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Problem 2.1

a.

x̂(t) =
1

π

∫ ∞

−∞

x(a)

t− ada

Hence :

−x̂(−t) = − 1
π

∫∞
−∞

x(a)
−t−ada

= − 1
π

∫ −∞
∞

x(−b)
−t+b (−db)

= − 1
π

∫∞
−∞

x(b)
−t+bdb

= 1
π

∫∞
−∞

x(b)
t−b db = x̂(t)

where we have made the change of variables : b = −a and used the relationship : x(b) = x(−b).

b. In exactly the same way as in part (a) we prove :

x̂(t) = x̂(−t)

c. x(t) = cosω0t, so its Fourier transform is : X(f) = 1
2 [δ(f − f0) + δ(f + f0)] , f0 = 2πω0.

Exploiting the phase-shifting property (2-1-4) of the Hilbert transform :

X̂(f) =
1

2
[−jδ(f − f0) + jδ(f + f0)] =

1

2j
[δ(f − f0)− δ(f + f0)] = F−1 {sin 2πf0t}

Hence, x̂(t) = sinω0t.

d. In a similar way to part (c) :

x(t) = sinω0t⇒ X(f) =
1

2j
[δ(f − f0)− δ(f + f0)]⇒ X̂(f) =

1

2
[−δ(f − f0)− δ(f + f0)]

⇒ X̂(f) = −1

2
[δ(f − f0) + δ(f + f0)] = −F−1 {cos 2πω0t} ⇒ x̂(t) = − cosω0t

e. The positive frequency content of the new signal will be : (−j)(−j)X(f) = −X(f), f > 0, while

the negative frequency content will be : j · jX(f) = −X(f), f < 0.Hence, since
ˆ̂
X(f) = −X(f),

we have : ˆ̂x(t) = −x(t).

f. Since the magnitude response of the Hilbert transformer is characterized by : |H(f)| = 1, we

have that :
∣∣∣X̂(f)

∣∣∣ = |H(f)| |X(f)| = |X(f)| . Hence :

∫ ∞

−∞

∣∣∣X̂(f)
∣∣∣
2
df =

∫ ∞

−∞
|X(f)|2 df
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and using Parseval’s relationship :

∫ ∞

−∞
x̂2(t)dt =

∫ ∞

−∞
x2(t)dt

g. From parts (a) and (b) above, we note that if x(t) is even, x̂(t) is odd and vice-versa. Therefore,

x(t)x̂(t) is always odd and hence :
∫∞
−∞ x(t)x̂(t)dt = 0.

Problem 2.2

1. Using relations

X(f) =
1

2
Xl(f − f0) +

1

2
Xl(−f − f0)

Y (f) =
1

2
Yl(f − f0) +

1

2
Yl(−f − f0)

and Parseval’s relation, we have

∫ ∞

−∞
x(t)y(t) dt =

∫ ∞

−∞
X(f)Y ∗(f) dt

=

∫ ∞

−∞

[
1

2
Xl(f − f0) +

1

2
Xl(−f − f0)

] [
1

2
Yl(f − f0) +

1

2
Yl(−f − f0)

]∗
df

=
1

4

∫ ∞

−∞
Xl(f − f0)Y

∗
l (f − f0) df +

1

4

∫ ∞

−∞
Xl(−f − f0)Yl(−f − f0) df

=
1

4

∫ ∞

−∞
Xl(u)Y

∗
l (u) du +

1

4
X∗
l (v)Y (v) dv

=
1

2
Re

[∫ ∞

−∞
Xl(f)Y ∗

l (f) df

]

=
1

2
Re

[∫ ∞

−∞
xl(t)y

∗
l (t) dt

]

where we have used the fact that since Xl(f − f0) and Yl(−f − f0) do not overlap, Xl(f −
f0)Yl(−f − f0) = 0 and similarly Xl(−f − f0)Yl(f − f0) = 0.

2. Putting y(t) = x(t) we get the desired result from the result of part 1.
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Problem 2.3

A well-known result in estimation theory based on the minimum mean-squared-error criterion states

that the minimum of Ee is obtained when the error is orthogonal to each of the functions in the

series expansion. Hence :

∫ ∞

−∞

[
s(t)−

K∑

k=1

skfk(t)

]
f∗n(t)dt = 0, n = 1, 2, ...,K (1)

since the functions {fn(t)} are orthonormal, only the term with k = n will remain in the sum, so :

∫ ∞

−∞
s(t)f∗n(t)dt − sn = 0, n = 1, 2, ...,K

or:

sn =

∫ ∞

−∞
s(t)f∗n(t)dt n = 1, 2, ...,K

The corresponding residual error Ee is :

Emin =
∫∞
−∞

[
s(t)−∑K

k=1 skfk(t)
] [
s(t)−∑K

n=1 snfn(t)
]∗
dt

=
∫∞
−∞ |s(t)|

2 dt−
∫∞
−∞

∑K
k=1 skfk(t)s

∗(t)dt −∑K
n=1 s

∗
n

∫∞
−∞

[
s(t)−∑K

k=1 skfk(t)
]
f∗n(t)dt

=
∫∞
−∞ |s(t)|

2 dt−
∫∞
−∞

∑K
k=1 skfk(t)s

∗(t)dt

= Es −
∑K

k=1 |sk|2

where we have exploited relationship (1) to go from the second to the third step in the above

calculation.

Note : Relationship (1) can also be obtained by simple differentiation of the residual error with

respect to the coefficients {sn} . Since sn is, in general, complex-valued sn = an + jbn we have to

differentiate with respect to both real and imaginary parts :

d
dan
Ee = d

dan

∫∞
−∞

[
s(t)−∑K

k=1 skfk(t)
] [
s(t)−∑K

n=1 snfn(t)
]∗
dt = 0

⇒ −
∫∞
−∞ anfn(t)

[
s(t)−∑K

n=1 snfn(t)
]∗

+ a∗nf
∗
n(t)

[
s(t)−∑K

n=1 snfn(t)
]
dt = 0

⇒ −2an
∫∞
−∞Re

{
f∗n(t)

[
s(t)−∑K

n=1 snfn(t)
]}

dt = 0

⇒
∫∞
−∞Re

{
f∗n(t)

[
s(t)−∑K

n=1 snfn(t)
]}

dt = 0, n = 1, 2, ...,K

PROPRIETARY MATERIAL. c©The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed,
reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the
limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a
student using this Manual, you are using it without permission.



5

where we have exploited the identity : (x+ x∗) = 2Re{x}. Differentiation of Ee with respect to bn
will give the corresponding relationship for the imaginary part; combining the two we get (1).

Problem 2.4

The procedure is very similar to the one for the real-valued signals described in the book (pages

33-37). The only difference is that the projections should conform to the complex-valued vector

space :

c12=

∫ ∞

−∞
s2(t)f

∗
1 (t)dt

and, in general for the k-th function :

cik =

∫ ∞

−∞
sk(t)f

∗
i (t)dt, i = 1, 2, ..., k − 1

Problem 2.5

The first basis function is :

g4(t) =
s4(t)√E4

=
s4(t)√

3
=




−1/
√

3, 0 ≤ t ≤ 3

0, o.w.





Then, for the second basis function :

c43 =

∫ ∞

−∞
s3(t)g4(t)dt = −1/

√
3⇒ g′3(t) = s3(t)− c43g4(t) =





2/3, 0 ≤ t ≤ 2

−4/3, 2 ≤ t ≤ 3

0, o.w





Hence :

g3(t) =
g′3(t)√
E3

=





1/
√

6, 0 ≤ t ≤ 2

−2/
√

6, 2 ≤ t ≤ 3

0, o.w





where E3 denotes the energy of g′3(t) : E3 =
∫ 3
0 (g′3(t))

2 dt = 8/3.

For the third basis function :

c42 =

∫ ∞

−∞
s2(t)g4(t)dt = 0 and c32 =

∫ ∞

−∞
s2(t)g3(t)dt = 0
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Hence :

g′2(t) = s2(t)− c42g4(t)− c32g3(t) = s2(t)

and

g2(t) =
g′2(t)√
E2

=





1/
√

2, 0 ≤ t ≤ 1

−1/
√

2, 1 ≤ t ≤ 2

0, o.w





where : E2 =
∫ 2
0 (s2(t))

2 dt = 2.

Finally for the fourth basis function :

c41 =

∫ ∞

−∞
s1(t)g4(t)dt = −2/

√
3, c31 =

∫ ∞

−∞
s1(t)g3(t)dt = 2/

√
6, c21 = 0

Hence :

g′1(t) = s1(t)− c41g4(t)− c31g3(t)− c21g2(t) = 0⇒ g1(t) = 0

The last result is expected, since the dimensionality of the vector space generated by these signals

is 3. Based on the basis functions (g2(t), g3(t), g4(t)) the basis representation of the signals is :

s4 =
(
0, 0,
√

3
)
⇒ E4 = 3

s3 =
(
0,
√

8/3,−1/
√

3
)
⇒ E3 = 3

s2 =
(√

2, 0, 0
)
⇒ E2 = 2

s1 =
(
2/
√

6,−2/
√

3, 0
)
⇒ E1 = 2

Problem 2.6

Consider the set of signals φ̃nl(t) = jφnl(t), 1 ≤ n ≤ N , then by definition of lowpass equivalent

signals and by Equations 2.2-49 and 2.2-54, we see that φn(t)’s are
√

2 times the lowpass equivalents

of φnl(t)’s and φ̃n(t)’s are
√

2 times the lowpass equivalents of φ̃nl(t)’s. We also note that since

φn(t)’s have unit energy, 〈φnl(t), φ̃nl(t)〉 = 〈φnl(t), jφnl(t)〉 = −j and since the inner product is pure

imaginary, we conclude that φn(t) and φ̃n(t) are orthogonal. Using the orthonormality of the set

φnl(t), we have

〈φnl(t),−jφml(t)〉 = jδmn

and using the result of problem 2.2 we have

〈φn(t), φ̃m(t)〉 = 0 for all n,m

We also have

〈φn(t), φm(t)〉 = 0 for all n 6= m
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and

〈φ̃n(t), φ̃m(t)〉 = 0 for all n 6= m

Using the fact that the energy in lowpass equivalent signal is twice the energy in the bandpass

signal we conclude that the energy in φn(t)’s and φ̃n(t)’s is unity and hence the set of 2N signals

{φn(t), φ̃n(t)} constitute an orthonormal set. The fact that this orthonormal set is sufficient for

expansion of bandpass signals follows from Equation 2.2-57.

Problem 2.7

Let x(t) = m(t) cos 2πf0t where m(t) is real and lowpass with bandwidth less than f0. Then

F [x̂(t)] = −j sgn(f)
[

1
2M(f − f0) + 1

2M(f + f0)
]

and hence F [x̂(t)] = − j
2M(f − f0) + j

2M(f + f0)

where we have used that fact that M(f − f0) = 0 for f < 0 and M(f + f0) = 0 for f > 0. This

shows that x̂(t) = m(t) sin 2πf0t. Similarly we can show that Hilbert transform of m(t) sin 2πf0t is

−m(t) cos 2πf0t. From above and Equation 2.2-54 we have

H[φn(t)] =
√

2φni(t) sin 2πf0t+
√

2φnq(t) cos 2πf0t = −φ̃n(t)

Problem 2.8

For real-valued signals the correlation coefficients are given by : ρkm = 1√
EkEm

∫∞
−∞ sk(t)sm(t)dt and

the Euclidean distances by : d
(e)
km =

{
Ek + Em − 2

√EkEmρkm
}1/2

. For the signals in this problem :

E1 = 2, E2 = 2, E3 = 3, E4 = 3

ρ12 = 0 ρ13 = 2√
6

ρ14 = − 2√
6

ρ23 = 0 ρ24 = 0

ρ34 = −1
3

and:

d
(e)
12 = 2 d

(e)
13 =

√
2 + 3− 2

√
6 2√

6
= 1 d

(e)
14 =

√
2 + 3 + 2

√
6 2√

6
= 3

d
(e)
23 =

√
2 + 3 =

√
5 d

(e)
24 =

√
5

d
(e)
34 =

√
3 + 3 + 2 ∗ 31

3 = 2
√

2
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Problem 2.9

We know from Fourier transform properties that if a signal x(t) is real-valued then its Fourier

transform satisfies : X(−f) = X∗(f) (Hermitian property). Hence the condition under which sl(t)

is real-valued is : Sl(−f) = S∗
l (f) or going back to the bandpass signal s(t) (using 2-1-5):

S+(fc − f) = S∗
+(fc + f)

The last condition shows that in order to have a real-valued lowpass signal sl(t), the positive fre-

quency content of the corresponding bandpass signal must exhibit hermitian symmetry around the

center frequency fc. In general, bandpass signals do not satisfy this property (they have Hermitian

symmetry around f = 0), hence, the lowpass equivalent is generally complex-valued.

Problem 2.10

a. To show that the waveforms fn(t), n = 1, . . . , 3 are orthogonal we have to prove that:
∫ ∞

−∞
fm(t)fn(t)dt = 0, m 6= n

Clearly:

c12 =

∫ ∞

−∞
f1(t)f2(t)dt =

∫ 4

0
f1(t)f2(t)dt

=

∫ 2

0
f1(t)f2(t)dt +

∫ 4

2
f1(t)f2(t)dt

=
1

4

∫ 2

0
dt− 1

4

∫ 4

2
dt =

1

4
× 2− 1

4
× (4− 2)

= 0

Similarly:

c13 =

∫ ∞

−∞
f1(t)f3(t)dt =

∫ 4

0
f1(t)f3(t)dt

=
1

4

∫ 1

0
dt − 1

4

∫ 2

1
dt− 1

4

∫ 3

2
dt+

1

4

∫ 4

3
dt

= 0

and :

c23 =

∫ ∞

−∞
f2(t)f3(t)dt =

∫ 4

0
f2(t)f3(t)dt

=
1

4

∫ 1

0
dt − 1

4

∫ 2

1
dt+

1

4

∫ 3

2
dt− 1

4

∫ 4

3
dt

= 0
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Thus, the signals fn(t) are orthogonal. It is also straightforward to prove that the signals have unit

energy : ∫ ∞

−∞
|fi(t)|2dt = 1, i = 1, 2, 3

Hence, they are orthonormal.

b. We first determine the weighting coefficients

xn =

∫ ∞

−∞
x(t)fn(t)dt, n = 1, 2, 3

x1 =

∫ 4

0
x(t)f1(t)dt = −1

2

∫ 1

0
dt+

1

2

∫ 2

1
dt − 1

2

∫ 3

2
dt+

1

2

∫ 4

3
dt = 0

x2 =

∫ 4

0
x(t)f2(t)dt =

1

2

∫ 4

0
x(t)dt = 0

x3 =

∫ 4

0
x(t)f3(t)dt = −1

2

∫ 1

0
dt− 1

2

∫ 2

1
dt +

1

2

∫ 3

2
dt+

1

2

∫ 4

3
dt = 0

As it is observed, x(t) is orthogonal to the signal wavaforms fn(t), n = 1, 2, 3 and thus it can not

represented as a linear combination of these functions.

Problem 2.11

a. As an orthonormal set of basis functions we consider the set

f1(t) =





1 0 ≤ t < 1

0 o.w
f2(t) =





1 1 ≤ t < 2

0 o.w

f3(t) =





1 2 ≤ t < 3

0 o.w
f4(t) =





1 3 ≤ t < 4

0 o.w

In matrix notation, the four waveforms can be represented as




s1(t)

s2(t)

s3(t)

s4(t)




=




2 −1 −1 −1

−2 1 1 0

1 −1 1 −1

1 −2 −2 2







f1(t)

f2(t)

f3(t)

f4(t)




Note that the rank of the transformation matrix is 4 and therefore, the dimensionality of the

waveforms is 4
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b. The representation vectors are

s1 =
[

2 −1 −1 −1
]

s2 =
[
−2 1 1 0

]

s3 =
[

1 −1 1 −1
]

s4 =
[

1 −2 −2 2
]

c. The distance between the first and the second vector is:

d1,2 =
√
|s1 − s2|2 =

√∣∣∣
[

4 −2 −2 −1
]∣∣∣

2
=
√

25

Similarly we find that :

d1,3 =
√
|s1 − s3|2 =

√∣∣∣
[

1 0 −2 0
]∣∣∣

2
=
√

5

d1,4 =
√
|s1 − s4|2 =

√∣∣∣
[

1 1 1 −3
]∣∣∣

2
=
√

12

d2,3 =
√
|s2 − s3|2 =

√∣∣∣
[
−3 2 0 1

]∣∣∣
2

=
√

14

d2,4 =
√
|s2 − s4|2 =

√∣∣∣
[
−3 3 3 −2

]∣∣∣
2

=
√

31

d3,4 =
√
|s3 − s4|2 =

√∣∣∣
[

0 1 3 −3
]∣∣∣

2
=
√

19

Thus, the minimum distance between any pair of vectors is dmin =
√

5.

Problem 2.12

As a set of orthonormal functions we consider the waveforms

f1(t) =





1 0 ≤ t < 1

0 o.w
f2(t) =





1 1 ≤ t < 2

0 o.w
f3(t) =





1 2 ≤ t < 3

0 o.w

The vector representation of the signals is

s1 =
[

2 2 2
]

s2 =
[

2 0 0
]

s3 =
[

0 −2 −2
]

s4 =
[

2 2 0
]
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Note that s3(t) = s2(t)− s1(t) and that the dimensionality of the waveforms is 3.

Problem 2.13

1. P (E2) = P (R2, R3, R4) = 3/7.

2. P (E3|E2) = P (E3E2)
P (E2)

= P (R2)
3/7 = 1

3 .

3. Here E4 = {R2, R4, B2, R1, B1} and P (E2|E4E3) = P (E2E3E4)
P (E3E4) = P (R2)

P (R2,B2,R1,B1) = 1
4 .

4. E5 = {R2, R4, B2}. We have P (E3E5) = P (R2, B2) = 2
7 and P (E3) = P (R1, R2, B1, B2) = 4

7

and P (E5) = 3
7 . Obviously P (E3E5) 6= P (E3)P (E5) and the events are not independent.

Problem 2.14

1. P (R) = P (A)P (R|A) + P (B)P (R|B) + P (C)P (R|C) = 0.2× 0.05 + 0.3× 0.1 + 0.5× 0.15 =

0.01 + 0.03 + 0.075 = 0.115.

2. P (A|R) = P (A)P (R|A)
P (R) = 0.01

0.115 ≈ 0.087.

Problem 2.15

The relationship holds for n = 2 (2-1-34) : p(x1, x2) = p(x2|x1)p(x1)

Suppose it holds for n = k, i.e : p(x1, x2, ..., xk) = p(xk|xk−1, ..., x1)p(xk−1|xk−2, ..., x1) ...p(x1)

Then for n = k + 1 :

p(x1, x2, ..., xk, xk+1) = p(xk+1|xk, xk−1, ..., x1)p(xk, xk−1..., x1)

= p(xk+1|xk, xk−1, ..., x1)p(xk|xk−1, ..., x1)p(xk−1|xk−2, ..., x1) ...p(x1)

Hence the relationship holds for n = k + 1, and by induction it holds for any n.
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Problem 2.16

1. Let T and R denote channel input and outputs respectively. Using Bayes rule we have

p(T = 0|R = A) =
p(T = 0)p(R = A|T = 0)

p(T = 0)p(R = A|T = 0) + p(T = 1)p(R = A|T = 1)

=
0.4× 1

6

0.4× 1
6 + 0.6 × 1

3

=
1

4

and therefore p(T = 1|R = A) = 3
4 , obviously if R = A is observed, the best decision would

be to declare that a 1 was sent, i.e., T = 1, because T = 1 is more probable that T = 0.

Similarly it can be verified that p(T = 0|R = B) = 4
7 and p(T = 0|R = C) = 1

4 . Therefore,

when the output is B, the best decision is 0 and when the output is C, the best decision is

T = 1. Therefore the decision function d can be defined as

d(R) =

{
1, R = A or C

0, R = B

This is the optimal decision scheme.

2. Here we know that a 0 is transmitted, therefore we are looking for p(error|T = 0), this is

the probability that the receiver declares a 1 was sent when actually a 0 was transmitted.

Since by the decision method described in part 1 the receiver declares that a 1 was sent when

R = A or R = C, therefore, p(error|T = 0) = p(R = A|T = 0) + p(R = C|T = 0) = 1
3 .

3. We have p(error|T = 0) = 1
3 , and p(error|T = 1) = p(R = B|T = 1) = 1

3 . Therefore, by the

total probability theorem

p(error) = p(T = 0)p(error|T = 0) + p(T = 1)p(error|T = 1)

= 0.4 × 1

3
+ 0.6× 1

3

=
1

3

Problem 2.17

Following the same procedure as in example 2-1-1, we prove :

pY (y) =
1

|a|pX
(
y − b
a

)
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Problem 2.18

Relationship (2-1-44) gives :

pY (y) =
1

3a [(y − b) /a]2/3
pX

[(
y − b
a

)1/3
]

X is a gaussian r.v. with zero mean and unit variance : pX(x) = 1√
2π
e−x

2/2

Hence :

pY (y) =
1

3a
√

2π [(y − b) /a]2/3
e−

1

2(
y−b

a )
2/3

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.05

0.1
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0.2

0.25
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0.35

0.4

0.45

0.5

y

pdf of Y

a=2

b=3

Problem 2.19

1) The random variable X is Gaussian with zero mean and variance σ2 = 10−8. Thus p(X > x) =

Q(xσ ) and

p(X > 10−4) = Q

(
10−4

10−4

)
= Q(1) = .159

p(X > 4× 10−4) = Q

(
4× 10−4

10−4

)
= Q(4) = 3.17 × 10−5

p(−2× 10−4 < X ≤ 10−4) = 1−Q(1)−Q(2) = .8182

2)

p(X > 10−4
∣∣X > 0) =

p(X > 10−4, X > 0)

p(X > 0)
=
p(X > 10−4)

p(X > 0)
=
.159

.5
= .318
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Problem 2.20

1) y = g(x) = ax2. Assume without loss of generality that a > 0. Then, if y < 0 the equation

y = ax2 has no real solutions and fY (y) = 0. If y > 0 there are two solutions to the system, namely

x1,2 =
√
y/a. Hence,

fY (y) =
fX(x1)

|g′(x1)|
+
fX(x2)

|g′(x2)|

=
fX(

√
y/a)

2a
√
y/a

+
fX(−

√
y/a)

2a
√
y/a

=
1

√
ay
√

2πσ2
e−

y

2aσ2

2) The equation y = g(x) has no solutions if y < −b. Thus FY (y) and fY (y) are zero for y < −b. If

−b ≤ y ≤ b, then for a fixed y, g(x) < y if x < y; hence FY (y) = FX(y). If y > b then g(x) ≤ b < y

for every x; hence FY (y) = 1. At the points y = ±b, FY (y) is discontinuous and the discontinuities

equal to

FY (−b+)− FY (−b−) = FX(−b)

and

FY (b+)− FY (b−) = 1− FX(b)

The PDF of y = g(x) is

fY (y) = FX(−b)δ(y + b) + (1− FX(b))δ(y − b) + fX(y)[u−1(y + b)− u−1(y − b)]

= Q

(
b

σ

)
(δ(y + b) + δ(y − b)) +

1√
2πσ2

e−
y2

2σ2 [u−1(y + b)− u−1(y − b)]

3) In the case of the hard limiter

p(Y = b) = p(X < 0) = FX(0) =
1

2

p(Y = a) = p(X > 0) = 1− FX(0) =
1

2

Thus FY (y) is a staircase function and

fY (y) = FX(0)δ(y − b) + (1− FX(0))δ(y − a)
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4) The random variable y = g(x) takes the values yn = xn with probability

p(Y = yn) = p(an ≤ X ≤ an+1) = FX(an+1)− FX(an)

Thus, FY (y) is a staircase function with FY (y) = 0 if y < x1 and FY (y) = 1 if y > xN . The PDF

is a sequence of impulse functions, that is

fY (y) =

N∑

i=1

[FX(ai+1)− FX(ai)] δ(y − xi)

=
N∑

i=1

[
Q
(ai
σ

)
−Q

(ai+1

σ

)]
δ(y − xi)

Problem 2.21

For n odd, xn is odd and since the zero-mean Gaussian PDF is even their product is odd. Since

the integral of an odd function over the interval [−∞,∞] is zero, we obtain E[Xn] = 0 for n odd.

Let In =
∫∞
−∞ xnexp(−x2/2σ2)dx. Obviously In is a constant and its derivative with respect to x

is zero, i.e.,
d

dx
In =

∫ ∞

−∞

[
nxn−1e−

x2

2σ2 − 1

σ2
xn+1e−

x2

2σ2

]
dx = 0

which results in the recursion

In+1 = nσ2In−1

This is true for all n. Now let n = 2k − 1, we will have I2k = (2k − 1)σ2I2k−2, with the initial

condition I0 =
√

2πσ2. Substituting we have

I2 = σ2
√

2πσ2

I4 = 3σ2I2 = 3σ4
√

2πσ2

I6 = 5× 3σ2I4 = 5× 3σ6
√

2πσ2

I8 = 7× σ2I6 = 7× 5× 3σ8
√

2πσ2

... =
...

and in general if I2k = (2k−1)(2k−3)(2k−5)×· · · ×3×1σ2k
√

2πσ2, then I2k+2 = (2k+1)σ2I2k =

(2k+1)(2k−1)(2k−3)(2k−5)×· · · ×3×1σ2k+2
√

2πσ2. Using the fact that E[X2k] = I2k/
√

2πσ2,

we obtain

In = 1× 3× 5× · · · × (n − 1)σn

for n even.
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Problem 2.22

a. Since (Xr,Xi) are statistically independent :

pX(xr, xi) = pX(xr)pX(xi) =
1

2πσ2
e−(x2

r+x2
i )/2σ2

Also :

Yr + jYi = (Xr +Xi)e
jφ ⇒

Xr +Xi = (Yr + jYi) e
−jφ = Yr cosφ+ Yi sinφ+ j(−Yr sinφ+ Yi cosφ)⇒





Xr = Yr cosφ+ Yi sinφ

Xi = −Yr sinφ+ Yi cosφ





The Jacobian of the above transformation is :

J =

∣∣∣∣∣∣

∂Xr
∂Yr

∂Xi
∂Yr

∂Xr
∂Yi

∂Xi
∂Yi

∣∣∣∣∣∣
=

∣∣∣∣∣∣
cosφ − sinφ

sinφ cosφ

∣∣∣∣∣∣
= 1

Hence, by (2-1-55) :

pY(yr, yi) = pX((Yr cosφ+ Yi sinφ) , (−Yr sinφ+ Yi cosφ))

= 1
2πσ2 e

−(y2r+y2i )/2σ2

b. Y = AX and X = A−1Y

Now, pX(x) = 1
(2πσ2)n/2 e

−x′x/2σ2

(the covariance matrix M of the random variables x1, ..., xn is

M = σ2I, since they are i.i.d) and J = 1/|det(A)|. Hence :

pY(y) =
1

(2πσ2)n/2
1

|det(A)|e
−y′(A−1)′A−1y/2σ2

For the pdf’s of X and Y to be identical we require that :

|det(A)| = 1 and (A−1)′A−1 = I =⇒ A−1 = A′

Hence, A must be a unitary (orthogonal) matrix .

Problem 2.23

Since we are dealing with linear combinations of jointly Gaussian random variables, it is clear

that Y is jointly Gaussian. We clearly have mY = E[AX] = AmX . This means that Y −mY =

A (X −mX). Also note that

CY = E
[
(Y −mY )(Y −mY )′

]
= E

[
A (X −mX) (X −mX)A

′]
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resulting in CY = ACXA′.

Problem 2.24

a.

ψY (jv) = E
[
ejvY

]
= E

[
ejv

Pn
i=1

xi

]
= E

[
n∏

i=1

ejvxi

]
=

n∏

i=1

E
[
ejvX

]
=
(
ψX(ejv)

)n

But,

pX(x) = pδ(x− 1) + (1− p)δ(x)⇒ ψX(ejv) = 1 + p+ pejv

⇒ ψY (jv) =
(
1 + p+ pejv

)n

b.

E(Y ) = −j dψY (jv)

dv
|v=0 = −jn(1− p+ pejv)n−1jpejv|v=0 = np

and

E(Y 2) = −d
2ψY (jv)

d2v
|v=0 = − d

dv

[
jn(1− p+ pejv)n−1pejv

]
v=0

= np+ np(n− 1)p

⇒ E(Y 2) = n2p2 + np(1− p)

Problem 2.25

1. In the figure shown below
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x

x

u

v

R = x
√

2

let us consider the region u > x, v > x shown as the colored region extending to infinity, call

this region R, and let us integrate e−
u2

+v2

2 over this region. We have

∫ ∫

R

e−
u2

+v2

2 du dv =

∫ ∫

R

e−
r2

2 r dr dθ

≤
∫ ∞

x
√

2
re−

r2

2 dr

∫ π
2

0
dθ

=
π

2

[
−e− r2

2

]∞

x
√

2

=
π

2
e−x

2

where we have used the fact that region R is included in the region outside the quarter circle

as shown in the figure. On the other hand we have

∫ ∫

R

e−
u2

+v2

2 du dv =

∫ ∞

x
e−

u2

2 du

∫ ∞

x
e−

v2

2 dv

=

(∫ ∞

x
e−

u2

2 du

)2

=
(√

2πQ(x)
)2

= 2π (Q(x))2

From the above relations we conclude that

2π (Q(x))2 ≤ π

2
e−x

2

and therefore, Q(x) ≤ 1
2e

−x2

2 .
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2. In
∫∞
x e−

y2

2
dy
y2 define u = e−

y2

2 and dv = dy
y2 and use the integration by parts relation

∫
u dv =

uv −
∫
v du. We have v = − 1

y and du = −ye− y2

2 dy. Therefore

∫ ∞

x
e−

y2

2
dy

y2
=


−e

− y2

2

y



∞

x

−
∫ ∞

x
e−

y2

2 dy =
e−

x2

2

x
−
√

2πQ(x)

Now note that
∫∞
x e−

y2

2
dy
y2 > 0 which results in

e−
x2

2

x
−
√

2πQ(x) > 0⇒ Q(x) <
1√
2πx

e−
x2

2

On the other hand, note that

∫ ∞

x
e−

y2

2
dy

y2
<

1

x2

∫ ∞

x
e−

y2

2 dy =

√
2π

x2
Q(x)

which results in

e−
x2

2

x
−
√

2πQ(x) <

√
2π

x2
Q(x)

or,
√

2π 1+x2

x2 Q(x) > e−
x2

2

x which results in

Q(x) >
x√

2π(1 + x2)
e−

x2

2

3. From
x√

2π(1 + x2)
e−

x2

2 < Q(x) <
1√
2πx

e−
x2

2

we have
1√

2π( 1
x + x)

e−
x2

2 < Q(x) <
1√
2πx

e−
x2

2

As x becomes large 1
x in the denominator of the left hand side becomes small and the two

bounds become equal, therefore for large x we have

Q(x) ≈ 1√
2πx

e−
x2

2

Problem 2.26
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1. FYn(y) = P [Yn ≤ y] = 1−P [Yn > y] = 1−P [x1 > y,X2 > y, . . . ,Xn > y] = 1− (P [X > y])n

where we have used the independence ofXi’s in the last step. But P [X > y] =
∫ A
y

1
A dy = A−y

A .

Therefore, FYn(y) = 1− (A−y)n

An , and fYn(y) = d
dyFYn(y) = n (A−y)n−1

An , 0 < y < A.

2.

f(y) =
n

A

(
1− y

A

)n−1

=
λ

1− y
A

(
1− ny

nA

)n

=
λ

1− y
A

(
1− λy

n

)n
→ λe−λy y > 0

Problem 2.27

ψ(jv1, jv2, jv3, jv4) = E
[
ej(v1x1+v2x2+v3x3+v4x4)

]

E (X1X2X3X4) = (−j)4 ∂
4ψ(jv1, jv2, jv3, jv4)

∂v1∂v2∂v3∂v4
|v1=v2=v3=v4=0

From (2-1-151) of the text, and the zero-mean property of the given rv’s :

ψ(jv) = e−
1

2
v′Mv

where v = [v1, v2, v3, v4]
′ ,M = [µij] .

We obtain the desired result by bringing the exponent to a scalar form and then performing

quadruple differentiation. We can simplify the procedure by noting that :

∂ψ(jv)

∂vi
= −µ′ive−

1

2
v′Mv

where µ′i = [µi1, µi2, µi3, µi4] . Also note that :

∂µ′jv

∂vi
= µij = µji

Hence :
∂4ψ(jv1, jv2, jv3, jv4)

∂v1∂v2∂v3∂v4
|V=0 = µ12µ34 + µ23µ14 + µ24µ13
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Problem 2.28

1) By Chernov bound, for t > 0,

P [X ≥ α] ≤ e−tαE[etX ] = e−tαΘX(t)

This is true for all t > 0, hence

lnP [X ≥ α] ≤ min
t≥0

[−tα+ ln ΘX(t)] = −max
t≥0

[tα− ln ΘX(t)]

2) Here

lnP [Sn ≥ α] = lnP [Y ≥ nα] ≤ −max
t≥0

[tnα− ln ΘY (t)]

where Y = X1 +X2 + · · ·+Xn, and ΘY (t) = E[eX1+X2+···+Xn ] = [ΘX(t)]n. Hence,

lnP [Sn ≥ α] = −max
t≥0

n [tα− ln ΘX(t)] = −nI(α)⇒ 1

n
P [Sn ≥ α] ≤ e−nI(α)

ΘX(t) =
∫∞
0 etxe−x dx = 1

1−t as long as t < 1. I(α) = maxt≥0(tα+ ln(1− t)), hence d
dt(tα+ ln(1−

t)) = 0 and t∗ = α−1
α . Since α ≥ 0, t∗ ≥ 0 and also obviously t∗ < 1. I(α) = α− 1+ ln

(
1− α−1

α

)
=

α− 1− lnα, using the large deviation theorem

lnP [Sn ≥ α] = e−n(α−1−lnα)+o(n) = αne−n(α−1)+o(n)

Problem 2.29

For the central chi-square with n degress of freedom :

ψ(jv) =
1

(1− j2vσ2)n/2

Now :
dψ(jv)

dv
=

jnσ2

(1− j2vσ2)n/2+1
⇒ E (Y ) = −j dψ(jv)

dv
|v=0 = nσ2

d2ψ(jv)

dv2
=
−2nσ4 (n/2 + 1)

(1− j2vσ2)n/2+2
⇒ E

(
Y 2
)

= −d
2ψ(jv)

dv2
|v=0 = n(n+ 2)σ2

The variance is σ2
Y = E

(
Y 2
)
− [E (Y )]2 = 2nσ4

For the non-central chi-square with n degrees of freedom :

ψ(jv) =
1

(1− j2vσ2)n/2
ejvs

2/(1−j2vσ2)
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where by definition : s2 =
∑n

i=1m
2
i .

dψ(jv)

dv
=

[
jnσ2

(1− j2vσ2)n/2+1
+

js2

(1− j2vσ2)n/2+2

]
ejvs

2/(1−j2vσ2)

Hence, E (Y ) = −j dψ(jv)
dv |v=0 = nσ2 + s2

d2ψ(jv)

dv2
=

[
−nσ4 (n+ 2)

(1− j2vσ2)n/2+2
+
−s2(n+ 4)σ2 − ns2σ2

(1− j2vσ2)n/2+3
+

−s4

(1− j2vσ2)n/2+4

]
ejvs

2/(1−j2vσ2)

Hence,

E
(
Y 2
)

= −d
2ψ(jv)

dv2
|v=0 = 2nσ4 + 4s2σ2 +

(
nσ2 + s2

)

and

σ2
Y = E

(
Y 2
)
− [E (Y )]2 = 2nσ4 + 4σ2s2

Problem 2.30

The Cauchy r.v. has : p(x) = a/π
x2+a2 ,−∞ < x <∞

a.

E (X) =

∫ ∞

−∞
xp(x)dx = 0

since p(x) is an even function.

E
(
X2
)

=

∫ ∞

−∞
x2p(x)dx =

a

π

∫ ∞

−∞

x2

x2 + a2
dx

Note that for large x, x2

x2+a2
→ 1 (i.e non-zero value). Hence,

E
(
X2
)

=∞, σ2 =∞

b.

ψ(jv) = E
(
jvX
)

=

∫ ∞

−∞

a/π

x2 + a2
ejvxdx =

∫ ∞

−∞

a/π

(x+ ja) (x− ja)e
jvxdx

This integral can be evaluated by using the residue theorem in complex variable theory. Then, for

v ≥ 0 :

ψ(jv) = 2πj

(
a/π

x+ ja
ejvx

)

x=ja

= e−av

For v < 0 :

ψ(jv) = −2πj

(
a/π

x− jae
jvx

)

x=−ja
= eavv
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Therefore :

ψ(jv) = e−a|v|

Note: an alternative way to find the characteristic function is to use the Fourier transform rela-

tionship between p(x), ψ(jv) and the Fourier pair :

e−b|t| ↔ 1

π

c

c2 + f2
, c = b/2π, f = 2πv

Problem 2.31

Since R0 and R1 are independent fR0,R1
(r0, r1) = fR0

(r0)fR1
(r1) and

fR0,R1
(r0, r1) =




r0r1
σ4 I0

(µr1
σ2

)
e−

µ2

2σ2 e−
r2
1+r2

0

2σ2 , r0, r1 ≥ 0

0, otherwise.

Now

P (R0 > R1) =

∫∫

r0>r1

f(r0, r1) dr1dr0

=

∫ ∞

0
dr1

∫ ∞

r1

f(r0, r1) dr0

=

∫ ∞

0
fR1

(r1)

(∫ ∞

r1

fR0
(r0) dr0

)
dr1

=

∫ ∞

0
fR1

(r1)

(∫ ∞

r1

r0
σ2
e−

r2
0

2σ2 dr0

)
dr1

=

∫ ∞

0
fR1

(r1)

[
−e−

r2
0

2σ2

]∞

r1

dr1

=

∫ ∞

0
e−

r2
1

2σ2 fR1
(r1) dr1

=

∫ ∞

0

r1
σ2
I0

(µr1
σ2

)
e−

µ2
+2r2

1

2σ2 dr1

Now using the change of variable y =
√

2r1 and letting s = µ√
2

we obtain

P (R0 > R1) =

∫ ∞

0

y√
2σ2

I0

(sy
σ2

)
e−

2s2+y2

2σ2
dy√

2

=
1

2
e−

s2

2σ2

∫ ∞

0

y

σ2
I0

(sy
σ2

)
e−

s2+y2

2σ2 dy

=
1

2
e−

s2

2σ2

=
1

2
e−

µ2

4σ2
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where we have used the fact that
∫∞
0

y
σ2 I0

( sy
σ2

)
e−

s2+y2

2σ2 dy = 1 because it is the integral of a Rician

pdf.

Problem 2.32

1. The joint pdf of a, b is :

pab(a, b) = pxy(a−mr, b−mi) = px(a−mr)py(b−mi) =
1

2πσ2
e−

1

2σ2 [(a−mr)2+(b−mi)2]

2. u =
√
a2 + b2, φ = tan−1b/a⇒ a = u cosφ, b = u sinφ The Jacobian of the transformation is

: J(a, b) =

∣∣∣∣∣∣
∂a/∂u ∂a/∂φ

∂b/∂u ∂b/∂φ

∣∣∣∣∣∣
= u, hence :

puφ(u, φ) =
u

2πσ2
e−

1

2σ2 [(u cosφ−mr)2+(u sinφ−mi)2]

=
u

2πσ2
e−

1

2σ2 [u2+M2−2uM cos(φ−θ)]

where we have used the transformation :





M =
√
m2
r +m2

i

θ = tan−1mi/mr



⇒





mr = M cos θ

mi = M sin θ





3.

pu(u) =

∫ 2π

0
puφ(u, φ)dφ

=
u

2πσ2
e−

u2
+M2

2σ2

∫ 2π

0
e−

1

2σ2 [−2uM cos(φ−θ)]dφ

=
u

σ2
e−

u2
+M2

2σ2
1

2π

∫ 2π

0
euM cos(φ−θ)/σ2

dφ

=
u

σ2
e−

u2
+M2

2σ2 Io
(
uM/σ2

)

PROPRIETARY MATERIAL. c©The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed,
reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the
limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a
student using this Manual, you are using it without permission.



25

Problem 2.33

a. Y = 1
n

∑n
i=1Xi, ψXi(jv) = e−a|v|

ψY (jv) = E
[
ejv

1

n

Pn
i=1

Xi

]
=

n∏

i=1

E
[
ej

v
n
Xi

]
=

n∏

i=1

ψXi(jv/n) =
[
e−a|v|/n

]n
= e−a|v|

b. Since ψY (jv) = ψXi(jv)⇒ pY (y) = pXi(xi)⇒ pY (y) = a/π
y2+a2 .

c. As n → ∞, pY (y) = a/π
y2+a2

, which is not Gaussian ; hence, the central limit theorem does not

hold. The reason is that the Cauchy distribution does not have a finite variance.

Problem 2.34

Since Z and Zejθ have the same pdf, we have E[Z] = E
[
Zejθ

]
= ejθE[Z] for all θ. Putting

θ = π gives E[Z] = 0. We also have E
[
ZZt

]
= E

[
Zejθ

(
Zejθ

)t]
or E

[
ZZt

]
= e2jθE

[
ZZt

]
, for

all θ. Putting θ = π
2 gives E

[
ZZt

]
= 0. Since Z is zero-mean and E

[
ZZt

]
= 0, we conclude that

it is proper.

Problem 2.35

Using Equation 2.6-29 we note that for the zero-mean proper case if W = ejθZ, it is suf-

ficient to show that det(CW ) = det(CZ) and wHC
−1
W

w = zHC
−1
Z

z. But CW = [WWH ] =

E[ejθZe−jθZH ] = E[ZZH ] = CZ, hence det(CW ) = det(CZ). Similarly, wHC
−1
W

w = e−jθzHC
−1
Z

zejθ =

zHC
−1
Z

z. Substituting into Equation 2.6-29, we conclude that p(w) = p(z).

Problem 2.36

Since Z is proper, we have E[(Z − E(Z))(Z − E(Z))t] = 0. Let W = AZ + b, then

E[(W − E(W ))(W − E(W ))t] = AE[(Z − E(Z))(Z − E(Z))t]At = 0
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hence W is proper.

Problem 2.37

We assume that x(t), y(t), z(t) are real-valued stochastic processes. The treatment of complex-

valued processes is similar.

a.

Rzz(τ) = E {[x(t+ τ) + y(t+ τ)] [x(t) + y(t)]} = Rxx(τ) +Rxy(τ) +Ryx(τ) +Ryy(τ)

b. When x(t), y(t) are uncorrelated :

Rxy(τ) = E [x(t+ τ)y(t)] = E [x(t+ τ)]E [y(t)] = mxmy

Similarly :

Ryx(τ) = mxmy

Hence :

Rzz(τ) = Rxx(τ) +Ryy(τ) + 2mxmy

c. When x(t), y(t) are uncorrelated and have zero means :

Rzz(τ) = Rxx(τ) +Ryy(τ)

Problem 2.38

The power spectral density of the random process x(t) is :

Sxx(f) =

∫ ∞

−∞
Rxx(τ)e

−j2πfτdτ = N0/2.

The power spectral density at the output of the filter will be :

Syy(f) = Sxx(f)|H(f)|2 =
N0

2
|H(f)|2
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Hence, the total power at the output of the filter will be :

Ryy(τ = 0) =

∫ ∞

−∞
Syy(f)df =

N0

2

∫ ∞

−∞
|H(f)|2df =

N0

2
(2B) = N0B

Problem 2.39

The power spectral density of X(t) corresponds to : Rxx(t) = 2BN0
sin 2πBt

2πBt . From the result of

Problem 2.14 :

Ryy(τ) = R2
xx(0) + 2R2

xx(τ) = (2BN0)
2 + 8B2N2

0

(
sin 2πBt

2πBt

)2

Also :

Syy(f) = R2
xx(0)δ(f) + 2Sxx(f) ∗ Sxx(f)

The following figure shows the power spectral density of Y (t) :

6

�
�

�
�

�
�

��Z
Z

Z
Z

Z
Z

Z

−2B 0 2B

f

2N2
0B

(2BN0)
2δ(f)

Problem 2.40

MX = E [(X−mx)(X−mx)
′] , X =




X1

X2

X3


 , mx is the corresponding vector of mean values.

Then :

MY = E [(Y −my)(Y −my)
′]

= E [A(X−mx)(A(X−mx))
′]

= E [A(X−mx)(X−mx)
′A′]

= AE [(X−mx)(X−mx)′]A′

= AMxA
′
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Hence :

MY =




µ11 0 µ11 + µ13

0 4µ22 0

µ11 + µ31 0 µ11 + µ13 + µ31 + µ33




Problem 2.41

Y (t) = X2(t), Rxx(τ) = E [x(t+ τ)x(t)]

Ryy(τ) = E [y(t+ τ)y(t)] = E
[
x2(t+ τ)x2(t)

]

Let X1 = X2 = x(t), X3 = X4 = x(t+ τ). Then, from problem 2.7 :

E (X1X2X3X4) = E (X1X2)E (X3X4) + E (X1X3)E (X2X4) + E (X1X4)E (X2X3)

Hence :

Ryy(τ) = R2
xx(0) + 2R2

xx(τ)

Problem 2.42

pR(r) = 2
Γ(m)

(
m
Ω

)m
r2m−1e−mr

2/Ω, X = 1√
Ω
R

We know that : pX(x) = 1
1/

√
Ω
pR

(
x

1/
√

Ω

)
.

Hence :

pX(x) =
1

1/
√

Ω

2

Γ(m)

(m
Ω

)m (
x
√

Ω
)2m−1

e−m(x
√

Ω)2/Ω =
2

Γ(m)
mmx2m−1e−mx

2

Problem 2.43

The transfer function of the filter is :

H(f) =
1/jωC

R+ 1/jωC
=

1

jωRC + 1
=

1

j2πfRC + 1
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a.

Sxx(f) = σ2 ⇒ Syy(f) = Sxx(f) |H(f)|2 =
σ2

(2πRC)2 f2 + 1

b.

Ryy(τ) = F−1{Sxx(f)} =
σ2

RC

∫ ∞

−∞

1
RC

( 1
RC )2 + (2πf)2

ej2πfτdf

Let : a = RC, v = 2πf. Then :

Ryy(τ) =
σ2

2RC

∫ ∞

−∞

a/π

a2 + v2
ejvτdv =

σ2

2RC
e−a|τ | =

σ2

2RC
e−|τ |/RC

where the last integral is evaluated in the same way as in problem P-2.9 . Finally :

E
[
Y 2(t)

]
= Ryy(0) =

σ2

2RC

Problem 2.44

If SX(f) = 0 for |f | > W, then SX(f)e−j2πfa is also bandlimited. The corresponding autocorrelation

function can be represented as (remember that SX(f) is deterministic) :

RX(τ − a) =

∞∑

n=−∞
RX(

n

2W
− a)sin 2πW

(
τ − n

2W

)

2πW
(
τ − n

2W

) (1)

Let us define :

X̂(t) =

∞∑

n=−∞
X(

n

2W
)
sin 2πW

(
t− n

2W

)

2πW
(
t− n

2W

)

We must show that :

E
[
|X(t)− X̂(t)|2

]
= 0

or

E

[(
X(t)− X̂(t)

)(
X(t)−

∞∑

m=−∞
X(

m

2W
)
sin 2πW

(
t− m

2W

)

2πW
(
t− m

2W

)
)]

= 0 (2)

First we have :

E
[(
X(t)− X̂(t)

)
X(

m

2W
)
]

= RX(t− m

2W
)−

∞∑

n=−∞
RX(

n−m
2W

)
sin 2πW

(
t− n

2W

)

2πW
(
t− n

2W

)
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But the right-hand-side of this equation is equal to zero by application of (1) with a = m/2W.

Since this is true for any m, it follows that E
[(
X(t)− X̂(t)

)
X̂(t)

]
= 0. Also

E
[(
X(t)− X̂(t)

)
X(t)

]
= RX(0)−

∞∑

n=−∞
RX(

n

2W
− t)sin 2πW

(
t− n

2W

)

2πW
(
t− n

2W

)

Again, by applying (1) with a = t anf τ = t, we observe that the right-hand-side of the equation is

also zero. Hence (2) holds.

Problem 2.45

Q(x) = 1√
2π

∫∞
x e−t

2/2dt = P [N ≥ x] , where N is a Gaussian r.v with zero mean and unit variance.

From the Chernoff bound :

P [N ≥ x] ≤ e−v̂xE
(
ev̂N

)
(1)

where v̂ is the solution to :

E
(
NevN

)
− xE

(
evN

)
= 0 (2)

Now :

E
(
evN

)
= 1√

2π

∫∞
−∞ evte−t

2/2dt

= ev
2/2 1√

2π

∫∞
−∞ e−(t−v)2/2dt

= ev
2/2

and

E
(
NevN

)
=

d

dv
E
(
evN

)
= vev

2/2

Hence (2) gives :

v̂ = x

and then :

(1)⇒ Q(x) ≤ e−x2

ex
2/2 ⇒ Q(x) ≤ e−x2/2

Problem 2.46

Since H(0) =
∑∞

−∞ h(n) = 0⇒ my = mxH(0) = 0
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The autocorrelation of the output sequence is

Ryy(k) =
∑

i

∑

j

h(i)h(j)Rxx(k − j + i) = σ2
x

∞∑

i=−∞
h(i)h(k + i)

where the last equality stems from the autocorrelation function of X(n) :

Rxx(k − j + i) = σ2
xδ(k − j + i) =





σ2
x, j = k + i

0, o.w.





Hence, Ryy(0) = 6σ2
x, Ryy(1) = Ryy(−1) = −4σ2

x, Ryy(2) = Ryy(−2) = σ2
x, Ryy(k) = 0 otherwise.

Finally, the frequency response of the discrete-time system is :

H(f) =
∑∞

−∞ h(n)e−j2πfn

= 1− 2e−j2πf + e−j4πf

=
(
1− e−j2πf

)2

= e−j2πf
(
ejπf − e−jπf

)2

= −4e−jπf sin 2πf

which gives the power density spectrum of the output :

Syy(f) = Sxx(f)|H(f)|2 = σ2
x

[
16 sin 4πf

]
= 16σ2

x sin 4πf

Problem 2.47

R(k) =

(
1

2

)|k|
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The power density spectrum is

S(f) =
∑∞

k=−∞R(k)e−j2πfk

=
∑−1

k=−∞
(

1
2

)−k
e−j2πfk +

∑∞
k=0

(
1
2

)k
e−j2πfk

=
∑∞

k=0(
1
2e
j2πfk)k +

∑∞
k=0(

1
2e

−j2πf )k − 1

= 1
1−ej2πf/2

+ 1
1−e−j2πf/2

− 1

= 2−cos 2πf
5/4−cos 2πf − 1

= 3
5−4 cos 2πf

Problem 2.48

We will denote the discrete-time process by the subscript d and the continuous-time (analog) process

by the subscript a. Also, f will denote the analog frequency and fd the discrete-time frequency.

a.

Rd(k) = E [X∗(n)X(n + k)]

= E [X∗(nT )X(nT + kT )]

= Ra(kT )

Hence, the autocorrelation function of the sampled signal is equal to the sampled autocorrelation

function of X(t).

b.

Rd(k) = Ra(kT ) =
∫∞
−∞ Sa(F )ej2πfkTdf

=
∑∞

l=−∞
∫ (2l+1)/2T
(2l−1)/2T Sa(F )ej2πfkTdf

=
∑∞

l=−∞
∫ 1/2T
−1/2T Sa(f + l

T )ej2πFkTdf

=
∫ 1/2T
−1/2T

[∑∞
l=−∞ Sa(f + l

T )
]
ej2πFkTdf
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Let fd = fT. Then :

Rd(k) =

∫ 1/2

−1/2

[
1

T

∞∑

l=−∞
Sa((fd + l)/T )

]
ej2πfdkdfd (1)

We know that the autocorrelation function of a discrete-time process is the inverse Fourier transform

of its power spectral density

Rd(k) =

∫ 1/2

−1/2
Sd(fd)ej2πfdkdfd (2)

Comparing (1),(2) :

Sd(fd) =
1

T

∞∑

l=−∞
Sa(

fd + l

T
) (3)

c. From (3) we conclude that :

Sd(fd) =
1

T
Sa(

fd
T

)

iff :

Sa(f) = 0, ∀ f : |f | > 1/2T

Otherwise, the sum of the shifted copies of Sa (in (3)) will overlap and aliasing will occur.

Problem 2.49

u(t) = X cos 2πft− Y sin 2πft

E [u(t)] = E(X) cos 2πft− E(Y ) sin 2πft

and :

Ruu(t, t+ τ) = E {[X cos 2πft− Y sin 2πft] [X cos 2πf(t+ τ)− Y sin 2πf(t+ τ)]}

= E
(
X2
)
[cos 2πf(2t+ τ) + cos 2πfτ ] + E

(
Y 2
)
[− cos 2πf(2t+ τ) + cos 2πfτ ]

−E (XY ) sin 2πf(2t+ τ)

For u(t) to be wide-sense stationary, we must have : E [u(t)] =constant and Ruu(t, t+ τ) = Ruu(τ).

We note that if E(X) = E(Y ) = 0, and E(XY ) = 0 and E(X2) = E(Y 2), then the above

requirements for WSS hold; hence these conditions are necessary. Conversely, if any of the above
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conditions does not hold, then either E [u(t)] 6=constant, or Ruu(t, t + τ) 6= Ruu(τ). Hence, the

conditions are also necessary.

Problem 2.50

a.

Ra(τ) =
∫∞
−∞ Sa(f)ej2πfτdf

=
∫W
−W ej2πfτdf

= sin 2πWτ
πτ

By applying the result in problem 2.21, we have

Rd(k) = fa(kT ) =
sin 2πWkT

πkT

b. If T = 1
2W , then :

Rd(k) =





2W = 1/T, k = 0

0, otherwise





Thus, the sequence X(n) is a white-noise sequence. The fact that this is the minimum value of

T can be shown from the following figure of the power spectral density of the sampled process:

−W W fs −W fs fs +W−fs −W −fs −fs +W

We see that the maximum sampling rate fs that gives a spectrally flat sequence is obtained when :

W = fs −W ⇒ fs = 2W ⇒ T =
1

2W
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c. The triangular-shaped spectrum S(f) = 1 − |f |
W , |f | ≤ W may be obtained by convolv-

ing the rectangular-shaped spectrum S1(f) = 1/
√
W, |f | ≤ W/2. Hence, R(τ) = R2

1(τ) =
1
W

(
sinπWτ
πτ

)2
.Therefore, sampling X(t) at a rate 1

T = W samples/sec produces a white sequence

with autocorrelation function :

Rd(k) =
1

W

(
sinπWkT

πkT

)2

= W

(
sinπk

πk

)2

=





W, k = 0

0, otherwise





Problem 2.51

Let’s denote : y(t) = fk(t)fj(t).Then :

∫ ∞

−∞
fk(t)fj(t)dt =

∫ ∞

−∞
y(t)dt = Y (f)|f=0

where Y (f) is the Fourier transform of y(t). Since : y(t) = fk(t)fj(t) ←→ Y (f) = Fk(f) ∗ Fj(f).

But :

Fk(f) =

∫ ∞

−∞
fk(t)e

−j2πftdt =
1

2W
e−j2πfk/2W

Then :

Y (f) = Fk(f) ∗ Fj(f) =

∫ ∞

−∞
Fk(a) ∗ Fj(f − a)da

and at f = 0 :

Y (f)|f=0 =
∫∞
−∞ Fk(a) ∗ Fj(−a)da

=
(

1
2W

)2 ∫∞
−∞ e−j2πa(k−j)/2W da

=





1/2W, k = j

0, k 6= j





Problem 2.52

Beq =
1

G

∫ ∞

0
|H(f)|2df

For the filter shown in Fig. P2-12 we have G = 1 and

Beq =

∫ ∞

0
|H(f)|2df = B
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For the lowpass filter shown in Fig. P2-16 we have

H(f) =
1

1 + j2πfRC
⇒ |H(f)|2 =

1

1 + (2πfRC)2

So G = 1 and

Beq =
∫∞
0 |H(f)|2df

= 1
2

∫∞
−∞ |H(f)|2df

= 1
4RC

where the last integral is evaluated in the same way as in problem P-2.9 .

Problem 2.53

a.

E [z(t)z(t+ τ)] = E [{x(t+ τ) + jy(t+ t)} {x(t) + jy(t)}]
= E [x(t)x(t+ τ)]− E [y(t)y(t+ τ)] + jE [x(t)y(t+ τ)]

+E [y(t)x(t+ τ)]

= Rxx(τ)−Ryy(τ) + j [Ryx(τ) +Rxy(τ)]

But Rxx(τ) = Ryy(τ)and Ryx(τ) = −Rxy(τ). Therefore :

E [z(t)z(t + τ)] = 0

b.

V =

∫ T

0
z(t)dt

E
(
V 2
)

=

∫ T

0

∫ T

0
E [z(a)z(b)] dadb = 0

from the result in (a) above. Also :

E (V V ∗) =
∫ T
0

∫ T
0 E [z(a)z∗(b)] dadb

=
∫ T
0

∫ T
0 N0δ(a− b)dadb

=
∫ T
0 N0da = N0T

PROPRIETARY MATERIAL. c©The McGraw-Hill Companies, Inc. All rights reserved. No part of this Manual may be displayed,
reproduced or distributed in any form or by any means, without the prior written permission of the publisher, or used beyond the
limited distribution to teachers and educators permitted by McGraw-Hill for their individual course preparation. If you are a
student using this Manual, you are using it without permission.



37

Problem 2.54

E [x(t+ τ)x(t)] = A2E [sin (2πfc(t+ τ) + θ) sin (2πfct+ θ)]

= A2

2 cos 2πfcτ − A2

2 E [cos (2πfc(2t+ τ) + 2θ)]

where the last equality follows from the trigonometric identity :

sinA sinB = 1
2 [cos(A−B)− cos(A+B)] . But :

E [cos (2πfc(2t+ τ) + 2θ)] =
∫ 2π
0 cos (2πfc(2t+ τ) + 2θ) p(θ)dθ

= 1
2π

∫ 2π
0 cos (2πfc(2t+ τ) + 2θ) dθ = 0

Hence :

E [x(t+ τ)x(t)] =
A2

2
cos 2πfcτ

Problem 2.55

1) We have E[Z(t)] = E[X(t)] + jE[Y (t)] = 0 + j0 = 0 and

RZ(t+ τ, t) = E [(X(t+ τ) + jY (t+ τ)) (X(t)− jY (t))]

= RX(τ) +RY (τ)

= 2RX(τ)

because E [X(t+ τ)Y (t)] = E [Y (t+ τ)X(t)] = E[X(t + τ)]E[Y (t)] = 0 (by independence) and

therefore Z(t) is obviously stationary. We also note that RX(τ) = RY (τ) = F−1
[
N0Π

(
f

2W

)]
=

2WN0 sinc(2Wτ)

2) To compute the power spectral density of Z(t), we have SZ(f) = F [2RX(τ)] = 2SX(f) =

2N0Π
(

f
2W

)
. Note that Π(t) is a rectangular pulse defined as

Π(t) =





1, |t| < 1
1
2 , |t| = 1

0, otherwise.

3) E[Zj ] = E
[∫∞

−∞ Z(t)R∗
j (t) dt

]
=
∫∞
−∞E[Z(t)]R∗

j (t) dt = 0 since Z(t) is zero-mean. For the
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correlation we have

E[ZjZ
∗
k ] = E

[∫ ∞

−∞
Z(s)R∗

j (s) ds

∫ ∞

−∞
Z∗(t)Rk(t) dt

]

=

∫ ∞

−∞

∫ ∞

−∞
RZ(s − t)R∗

j (s)Rk(t) dsdt

=

∫ ∞

−∞
Rk(t)

[∫ ∞

−∞
RZ(s− t)R∗

j (s) ds

]
dt (∗∗)

Using Parseval’s Theorem,
∫∞
−∞ x(t)y∗(t) dt =

∫∞
−∞X(f)Y ∗(f) df , we have (Sj(f) is the Fourier

transform of Rj(t)).

∫ ∞

−∞
RZ(s − t)R∗

j (s) ds =

∫ ∞

−∞
e−j2πft2N0Π

(
f

2W

)
S∗j (f) df

a
= 2

∫ W

−W
N0e

−j2πftS∗j (f) df

b
= 2

∫ ∞

−∞
N0e

−j2πftS∗j (f) df

where (a) is due to the fact that Π
(

f
2W

)
is zero outside the [−W,W ] interval and (b) follows from

Rj(t) being bandlimited to [−W,W ]. From above we have

∫ ∞

−∞
RZ(s− t)R∗

j (s) ds = 2N0

[∫ ∞

−∞
ej2πftSj(f) df

]∗

= 2N0R
∗
j (t)

Substituting this result in equation (**) we have

E[ZjZ
∗
k ] = 2

∫ ∞

−∞
N0R

∗
j (t)Rk(t) dt

=

{
2N0, j = k

0, j 6= k

This shows that Zj’s are Gaussian random variables (since they are the result of linear operation

on a Gaussian process) with mean zero and variance 2N0, i.e., Zj ∼ N (0, 2N0). Also note that for

j 6= k, Zj and Zk are independent since they are Gaussian and uncorrelated.

4) This is done similar to part 3 (lengthy but straightforward) and the result is that for any k, Zkr
and Zki are zero-mean, independent Gaussian random variables with E(Z2

kr) = E(Z2
ki) = N0 and

therefore the random vector (Z1r, Z1i, Z2r, Z2i, · · · , Znr, Zni) is a 2n-dimensional Gaussian vector

with independent zero-mean components each having variance N0. In standard notation

(Z1r, Z1i, Z2r, Z2i, · · · , Znr, Zni) ∼ N (0, N0I)

where 0 is a 2n-dimensional zero vector and I is a 2n × 2n identity matrix.
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5) We have

E[Ẑ(t)Z∗
k ] = E[(Z(t)−

N∑

j=1

ZjRj(t))Z
∗
k ]

= E[Z(t)Z∗
k ]− 2N0Rk(t)

where we have used

E[ZjZ
∗
k ] =

{
2N0, j = k

0, j 6= k

Now we have

E[Z(t)Z∗
k ] = E

[
Z(t)

∫ ∞

−∞
Z∗(s)Rk(s) ds

]

=

∫ ∞

−∞
RZ(t− s)Rk(s) ds

=

∫ ∞

−∞
Rk(s)R

∗
Z(s− t) ds

= 2

∫ ∞

−∞
Sk(f)ej2πftN0Π

(
f

2W

)
df

=

∫ W

−W
2N0Sk(f)ej2πft dt

a
= 2N0

∫ ∞

−∞
Sk(f)ej2πft df

= 2N0Rk(t)

(a): because Rk(t) is bandlimited to [−W,W ].

From above it follows that E[Ẑ(t)Z∗
k ] = 0 for all k = 1, 2, · · · , N . This means that the error term

is independent of the projections.

Problem 2.56

1. SX̂(f) = | − j sgn(f)|2SX(f) = SX(f), hence RX̂(τ) = RX(τ).

2. SXX̂(f) = SX(f)(−j sgn(f))∗ = j sgn(f)SX(f), therefore, RXX̂(τ) = −R̂X(τ).

3. RZ(τ) = E
[(
X(t+ τ) + jX̂(t+ τ)

)(
X(t) − jX̂(t)

)]
, expanding we have

RZ(τ) = RX(τ) +RX̂(τ)− j
[
RXX̂(τ)−RX̂X(τ)

]
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Using RX̂(τ) = RX(τ), and the fact that RXX̂(τ) = −R̂X(τ) is an odd function (since it is

the HT of an even signal) we have RX̂X(τ) = RXX̂(−τ) = −RXX̂(τ), we have

RZ(τ) = 2RX(τ)− j2RXX̂ (τ) = 2RX(τ) + j2R̂X (τ)

Taking FT of both sides we have

SZ(f) = 2SX(f) + j2 (−j sgn(f)SX(f)) = 2 (1 + sgn(f))SX(f) = 4SX(f)u−1(f)

4. We have

RXl
(t+ τ, t) = E

[
Z(t+ τ)e−j2πf0(t+τ)Z∗(t)ej2πf0t

]

= e−j2πf0τRZ(τ)

This shows that Xl(t) is WSS (we already know it is zero-mean). Taking FT, we have

SXl
(f) = SZ(f − f0) = 4SX(f − f0)u−1(f − f0), this shows that Xl(t) is lowpass. Also from

above RX(τ) = 1
2Re [RZ(t)] = 1

2Re
[
RXl

(τ)ej2πf0τ
]
. This shows that RXl

(τ) is twice the LP

equivalent of RX(τ).

Problem 2.57

1) The power spectral density Sn(f) is depicted in the following figure. The output bandpass

process has non-zero power content for frequencies in the band 49 × 106 ≤ |f | ≤ 51 × 106. The

power content is

P =

∫ −49×106

−51×106

10−8

(
1 +

f

108

)
df +

∫ 51×106

49×106

10−8

(
1− f

108

)
df

= 10−8x

∣∣∣∣
−49×106

−51×106

+ 10−16 1

2
x2

∣∣∣∣
−49×106

−51×106

+ 10−8x

∣∣∣∣
51×106

49×106

− 10−16 1

2
x2

∣∣∣∣
51×106

49×106

= 2× 10−2

!!!!!!!!!aaaaaaaaa

−5·107 5·107

10−8

108

2) The output process N(t) can be written as

N(t) = Nc(t) cos(2π50 × 106t)−Ns(t) sin(2π50 × 106t)
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where Nc(t) and Ns(t) are the in-phase and quadrature components respectively, given by

Nc(t) = N(t) cos(2π50 × 106t) + N̂(t) sin(2π50 × 106t)

Ns(t) = N̂(t) cos(2π50 × 106t)−N(t) sin(2π50 × 106t)

The power content of the in-phase component is given by

E[|Nc(t)|2] = E[|N(t)|2] cos2(2π50 × 106t) + E[|N̂ (t)|2] sin2(2π50 × 106t)

= E[|N(t)|2] = 2× 10−2

where we have used the fact that E[|N(t)|2] = E[|N̂ (t)|2]. Similarly we find that E[|Ns(t)|2] =

2× 10−2.

3) The power spectral density of Nc(t) and Ns(t) is

SNc(f) = SNs(f) =




SN (f − 50× 106) + SN (f + 50× 106) |f | ≤ 50× 106

0 otherwise

SNc(f) is depicted in the next figure. The power content of SNc(f) can now be found easily as

PNc = PNs =

∫ 106

−106

10−8df = 2× 10−2

10−8

−106 106

4) The power spectral density of the output is given by

SY (f) = SX(f)|H(f)|2 = 10−6(|f | − 49 × 106)(10−8 − 10−16|f |) for 49× 106 ≤ |f | ≤ 51× 106

Hence, the power content of the output is

PY = 10−6(

∫ −49×106

−51×106

(−f − 49× 106)(10−8 + 10−16f)df)

+10−6(

∫ 51×106

49×106

(f − 49× 106)(10−8 − 10−16f)df)

= 10−6(2× 104 − 4

3
102)

The power spectral density of the in-phase and quadrature components of the output process is

given by

SYc(f) = SYs(f) = 10−6(
(
(f + 50 × 106)− 49× 106

) (
10−8 − 10−16(f + 50× 106)

)
)

+10−6(
(
−(f − 50× 106)− 49× 106

) (
10−8 + 10−16(f − 50× 106)

)
)

= 10−6(−2× 10−16f2 + 10−2)
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for |f | ≤ 106 and zero otherwise. The power content of the in-phase and quadrature component is

PYc = PYs = 10−6

∫ 106

−106

(−2× 10−16f2 + 10−2)df

= 10−6(−2× 10−16 1

3
f3

∣∣∣∣
106

−106

+ 10−2f

∣∣∣∣
106

−106

)

= 10−6(2× 104 − 4

3
102) = PY
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