 and z[n| = cos(28n=/3).

(b) z[n] = sin(4n7/3) + 3sin(8n/3). So, Fy = 2/3 = —1/3, Fy = 4/3=1/3
So, z[n| = sin(—2nx /3) + 3sin(2nx /3)
[Note: This can be simplified to xn} = — sin(2n# /3) + 3sin(2nx/3) = 2sin(2nw/3)|

For 4 < F <5, we have Fy = ~1/3+5 = 14/8, Fy = 1/8+44 = 13/3, and 23[n| = sin(28nx /3) +
3sin(206n7/3) '
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2.19 (Digital Sinusoids) Find the period N of each signal if periodic. Express each signal using a digital
“frequency in the principal range {|F| < 0.5) and in the range 3 < F < 4.

(a) z[n] = cos( 7”3”7) (b) z[n] = cos(TE2) + sin(0.5nx) (¢} z[n] = cos(n)
(Sclution)
(a) zn] =cos(HE). Bo, F=f=» F=} For3< F <4, F=3+4}=1

So, z[n] = cos(BE) or z[n] = cos(EPL), 3 < F < 4.

(b) zin] = cos(Z8E) + sin(0.5nm). _ _
'SO Fi=f{=F=fouF=4%, 3<F<4andF2"—orF2M3+4m B 3<F<4
So :r[n] = cos( %) + sm(”“) or x{n] = cos( lgmr) + sm( Linu), 3< F < 4 " '

(C) 2fn] = cos(n). So,Fxg;or_F;3+5;;, 3<F<4.
_So z[n} = cos(n) or z[n] = cos2na(3+ &)}, B<F <4 . .

. 2.20 (Sampling and Aliasing) Each of the following sinusoids is sampled at S =100 Hz. '‘Determine if
aliasing has occurred and set up an expression for each sampled signal using o dxgltal frequency in the
prmcxpal range (|F'] < 0.5). :

.(a) ( = cos(320mt + §) (b) z(t) = cos(1407t — (c) =(t) = sin( 6{)7rt) o

[Hlnts and Suggestions: Find the frequency fo. If 8-> 2fy there is no ahasmg and F < 0.5,
Otherwise, bring F' into the principal range to write the expression for the sampled mgna_l_]

(Solution) _ _ S

(a) z(t) = cos(320mt + 0.25%). So, fo = 160 Hz, S = 100 Hz, and F = f5/S = 1.6.
There is aliasing because F' > 0.5 (or § < 2f5).
Now, F' = 1.6 = —0.4, so z[n] = cos(—0.8n7 + 0.257) = cos(0.8nw — 0.257).

(b) m(t) = cos(140mt — 0.257). So, fo = 70 Hz, S = 100 Hz, and F = fo/S = 0.7
There is aliasing because F' > 0.5 (or § < 2f5).
Now, F' = 0.7 = —0.3, s0 z[n] = cos(=0.6nw — 0.257) = cos(0.6nn + 0.257). - -

(¢) z(t) = sin(60nt). So, fo = 30 Hz, § =100 Hz, and F = fo/S =03
There is no aliasing because F' < 0.5 (or S > 2f). So, z[n| = sin(0.6nx).

2.21 (Aliasing and Signal Reconstruction) The signal x(t) = cos(320xt + §) is sampled at 100 Hg,
and the sampled signal x[n| is reconstructed at 200 Hz to recover the analog signal z,(2).
. (a) Has aliasing occurred? What is the period N and the digital frequency F' of z[n]7?
~(b) How many full periods of () are required to generate one period of z{n]?
(¢} What is the analog frequency of the recovered signal z,.(¢)7
(d) Write expressions for z|n] (using |F| < 0.5) and for z.(¢).
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[Hints and Suggestions: For part {b), if the digital frequency is expressed as F' = k/N where N
is the period and & is an integer, it takes k full cycles of the analog sinusoid to get N samples of
the sampled signal. In part (c), the frequency of the reconstructed signal is found from the alased
frequency in the principal range.]
(Solution) =z(t) = cos(320wt + §) with § = 100 Hz and Sg = 200 Hz.

{a) Aliasing has occurred. fy = 160 Hz. So, Fjy = w}%% = gm. So, N = 5.

(b) 8 full periods of z(t) generate one period (5 samples) of x[n].

(¢) The digital frequency in the principal range is Iy = 1.6 = Fy = —0.4.
The analog frequency of the recovered signal z,(t) is f, = §Fy = 200{—-0.4) = —80 Hz

(d) z[n]=cos(—~0.8nw + §) = cos(0.8nm — ) z,(t) = cos( 160wt 4+ %) = cos(160nt — I).

2.22

(Digital Pitch Shifting) One way to accomplish pitch shifting is to play back (or reconstruct) a
sampled signal at a different sampling rate. Let the analog signal z(¢) = sin(15800nt + 0.257) be
sampled at a sampling rate of 8 kHz.

(a) Find its sampled representation with digital frequency [F| < 0.5.
-{b) What frequencies are heard if the signal is reconstructed at a rate of 4 kIlz?

{c) What frequencies are heard if the signal is reconstructed at a rate of § kHz?

(d) What frequencies are heard if the signal is reconstructed at a rate of 20 kHz?

[Hints and Suggestions: The frequency of the reconstructed signal is found from the aliased dlgztaj
frequency in the principal range and the appropriate reconstruction rate.]

(Solution)
(a) (t) = sin(15800mt +0.257) and 5 = 8000 Hz. So, fo = 7900 Hz and [ ~ PR == Fo= 3
So, z{n] = sin(— 4 + 0.257) = —sin{ S — 0.257). :

(b) If Sp = 4 kHz, the reconstructed frequency is FoSg = —42 — 50 Hz (i.e., 50 Hz).

80
(c) If Sp = 8 kHz, the reconstructed frequency is FoSp = —2 = —100 Hz (i.e., 100 Hz).
(d) If S = 20 kHz, the reconstructed frequency is FoSp = —28¢ == —250 Hz (i.e., 250 Haz).

2.23

(Discrete-Time Chirp Signals) Consider the signal z(¢) = cos|¢(t)], where ¢(t) = at?. Show that
its instantaneous frequency fi(t) = 5-¢'(¢) varies linearly with time.
(a) Choose a such that the frequency varies from 0 Hz to 2 Hz in 10 seconds, and generate the
sampled signal z[n] ffom (2}, using a sampling rate of § = 4 Hz.
(b) 1t is claimed that, unlike z(¢), the signal z[n] is periodic. Verify this claim, using the condition
for periodicity (z[n] = z[n -+ N]), and determine the period N of z[n|.
(c) The signal y[n] = cos(nFyn*/M), n = 0,1,..., M —1, describes an M-sample chirp whose digital
frequency varies linearly from 0 to Fy. What is the period of y[n] if Fy = 0.25 and M = 87

[Hints and Suggestions: In part (b), if z[n] = cos(Bn?), periodicity requires z[n] = z[n + N] or
cos(fAn®) = cos[B(n? + 2nN + N?)]. Thus 2nN3 = 2mn and N28 = 2kn where m and k are integers.
Satisfy these conditions for the smallest integer V]

(Solution) x(t) = cos[¢(t)] = cos(at?). So, fi(t) = 5 ¢/(t) = 2¢. This varies linearly with .
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(a) If the frequency varies from 0 to 2 Hz in 10 seconds, & = g%. So, o = 0.2,

- - 2
Now, 8 = 4 Hz, so t = nt, = n/S§ and z|n| = cos{an?/5%) = cos{ Z%-.

(b) z[n+ N] = cos[Z(n + N)*| = cos[Hin?® + 2nN + N?)].
So, for z{n] = z[n - N}, we require g5 = m and %%2 = 2k (where N, m and % are integers that

make the last two terms integer multiples of 2n). The smallest N that satisfies these results is
N = 80. 8o, zn] is periodic with period N = 80.

() yln] = cos(nFon?/M). With Fy = 0.25 and M = 8, y[n] = cos(&n?). Following part (b), y[n] is
periodic with period N = 32.

2.24 (Time Constant) For exponentially decaying discrete signals, the time constant is a measure of
how fast a signal decays. The 60-dB time constant describes the (integer} number of samples it takes
for the signal level to decay by a factor of 1000 (or 20log 1000 = 60 dB).

(a) Let zin] = (0.5)"u[n}. Compute its 60-dB time constant and 40-dB time constant.
(b) Compute the time constant in seconds if the discrete-time signal is derived from an analog signal
sampled at 1 kHz.

(Solution)
(a) zini= (0.5)"u[n]. So, z[0] = 1. The 60-dB time constant is found from {0.5)" = 0.001 and gives

nlog(0.5) = log(0.001) or n == 9.9658 = 10. The 40-dB time constant is found from (0.5)™ = 0.01
and gives nlog(0.5) = log{0.01) or n = 6.6430 = 7.

(b) With & =1 kHz, the 60-dB and 40-dB time constants are 10 ms and 7 ms, respectively.

2.25 (Signal Delay)} The delay D of a discrete-time enérgy signa'l zn] is defined by

i K (k]

k==—00
D= e T

>, <[kl
ks —00 4
(a) Verify that the delay of the symmetric sequence z[r] = {4,3,2,1,0,1,2, 3, 4} is zero.
(b) Compute the delay of the signals g[n] = x[n — 1] and k[n] = z{r — 2[.
(¢) What is the delay of the signal y[n! = 1.5(0.5)"u[n] — 26]n|?

[Hints and Suggestions: For part (¢), compute the summations required in the expression for the
delay by using tables and the fact that y[n] = —0.5 for n = 0 and y[n] = 1.5(0.5)" for n > 1

(Solution)

4
(a) ZE[H]:{473,2,170,1,2,374}, m4$k.§.4

i k(K]

We compute D = 5=t — & =0.

> 2?[k]



18 Chapter 2 Diserete Signals

4
(b) gln] ={4,3,2,1,0,1,2,3,4}, —-3<k<s5

5
> kg'lk]
kw3 60 =1
Z:gg[fs] = g0 T A
i ‘{4,3,2, 1,0,1,2,3,4), —2<k<6
z kh2[k]

We compute D = =2 =2

We compute D=

| S o
(c) y[n] 1.5(0. 5) uln] — 26[n ] Since y[O} = —0. 5 and y[ ] = 1.5(0.5)", n > _1., _We_g;ompute _
R » zjh?[zu]w( 0.5)% +(1 5)23 e 1(025}'6_._925+(1_5) 1_3%;.1. ;
= SR = 005 + (15) DI KO = (19 g g =1

So the deIay is D= &= 1.

2.26 (Periodicity) It is claimed that the sum of an absolutely summable signal z[n} and its shifted (by
multiples of V) replicas is a periodic signal z,[n| with period N. Verify this claim by sketching the
following and, for each case, compute the power in the resulting periodic signal z,{n] and compare the
sum and energy of one period of z,[n] with the sum and energy of z[n].

(a) The sum of z[n] = tri(n/3) and its replicas shifted by N =7
{b) The sum of z[n] = tri(n/3) and its replicas shifted by N = 6
() The sum of z[n] = tri(n/3) and its replicas shifted by N =5
{d) The sum of z[n] = tri{n/3) and its replicas shifted by N = 4
(e) The sum of zn] = tri(n/3) and its replicas shifted by N = 3

(Solution) wfn| = tri(n/3) = {0, %, 2, JiL, 2, 3, 0}. Wehave Y z[n] =3 and £ = 3. 2°[n] = L.

Refer to the sketches for the periodic extensions.
(a) N=7 b)) N=6
1 N
: 1,3 ; 1 A '[ .
T T n LI T TIEIT »
4 123456
(c) N 5 (d} N=4 1 11@® N=3 4
213
”3 o
T 113 n
123 234 123
(a) For N =17, we have }_z,[n] =3, Ep = —QQ nd P = ég
(b) For N =6, we have 3 z,[n] =3, B, = 3 and P = 1§
() For N =5, we have ) z,[n| =3, E, = 7 2 and P = %
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(d} For N =4, we have > z,[n] =3, By = % and P = %
{e) For N =3, wehave 3 zp[n] =3, E, =3 and P =1

2.27 (Periodic Extension) The sum of an absolutely summable signal z{n] and its shifted (by multiples
of N) replicas is called the periodic extension of z[n] with period N.

(a) Show that one period of the periodic extension of the signal z[n] = o™uln] with period N is

_ yiﬂ}#l—a”’ 0<n<N-1

(b} How does the sum. of one period of the periodic extension y[n| compare with the sum of z[n]? .

(c) Wlth a=05 and N = = 3, compute the signal energy in #[n] and the signal power in y[n}

R [Hm’cs and Suggestmns For one perlod (r=0ton=N~—1), only z[n] and the ta.lls of the rephcas :
to its left contribute. So, find the sum of z[n + kN] = o™ ™*¥ only from k=0 to k= o0} - .

- (Soiutzon)

(a) m{ ] =« u[n] So, its periodic extensmn with penod Nis

y[n Z an+kN ujn - kN] ZanJrkN__anZ N)k an

k=—00

(b) The sum of zfn] equals the one-period sum of y[n|:

ian_ 1 }{21 a® 1 1—-a¥\ 1
- T l-a ke L gN T\ ] =N l-a /) 1-a
() ) nxzl) .

(¢) For =05 and N =3, afe] = (0)"alr] nd yln] — 1_%
The signal energy in z|n} is E = 2(0 26)" = 5 = 1.3333
The signal power in y[n] is "
P= %i@ﬁ[n] =31 =05714

2.28 (Signal Norms) Norms provide a measure of the size of a signal. The p-norm, or Hélder norm,

x|l for discrete signals is defined by ||z, = (32 |:n|1’)1/ P where 0 < p < oo is a positive mteger For
» = 00, we also define ||zfio a5 the peak absolute value §a:|,mlx

(a) Let z[n] = {8, ~74, 2+ 74} Find ||z]1, |=[l2, and ||z ce-
(b) What is the significance of each of these norms?

(Solution)
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(a) z[n] = {3, 44,3+ 74}. So fzln]| = {3, 4,5}. Thus,
lolly = S felnjl =3+ 445 =12
Nzl = (5 [2lnl?)? = (9 + 16 + 25) /2 = /50 = 7.0711

lzllee = max(Jz[n]}) = 5.

(b) . The norm x|, signifies the absolute area.
The norm |||, is similar to the rms value (and related to the signal power).

The norm ||z||, is the peak absolute deviation from zero.

COMPUTATION AND DESIGN

2.29 (Discrete Signals) For each part, plot the signals z|r] and yir] over ~10 < n < 10 and compare.
() zln] = uln + 4] ~ un — 4 + 20[n + 6] — 6[n — 3] ' '

yfnl = o[-n = 4
(b) z[n] =r[n+ 6] —rln+ 3] —rln — 3]+ r[n - 6] y[n] = z[n — 4]
(c) zin] = rect(%} — rect(2z3) y[n] = z|n + 4]
(d) zin| = 6tri(%}) — 312i(§) yin] = z[—n + 4]

Solution) Uses the anthor’s routines ustep, uranp, urect, udelta, tri, operate, dtplot
21 p P pera P

%PROBLEM 3.29

APART {(a)

n=-10: 10; x=ustep(n+d) -ustep(n-4)+2+udelta(n+6) ~udeltal{n-3) ;ax=[-15 15 0 2];
[ny,yl=operate(n,x,-1,-4);subplot(2,1,1},dtplot(n,x,’o?) ,axis(ax),
subplot(2,1,2),dtplot(ny,y, 0’} ,axis(ax),pause '

WPART ()

x=uramp{n+6)-uramp (n+3) ~uramp {n-3) +uramp (n~6) ;ax=[-15 15 0 4];
[ny,y]l=operate(n,x,1,~4);subplot{2,1,1),dtplot(n,x, 0’ },axis(ax),
sﬁbplot(2,1,2),dtplot(ny,y,’o’),axis(ax),pause

%PART {(c)

x=urect (n/10)~urect ((n-3)/6};ax=[~16 15 0 2];
[ny,yl=operate(n,x,1,4);subplot(2,1,1),dtplot(n,x,’0?) ,axis(ax),
subplot(2,1,2) ,dtplet(ny,y,’ 0’} ,axis(ax) ,pause

%PART (d)

x=6xtri(n/6)-3*tri(n/3);ax=[-15 15 0 4]; o
[ny,yl=operate(n,x,~1,4);subplot(2,1,1),dtplot(n,.x,’0*) ,axis (ax),
subplot(2,1,2),dtplot(ny,y,’ ), axis (ax)

You could also use the routine disiggui. The plot shown is for part (d)
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(n

2.30

(S;gual Interpolation) Let hln] = sin(nm/3), 0 < n < 10. Plot the signal k[n]. Use this to

generate and plot the zero-interpolated, step-interpolated, and linearly interpolated signals assuming
interpolation by 3. :
(Solution) Uses the author’s routines dtplot, interpol
#PROBLEM 2.30
0=0:10;h=sin(n*pi/3);dtplot(n,h,’o’) ,pause
hz=interpol(h,’z’,3) ;L=length(hz)~1;dtplot(0:L,hz, ’0’) ,pause %Zero interp
hz=interpol(h,’c’,3);dtplot(0:L,hz,’0’),pause #Step interp
hz=interpol(h,’1’,3);dtplot(0:L,hz,%0?) - %linear interp

2.31 (Discrete Exponentials) A causal discrete exponential may be expressed as z[n] = ouln], where

the nature of « dictates the form of z|n]. Plot the following over ¢ < n < 40 and comment on the
nature of each plot.
(a) The signal z|n] for ¢ = 1.2, & =1, and o= 0.8
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! Z(S_ol_u_tion) Uses the author’s routine dtplot
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(b) The signal z[n] for o = ~1.2, a = —1, and a = —0.8.
(c) The real part and i imeginary parts. of a:[n] for o = Ae”/ 4 Wlth A =12, A= - 1, and A =08
(d) The magmtude and phase of z[n] for c = Aef"’/‘l Wlth A=l 2 A = 1 and A 0 8

- %PROBLEM 3.31

©n=0:40;a=1.2;x=a. n;subplot(3,1,1),dtplot(n,x,’ o)
“ia=1;x=a. n;subplot(3,1,2),dtplot(n,x,’0’)
Tia=0.8;%=a. n; subplot(3,1,3) ,dtplot(n,x,’0’) ,pause
CU%PART ()

a=-1.2;x=a."n;subplot(3,1,1),dtplot(n,x,’0’)
-:'_a-n 1;x=a."n;subplot(3,1,2),dtplot(n,x, 202y SRR AT
a=-0.8;x=a.7n; subplot(l& 1 3) dtplo‘i:(n X, ’0’),pause
CYPART (c) - . S

'rj'a—i 2*3xp(3*p1/4) sea. on; . Bl R St IR
_.':subplot(3 2,1),dtplot{a,real(x),?.?) subplot(B 2,2) dtplot(n 1mag(x) ; ’) w

1.0%exp(j*pi/d);x=a. "n;

"._._'.subplo‘h(S 2,3),dtplot{n,real(x),’.’) ,subplot(3,2,4) dtplot(n mag(x) 1)
a=0.8rexp(j*pi/4) ;x=a. n; L
“subplot(3,2,5) dtplot(n real(x),’.’),subplot(3,2,6) dtplot(n :Lmag(x) 2 ’)._p_ause
;VPART () ST

1. 2%exp(j*pi/4};x=a."n;

-Z'-_subplot(s 2,1),dtplot(n,abs(x),’.’),subplot(3,2,2) dtplot(n angle(x) H '_’)_ '

a1, Oxexp(j*pi/4);x=a. n; s
::'_subplot(S 2,3),dtplot(n, abs(x) ’ ’) subplot(3 2 4) dtplo’c(n angle(x) "’)
Ca=0, 8*exp(3*p1/4) x=a."n; B
: :subplot(a 2, 5) dtplot(n abs(x) ’ ’) subplot(B 2 6) dtplot(n angle(x), )

2.32

A{Discrete-Time Sinusoids) Which of the following signals are periodic and with what period? Plot

...each signal over —10 < n < 30. Do the plots confirm your expectations?

(a) z[n] = 2cos(H) 4 5sin{BF)  (b) z{n] = 2cos(BF)sin(%F)
(c) z[n| = cos(0.5n) (d) zin] = 5sin( 5" + §) —B5cos(ZE — %)

(Selution) Uses the author's routine dtplot

%PROBLEM 3.32

-n=~10:30;

x1=2%cos (n¥pi/2)+b*sin(n*pi/5) ; subplot(2,2,1) dtplot(n xi 1) JPeriod N=20

_x2=2%cos(n*pi/2) . *sin(n*pi/3);subplot(2,2,2) ,drplot(n,x2,”.?)  %Period N=12

“x3=2%cos(n/2) ;subplot(2,2,3) ,dtplot(n,x3,’.%) . - %Not periodic

- #4=B%5in (n*pi/B+0. 25+pi)-5*cos (nkpi/8-0. 25%pi) ;
:-Subglot(2,2,4) ,dtplot(n,x4,’.’) %Zero (Note the y-scale)
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2. 33

(Complewaalued Signals) A complex-valued signal z[n| requires two plots f01 a complete descrip—
“tion in one of two forms—the magnitude and phase vs. n or the real part vs. n and imaginary part
V8. 7.

$
(a) Let z[n] = {2, 144, —3j2, 2—42, —4}. Sketch each form for z[n| by hand.
(b) Let z{n] = e7903"" Use MATLAR to plot each form over —30 < n < 30. Is z[n] periodie? If so,
can you identify its period from the MaTLAB plots? From which form, and how?

(Solution) z[n] = {2, 144, —42, 2—52, —4}= {2, V2/45°, 2/ — 90°, 2v/3/ —45°," 4/180°)

%PROBLEM 3.33 Uses the author’s routine dtplot
B=-30:30;x=exp (-j*0.3+n*pi);axis([{~30 30 -1 11}

subplot(2,2,1) ,dtplot(n,real (x}),axis([-30 30 -1 11,

~subplot(2,2,2),dtplot(n,imag(x)) ,axis({~30 30 ~1 1) .

“subplot(2,2,3),dtplot(n,abs(x)) ,axis([-30 30 0 1)

subplot(2,2,4) ,dtplot(n,angle(x)) ,axis([-30 30 -pi pil)

%A1l (except magnitude) allow the period to be determined. N=20

2.34

x

(Compiex Exponentials) Let z[n] = 5/2e7\% (% %), Plot the foiiowmg s.1gnals and for each case,
derive analytic expressions for the signals plotted and compare with your plots, Is the signal a:[n]
periodic? What is the period N7 Which plots allow you determine the period of z[n }

(a) The real part and imaginary part of z[n] over -20 < n < 20

(b) The magnitude and phase of z[n] over —20 < n < 20

{¢) The sum of the real and imaginary parts over —20 < n < 20

(d) The difference of the real and imaginary parts over =20 < n < 20

(Sclation) xhﬂ-"Svréﬂ*”“%)

Real part: z, = 5y/2cos(2% —0.25%), Imaginary part: z; = 5\/55111( BE . (.257)
Magnitude: z, = 5v/2, Phase. zp = - — 0.257

Ty .+ z; = 10sin(}, o —a; = 10 cos{H)

#PROBLEM 3.34 Uses the author’s routine dtplot
n=-20:20;x=B*sqrt (2) *exp(j*(n* (pi/9)-pi/4));
#PART (a)

subplot(2,2,1) ,dtplot(n,real(x),’o?)
subplot(2,2,2),dtplet(n,imag(x),’c?)

YPART (b)

subplot(2,2,3) ,dtplot(n,abs(x},’0’)
subplot(2,2,4) ,dtplot(n,angle(z),’o’),pause
4PART (c)

subplot(2,1,1),dtplot(n,real (x)+imag(x),’o?)
subplot(2,1,2),dtplot(n,real (x)-imag(x),’o’)

%411 plots (except magnitude) allow the pericd to be determimed. N=18
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2.85 (Complex Exponentials) Let z[n] = (/1) +.(v/7)"". Plot the following signals and, for each case,
" derive analytic expressions for the sequences pIotted and compare with vour plots. Is the signal z[n]
periodic? What is the period N? Which plots allow you determine the period of z[n]?
(a) The real part and imaginary part of z{n] over —20 < n < 20
(b) The magnitude and phase of z[n] over —20 <n <20~
(Solution) z(n] = (V)" + (V)™ = ¢/ | e=I7/4 = 9 cos(nn /4). .
JPROBLEM 3.84 Uses the author’s roﬁfine dtplot
n=-20:20; j=sqrt (-1) ;x=sqrt (j). "n+sgr(i). (- n)
#PART (a)
subplot(2,2,1),dtplot (n,real(x),’0’)
subplot(2,2,2),dtplot(n,inag(x)}, o’}
%PART (b)
subplot(2,2,3) ,dtplot(n,abs(x),’0?)
subplot(? 2,4) dtplot(n angle(x) : ’)
'/The real pa.r't and angle allow the perlod to be determlned. N=5
2.36 (Discrete-Time Chirp Slgnals) An N-sample chlrp 51gn&1 z n] whose chgital frequency varies

linearly from Fy to Fy is described by

hE S .

;E[n]-—cos[Zvr(Fon{-—-—é—N——q 2)}, n=0,1,...,N—-1

(a) Generate and plot 800 samples of a chirp signal x whose digital frequency varies frof_rf F=0to
F = 0.5. Using the MATLAB based routine timefreg (from the ‘author’s website), observe how
the frequency of x varies linearly with time. . .

{(b) Generate and plot 800 samples of a chirp signal x whose digital frequency varies from F = 0 to
F = 1. Is the frequency always increasing? If not, what is the likely explanation?

{Solution) z[n] = cos [27r (Fon + %ﬁ@ng)] n=0,1,...N-1

#PROBLEM 3.36 Uses the author's routine timefreg
N=800;n=0:N-1;F0=0;F1=0.5;

x=cos (2#pix (nsF0+0.5%n . #n* (F1-FO)/N)) ; :
timefreq(x);pause JFrequency increases linearly from F=0 to F=0.5
F0=0;F1=1; L

x=cos (2%pi* (a*FO+0, b#n. #n* (F1-FOY/N)); :

timefreq(x); WFrequency increases up to F=0.5, then decreases (aliasing)
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2.37 (Chirp Signals) It is claimed that the chirp signal z[rn] = cos{wn?/86) is periodic (unlike the analog

chirp signal z(t) = cos(nt?/6)). Plot z{n] over 0 < n < 20. Does z[n] appear perlodm‘? If $0, can you
identify the period N7 Justify your results by trying to find an integer N such that z[n] = x[n+ N|
(the basis for periodicity). '

{Solution) Uses the author’s routine dtplot
For periodicity, xn} = cos(mn?®/6) = z[n + N] = cos[n(n + N)Q/G] = cos ﬂ(n + 272]\7 + Nﬁ)/ﬁ]

x(2nN + N?)

S0, Z = 2w or 2nN —|—N2 == 12k. This is satlsﬁed for N 6

“APRDBLEM 3.37
- 1=0:20;x=cos{pi*n.*n/6);dtplot(n,x,’0’) %Period N=6

2 38 (Slgnal A.veragmg) Extra.ct}on of sxgnals from noise is an important sxgnal—processmg apphcatlon

Signal averaging relies on averaging the results of many runs. The noise tends to average out to ZET0,
and the signal quality or mgnal—to—nmse ratxo (SNR) improves.

(a) Generate samples of the sinusoid z(t) = sin(8007t) sampled at S = 8192 Hz for 2 seconds The
sampling rate is chosen so that you may also listen to the 51gnal if your machine allows.

(b) Create a noisy signal s[n] by adding z[n] to samples of umformly distributed noise such tha.t sin]
has an SNR of 10 dB. Compare the noisy signal with the original and compute the actual SNR
of the noisy signal. L

(c) Sum the signal sln] 64 times and average the result to obtain the signal s,|n]. Compare the
averaged signal s,[n|, the noisy signal s[r], and the original signal z[n]. Compute the SNR of
the averaged signal z,[n]. Is there an improvement in the SNR? Do you notice any (vlsuali and
aundible) improvement? Should you?

(d) Create the averaged result zp[n] of 64 different noisy signals and compare the averaged signal
zp[n) with the original signal z[n]. Compute the SNR of the averaged signal zp[nj. Is there an
improvement in the SNR? Do you notice any (visual and/or audible) improyement? . Explain how
the signal z;[n] differs from z,[n]. :

(e) The reduction in SNR. is a function of the noise distribution. Generate averaged signals, using
different noise distributions (such as Gaussian noise) and comment on the results.

(Solution) Uses the author’s routine randist

%PROBLEM 3.38

8=8192;ts=1/8;t=0:18:2; % Time array

ax=[0 0.01 -1.5 1.5]; 4 Plot for 0.01 s for all signals
x=g5in(B00*pi*t); % Pure sinusoid .
%PART (b)

xn=rapdist(x,’uni’,0); % uniform noise (mean=0)

snr=10; % Desired SNR

A=std(x)/std(xn)/ (10" (snx/20)); % Compute A

y=A%xn;zn=x+ty; % Generate noisy signal

subplot(3,1,1),plot(t,x),axis(ax)
subplot(8,1,2),plot(t,y),axis (ax)

subplet(3,1,3) ,plot(t,zn},axis(ax) ,pause
SHR=10%1og10(sum(x.#x}/sun{y.*y)) % Compute actual SNR
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UPART ) - L .. .
z=0;for n=1:64; % Initialize z and start loop ..
ZE=ZAR Y ; % Sum
if ‘p==16, al8=z/16; end % Save average of 16 runs
end ' % End of summlng 64-runs
aBd=z/64; - R % Average of 64 runs
subplot(3,1 1),plot(t zn) ,axis(ax) ¥ Plot neisy signal
subplot(3,1,2),plot(t,al6),axis(ax) " and 16-run average
subplot(3,1,3),plot{t,a64) ,axis (ax) ,pause % and 64-run (not any better)
UPART (@ i o L
“z=0;for n=1:64; "% Initialize z and start loop
- z=zex+Asrandist(x,’uni’,0); - .. .. .% Keep summing each run
if ‘m==16, ail6=z/16;. end = - .- .. Y Save average.of 16 runs - -
end. _ e % End of summing 64-runs
abd=z/64; . ... . % Average of 64 rums
 subp1ot(3 1, 1),plot(t zn) axls(ax) _% Plot noisy'signal
- subplot(3,1,2),plot(t,alB),axis(ax) % and 16-run average '
:,jsubplot(S 1 3) plot(t a64) ax1s(ax),pause % and 64~run {nuch better)
_ /,PART (e : .
'fxnurandlst(x ’nor’ 0) ST T Y Gaussian n01se (mean“O)
Jsmr=10; S0 Y Desired SNR '
A*std(x)/std(xn)/(io (snr/ZO)) " % Compute &
y=A*xn; il R
7fSNRQ~10*log10(sum(x *x)/sum(y *y)) % Compute actual SNR
“z=0;for m=1:64; - % Initialize z and start Loop
z=ztx+Asrandist(x,?nor’,;0); % Keep summing each run | o
if n—~16 316mz/16 ‘end % Save average of 16 runs
'end- Aot Y Fnd of summing 64~runs ST
abd=z/64; ' o % Average of 64 runs
subplot(3,1,1),plot(t,zn) ,,axis(ax)} % Plot noisy signal
subplot(3,1,2),plot(t,al6) ,axis(ax) % and 16~run ‘average
subplot(3,1,3),plot(t,abd) ,axis(ax) ¥ and 64-run (much hetter)
2.39 (The Central Limit ‘I‘heorem) The central hmzt, theorem asserts that the sumn of independent noise

distributions tends to a Gaussian distribution as the number N of distributions in the sum increases.
In fact, one way to generate a random s1gnal w1th a Gaussian distribution is to add many (typma,lly 6
to 12) uniformly distributed signals.”

(a) Generate the sum of uniformly dlstributed random signals using N =2, N = 6, and N = 12 and
plot the histograms of each sum. Does the hzstogram begin to take on a Gausszan shape as N
increases? Comment on the shape of the histogram for N = 2.

(b) Generate the sum of random signals with different d]stnbutions using N 6 and N = 12 Does
the central limit theorem appear to hold even when the distributions are not identical (as long
as you select a large enough N)?. Comment on the physical significance of this result.
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{Solution) Uses the author’s routine randist

%PROBLEM 3.39

8=0;N=2;x=randist (500, mi’ ,0);for k=1:2,8=S+randist(500,’uni’,0);end

#For N=2, should ideally be triangular (convolution of uniform dlstrlbutlons)
subplot(2,2,1) ,hist(x,20),subplot(2,2,2) ,hist(8,20) ;pause

8=C;for k=1:6,3=S+randist(500,’uni’,0);end
subplot(Q,Q,i),hlst(x,zo),subplct(2,2,2),h;st(S,QO)

S=0;for k=1:12,8=S+randist (500, ’uni’,0);end
subplot(2,2,3),hist(x,ZO),subplot(?,?,&),hist(S,QO),pausé

YPART (b)

B=0;for k=1:8,8=8+randist (500, exp’);end % Exponential distribution
subplot(2,2,1) ,hist(x,20),subplot(2,2,2) ,hist(8,20)

- 8=0;for k=i:12,S=S+randist (500, exp’);end
. subplot(2,2,3),hist(x,20),subplot(2,2,4) ,hist (5,20)

240
 cies. An octave covers a range of frequencies from fj to 2f;. In the western musical scale, there are 12 -
.notes per octave, logarithmically equispaced. The frequencies of the notes from fo t0 2y correspond

{Music Synthesis I) A musical composition is a combination of notes, or signals, at variou_s frequen-

to
f=2812p, E=0,1,2,...,11

The 12 notes are as follows (the ¥ and * stand for sharp and flat, and each pan‘ of notes in parentheses
has the same frequency): . PO

A (MorB) B ¢ (CaD) D (DarE) E F _(Fﬁ_orc;b)___-'G.::(Gﬂor_Ab)

An Example: Raga Malkauns: In Indian classical music, a raga is a musical composition based on
an ascending and descending scale. The notes and their order form the musical alphabet and grammar
from which the performer constructs musical passages, using only the notes allowed. The performance
of a raga can last from a few minutes to an hour or more! Raga maﬂcauns is a pentatomc raga (with
five notes) and the following scales:

Ascending: D F @ B* C D Descending: ¢ B® @ F D

The final note in each scale is held twice as long as the rest. To'synthesize this scale in MATL.AB,' we
start with a frequency fp corresponding to the first note D and go up in frequency to get the notes in

- the ascending scale; when we reach the note D, which is an octave higher, we go down in frequency to

- .get the notes in the descending scale. Here is a MATLAB code fragment

'-_f0=340; d=£0; % Pick a frequency and the note D

f=10%(27(3/12)); g=f0*(2"(5/12)); % The notes F and G

Cbi=f0R(27(8/12)); c=f0%(2°(10/12)); % The notes B{flat) ‘and C
- d2#2*d; % The note D (an octave higher)

o Generate sampled sinusoids at these frequencies, using an appropriate sampling rate (say, 8192 Hz);

concatenate them, assuming silent passages between each note; and play the resulting szgn&l using the
MATLAB command sound. Use the following MATLAB code fragment as a guide:
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ta=1/8192; % Sampling interval
t=0:15:0.4; % Time for each note (0.4 s)
s1=0%(0:ts:0.1); % Silent period (0.1 s) :
s2=0+%(0:ts:0.058); S %4 Shorter silent period (0.05 35)
t1=0:ts5:1; . o _ . % Time for last note of each scale
di=sin(2+pi*dst) ; o % Start generating the notesg
fi=gin(2pi*f*t); gl=sin(2*pisgrt); '
bfl=sin(2kpi*bi*t); ci=sin(2%pikckt);
d1ll=sin(2#pi*xd2+tl); dl2=sin(2%pi*d+tl); _ .
asc=[d1l s1 f1 st g1 s1 bfl si ci s2 d11]; % Create ascending scale
dsc={cl s1 bfl si gl st f1 sl d12]; %4 Create descending scale
y=[asc s1 dsc s11; sound(y) % Malkauns scale (y)
(Solution)

4PROBLEM 3.40

£0=340; '

__dwa oo

= fO*(2“(3/12))

gme* (27(5/12)); )
bf=f0*(27(8/12));
c=f0% (27 (10/12)) ;
d2=2%*d;
ts=1/8192; YSampling interval
t=0:t5:0.4; Jtime for each note
81=0%(0:1t5:0.1); ¥silent period
s2=0%{0:1t5:0.05); ¥shorter silent period

t1=0:ts:1; %time for last note of asc and desc scale

'.di“sn.n(:z*p:.*d*t) fi= sln(2=§=p1*f*t) g1—51n(2*p1*g*t) bfl=sin(2#pi*bf*L);

ci= =sin(2#pi*c#t) jdll=sin(2+pi*d2+t1) ;d12=5in(2pixd+tl) ;

“ase=[di s1 fi sl gl si bfi si cl s2 dlil; #Create asc scale
dsc=[ct s1 bii si gi si £1 s1 d12]; YCreate desc scale
y=[asc sl dsc s1]}; {Malkauns scale
sound (y) .

241 (Musm Sy’nthes;s II) The raw. sca,le of .raga malkauns will sound pretty dry! The reason for

this is the manner in which the sound from a ‘musica} instrument is generated. Musical instruments
produce sounds by the vibrations of a string (in string instruments) or a. columnn of air (in woodwind
instruments). Each instrument has its characteristic sound. In a guitar, for example, the strings are
plucked, held, and then released to-sound the notes. Once plucked, the sound dies out and decays.
Furthermore, the notes are never pure but contain overtones (harmonics). For a realistic sound, we
must include the overtones and the attack, sustain, and release (decay) characteristics. ~The :sound
signal may be considered to have the form x(t) = «(t)cos(2n fot + ), where f; is the pitch and «(t)
is the envelope that describes the attack-sustain-release characteristics of the instrument played. A

. crude representation of some envelopes is shown in Figure P2.41 (the piecewise linear approximations

' wﬂi work just as well for our purposes). Woodwind instruments have a much longer sustain time and

a much shorter release time than do plucked string and keyboard instruments.
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o Envelopes of o) Envelopes of
woodwmd instruments 11 k. string and keyboard instrume

Fxgure P2.41 Envelopes and thesr piecewme linear approxxmamons (da,rk) for Problem 241

Experlment with the scale of raga malkauns and try to produce a gultar—hke sound using the a,ppro- o

priate envelope form. You should be able to discern an audible improvement.
(Sclution) ' ' -

 YPROBLEM 3.41
" %FROM Prob 3.40

£0=340;d=£0; f=f0* (2" (3/12)) g—-fO*(2 (5/12)) b= :EO*(2"(8/12))
=0+ (27 (10/12)) ;d2=2%d; ta=1/8192;t=0:t5:0.4; 81=0%(0:ts:0. 1) ;
s2=0%{0:t5:0.08) ;tl=0:ts:1;dl=sin(2%pi*d+t) ;flmsin{2upikint);

gl=sin(2#piskgit) ;bil=sin(Qspirbfrt);

cl=sin(2#pixc¥t);dli=sin(2¥pixd2xtl); dl2—31n(2*p1*d*t1)
asc=[di si f1 s1 gi si bfl sl ¢ci's2 dlil;

dec=fcl =1 bfi =1 gi s1 f1 s1 dl2] waasc sl dsc si} sound(y)~

#We now let each note decay by adding an exponential decay
ex=oxp (-5+t) jexl=exp(-4%t1);

asc=[dl.*ex sl fl.*ex sl gl.*ex si bfl.*ex si ci.*ex =2 dl1. *exi},
dsc=[cl.*ex si bfl.*ex sl gl.%ex sl fi.%ex si d12 *exll;

yhd=[asc s1 dsc sil;

sound{yhd)

2.42

(Music Syuthesis II¥) Synthesize the following notes usmg a woodwmd enveiope and synthesme
the same notes using a plucked string enve}ope -

F(03) D(04) B04) AQ) A(04) E(04) F(03) D)

- -All the notes cover one octave, and the numbers in parentheses give a rough mdmamon of their relative
duration. Can you 1dent1fy the mus;c? {It is BJg Ben )

( Sclut lon)

YPROBLEM 8.42 ©

C£0=260; a=f0; famfO* (2" (9/12)) d=10%(2"(6/12) ) ; e=£0 (27 (7/12));
" £8=1/8192;t1=0:t8:0.7;t2=0:ts:1;81=0%(0:t5:0.05);t1=0:ts:1;

fi=sin(2#pisfs*tl) ;di=gin(2#pixd*tl); 61-51n(2*p1$e*t1) d2~51n(2*p1*d*t2)
al=sin(2*pi*a*tl);al=sin(2+pi+a*t2);

bh={f1 =1 d1 sl el s1 a2 s1 s1 =1 al s1 el sl £1 51 421, 7B1g Ben Notes
sound (bb)
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#Then add decay for string-like sound
exi=exp (-4*t1); ex2=exp(-3%t2); -
bb2=[f1.%exl, s1, di.xexi, sl, el.*exti, sl, a2.%ex2]};
bb2=[bb2, s1, s1, si, s1, si, al.xexl, s1, el.*exl, sl, f1l.%exi];
bb2=[bb2, s1, d2.+*ex2];sound(bb2)
2.43 (Musm Synthesns 1v) Synthes&ze the first ba,r of Pmtures at an Exhjbmon by Mussorgsky, which
~has the following notes: o
A(3) G(3) C(3) D(2) G“‘(l) E(3) D(2) G*(l) E(3) C(3) D(3) A(3) G(3)
All the notes cover one octave except the note G*, which is an octave above G. The numbers in
parentheses give a rough indication of the relative duration of the notes (for more details, you may
want to listen to an actual re_cordlng) Assume that a keyboard 1nstrument (such as a pia,no) is played.
(Solution) :
#PROBLEM 3.43
fO 440;
a=f0;g=f0+ (2" (-2/12)); c—-fO*(Z (3/12)) d=£0%(2" (5/12))
ge=10%(2"(10/12)) ; e=£0% (2" (7/12));
te=1/8182;t1=0:t5:0.6;t2=0:t5:0.3;51=0%(0:ts5:0. 06) t1=0:ts5:1;
ai=sin(2¥pi*a+tl);gi=sin(2%pixg*tl); ci=sin(2¥pi*crtl);
di=sin(2+pisd*tl) ;d2=sin{2+pi*d+t2);
g2=sin(2#pi*gg+tl);
el=gin(R¥pirextl); -
p=fal s1 g1 s1 ci sl d2 st g2 s1 el sl d2 s1 g2 s1 el s1];
p=Ip c1 s1 d1 s1 al si gl s1}; %First bar of Pictures
sound(p)
%Add decay for string-like sound
exi=exp(—4%t1); ex2=exp(~3%t2}; '
pd=[al.*ex1 s1 gl.*exl sl ci. *exi s1 d2. *ex2 sl g2 *ex2 51 el.*exd 31 dz2. *ex2],
pd=[pd s1 g2.%ex2 sl el.*exl sl cl.%exl e1 di. *ex1 s1 al.*exl s1 gl.*exl s1];
sound (pd)
2.44 (DTMF Tones) In dual-tone multi-frequency (DTMF) or touch-tone telephone dialing, each number

is represented by a dual-frequency tone. The frequencies for each digit are listed in Chapter 18,

(a) Generate DTMF tones corresponding to the telephone number 487-2550, by sampling the sum of
two sinusoids at the required frequencies at 5 = 8192 Hz for each digit. Concatenate the signals
by putting &0 zeros between each signal {to represent silem_:e) and listen to the signal using the
MATLAB command sound.

(b) Write & MATLAB program that generates DTMF s;gnais corresponding to a vector input repre-
senting the digits in a phone number. Use a sampling frequency of S5 = 8192 Hz.

(Solution)
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(2)

(b)

%PROBLEM 3.44
%PART (a)

%1=[697,1209] 2=[697,1336] 3=[{697,1477] 4=[770,1209] 5={770,1336]
%6=£7?0,1477] 7=[852,1209] 8=[852,1336] 9=[852,i%77] 0={941,1336]

S5=8192; wh1=2*pi*1209/8;thWZ*pi*1336/S;wh3=2*pi*1477/3;
W11=2%pi*697/S; wl2=24pi*T70/5; wid=24pi*852/S; wld=24pi*041/S;
#CGenerate 1000 samples each

z=zeros(1,1000); %50 zeros is too shorg!!
N=1000;1=0:N-1;

four=[sin{n*wii)+sin(n*whl),z];
eight=[sin{n*wl3)+gin(n+wh2) ,=1;
seven~[sin(n#wl3)+sin(n*whl) ,z,z,=];

twom [sin(n#wlil)+sin(nxwh2) ,21;
five=[sin{n*+wl2)+sin{n*wh2),z];
oh=[sin(n#*wld)+sin(n*wh2) ,z];
ph=[four,eight,seven,two,five,five,ok];sound(ph)

Here is one of the many possible solutions.

function [sigtt,sndl=dialtt(n,S)

%dial(n,S) Sound of tomes in a phone number at sampling freq 3
iS=gampling freq (Defaults to 8192 Hz)

#n=vector or array of digits in the phone number.

%NOTE: Use 10 for * and 12 for # on the dial '

% Use sound(sigtt) to listen to the ‘tones

%See getnum.m (in Chapter 18) to decode the signal

if nargin<2,5=8192;end
low=[697 770 852 941];
hi=[1209 1336 1477];

n=n(:}; Ymake column
i=find(n==0);n(i)=11+0%i; #Change O to 11
M=1000; z=zeros (1 ,M); fsilent passage
N=0:M-1;

l=length(n);

gigtt=[];snd=[];for k=1:1

n(k) ;ib=rem(n(k)-1,3)+1;il=fix((n(k)- 1)/3)+1

tone={low(il) hi(ih)];

snd={snd; tone] ;

sigtt={sigtt, cos(2¥pistone{1)*N/8)+cos(2*pi*rtone(2)*N/8)];

if k<l,sigtt=[sigtt, z];end Jadd zeros to all except last digit
end




