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COMBINATIONAL LOGIC
DESIGN

2.1 EXERCISES

Any problem noted with an asterisk (*) represents an especially challenging problem.

Section 2.2: Switches

2.1.

2.2

23

24

2.5

A microprocessor in 1980 used about 10,000 transistors. How many of those micro-
processors would fit in a modern chip having 3 billion transistors?

3,000,000,000 / 10,000 = 300,000 microprocessors

The first Pentium microprocessor had about 3 million transistors. How many of
those microprocessors would fit in a modern chip having 3 billion transistors?

3,000,000,000 / 3,000,000 = 1,000 microprocessors
Describe the concept known as Moore’s Law.
Integrated circuit density doubles approximately every 18 months.

Assume for a particular year that a particular size chip using state-of-the-art technol-
ogy can contain 1 billion transistors. Assuming Moore’s Law holds, how many tran-
sistors will the same size chip be able to contain in ten years?

Approximately 100 billion transistors (10 years * 12 months/year / 18 months/dou-
bling = 6.667 doublings. 1 billion * 2067 = 101.617 billion).

Assume a cell phone contains 50 million transistors. How big would such a cell
phone be if the phone used vacuum tubes instead of transistors, assuming a vacuum
tube has an volume of 1 cubic inch?

50,000,000 transistors * 1 in3/transistor = 50,000,000 in® (nearly 30,000 cubic feet -
as large as a house)
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2.6 A modern desktop processor may contain 1 billion transistors in a chip area of 100

mm?. If Moore’s Law continues to apply, what would be chip area for those 1 billion
transistors after 9 years? What percentage is that area of the original area? Name a
product into which the smaller chip might fit whereas the original chip would have
been too big.

Doubling chip capacity every 18 months also suggests halving of size every 18
months of the same number of transistors. 9 years / 18 months is 108 months / 18
months = 6 halvings. 100 mm? * (1/2)6 =100 mm?/ 64 = 1.56 mm? . 1.56 mm? /
100 mm? = 1.56% of the original area. A product into which such a small chip might
now fit is a hearing aid, for example.

Section 2.3: The CMOS Transistor

2.7

2.8

2.9

Describe the behavior of the CMOS transistor
circuit shown in Figure 2.77, clearly indicating X
when the transistor circuit conducts.

When x is a logical 0, the top transistor will con- ¥y
duct, otherwise the top transistor will not con-

duct. Likewise, when y is a logical 0, the bottom  gjgyre 277
transistor will conduct and not conduct other-

wise. Thus, the circuit conducts only when x is 0

and y is 0.

If we apply a voltage to the gate of a CMOS transistor, why doesn’t the current flow
to the transistor’s source or drain?

An insulator exists between the gate and the source-drain channel, prohibiting cur-
rent from flowing to the transistor’s source or drain.

Why does applying a positive voltage to the gate of a CMOS transistor cause the
transistor to conduct between source and drain?

The positive voltage at the gate attracts electrons into the channel between source
and drain. Those electrons are enough to change the channel from non-conducting to
conducting.

Section 2.4: Boolean Logic Gates—Building Blocks for Digital Circuits

2.10 Which Boolean operation, AND, OR or NOT, is appropriate for each of the follow-

ing:

a. Detecting motion in any motion sensor surrounding a house (each motion sen-
sor outputs 1 when motion is detected).
b. Detecting that three buttons are being pressed simultaneously (each button out-
puts 1 when a button is being pressed).
c. Detecting the absence of light from a light sensor (the light sensor outputs 1
when light is sensed).
a) OR
b) AND
¢) NOT
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2.11 Convert the following English problem statements to Boolean equations. Introduce
Boolean variables as needed.

a. A flood detector should turn on a pump if water is detected and the system is set
to enabled

b. A house energy monitor should sound an alarm it is night and light is detected
inside a room but motion is not detected.

¢. An irrigation system should open the sprinkler’s water valve if the system is
enabled and niether rain nor freezing temperatures are detected.

a) Pump = WaterDetected AND SystemEnabled

b) Alarm = Night AND LightInsideDetected AND NOT MotionDetected

c) WaterValveOpen = SystemEnabled AND NOT (RainDetected OR FreezingTem-
peraturesDetected)

2.12 Evaluate the Boolean equation F = (a AND b) OR c OR d for the given values of
variables a, b, c, and d:

a=1,b=1, c=1,d=0

a=0,b=1, c=1,d=0

a=1,b=1, c=0,d=0

a=1,b=0, c=1,d=1

a)F (1ANDI)OR1OR0=10R10ORO0=1
b)F=(0AND 1) OR1OR0=00OR10ORO0=1
¢c)F=(1AND1)OROOR0O=10OR0OORO0=1
d)F=(1 ANDO)OROORO=00OR0ORO0=0

2.13 Evaluate the Boolean equation F = a AND (b OR c) AND d for the given values of
variables a, b, ¢, and d:
a. a=1,b=1,c=0,d=1
b. a=0,b=0, c=0, d=1
c. a=1,b=0, c=0,d=0
d. a=1,b=0, c=1,d=1

a)F=1 AND (1OR0)AND 1=1AND 1 AND I =1
b)F=0 AND (0 OR 0) AND 1 =0 AND 0 AND 1 =0
¢)F=1AND (0 OR 0) ANDO=1AND 0 AND 0 =0
d)F=1AND(OOR 1)AND 1=1AND 1 AND 1 = |

2.14 Evaluate the Boolean equation F = a AND (b OR (c AND d)) for the given values

of variables a, b, c, and d:

a. a=1,b=1, c=0,d=1

b. a=0,b=0, c=0, d=1

c. a=1,b=0, c=0,d=0

d. a=1,b=0, c=1,d=1
a)F=1AND (1OR(0AND 1))=1AND (1OR0)=1AND 1=1
b)F=0AND (0 OR (0 AND 1))=0 AND (OOR0)=0AND0=0
¢)F=1AND (0OR (0 AND0))=1 AND(0OR0)=1AND0=0
d)F=1AND(OOR (1 AND1))=1AND(0OOR 1)=1AND1=1

e e e
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2.15 Show the conduction paths and output value of the OR gate transistor circuit in Fig-
ure 2.12 when: (a) x = land v = 0,(b)x = landy = 1.
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2.16 Show the conduction paths and output value of the AND gate transistor circuit in
Figure 2.14 when: () x = land vy = 0,(b)x = landy = 1.
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2.17 Convert each of the following equations directly to gate-level circuits:
a.F = ab’” + bc + c’
b.F = ab + b’c’d’
c.F (a + b’ * (c’ (c + d + e’

E?%

2.18 Convert each of the following equations directly to gate-level circuits:
a.F = a'b’ + b'c
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2.19 Convert each of the following equations directly to gate-level circuits:

a.F = abc + a’bc
b.F = a + bcd’

c.F = (a + b)
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2.20 Design a system that sounds a buzzer inside a home whenever motion outside is
detected at night. Assume a motion sensor has an output M that indicates whether
motion is detected (M=1 means motion detected) and a light sensor with output L
that indicates if light is detected (L=1 means light is detected). The buzzer inside the
home has a single input B that when 1 sounds the buzzer. Capture the desired system
behavior using an equation, and then convert the equation to a circuit using AND,

OR, and NOT gates.
B=M*L

M B
Lm
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2.21 A DJ (“disc jockey,” meaning someone who plays music at a party) would like a sys-

tem to automatically control a strobe light and disco ball in a dance hall depending
on whether music is playing and people are dancing. Asound sensor has output S
that when 1 indicates that music is playing, and a motion sensor has output M that
when 1 indicates that people are dancing. The strobe light has an input L that when 1
turns the light on, and the disco ball has an input B that when 1 turns the ball on. The
DJ wants the disco ball to turn on only when music is playing and nobody is danc-
ing, and wants the strobe light to turn on only when music is playing and people are
dancing. Create equations describing the desired behavior for B and for L, and then
convert each to a circuit using AND, OR, and NOT gates.

B=S*M’ L=S*M

S S
MWB ML

2.22 We want to concisely describe the following situation using a Boolean equation. We

want to fire a football coach (by setting F=1) if he is mean (represented by M=1). If
he is not mean, but has a losing season (represented by the Boolean variable L=1),
we want to fire him anyways. Write an equation that translates the situation directly
to a Boolean equation for F, without any simplification.

F=M+ (M’ *L)

Section 2.5: Boolean Algebra

2.23 Forthe function F = a + a’b + acd + c’:

a. List all the variables.

b. List all the literals.

c. List all the product terms.
a)a,b,c,d
b)a,a’,b,a,c,d,c’
c)a,a’b,acd, ¢’

2.24 For the function F = a’d’ + a’c + b’cd’ + cd:

a. List all the variables.

b. List all the literals.

c. List all the product terms.
a)a,b,c,d
b)a’,d’,a’,c,b’,c,d’,c,d
c)a’d’,a’c,b’cd’, cd

2.25 Let variables T represent being tall, H being heavy, and F being fast. Let’s consider

anyone who is not tall as short, not heavy as light, and not fast as slow. Write a Bool-
ean equation to represent the following:

a. You may ride a particular amusement park ride only if you are either tall and
light, or short and heavy.
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b. You may NOT ride an amusement park ride if you are either tall and light, or
short and heavy. Use algebra to simplify the equation to sum of products.

¢. You are eligible to play on a particular basketball team if you are tall and fast, or
tall and slow. Simplify this equation.

d. You are NOT eligible to play on a particular football team if you are short and
slow, or if you are light. Simplify to sum of products form.

e. You are eligible to play on both the basketball and football teams above, based
on the above criteria. Hint: combine the two equations into one equation by
ANDing them.

a) Ride = TH’ + T'H

b) Ride = (TH’ + T’H)’ = (TH’)’(T’H)’ = (T’ + H(T + H’) = T'H’ + TH

¢) Basketball = TF + TF’ = T(F+F)=T(1) =T

d) Football = (T’F’ + H’)’ = (T’F’)’H = (T + F)H = TH + FH

¢) BasketballAndFootball = T(TH + FH) = TTH + TFH = TH + TFH = TH(1+F) =
TH. In other words, only people who are both tall and heavy can play on both teams.

2.26 Let variables S represent a package being small, H being heavy, and E being expen-
sive. Let’s consider a package that is not small as big, not heavy as light, and not
expensive as inexpensive. Write a Boolean equation to represent the following:

a. Your company specializes in delivering packages that are both small and inex-
pensive (a package must be small AND inexpensive for us to deliver it); you’ll
also deliver packages that are big but only if they are expensive.

b. A particular truck can be loaded with packages only if the packages are small
and light, small and heavy, or big and light. Simplify the equation.

c. Your above-mentioned company buys the above-mentioned truck. Write an
equation that describes the packages your company can deliver. Hint: Appropri-
ately combine the equations from the above two parts.

a) Deliver =SE’ + S’E
b) Load=SH’+SH+S’H’=SH’+SH+SH’+S’H’=S+ H’
¢) Packages = Deliver¥*Load = (SE’ + S’E)*(S+H’) =SSE’ + SS’E+ H’SE’ + H’S’E
=SE’+0+H'SE’ + H’S’E = (1+H")SE’ + H’S’E = SE’ + S’EH’. In other words,
you can deliver small inexpensive packages, or large expensive light packages.

2.27 Use algebraic manipulation to convert the following equation to sum-of-products
form:F = a(b + ¢) (d’) + ac’ (b + d)
F=(ab+ac)d” +ac’b+ac’d
F=abd’ +acd” +ac’b+ac’d

2.28 Use algebraic manipulation to convert the following equation to sum-of-products
form: F = a’b(c + d’) + a(b’ + ¢c) + a(b + d)c
F=a’bc+a’bd’ +ab’ +ac+ (ab + ad)c
F=a’bc+a’bd’ +ab’ + ac + abc + acd
F=a’bc+a’bd” +ab’ +ac

2.29 Use DeMorgan’s Law to find the inverse of the following equation: F = abc +
a’b. Reduce to sum-of-products form. Hint: Start with F’ = (abc + a’b)’.

F’ = (abc +a’b)’
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F’ = (abc)’(a’b)’
FP=@+b +c’)@” +b)
FF=@+b +c’)(a+b’)
FP=a@ +b +c’)+b’(@a+b” +¢’)
FP’=0+ab’+ac’+a’b’+b’ +b’c’
F’=(a+a’)b’+ b’ +ac’ +b*> (The b’ term makes all other terms with b’ redun-
dant)
F’=b’+ac’
2.30 Use DeMorgan’s Law to find the inverse of the following equation: F = ac’ +
abd’ + acd. Reduce to sum-of-products form.

F’=(ac’ + abd’ + acd)’

F’ = (ac’)’(abd’)’(acd)’

FP=(a +c”)a +b +d”)a +c +d)

FF=@+c)a’+b +d)a +c +d’)
FP=@+ab’+a’d+a’c+b’c+cd)a’+c’+d°)
FP=a’+a’c+a’d’+a’b’+a’b’c’+a’b’d’ +a’d+aee>+a’cd’ +a’b’c+bee’ +
b’cd’ +a’cd + ee*d + edd> (The a’ term makes all other terms with a’ redundant)
F’=a +b’cd

Section 2.6: Representations of Boolean Functions

2.31 Convert the following Boolean equations to a digital circuit:

a. F(a,b,c) = a’bc + ab

b. F(a,b,c) = a’'b

c. F(a,b,c) = abc + ab + a + b + ¢

d F(a,b,c) = ¢’
a—-e
? D)
C F b F

(@)

[eReuE
(¢}
=5}

©

2.32 Create a Boolean equation representation of the
digital circuit in Figure 2.78. a

F=(ab’ +by bﬁ ?
F

Figure 2.78
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2.33 Create a Boolean equation representation for the
digital circuit in Figure 2.79.

F=(ab’+b)+a’c b
2.34 Convert each of the Boolean equations in Exer-
cise 2.31 to a truth table. c G
Figure 2.79
Inputs Outputs Inputs Outputs
a b ¢ |F a b c¢ |F
0 0 0 0 0 0 0 0
0o 0 1 |o o 0 1 |o
0 1 o0 |o 0O 1 0 |1
0 1 1 1 0 1 1 1
1 0 0 0 1 0 0 0
1 0 1 ]o0 1 0 1 Jo
1 1 0 1 1 1 0 0
1 1 1 1 1 1 1 0
(a) (b)
Inputs Outputs Inputs Outputs
a b ¢ |F a b ¢ |F
0O 0 0 |o 0 0 0 |1
0O 0 1 |1 o 0 1 |o
0 1 0 1 0 1 0 1
0 1 1 1 0 1 1 0
1 0 0 |1 1 0 0 |1
1 0 1 1 1 0 1 0
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 0
(©) (d)
2.35 Convert each of the following Boolean equations to a truth table:
a. F(a,b,c) = a’ + bc’
b. F(a,b,c) = (ab)’ + ac’ + bc
c. F(a,b,c) = ab + ac + ab’c’ + c’
d.F(a,b,c,d) = a"bc + d’
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Outputs

Inputs

Outputs

(b)

Outputs

Inputs

Outputs

Inputs

(@)

Inputs

(©)

(d)

2.36 Fill in Table 2.8’s columns for the Table 2.8

equation: F= ab + b’

Output
F

ab+b’

ab |b’

Inputs

b
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2.37 Convert the function F shown in the truth table in  T4p16 2.9

Table 2.9 to an equation. Don’t minimize the equa- 2 b c lF
tion. 0o 0 0 lo
F=a’b’c+a’bc’ +a’bc+ab’c +abc’ + abc o o 1 |1
2.38 Use algebraic manipulation to minimize the equa- 0 1 0 |1
tion obtained in Exercise 2.37 0o 1 1 |1
F=a’b’c+a’bc’ +a’bc+ab’c +abe’ + abe 10 0|0
F=a’(b’c+bc’ +be)+a(b’c+be’ + be) 1 0 1|1
F=a’(b’c+b(c’+c¢)) +a(b’c+b(c’+c)) 1 1 0 |1
F=a’(b’c+b)+a(b’c+Db) 11 1 |1
F=(a +ta)b’c+b)
F=bc+b
2.39 Convert the function F shown in the truth table in 4416 2.10
Table 2.10 to an equation. Don’t minimize the a b c lF
equation. 0 o0 o 11
F=a’b’c’ +a’bc’ +ab’c’ +ab’c + abc’ o o 1 lo
2.40 Use algebraic manipulation to minimize the equa- 0 1 0 |1
tion obtained in Exercise 2.39 0 1 1 |0
F=a’b’c’+a’bc’ +ab’c’ +ab’c + abc’ 10 0|1
F=a’(b’c’+bc’) +a(b’c” +b’c+bc’) 1 0 1|1
F=a’((b’ +b)c’) +a(b’(c’ +¢)+bc’) 1 1 0|1
F=a’c’+a(b’ +bc’) 1 1 1 o
2.41 Convert the function F shown in the truth table in 416 2.11
Table 2.11 to an equation. Don’t minimize the a b c lF
equation. 0 o0 o lo
F=a’b’c+abc’ +abc o o 1 |1
2.42 Use algebraic manipulation to minimize the equa- 0 1 0 |0
tion obtained in Exercise 2.41. 0 1 1 |o
F=a’b’c+abc’ +abc 1 0 0|0
F=a’b’c+ab(c’ +c¢) 1 0 110
F=ab’c+ab 11 0|1
2.43 Create a truth table for the circuit of Figure 2.78 11 11
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Inputs | Outputs
a b |F
0o 0 |1
0 1 |o
1 0 |O
1 1 |O

2.44 Create a truth table for the circuit of Figure 2.79.

Inputs Outputs
a b ¢ lJab’ + bla’c|F
0O 0 o0 |o 0 0
0O 0 1 |o 1 1
0O 1 0 |1 0 1
0 1 1 1 1 1
1 0 0 |1 0 1
1 0 1 |1 0 1
1 1 0 |1 0 1
1 1 1 1 0 1

2.45 Convert the function F shown in the truth table in Table 2.9 to a digital circuit.

b —
Ci
F

2.46 Convert the function F shown in the truth table in Table 2.10 to a digital circuit.

a—
C Dc F
b%ﬁ%

2.47 Convert the function F shown in the truth table in Table 2.11 to a digital circuit.

a

by

c F

2.48 Convert the following Boolean equations to canonical sum-of-minterms form:
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a. F(a,b,c)=a’bc + ab

b. F(a,b,c)=2a’b

c. F(a,b,c)=abc+ab+a+b+c
d. F(a,b,c)=¢’

a) F(a,b,c) =a’bc + abc’ + abc
b) F(a,b,c) =a’bc’ + a’be
c) F(a,b,c)=a’b’c +a’bc’ + a’bc +ab’c’ +ab’c + abc’ + abc
d) F(a,b,c) =a’b’c’ + a’bc’ +ab’c’ + abc’
2.49 Determine whether the Boolean functions ¥ = (a + b)’*aandG = a + b’
are equivalent, using: (a) algebraic manipulation, and (b) truth tables.

a) Convert the two functions to canonical sum-of-minterms form:

F=(a+b) *a
F=ab’a
F=0
G=a+b’

G=ab’+ab+a’b’
F and G are not equivalent.

Inputs | Outputs Inputs | Outputs
a b |F a b |G
(b) 0O 0 |O 0 0 |1
0 1 |o 0 1 |o
1 0 |o 1 0 |1
1 1 0 1 1 1
2.50 Determine whether the Boolean functions F = ab’ andG = (a’ + ab)’ are

equivalent, using: (a) algebraic manipulation, and (b) truth tables.

a) Convert the two functions to canonical sum-of-minterms form:

F=ab’

G=(a’ +ab)

G = (a)(ab)’

G=a(a’ +b’)

G=0+ab’

G=ab’

F and G are equivalent.
Inputs | Outputs Inputs | Outputs
a b |F a b |G
0 0 |o 0 0 |o

(b) 0o 1 |o 0 1 |o

1 0 |1 1 0 |1
1 1 |0 1 1 |0
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2.51 Determine whether the Boolean function G =

a’b’c + ab’c + abc’ + abcisequiva- a
lent to the function represented by the circuit in b
Figure 2.80. H
The circuit can be converted to the equation H = ¢

ab + b’c. That equation can be algebraically
expanded to canonical sum-of-minterms form as
H = ab(c’+c) + (a’+a)b’c = abc’ + abc + a’b’c +
ab’c, which is equivalent to G.

Figure 2.80

2.52 Determine whether the two cir-
cuits in Figure 2.81 are equiva-
lent circuits using: (a) algebraic
manipulation, and (b) truth
tables.

a) F=ab + cd and G = (1*((ab)”
* (Cd)’),)’ Flgure 2.81

oo o
o060 oo

In canonical sum-of-minterms

form, F =a’b’cd + a’bcd + ab’cd + abc’d’ + abc’d + abed” + abed and G =a’b’c’d’
+a’b’c’d+a’b’cd’+a’bc’d’ +a’be’d +a’bed’ +ab’c’d’ +ab’c’d +ab’cd’. F and G
are not equivalent (F = G’)

b)
Inputs Outputs Inputs Outputs
a b ¢ d |F a b ¢ d |F
0 0 0 0 0 0 0 0 0 1
0 0 o0 1 |o 0O 0 0 1 |1
0 0o 1 o0 |o 0O 0 1 0 |1
0 0 1 1 1 0 0 1 1 0
0 1 0 0 0 0 1 0 0 1
o 1 o0 1 |o o 1 o0 1 |1
0 1 1 0 0 0 1 1 0 1
0 1 1 1 1 0 1 1 1 0
1 0 0 0 0 1 0 0 0 1
1 0 0 1 |o 1 0 0 1 |1
1 0 1 0 0 1 0 1 0 1
1 0 1 1 1 1 0 1 1 0
1 1 0 0 1 1 1 0 0 0
1 1 0 1 1 1 1 0 1 0
1 1 1 0 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
(a) (b)
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2.53 *Figure 2.82 shows two cir-

cuits whose inputs are unla-
beled. F
a. Determine whether the
two circuits are equiva- G

lent. Hint: Try all possible
labellings of the inputs T'8ure 282
for both circuits.
(No solution provided for challenge problem)
b. How many circuit comparisons would need to be performed to determine if two
circuits with 10 unlabeled inputs are equivalent?
(No solution provided for challenge problem)

Section 2.7: Combinational Logic Design Process

2.54 A museum has three rooms, each with a motion sensor (m0, m1, and m2) that outputs
1 when motion is detected. At night, the only person in the museum is one security
guard who walks from room to room. Create a circuit that sounds an alarm (by set-
ting an output A to 1) if motion is ever detected in more than one room at a time
(i.e., in two or three rooms), meaning there must be one or more intruders in the
museum. Start with a truth table.

Step 1 - Capture the function

Inputs Outputs
m2 ml mO [A
0O 0 0 |O
0O 0 1 ]oO
0O 1 0 |o
0 1 1 1
1 0 0 |O
1 0 1 |1
1 1 0 1
1 1 1 1

Step 2A - Create equations
A=m2’mIm0 + m2m1’m0 + m2mIm0’ + m2m1mO0
Step 2B- Implement as a gate-based circuit

m2 m1 mO

=l
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2.55 Create a circuit for the museum of Exercise 2.54 that detects whether the guard is
properly patrolling the museum, detected by exactly one motion sensor being 1. (If
no motion sensor is 1, the guard may be sitting, sleeping, or absent).

Step 1 - Capture the function
Inputs Outputs

m2 ml mO
0 0

= = = el e i e i )
B = O O R Rk o
R O R O O P
O 0O O O Rr - ol

Step 2A - Create equations
A=m2’m!’'m0 +m2’mIm0’ + m2m1°m0’
Step 2B- Implement as a gate-based circuit

m2 m1lmoO

=
) A

fLO I Q. TOO




2.1 Exercises b 29

2.56 Consider the museum security alarm function of Exercise 2.54, but for a museum
with 10 rooms. A truth table is not a good starting point (too many rows), nor is an
equation describing when the alarm should sound (too many terms). However, the
inverse of the alarm function can be straightforwardly captured as an equation.
Design the circuit for the 10 room security system, by designing the inverse of the
function, and then just adding an inverter before the circuit’s output.

Step 1 - Capture the function

The inverse function detects that motion is detected by exactly one motion sensor, or
no motion sensor detecting motion; all the other possibilities are for two or more
sensors detecting motion. Thus, the inverse function can be written as:

A =

m9m&m7’m6’m5’m4’m3’m2’m1’m0’ + m9’m8m7’m6’ mS5 m4’m3’m2°’m1°’mo0’
m9’m8’ m7m6’m5’m4’m3’m2’m1’m0’ + m9’m8 m7’m6mS m4’m3°’m2’m1°’mo0’
m9’m8m7’ mé’mim4’m3’m2’m1’m0’ + m9’m8m7’m6’mS’m4m3’m2°’m1°’mo0’
m9’m8 m7’'mé’m5’m4’m3m2’m1’m0’ + m9’m8 m7’m6’mS5’m4’ m3’m2m1’mo0’
m9’m8m7’mé’m5’m4’m3’m2’m/m0’ + m9’m8 m7’m6’m5’m4’m3’m2’m1’m0 +
m9’m8 m7’mé’m5’m4’m3’m2’m1’m0’

The first term is for motion sensor m9 detecting motion and all others detecting no
motion, the second term is for m8, and so on. That last term is for no sensor detect-
ing motion.

Step 2A - Create equations

Already done.

Step 2B- Implement as a gate-based circuit
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2.57 A network router connects multiple computers together and allows them to send
messages to each other. If two or more computers send messages simultaneously,
the messages “collide” and the messages must be resent. Using the combinational
design process of Table 2.5, create a collision detection circuit for a router that con-
nects 4 computers. The circuit has 4 inputs labeled MO through M3 that are 1 when
the corresponding computer is sending a message and 0 otherwise. The circuit has
one output labeled C that is 1 when a collision is detected and 0 otherwise.

Step 1 - Capture the function
A truth table is convenient for this problem.

Inputs Outputs
M3 M2 M1 MO |C
0O 0 0 o0 |O
0o 0 o0 1 |0
o o0 1 0 |0
o 0 1 1 |1
0O 1 0 o0 |O
o 1 0 1 |1
o 1 1 o0 |1
o 1 1 1 |1
1 0 0 0 |O
1 0 0 1 |1
1 0 1 o0 |1
1 0 1 1 |1
1 1 0 0 |1
1 1 0 1 |1
1 1 1 0 |1
1 1 1 1 |1

Step 2A - Create equation

We note that there are more 1s in the output column than there are Os. Thus, we
choose to create an equation for the inverse of the function, and we’ll then add an
inverter at the output. The problem could also be solved by creating a (longer) equa-
tion for the function itself rather than the inverse.

C’ = M3’M2’M1’M0O’ + M3’M2’M1’MO0 + M3’M2’M1MO’ + M3’M2M1°M0’ +
M3M2’M1°M0’



Step 2B- Implement as a gate-based circuit
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H)

C

2.58 Using the combinational design process of Table 2.5, create a 4-bit prime number
detector. The circuit has four inputs, N3, N2, N1, and NO that correspond to a 4-bit
number (N3 is the most significant bit) and one output P that is 1 when the input is a

prime number and that is O otherwise.

Step 1 - Capture the function

The prime numbers in the range 0-15 are 2, 3, 5, 7, 11, and 13. Rows whose input
binary number correspond to those numbers have P set to a 1; the other rows get 0.

Outputs

Inputs

N3 N2 N1 NO
0 0 O
0 0 O
o 0 1
o 0 1
0O 1 O
0 1 O
o 1 1
0 1 1
1 0 O
1 0 O
1 0 1
1 0 1
1 1 O
1 1 O
1 1 1
1 1 1

Step 2A - Create equations

0

P O OF OF OF ORF OF OFR

O O r OPr OO0 O0OFr OFr O Pk o Oold

P =N3’N2’NINO’ + N3’N2°’NINO + N3’N2N1°NO + N3’N2N1NO + N3N2’NINO

+ N3N2N1°NO
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Step 2B - Implement as a gate-based circuit

H)

P

2.59 A car has a fuel-level detector that outputs the current fuel-level as a 3-bit binary
number, with 000 meaning empty and 111 meaning full. Create a circuit that illu-
minates a “low fuel” indicator light (by setting an output L to 1) when the fuel level
drops below level 3.

Step 1 - Capture the function

Inputs Outputs
F2 F1 FO|L
0 0 o0 |1
o 0 1 |1
0 1 o0 |1
o 1 1 |0
1 0 0 |o
1 0 1 |0
1 1 o0 |o
1 1 1 |0

Step 2A -Create equations

L =F2’F1I’FO’ + F2’FI’FO + F2°F1F0’

Step 2B- Implement as a gate-based circuit
F2

Fl
FO QI

L

2.60 A car has a low-tire-pressure sensor that outputs the current tire pressure as a 5-bit
binary number. Create a circuit that illuminates a “low tire pressure” indicator light
(by setting an output T to 1) when the tire pressure drops below 16. Hint: you might
find it easier to create a circuit that detects the inverse function. You can then just
append an inverter to the output of that circuit.

Step 1 - Capture the function
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The inverse function outputs 1 if the input is 16 or greater. For a 5-bit number, we
know that any number 16 or greater has a 1 in the leftmost bit, which we’ll name P4.
Any number less than 16 will have a 0 in P4. Thus, an equation that detects 16 or
greater is just:

T =P4

Step 2A - Create equations

Already done

3 - Implement as a gate-based circuit

P4—Do— T

Section 2.8: More Gates

2.61 Show the conduction paths and output value of the NAND gate transistor circuit in

Figure 2.54 when: (a) x =

land v = 0,(b)x = landy = 1.

1 1
X4 x40 kY
x—] X FO
P Y|

0= 0

(@) (b)

2.62 Show the conduction paths and output value of the NOR gate transistor circuit in

Figure 2.54 when: (a) x =
1

land v = 0,(b)x = Oandy = 0.

1

X_4 X
Yy — y —
= S
0 0=
(a) (b)

2.63 Show the conduction paths and output value of the AND gate transistor circuit in
Figure 2.55 when: (a) x = land v = 1,(b)x = 0 andy = 1.

1 1
x4p Jp-y
F ) F
y—|
0 0
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2.64 Two people, denoted using variables A and B, want to ride with you on your motor-
cycle. Write a Boolean equation that indicates that exactly one of the two people can
come (A=1 means A can come, A=0 means A can’t come). Then use XOR to sim-

plify your equation.
F=A'B+AB’
F=AXORB

2.65 Simplify the following equation by using XOR wherever possible: F = a’b +
ab’ + cd’ + c¢’d + ac.

F=(a XOR b) + (c XOR d) + ac

2.66 Use 2-input XOR gates to create a circuit that outputs a 1 when the number of 1s on

inputs a, b, ¢, d is odd.
a
: &%
c
d D F

2.67 Use 2-input XOR or XNOR gates to create a circuit that detects if an even number of

the inputs a, b, c, d are 1s.
a
b—J ™
c EDOL >0_F

d

Section 2.9: Decoders and Muxes
2.68 Design a 3x8 decoder using AND, OR and NOT gates.
i2 * [
il ¢ [
i0 ¢ ]

R

I
d7 d6 d5 d4 d3 d2 d1 dO

2.69 Design a 4x16 decoder using AND, OR and NOT gates.

[
ilT_[>c
iOLl>c

>

[t 1t r 71T 1T 1 1T T T 1"
d15 d14 d13 d12 dI1d10 d9 d8 d7 d6 d5 d4 d3 d2 dl do
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2.70 Design a 3x8 decoder with enable using AND, OR and NOT gates.

2T

o [

P e e
Slejsleelelw

T 1T T T 171
d7 d6 d5 d4 d3 d2 d1 do

2.71 Design an 8x1 multiplexer using AND, OR and NOT gates.

i7 16 15 4 i3 i2 il i|0

s2
sl
sO

|
d

2.72 Design a 16x1 multiplexer using AND, OR and NOT gates.

il5 il4 i13 i12 ill il0 i9 8 {7 i6 i5 i4 i3 i2 il i0

Gl

=

UUUﬁ)L‘JHgL‘L Sﬁ)k‘)ﬁ)L‘JUUL
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2.73 Design a 4-bit 4x1 multiplexer using four 4x1 multiplexors.

i2[3] |i0[3] i2[2] |i0[2] i2[1] |ior1] i2[0] |i0[0]

sl
sO

i3 i2 il i0 i3 i2 il i0 i3 i2 il i0 i3 i2 il i0

sl sl sl sl
sO sO sO sO
d d d d

|

d

|
d3 d2

|
|
1 do

2.74 A house has four external doors each with a sensor that outputs 1 if its door is open.
Inside the house is a single LED that a homeowner wishes to use to indicate whether
a door is open or closed. Because the LED can only show the status of one sensor,
the homeowner buys a switch that can be set to 0, 1, 2, or 3 and that has a 2-bit out-
put representing the switch position in binary. Create a circuit to connect the four
sensors, the switch, and the LED. Use at least one mux (a single mux or an N-bit
mux) or decoder. Use block symbols with a clearly defined function, such as “2x1
mux,” “8-bit 2x1 mux,” or “3x8 decoder”; do not show the internal design of a mux

or decoder..
d3 d2d1 do
YVYV Yy
i3 12 il i0
Switch 4x1 Mux
o, 1, <
2, 0r3 »s0 ¢

A
LED




2.1 Exercises b 37

2.75 A video system can accept video from one of two video sources, but can only display
one source at a given time. Each source outputs a stream of digitized video on its
own 8-bit output. A switch with a single bit output chooses which of the two 8-bit
streams will be passed on a display’s single 8-bit input. Create a circuit to connect
the two video sources, the switch, and the display. Use at least one mux (a single
mux or an N-bit mux) or decoder. Use block symbols with a clearly defined func-
tion, such as “2x1 mux,” “8-bit 2x1 mux,” or “3x8 decoder”; do not show the inter-
nal design of a mux or decoder.

Source B Source A
8 8

il i0

; 8-bit
Switch »(s0 2x1 Mux

d
8

to display

2.76 A store owner wishes to be able to indicate to customers that the items in one of the
store’s eight aisles are temporarily discounted (“on sale”). The store owner thus
mounts a light above each aisle, and each light has a single bit input that turns on the
light when 1. The store owner has a switch that can be setto 0, 1, 2, 3,4, 5, 6, or 7,
and that has a 3-bit output representing the switch position in binary. A second
switch can be set up or down and has a single bit output that is 1 when the switch is
up; the store owner can set this switch down if no aisles are currently discounted.
Use at least one mux (a single mux or an N-bit mux) or decoder. Use block symbols
each with a clearly defined function, such as ‘“2x1 mux,” “8-bit 2x1 mux,” or “3x8
decoder”; do not show the internal design of a mux or decoder.

Switch ais

. d7 ———p toaisle7
0 to7) :t—’ 12 46 —»

o

SXS decoder 3

Switch (with enable) ?1% — >
(upor | |e do —— to aisle0
down)
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Section 2.10: Additional Considerations

2.77 Determine the critical path of the specified circuit. Assume that each AND and OR

gate has a delay of 1 ns, each NOT gate has a delay of 0.75 ns, and each wire has a
delay of 0.5 ns.

a. The circuit of Figure 2.37.
The path from input ¢ to output F has a delay of 0.5+ 0.75+ 0.5+ 1+ 0.5 =3.25 ns.
The path from input h to output F has a delay of 0.5+ 1+ 0.5+ 1+0.5=3.5ns
The path from input p to output F has a delay of 0.5+ 1+ 0.5+ 1+ 0.5=3.5ns.
The longest path is 3.5 ns. Thus, the circuit’s critical path is 3.5 ns.

b. The circuit of Figure 2.41.
The path from input a to output F has a delay of 0.5+ 1+0.5+0.75+05+1+0.5
=475 ns.
The path from input b to output F is identical to that from input a: 4.75 ns.
The path from input ¢ to output F has a delay of 0.5+ 0.75+ 0.5+ 1+ 0.5=3.25ns.
The longest path is 4.75 ns. Thus, the circuit’s critical path is 4.75 ns.

2.78 Design a 1x4 demultiplexer using AND, OR and NOT gates.

i

oI
S

#

dl do

ndl
s al=
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2.79 Design an 8x3 encoder using AND, OR and NOT gates. Assume that only one input
will be asserted at any given time.

Inputs Outputs

i7 16 i5 14 i3 12 il 10 |e2 el el
o 0o o 0 0 0 0 1 |o 0 0
o 0o o0 0 0 0 1 o0 |o 0 1
o o0 o o o0 1 o0 o0 |0 1 0
o 0o o0 o0 1 0 0 o0 |o 1 1
o 0o o0 1 0 0 0 o0 |1 0 0
o o 1 0 0 0 0 o |1 0 1
o 1 o0 o0 o0 0 0 o0 |1 1 0
1 0 0 0 0 O 0 o0 |1 1 1

e2=17+16+15+14
el=17+16+13+12
e0=17+15+13 +11
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2.80 Design a 4x2 priority encoder using AND, OR and NOT gates. If every input is 0,
the output should be “00”.

Inputs Outputs
i3 12 i1 i0 |el el
0o 0 0 0 |o 0
o 0 o0 1 |o 0
0 0 1 o0 |o 1
0 0 1 1 0 1
o 1 0 0 |1 0
o 1 o0 1 |1 0
o 1 1 0 |1 0
0 1 1 1 1 0
1 0 0 0 |1 1
1 0 0 1 1 1
1 0 1 0 1 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 1 1
el =i3 +i2
e0 =13 +i2’il

137

! - el
12+ ¢

| e0

il
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	Combinational Logic Design

	2.1 Exercises
	Any problem noted with an asterisk (*) represents an especially challenging problem.
	Section 2.2: Switches
	2.1. A microprocessor in 1980 used about 10,000 transistors. How many of those microprocessors would fit in a modern chip having 3 billion transistors?
	2.2 The first Pentium microprocessor had about 3 million transistors. How many of those microprocessors would fit in a modern chip having 3 billion transistors?
	2.3 Describe the concept known as Moore’s Law.
	2.4 Assume for a particular year that a particular size chip using state-of-the-art technology can contain 1 billion transistors. Assuming Moore’s Law holds, how many transistors will the same size chip be able to contain in ten years?
	2.5 Assume a cell phone contains 50 million transistors. How big would such a cell phone be if the phone used vacuum tubes instead of transistors, assuming a vacuum tube has an volume of 1 cubic inch?
	2.6 A modern desktop processor may contain 1 billion transistors in a chip area of 100 mm2. If Moore’s Law continues to apply, what would be chip area for those 1 billion transistors after 9 years? What percentage is that area of the original area?...

	Section 2.3: The CMOS Transistor
	2.7 Describe the behavior of the CMOS transistor circuit shown in Figure 2.77, clearly indicating when the transistor circuit conducts.
	2.8 If we apply a voltage to the gate of a CMOS transistor, why doesn’t the current flow to the transistor’s source or drain?
	2.9 Why does applying a positive voltage to the gate of a CMOS transistor cause the transistor to conduct between source and drain?

	Section 2.4: Boolean Logic Gates—Building Blocks for Digital Circuits
	2.10 Which Boolean operation, AND, OR or NOT, is appropriate for each of the following:
	a. Detecting motion in any motion sensor surrounding a house (each motion sensor outputs 1 when motion is detected).
	b. Detecting that three buttons are being pressed simultaneously (each button outputs 1 when a button is being pressed).
	c. Detecting the absence of light from a light sensor (the light sensor outputs 1 when light is sensed).

	2.11 Convert the following English problem statements to Boolean equations. Introduce Boolean variables as needed.
	a. A flood detector should turn on a pump if water is detected and the system is set to enabled
	b. A house energy monitor should sound an alarm it is night and light is detected inside a room but motion is not detected.
	c. An irrigation system should open the sprinkler’s water valve if the system is enabled and niether rain nor freezing temperatures are detected.

	2.12 Evaluate the Boolean equation F = (a AND b) OR c OR d for the given values of variables a, b, c, and d:
	a. a=1, b=1, c=1, d=0
	b. a=0, b=1, c=1, d=0
	c. a=1, b=1, c=0, d=0
	d. a=1, b=0, c=1, d=1

	2.13 Evaluate the Boolean equation F = a AND (b OR c)AND d for the given values of variables a, b, c, and d:
	a. a=1, b=1, c=0, d=1
	b. a=0, b=0, c=0, d=1
	c. a=1, b=0, c=0, d=0
	d. a=1, b=0, c=1, d=1

	2.14 Evaluate the Boolean equation F = a AND (b OR (c AND d)) for the given values of variables a, b, c, and d:
	a. a=1, b=1, c=0, d=1
	b. a=0, b=0, c=0, d=1
	c. a=1, b=0, c=0, d=0
	d. a=1, b=0, c=1, d=1

	2.15 Show the conduction paths and output value of the OR gate transistor circuit in Figure 2.12 when: (a) x = 1 and y = 0, (b) x = 1 and y = 1.
	2.16 Show the conduction paths and output value of the AND gate transistor circuit in Figure 2.14 when: (a) x = 1 and y = 0, (b) x = 1 and y = 1.
	2.17 Convert each of the following equations directly to gate-level circuits:
	a. F = ab’ + bc + c’
	b. F = ab + b’c’d’
	c. F = ((a + b’) * (c’ + d)) + (c + d + e’)

	2.18 Convert each of the following equations directly to gate-level circuits:
	a. F = a’b’ + b’c
	b. F = ab + bc + cd + de
	c. F = ((ab)’ + (c)) + (d + ef)’

	2.19 Convert each of the following equations directly to gate-level circuits:
	a. F = abc + a’bc
	b. F = a + bcd’ + ae + f’
	c. F = (a + b) + (c’ * (d + e + fg))

	2.20 Design a system that sounds a buzzer inside a home whenever motion outside is detected at night. Assume a motion sensor has an output M that indicates whether motion is detected (M=1 means motion detected) and a light sensor with output L that i...
	2.21 A DJ (“disc jockey,” meaning someone who plays music at a party) would like a system to automatically control a strobe light and disco ball in a dance hall depending on whether music is playing and people are dancing. Asound sensor has outpu...
	2.22 We want to concisely describe the following situation using a Boolean equation. We want to fire a football coach (by setting F=1) if he is mean (represented by M=1). If he is not mean, but has a losing season (represented by the Boolean variable...

	Section 2.5: Boolean Algebra
	2.23 For the function F = a + a’b + acd + c’:
	a. List all the variables.
	b. List all the literals.
	c. List all the product terms.

	2.24 For the function F = a’d’ + a’c + b’cd’ + cd:
	a. List all the variables.
	b. List all the literals.
	c. List all the product terms.

	2.25 Let variables T represent being tall, H being heavy, and F being fast. Let’s consider anyone who is not tall as short, not heavy as light, and not fast as slow. Write a Boolean equation to represent the following:
	a. You may ride a particular amusement park ride only if you are either tall and light, or short and heavy.
	b. You may NOT ride an amusement park ride if you are either tall and light, or short and heavy. Use algebra to simplify the equation to sum of products.
	c. You are eligible to play on a particular basketball team if you are tall and fast, or tall and slow. Simplify this equation.
	d. You are NOT eligible to play on a particular football team if you are short and slow, or if you are light. Simplify to sum of products form.
	e. You are eligible to play on both the basketball and football teams above, based on the above criteria. Hint: combine the two equations into one equation by ANDing them.

	2.26 Let variables S represent a package being small, H being heavy, and E being expensive. Let’s consider a package that is not small as big, not heavy as light, and not expensive as inexpensive. Write a Boolean equation to represent the following:
	a. Your company specializes in delivering packages that are both small and inexpensive (a package must be small AND inexpensive for us to deliver it); you’ll also deliver packages that are big but only if they are expensive.
	b. A particular truck can be loaded with packages only if the packages are small and light, small and heavy, or big and light. Simplify the equation.
	c. Your above-mentioned company buys the above-mentioned truck. Write an equation that describes the packages your company can deliver. Hint: Appropriately combine the equations from the above two parts.

	2.27 Use algebraic manipulation to convert the following equation to sum-of-products form: F = a(b + c)(d’) + ac’(b + d)
	2.28 Use algebraic manipulation to convert the following equation to sum-of-products form: F = a’b(c + d’) + a(b’ + c) + a(b + d)c
	2.29 Use DeMorgan’s Law to find the inverse of the following equation: F = abc + a’b. Reduce to sum-of-products form. Hint: Start with F’ = (abc + a’b)’.
	2.30 Use DeMorgan’s Law to find the inverse of the following equation: F = ac’ + abd’ + acd. Reduce to sum-of-products form.

	Section 2.6: Representations of Boolean Functions
	2.31 Convert the following Boolean equations to a digital circuit:
	a. F(a,b,c) = a’bc + ab
	b. F(a,b,c) = a’b
	c. F(a,b,c) = abc + ab + a + b + c
	d. F(a,b,c) = c’

	2.32 Create a Boolean equation representation of the digital circuit in Figure 2.78.
	2.33 Create a Boolean equation representation for the digital circuit in Figure 2.79.
	2.34 Convert each of the Boolean equations in Exercise 2.31 to a truth table.
	2.35 Convert each of the following Boolean equations to a truth table:
	a. F(a,b,c) = a’ + bc’
	b. F(a,b,c) = (ab)’ + ac’ + bc
	c. F(a,b,c) = ab + ac + ab’c’ + c’
	d. F(a,b,c,d) = a’bc + d’

	2.36 Fill in Table 2.8’s columns for the equation: F= ab + b’
	2.37 Convert the function F shown in the truth table in Table 2.9 to an equation. Don’t minimize the equation.
	2.38 Use algebraic manipulation to minimize the equation obtained in Exercise 2.37
	2.39 Convert the function F shown in the truth table in Table 2.10 to an equation. Don’t minimize the equation.
	2.40 Use algebraic manipulation to minimize the equation obtained in Exercise 2.39
	2.41 Convert the function F shown in the truth table in Table 2.11 to an equation. Don’t minimize the equation.
	2.42 Use algebraic manipulation to minimize the equation obtained in Exercise 2.41.
	2.43 Create a truth table for the circuit of Figure 2.78
	2.44 Create a truth table for the circuit of Figure 2.79.
	2.45 Convert the function F shown in the truth table in Table 2.9 to a digital circuit.
	2.46 Convert the function F shown in the truth table in Table 2.10 to a digital circuit.
	2.47 Convert the function F shown in the truth table in Table 2.11 to a digital circuit.
	2.48 Convert the following Boolean equations to canonical sum-of-minterms form:
	a. F(a,b,c) = a’bc + ab
	b. F(a,b,c) = a’b
	c. F(a,b,c) = abc + ab + a + b + c
	d. F(a,b,c) = c’

	2.49 Determine whether the Boolean functions F = (a + b)’*a and G = a + b’ are equivalent, using: (a) algebraic manipulation, and (b) truth tables.
	2.50 Determine whether the Boolean functions F = ab’ and G = (a’ + ab)’ are equivalent, using: (a) algebraic manipulation, and (b) truth tables.
	2.51 Determine whether the Boolean function G = a’b’c + ab’c + abc’ + abc is equivalent to the function represented by the circuit in Figure 2.80.
	2.52 Determine whether the two circuits in Figure 2.81 are equivalent circuits using: (a) algebraic manipulation, and (b) truth tables.
	2.53 *Figure 2.82 shows two circuits whose inputs are unlabeled.
	a. Determine whether the two circuits are equivalent. Hint: Try all possible labellings of the inputs for both circuits.
	b. How many circuit comparisons would need to be performed to determine if two circuits with 10 unlabeled inputs are equivalent?


	Section 2.7: Combinational Logic Design Process
	2.54 A museum has three rooms, each with a motion sensor (m0, m1, and m2) that outputs 1 when motion is detected. At night, the only person in the museum is one security guard who walks from room to room. Create a circuit that sounds an alarm (by set...
	2.55 Create a circuit for the museum of Exercise 2.54 that detects whether the guard is properly patrolling the museum, detected by exactly one motion sensor being 1. (If no motion sensor is 1, the guard may be sitting, sleeping, or absent).
	2.56 Consider the museum security alarm function of Exercise 2.54, but for a museum with 10 rooms. A truth table is not a good starting point (too many rows), nor is an equation describing when the alarm should sound (too many terms). However, the in...
	2.57 A network router connects multiple computers together and allows them to send messages to each other. If two or more computers send messages simultaneously, the messages “collide” and the messages must be resent. Using the combinational desi...
	2.58 Using the combinational design process of Table 2.5, create a 4-bit prime number detector. The circuit has four inputs, N3, N2, N1, and N0 that correspond to a 4-bit number (N3 is the most significant bit) and one output P that is 1 when the inp...
	2.59 A car has a fuel-level detector that outputs the current fuel-level as a 3-bit binary number, with 000 meaning empty and 111 meaning full. Create a circuit that illuminates a “low fuel” indicator light (by setting an output L to 1) when the ...
	2.60 A car has a low-tire-pressure sensor that outputs the current tire pressure as a 5-bit binary number. Create a circuit that illuminates a “low tire pressure” indicator light (by setting an output T to 1) when the tire pressure drops below 16...

	Section 2.8: More Gates
	2.61 Show the conduction paths and output value of the NAND gate transistor circuit in Figure 2.54 when: (a) x = 1 and y = 0, (b) x = 1 and y = 1.
	2.62 Show the conduction paths and output value of the NOR gate transistor circuit in Figure 2.54 when: (a) x = 1 and y = 0, (b) x = 0 and y = 0.
	2.63 Show the conduction paths and output value of the AND gate transistor circuit in Figure 2.55 when: (a) x = 1 and y = 1, (b) x = 0 and y = 1.
	2.64 Two people, denoted using variables A and B, want to ride with you on your motorcycle. Write a Boolean equation that indicates that exactly one of the two people can come (A=1 means A can come, A=0 means A can’t come). Then use XOR to simplify...
	2.65 Simplify the following equation by using XOR wherever possible: F = a’b + ab’ + cd’ + c’d + ac.
	2.66 Use 2-input XOR gates to create a circuit that outputs a 1 when the number of 1s on inputs a, b, c, d is odd.
	2.67 Use 2-input XOR or XNOR gates to create a circuit that detects if an even number of the inputs a, b, c, d are 1s.

	Section 2.9: Decoders and Muxes
	2.68 Design a 3x8 decoder using AND, OR and NOT gates.
	2.69 Design a 4x16 decoder using AND, OR and NOT gates.
	2.70 Design a 3x8 decoder with enable using AND, OR and NOT gates.
	2.71 Design an 8x1 multiplexer using AND, OR and NOT gates.
	2.72 Design a 16x1 multiplexer using AND, OR and NOT gates.
	2.73 Design a 4-bit 4x1 multiplexer using four 4x1 multiplexors.
	2.74 A house has four external doors each with a sensor that outputs 1 if its door is open. Inside the house is a single LED that a homeowner wishes to use to indicate whether a door is open or closed. Because the LED can only show the status of one ...
	2.75 A video system can accept video from one of two video sources, but can only display one source at a given time. Each source outputs a stream of digitized video on its own 8-bit output. A switch with a single bit output chooses which of the two 8...
	2.76 A store owner wishes to be able to indicate to customers that the items in one of the store’s eight aisles are temporarily discounted (“on sale”). The store owner thus mounts a light above each aisle, and each light has a single bit input ...

	Section 2.10: Additional Considerations
	2.77 Determine the critical path of the specified circuit. Assume that each AND and OR gate has a delay of 1 ns, each NOT gate has a delay of 0.75 ns, and each wire has a delay of 0.5 ns.
	a. The circuit of Figure 2.37.
	b. The circuit of Figure 2.41.

	2.78 Design a 1x4 demultiplexer using AND, OR and NOT gates.
	2.79 Design an 8x3 encoder using AND, OR and NOT gates. Assume that only one input will be asserted at any given time.
	2.80 Design a 4x2 priority encoder using AND, OR and NOT gates. If every input is 0, the output should be “00”.



