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CHAPTER 2

MATHEMATICAL MODELS
AND NUMERICAL METHODS

SECTION 2.1
POPULATION MODELS

Section 2.1 introduces the first of the two major classes of mathematical models studied in the
textbook, and is a prerequisite to the discussion of equilibrium solutions and stability in Section 2.2.

In Problems 1-8 we outline the derivation of the desired particular solution, and then sketch some
typical solution curves.

1. Noting that x >1 because x(0)=2, we write

dx . l_ 1 _
Jx(l—x) - J-la’t, J(X x_ljdx J-la’t

Inx—In(x-1) = t+InC; —— = C¢

x(0)=2 implies C=2; x = 2(x-1e’

2e' 2

x(t) = = .
@) 2e' -1 2—¢'

Typical solution curves are shown in the figure on the left below.
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Noting that x <10 because x(0)=1, we write

Jd—xz frar J(L ! jdx = [0a
x(10—x) x 10—x

X

Inx—In(10-x) = 10¢+InC; = Ce"
10—x
X(0)=1 implics C:é? 9x = (10— x)e™
10e" 10

x(t) =

9+e' 14971

Typical solution curves are shown in the figure on the right at the bottom of the
preceding page.

Noting that x >1 because x(0)=3, we write

dx _ : RSN S R
J(l+x)(1—x) = Jar ﬂx—l x+1jdx Jeva

In(x-1)—In(x+1) = —2t+InC; T =Ce™

x(0)=3 implies c:%; 2(x=1) = (x+De™

24 2eM+1

x(t) = = .
(*) 2—e™* 2% —1

Typical solution curves are shown in the figure on the left below.
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Noting that |x| <3 because x(0)=0, we write

J dx = [var; J( L ]dxzj6dt
(3+2x)(3—-2x) 3+2x 3-2x

%ln(3+2x)—%ln(3—2x) = 6t+%lnc; 342x

x(0)=0 implies C=1; 3+2x = (3-2x)e™

36121—3 ~ 3(812t_1)
2¢ 42 2(e" +1)

x(1) =

Typical solution curves are shown in the figure on the right at the bottom of the
preceding page.

Noting that x >5 because x(0)=38, we write

dx [ ) l_ 1 _
Jx(x_S) = [(-3)ax ﬂx x_sjdx [15at

X

Inx—In(x-=5) = 15¢t+InC; = Ce"

x=5
x(0)=8 implies C=8/3; 3x = 8(x—5)e"

X(0) = —40e™ 40
3-8 8-3e™"

Typical solution curves are shown in the figure on the left below.
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15

10

L
0 0.1

Noting that x <5 because x(0)=2, we write

dx 1 1
= |(-3)dt; —+ dx = |(-15)dt
Jx(s—x) J ﬂx 5—xj J=15)
Inx—In(5-x) = —15¢+InC; Yo ce™
5—x
x(0)=2 implies C=2/3; 3x = 2(5-x)e™

10e™ " 10
x(t) = —15 = 15¢ °
3427 2+3e”

Typical solution curves are shown in the figure on the right at the bottom of the

preceding page.

Noting that x >7 because x(0)=11, we write

J & - [(4yar; J(l— 1 ja’x = [284
x(x—17) x x-=7
Inx—In(x—7) = 28¢+InC; Yoo ce™

x=7
x(0)=11 implies C=11/4; 4x = 11(x=17)e*™

—77* 77
X(Z) = 28 = —28¢ °
4-11e® 11-4¢¢

Typical solution curves are shown in the figure on the left below.
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10.

11.

12.

Noting that x > 13 because x(0)=17, we write

JL = I7dt; J(l_ 1 jdx = J(—91)dt
x(x—13) x x-—13
X
x—13
x(0)=17 implies C=17/4; 4x = 17(x—13)e™"

Inx—In(x—-13) = -91¢+1InC; = Ce™"

(1) = 221" 221
4-17e7"  17-4"

Typical solution curves are shown in the figure on the right at the bottom of the
preceding page.

Substitution of P(0)=100 and P’(0)=20 into P’ = kP yields k=2, so the
differential equationis P’ = 2J/P. Separation of variables and integration,
J-dP/2\/F = Idt, gives JP = t+C. Then P(0)=100 implies C =10, so
P(#) = (¢t+10)*. Hence the number of rabbits after one year is P(12) = 484.

Given P'=-6P=—(k/ JP )P=— kP , separation of variables and integration as in
Problem 9 yields 2JP = —kt+C. The initial condition P(0) = 900 gives C =060, and

then the condition P(6) = 441 implies that k= 3. Therefore 2P = —3t+60, so
P = 0 after t = 20 weeks.

(a) Starting with dP/dt = k\/F, dPldt = k~JP, we separate the variables and
integrate to get P(f) = (kt/2+ C). Clearly P(0) = P, implies C = \/FO .

(b) If P(t) = (kt/2 +10)*, then P(6) = 169 implies that £ = 1. Hence
P(f) = (t/2+ 10), so there are 256 fish after 12 months.

Solution of the equation P’ = k P* by separation of variables and integration,

ar - _ [keat; L ou-c

P’ P

gives P(f) = 1/(C—kt). Now P(0)=12 implies that C=1/12, sonow P(t) =

12/(1 — 12kt). Then P(10) =24 implies that k= 1/240, so finally P(¢) = 240/(20 — ).
Hence P =48 when ¢ =15, that is, in the year 2003. And obviously P — e as ¢t — 20.
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14.

15.

16.

17.

18.

19.

20.

21.
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(a) If the birth and death rates both are proportional to P* and > &, then Eq. (1) in
this section gives P’=kP> with k positive. Separating variables and integrating as in
Problem 12, we find that P(#) = 1/(C —kt). The initial condition P(0) = F, then gives
C=1/PF,so P(t) = 1/(1/E—kt) = B, /(1-kPRy).

(b) If P,=6 then P(t) = 6/(1-6kt). Now the fact that P(10) =9 implies that
k=180, so P(¢t) = 6/(1—¢/30) = 180/(30—1¢). Hence it is clear that
P — o as t — 30 (doomsday).

Now dP/dt = —kP* with k> 0, and separation of variables yields P(f) = 1/(kt + C).
Clearly C = 1/Py asin Problem 13,s0 P(f) = Py/(1 + kPyt) . Therefore it is clear
that P(t1) — 0 as t — o, so the population dies out in the long run.

If we write P* = bP(a/b—P) we see that M = a/b. Hence

B/ _ (aP)R _ a
= > = — = M
D, bP, b

Note also (for Problems 16 and 17) that a=B,/P, and b=D,/P} = k.

The relations in Problem 15 give k= 1/2400 and M = 160. The solution is
P(t) = 19200/(120+40¢e™"'"®). We find that P=0.95M after about 27.69 months.

The relations in Problem 15 give k= 1/2400 and M = 180. The solution is
P(t) = 43200/(240—60¢7"*"). We find that P=1.05M after about 44.22 months.

If we write P* = aP(P—b/a) we see that M = b/a. Hence

Dy _ (BR)R _ b
= > = — = M
B, aFb, a

Note also (for Problems 19 and 20) that 5= D,/P, and a=B,/P} = k.

The relations in Problem 18 give k= 1/1000 and M = 90. The solution is
P(t) = 9000/(100—10¢°"'""). We find that P=10M after about 24.41 months.

The relations in Problem 18 give k= 1/1100 and M = 120. The solution is
P(t) = 13200/(110+10e°">). We find that P=0.1M after about 42.12 months.

Starting with the differential equation dP/dt = kP(200— P), we separate variables and
integrate, noting that P <200 because F, =100:
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22,

23.

24,

d—P:Jkdz = J(l+ ! dezPOOkdt;
P(200—P) P 200-P

F__ 200kt+InC = L Ce™™",

In =
200-P 200-P

Now P(0)=100 gives C=1, and P’(0)=1 implies that 1=k -100(200—100), so
we find that &£ =1/10000. Substitution of these numerical values gives

P = Q200010000 _ /50

200—P B

b

and we solve readily for P(r)=200/(1+¢*). Finally, P(60)=200/(1+¢")=~153.7

million.

We work in thousands of persons, so M = 100 for the total fixed population. We
substitute M = 100, P’(0) = 1, and Py, = 50 in the logistic equation, and thereby obtain

1 = k(50)(100 — 50), so k= 0.0004.

If ¢ denotes the number of days until 80 thousand people have heard the rumor, then Eq. (7)
in the text gives
50x100

504 (100— 50)e "%’

and we solve this equation for ¢=34.66. Thus the rumor will have spread to 80% of the
population in a little less than 35 days.

(a) ¥ = 0.8x—0.004x* = 0.004x(200 — x), so the maximum amount that will dissolve
is M = 200 g.

(b) With M = 200, Py = 50, and k£ = 0.004, Equation (4) in the text yields the
solution
(1) = 10000
50+150%"

Substituting x = 100 on the left, we solve for t = 1.25In3 = 1.37 sec.
The differential equation for N(¢) is N'(¢) = kN (15— N). When we substitute N(0) = 5

(thousands) and N'(0) = 0.5 (thousands/day) we find that £ = 0.01. With N in place of
P, this is the logistic equation in Eq. (3) of the text, so its solution is given by Equation (7):
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26.
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_ 15%5 _ 15
5+10exp[—(0.01)(15)r]  1+2e""

N(?)

Upon substituting N = 10 on the left, we solve for ¢ = (In4)/(0.15) = 9.24 days.
Proceeding as in Example 3 in the text, we solve the equations

25.00k(M —25.00) = 3/8,  47.54k(M —47.54) = 1/2
for M = 100 and k£ = 0.0002. Then Equation (4) gives the population function

B 2500
25+ 7570

P(1)
We findthat P = 75 when ¢t = 50In9 = 110, thatis, in 2035 A. D.
The differential equation for P(z) is

P'(f) = 0.001P*—SP.
When we substitute P(0) = 100 and P’(0) = 8 we find that 6 = 0.02, so

dap = 0.001P* —0.02P = 0.001P(P -20).

dt

We separate variables and integrate, noting that P > 20 because F, =100:

Jd—P:jo.omdt - J( ! —ijdpzjo.ozdt;
P(P—20) P-20 P

mf=2 - Lime o 220 o,
P 50 P

Now P(0)=100 gives C =4/5, hence

100

5(P-20) = 4P = P@) = FRREE

It follows readily that P = 200 when ¢ = 50 In(9/8) = 5.89 months.

We are given that
P = kP>~ 001P,

When we substitute P(0) = 200 and P’(0) = 2 we find that £ = 0.0001, so
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28.

ar = 0.0001P* —0.01P = 0.0001P(P—100).

dt

We separate variables and integrate, noting that P >100 because P, =200:

d—P:jo_oomdz . J( ! —ljdpzjo.mdr;
P(P—100) P—100 P

=10 oL e o B0 e
P 100 P
Now P(0)=100 gives C =1/2, hence
2(P-100) = P = P(t) = 22%.
—e

(a) P = 1000 when ¢ = 100 In(9/5) = 58.78.

b)) P—oow as t—100In2 =69.31.

Our alligator population satisfies the equation

dap = 0.0001x* —0.01x = 0.0001x(x—100).

dt

With x in place of P, this is the same differential equation as in Problem 27, but now we
use absolute values to allow both possibilities x <100 and x>100:

JL:IO'OOOMI = J( L —lde:I0.0ldt;
x(x—100) x—=100 x

~100
=100 E= - e, (*)
X 100 X

(a) If x(0)=25 then x<100 and |x—100]=100—x, so (*) gives C =3 and hence

100

100—x = 3xe”100 = X(t) = m

We therefore see that x(¢) > 0 as ¢ — co.
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(b)  Butif x(0)=150 then x>100 and |x—100|=x-100, so (*) gives C=1/3

and hence

3(x=100) = x"'" = x(t) = %.

Now x(¢) > 4 as t— (100In3)", so doomsday occurs after about 109.86 months.

Here we have the logistic equation

dap = 0.03135P—0.0001489 P*> = 0.0001489 P(210.544 — P)

dt
where k£ =0.0001489 and P =210.544. With F, =3.9 also, Eq. (7) in the text gives

_ (210.544)(3.9) . 81
(39) + (210544 _ 39) 67(0.0001489)(210.544” 39 + 206‘6446—0.0313& :

P(t)

(a) This solution gives P(140) =127.008, fairly close to the actual 1930 U.S. census
population of 123.2 million.

(b) The limiting population as ¢ — oo is 821.122/3.9 = 210.544 million.

(©) Since the actual U.S. population in 200 was about 281 million — already exceeding
the maximum population predicted by the logistic equation — we see that that this model
did not continue to hold throughout the 20th century.

The equation is separable, so we have
Jd—P = J,Boe"”dt, so InP = —&e*"” +C.
P o

The initial condition P(0)=F, gives C=InP,+ 3,/ , so

P(t) = F, exp{%(l - e_“’)}.

If we substitute P(0) = 10° and P’(0) = 3x10° into the differential equation
P(t) = Be P,
we find that ) = 0.3. Hence the solution given in Problem 30 is

P(t) = Pexp[(0.3/a)(1—e)].
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32.

The fact that P(6) = 2P, now yields the equation
f() = (03)(1-e**—aln2 =0
for o. We apply Newton'’s iterative formula

_ ., _J@)

a, +1 n ’
’ fe,)

with /() =1.8¢™ —In2 and initial guess o = 1, and find that o = 0.3915 .
Therefore the limiting cell population as ¢ — oo is

Pexp(f,/a) = 10°exp(0.3/0.3915) = 2.15x10°.

Thus the tumor does not grow much further after 6 months.

We separate the variables in the logistic equation and use absolute values to allow for both
possibilities B, <M and F,> M :

Jd—P = J-kdt = J(l—i- ! de = J-kM dt;
P(M - P) P M-P

m—L = kMi+inC = —L = e, (*)
|M - P| |M - P|

If B,<M then P<M and |M—P|:M—P, so substitution of =0, P=F, in (*)
gives C=F,/(M —F,)). It follows that

P __ K
M-P M-P

Butif £, >M then P>M and |M—P|=P—M, so substitution of =0, P=F, in
(*) gives C=F,/(F,— M), and it follows that

P __ K
P-M P-M

We see that the preceding two equations are equivalent, and either yields

3 M])OekMt
(M =B+ B’

(M -P)P = (M-P)P"" = P()

which gives the desired result upon division of numerator and denominator by ™.
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34.
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(a) We separate the variables in the extinction-explosion equation and use absolute
values to allow for both possibilities £, <M and F,>M :

Jd_P:jkdt - J( 1 _ide:IkMdt;
P(P-M) P-M P

[P M|

[P M|

In = kMt+InC = = Ce™. *)

If F<M then P<M and |P—M|=M—P, so substitution of #=0, P=F, in (*)
gives C=(M —F))/F,. It follows that

M-P _ M—PoekMt
P P, ’

Butif £, >M then P>M and |P—M|:P—M, so substitution of =0, P=F, in
(*) gives C=(P,—M)/P,, and it follows that

P_M _ P()_MekMt
P P, '

We see that the preceding two equations are equivalent, and either yields

MP,

P—M)P. = (P.—M)P™' = P@) = .

(b) If P, <M then the coefficient M — P, is positive and the denominator increases
without bound, so P(¢) = 0 as ¢ — . Butif B, > M, then the denominator

P, —(P,— M)e™" approaches zero — so P(t) — +eo — as t approaches the value
(1/kM)In[E, /(F,— M )] >0 from the left.

Differentiation of both sides of the logistic equation P’ =kP-(M — P) yields

_ P ap

CdP di

= [k-(M - P)+kP-(~1)]-kP(M — P)

k[M —2P)-kP(M — P) = 2k’P(M —1P)(M - P)

P/I

as desired. The conclusions that P">0 if 0<P<iM, that P’=0 if P=1M, and
that P"<0 if LM <P <M are then immediate. Thus it follows that each of the
curves for which F, <M has an inflection point where it crosses the horizontal line
P=5M.
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35.  Any way you look at it, you should see that, the larger the parameter k> 0 is, the faster the
logistic population P(f) approaches its limiting population M.

36. With x=¢7" P,=5.308, P, =23.192, and P, =76.212, Egs. (7) in the text take the
form

RM p B M _
R+M-R)x " RB+(M-PR)x’

2

from which we get

P+(M-P)x = BM/P, PB+(M-P)x’ = BM/P,

_RM-B) ., _ B(M-P) 0
R(M=R)’ B(M-F)

R(M-BR)" _ R(M-P)
R (M-FR) PR(M-R)

RP(M-PR) = B(M-R)M-P,)

RPM*=2RRPM + RR'P, = R'M’ =P (F,+ P)M + RR’P,
We cancel the final terms on the two sides of this last equation and solve for

_ BQARPE -RR-FP)

i
RP,—F’ W

M

Substitution of the given values P, =5.308, F, =23.192, and P, =76.212 now gives
M = 188.121. The first equation in (i) and x = exp(—kM¢,) yield

L n M =F) (iii)

k= - .
Mt B(M-F)

Now substitution of #; =50 and our numerical values of M, F,, F,, P, gives

k = 0.000167716. Finally, substitution of these values of £ and M (and Pp) in the
logistic solution (4) gives the logistic model of Eq. (8) in the text.

In Problems 37 and 38 we give just the values of £ and M calculated using Egs. (i) and (iii) in
Problem 36 above, the resulting logistic solution, and the predicted year 2000 population.

4829.73
23.192 +185.058 ¢ 0054581

37. k = 0.000146679 and M =208.250, so P(t) =

predicting P = 248.856 in the year 2000.
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25761.7
76.212 + 261.815 ¢ 02260451 2

38. k = 0.0000668717 and M =338.027, so P(t) =

predicting P = 192.525 in the year 2000.

120

39.  Wereadily separate the variables and integrate:

ar _

7 I(k+bcos27tt)dt = InP = kt+2isin27tt+lnC.

T

Clearly C = PF,, so we find that P(¢) = F, exp(kt + 2isin Zﬁtj. The colored curve in
/4

the figure above shows the graph that results with the typical numerical values
P, =100, £=0.03, and b=0.06. It oscillates about the black curve which represents

natural growth with F, and k£ =0.03. We see that the two agree at the end of each full
year.

SECTION 2.2
EQUILIBRIUM SOLUTIONS AND STABILITY

In Problems 1-12 we identify the stable and unstable critical points as well as the funnels and spouts
along the equilibrium solutions. In each problem the indicated solution satisfying x(0) =xo is
derived fairly routinely by separation of variables. In some cases, various signs in the solution
depend on the initial value, and we give a typical solution. For each problem we show typical
solution curves corresponding to different values of x,.
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1.

2.

3.

Unstable critical point: x =4
Spout: Along the equilibrium solution x(¢) = 4

Solution: If x,>4 then

d = J-dt; In(x-4) = t+C; C = In(x,—4)
x—4

x—4 = (x,—4)e'; x(t) = 4+(x,—4)e".

Typical solution curves are shown in the figure on the left below.

6

Stable critical point: x =3
Funnel: Along the equilibrium solution x(f) = 3

Solution: If x,> 3 then

f dx3 = J(—l)a’t; In(x-3) = -t+C;, C = In(x,-3)

x —
x=3 = (x,=-3)e’";  x(¢) = 3+(x,—-3)e”".
Typical solution curves are shown in the figure on the right above.

Stable critical point: x =0

Unstable critical point: x =4

Funnel: Along the equilibrium solution x(¢) = 0
Spout: Along the equilibrium solution x(¢) = 4

Solution: If x,>4 then

Section 2.2
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J-4dl‘ :J 4dx _ J( 1 —ljdx
x(x—4) x—4 x
M+C = =% 0= R
X X,
Af = 1nx0(x_4); o = xX,(x—4)
x(x,—4) x(xy—4)
4x,

x(t) =

Typical solution curves are shown in the figure on the left below.

x,+(4-x,)e*

WAL

Stable critical point: x =3
Unstable critical point: x =0

geas

Funnel: Along the equilibrium solution x(f) = 3
Spout: Along the equilibrium solution x(z) = 0

Solution: If x,>3 then

3dx

J(_3)dt - Jx(x—3)

34+C = n¥ 73,
X

X (x=3) .

-3t =1In ;
x(x,—3)

S

C=mh=3
Xo
. X,(x=3)
x(x,—=3)
Chapter 2
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3x
x(t) = .
x,+(3—x,)e

Typical solution curves are shown in the figure on the right above.

Stable critical point: x =-2

Unstable critical point: x =2

Funnel: Along the equilibrium solution x(f) = -2
Spout: Along the equilibrium solution x(f) = 2

Solution: If x,>2 then

j4dz:f‘§dx :H L1 jdx
x°—4 x—2 x+2

4t+C = lnx_2; C =1In

x+2 X, +2

(x+2)(x,-2) (x+2)(x,—2)

2] (%, +2)+ (x, = 2)e* ]
(x,+2)—(x, —2)e"

;= ln(x—Z)(x0+2). o = (x=2)(x,+2)

x(t) =

Typical solution curves are shown in the figure below.
0.5 1 15 2 Zt,:S 3 35 4 4.5
Stable critical point: x =3

Unstable critical point: x =—3
Funnel: Along the equilibrium solution x(f) = 3

0

Section 2.2



Spout: Along the equilibrium solution x(z) = -3

Solution: If x,>3 then

j6dz:f bdx. :ﬂ Ly jdx
9—x 34x 3—x

6t+C = lnx+3; C = lnxo+3
x=3 x,—3
;= ln(x+3)(xo—3). o = (x+3)(x,—3)
(x,+3)(x—3)° (x, +3)(x—3)

3[ (2= 3)+ (x, +3)e” |
(3—x,) + (x, +3)e”

x(t) =

Typical solution curves are shown in the figure below.
1 2 t 3 4‘1

This single critical point is semi-stable, meaning that solutions with xo>2 go to infinity
as t increases, while solutions with xy <2 approach 2.

0

7. Critical point: x = 2

Solution: If x,>2 then

J _dxz - J(—l)dr; e o=t
(x-2) x—2 2
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1 - iy I 1-1(x-2)
x—2 X, —2 X, —2

=2 _ x,(2t-=1)—4t¢
1-t(x,—2) tx,—2t-1

x(t) = 2+

Typical solution curves are shown in the figure on the left below.

Critical point: x = 3

This single critical point is semi-stable, meaning that solutions with xp <3 go to minus

infinity as ¢ increases, while solutions with xy >3 approach 3.

Solution: If x,>3 then

_dxzzfdt; ! =t+C;, C = !
(x=3) x=3 X3
I . I 1+4(x—-3)
x-3 x,—3 x,—3
(1) = 3+ X5=3 _ xo(3t+1)—9t.
1+t(x,—3) tx,—=3t+1

Typical solution curves are shown in the figure on the right above.
Stable critical point: x =1

Unstable critical point: x =4
Funnel: Along the equilibrium solution x(¢) = 1

Section 2.2
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Spout: Along the equilibrium solution x(¢) = 4

Solution: If x,>4 then

j3dt :JL - ﬂ ! —Ljdx
(x—4)(x—1) x—4 x—1

3t+C = lnx_4; C = lnx°_4
x—1 x,—1
o ED=D | ==
(x=D(x,—4) (x=1)(x, —4)

Al xp) +(x, —4)e™
S (I=xp) + (%, =4

x(1)

Typical solution curves are shown in the figure below.

S

10. Stable critical point: x =5
Unstable critical point: x =2
Funnel: Along the equilibrium solution x(f) = 5
Spout: Along the equilibrium solution x(¢) = 2

Solution: If x,>5 then

[3ar = ﬂ:ﬂ L1 jdx
(x=5)(x-2) x—-2 x-5

3t+C = lnx_z; C=In
x=5 Xy —3
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G0 (=2 -3)

3t b
(x=3)(x) = 2) (x=3)(x) = 2)

_2(5—x))+5(x, —2)e™

X0 (5—2x) +(x, _2)est

Typical solution curves are shown in the figure on the left below.
1 2 t 3 4‘1

o 1 2 3 4 5 0

t

11.  Unstable critical point: x =1
Spout: Along the equilibrium solution x(¢) = 1

Solution: J _de3 = I(—2)dt; 1 - = —2t+;2.
(x—1) (x—1) (%, =1)

Typical solution curves are shown in the figure on the right above.

6
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12. Stable critical point: x =2

Funnel: Along the equilibrium solution x(¢) = 2

Solution: Jﬂ = _[2dt; ;2 =2t ——.
(2 (2-x) (2-x,)

Typical solution curves are shown in the figure at the bottom of the preceding page.

In each of Problems 13 through 18 we present the figure showing slope field and typical solution
curves, and then record the visually apparent classification of critical points for the given differential
equation.

13.  The critical points x=2 and x =-2 are both unstable. A slope field and typical solution
curves of the differential equation are shown below.

X'=(x+2) (x - 2

T T T

[

4 [

I

/7
2 s
X2, z Y A
/) /) /) VAV /A
% o /A /Y /A R Y VY B B
N (Y A Il
/Y A R A Y A A R B A A |
/A A N N VA
S Y oV T
AU U U Y U U U\ T W LA Vv
(T T LT A A T T O | O B [
(X L T I O A | O B
| e A | A O B
N | [ s Y I A A1 I O
| | | | | | | | | | | | | | | | | |
0 1 2 3 4
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0 is stable. A

slope field and typical solution curves of the differential equation are shown below.

12 are both unstable, while the critical point x

The critical points x

14.

e
Ve
e
z
e
Ve
e
-
e
Ve

e
e
e
e
e
e
4
e
e
e

VA (VAN AN VaVas

VAV VAV AV

2 and x =-2 are both unstable. A slope field and typical solution

curves of the differential equation are shown below.

The critical points x

15.

x'= (¢ -4y

A AN (A
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= (¢ -4)°

M

0 are unstable, while the critical point x =—2 is stable.

b—_ -

b

b—_ -

b—_ -

N — = — — —

b -

b

NONNN N N NN NN

_ — — —

—_ — — -

e —

_ — — — 4

_ — — — 4

_ — — —

_ — — — 4

—_ — — — 4

—_ — — —

—_ — — —
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2 is unstable, while the critical point x = -2 is stable. A slope

field and typical solution curves of the differential equation are shown below.

The critical point x

16.

L

2 and x
A slope field and typical solution curves of the differential equation are shown below.

b

The critical points x

17.
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18. The critical points x =2 and x =—2 are unstable, while the critical point x =0 is stable.
A slope field and typical solution curves of the differential equation are shown below.

VAV v,

19.  The critical points of the given differential equation are the roots of the quadratic equation
+x(10-x)—h = 0, thatis, x’—10x+104 = 0.

Thus a critical point ¢ is given in terms of 4 by

+J100 —
c = 10+ V100- 407 = 5++25-10h.

2

It follows that there is no critical point if /> 21, only the single critical point ¢ =0 if
h=2%, and two distinct critical points if 47 <21 (so 10—25k > 0). Hence the bifurcation

diagram in the Ac-plane is the parabola with the (¢ —5)* =25—104 that is obtained upon
squaring to eliminate the square root above.

20.  The critical points of the given differential equation are the roots of the quadratic equation
d=x(x=5)+s = 0, thatis, x’—5x+100s = 0.

Thus a critical point ¢ is given in terms of s by
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21.

22.

94

+ /o5 _
C=5_ 25-400s 5 Sm.

= 4=
2 2 2

It follows that there is no critical point if s >+, only the single critical point ¢ =0 if

s ==, and two distinct critical points if s < (so 1-16s>0). Hence the bifurcation

diagram in the sc-plane is the parabola (2c¢ —5)° =25(1—16s) that is obtained upon
elimination of the radical above.

(@ If k= -a> where @ >0, then kx—x’ = —a’x—x> = —x(a’+x>) is 0 onlyif
x =0, so the only critical pointis ¢=0. If a >0 then we can solve the differential
equation by writing

2
|t (s i = - e
x(a”+x7) X a +x

lnx—lln(a2 +x°) = —a2t+llnC,
2 2

2 2~ -2d°

X 24 2 a Ce "'
3 7T = Ce = X = o

a +x 1—Ce*!

It follows that x — 0 as ¢ — 0, so the critical point ¢ =0 is stable.

(b) If k=+a* where a>0 then kx—x’ = +a’x—x’ = —x(x+a)(x—a) is

Oifeither x=0 or x=2a= i\/z . Thus we have the three critical points ¢ =0, + \/E s

and this observation together with part (a) yields the pitchfork bifurcation diagram shown in
Fig. 2.2.13 of the textbook. If x # 0 then we can solve the differential equation by writing

2
2a’dx - J(—EJF L 1 )a’x = —IZazdt,
x(x—a)(x+a) X x—a x+a

—2Inx+In(x—a)+In(x—a) = —2a’t+InC,
X -a Ce? = x= e = X = —i\/z
x’ 1-Ce 2" m.

It follows that if x(0)#0 then x — Jkif x> 0, x > —Jk if x<0. This implies that

the critical point ¢ =0 is unstable, while the critical points ¢ =t~k are stable.

If k=0 then the only critical point ¢ =0 of the equation x’= x is unstable, because the
solutions x(¢) = x,e’ diverge to infinity if x,#0. If k=+a’ >0, then

x+a’x’ =x(1+a’x*)=0 onlyif x=0, soagain ¢=0 is the only critical point. If
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k=-a’<0, then x —a’x’ = x(1-a’x*) = x(1—ax)(1+ax) =0 ifeither x =0 or
x==x1/a = £+/-1/k. Hence the bifurcation diagram of the differential equation

x" = x+kx’ looks as pictured below:

23.  (a) If h<kM then the differential equationis x" = kx((M —h/k)—x), whichisa
logistic equation with the reduced limiting population M - h/ k.

(b) If A > kM then the differential equation can be rewritten in the form

’

x' = —ax—bx’ with ¢ and b both positive. The solution of this equation is

ax,

x(t) =

"~ (a+bx,)e" —bx,

so it is obvious that x(¢) =0 as t— oo

24. If x,> N then

[~k —Hydr = (N = H)dx —H L jdx

(x—N)x—H) J\x-N x-H
k(N=H)i+C = = oo R
x—H x,—H
~k(N-H)t = In (X—N)(XO—H); o V- (x=N)(x,—H)
(x = H)(x, = M) (x—H)(x,~ M)
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N(x,—H)—H(x,— N)e """

x(t) =
© (xy = H) = (x, = N)e "

25. (>i) In the first alternative form that is given, all of the coefficients within parentheses are

positive if H <xp<N. Hence it is obvious that x(¢) > N as t — oo,
(ii) In the second alternative form that is given, all of the coefficients within parentheses
are positive if xo < H. Hence the denominator is initially equal to N - H> 0, but decreases
as ¢ increases, and reaches the value 0 when
PP S L e R
N-H H-x,

26. If 4h=kM® then Egs. (13) and (14) in the text show that the differential equation takes
the form x" = —k(M /2—x)> with the single critical point x = M /2. This equation is
readily solved by separation of variables, but clearly x' is negative whether x is less than
or greater than M/ 2.

27. Separation of variables in the differential equation x" = —k ( (x—a)’ + bz) yields

x(t) = a- btan(ka tan™! %} _
It therefore follows that x(#) goes to minus infinity in a finite period of time.

28. Aside from a change in sign, this calculation is the same as that indicated in Egs. (13) and
(14) in the text.

29. This is simply a matter of analyzing the signs of x' in the cases x<a, a<x<b, b<x<c,
and ¢ > x. Alternatively, plot slope fields and typical solution curves for the two differential
equations using typical numerical values suchas a=-1,b=1,c=2.

SECTION 2.3

ACCELERATION-VELOCITY MODELS

This section consists of three essentially independent subsections that can be studied separately:
resistance proportional to velocity, resistance proportional to velocity-squared, and inverse-square
gravitational acceleration.
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Equation:

Solution;

Answer:

Equation:

Solution;

Answer:

Equation:

Solution;

Answer:

Equation:

Solution:;

Equation:

Solution:

Answer:

V' = k250 -v), w0) =0, »(10) = 100

- — [kdt;  n(250-v) = —kt+InC,
250—-v

v(0)=0 implies C = 250; w(¢) = 250(1—e™)
v(10) =100 implies k= 1n(250/150) = 0.0511;

v=200 when t=—-(In50/250)/k =31.5sec
V=—kv, v(0) =v,; x" =v, x(0) = x,

xX'(t) = v(t) = ve ;s x(t) = —(v,/k)e +C
C = x,+( k)™ x(t) = x,+ (v, /k)(1—€™)

lim x(r) = }Lri;[xo+(v0/k)(1—e-“)} = x,+(v,/k)

VvVi=—kv, v(0) = 40; v(10)=20 x" =v, x(0) =0
W) = 40 ¢*' with k = (1/10)ln2

x(1) = (40/k)(1 — ™"

x(eo) = lm(40/k)(1-e™*') = 40/k = 400/In2 = 577 ft

Vi=—k?, v0) =v,; x = x(0)=x,

—Jd—f:jkdz; L give =1L
v v

Vo

Vo

1+ vkt

X(t) = v(t) = ;o x() = %ln(l +v,kt ) + x,
x(t) > o0 as x(t) > oo

VvVi=—kv, v(0) = 40; v(10)=20 x" =v, x(0) =0

v = 40 (as in Problem 3)
1+ 40kt
v(10) =20 implies 40k =1/10, so v(¢) = 400
10+1¢

x(f) = 400 In[(10 +£)/10]
x(60) = 4001In7 =~ 778 ft
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6.

98

Equation:

Solution:

Equation:

()

(b)

Equation:

(@)

(b)

V=—kv'? v0) = vy; X =v, x(0) = x,

[ fEa L ke oo L
20" 27 o2 7 NS

Xt = v(t) = — () = —Lw
(2+kt vo) k(2+kt Vo)
C = xo+@; x(t) = x0+2\l/cg[l— 5 2 J
+ Vo

x(o0) = x,+24v, 'k
v =10-0.1v, x(0) = v(0) = 0

—0.1dv
Oy o dr In(10-0.1v) = —¢/10+InC
JIO—O.IV Jon o V) 1

v(0)=0 implies C=10; In[(10-0.1v)/10] = —¢/10

V(1) = 100(1-e""");  y(e0) = 100 fi/sec (limiting velocity)

x(¢) = 100£—1000(1—e"""%)

v = 90 ft/sec when ¢ = 23.0259 sec and x = 1402.59 ft

v =10-0.001v%,  x(0) = v(0) = 0

J 0.01dv dt Y t
————— = |- tanhn — = —
1-0.0001v 10 100 10
v(0) = 0 implies C=0 so v(¢) = 100tanh(z/10)

t/10 —t/10
e —e

v(eo) = lim100tanh(¢/10) = 100 lim ————— = 100 ft/sec
t—o0

1/10 ~1/10
== e +e

x(t) = 1000 In(cosh?/10)
v = 90 ft/sec when ¢ = 14.7222 sec and x = 830.366 ft

The solution of the initial value problem

1S

1000 v" = 5000 — 100 v, v(0) =0
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10.

11.

12.

w(t) = 50(1 —e ).
Hence, as ¢ — oo, we see that w(f) approaches vy, = 50 ft/sec = 34 mph.
Before opening parachute:

vV = =32-0.15v, v(0)=0, y(0)=10000
v(t) = 213.333(e*P =1),  v(20) = —202.712 ft/sec
y(f) = 11422.2-1422.22e7*1" =213.333¢, »(20) = 7084.75 ft

After opening parachute:

Vo= —32-15v, v(0)=-202.712, y(0)=7084.75
v(f) = —21.3333-181.379¢"

1(f) = 6964.83+120.919¢7% —21.33331,

y = 0 when f=2326.476

=)

Thus she opens her parachute after 20 sec at a height of 7085 feet, and the total
time of descent is 20 + 326.476 = 346.476 sec, about 5 minutes and 46.5 seconds. Her
impact speed is 21.33 ft/sec, about 15 mph.

If the paratrooper’s terminal velocity was 100 mph = 440/3 ft/sec, then Equation (7) in

the text yields p = 12/55. Then we find by solving Equation (9) numerically with

yo = 1200 and vy = 0 that y = 0 when ¢ = 12.5 sec. Thus the newspaper account is
inaccurate.

With m = 640/32 = 20slugs, W = 6401b, B = (8)(62.5) = 5001b,and Fz = —v Ib
(Fr is upward when v <0), the differential equation is

20 V() = 640+ 500 —v = —140— .

Its solution with w(0) = 0 is
v(t) = 140(e™ —1),
and integration with »(0) =0 yields
y(1) = 2800(e" 1) —140¢

Using these equations we find that ¢+ = 20 In(28/13) = 15.35 sec when v = —75 ft/sec,
and that y(15.35) = —648.31 ft. Thus the maximum safe depth is just under 650 ft.
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Given the hints and integrals provided in the text, Problems 13—16 are fairly straightforward (and
fairly tedious) integration problems.

17. To solve the initial value problem v = —9.8—0.0011v*, v(0)=49 we write

J# = — [as; J 0.010593dv _—_ [0.103827.dt
9.8+0.0011v 1+(0.010595v)

tan™'(0.010595v) = —0.103827¢+C; v(0)=49 implies C =0.478854
v(t) = 94.3841 tan(0.478854 —0.103827¢)

Integration with y(0) =0 gives
y(t) = 108.468+909.052 In(cos(0.478854—0.103827¢)) .

We solve v(0) =0 for t=4.612, and then calculate )(4.612) =108.468.

18.  We solve the initial value problem v' = —9.8+0.0011v*, v(0)=0 much as in

Problem 17, except using hyperbolic rather than ordinary trigonometric functions. We first
get

v(t) = —94.3841 tanh(0.1038271¢),
and then integration with y(0) = 108.47 gives

y(f) = 108.47—-909.052 In(cosh(0.1038271)).

We solve (0)=0 for ¢ = cosh™'(exp(108.47/909.052))/0.103.827 =4.7992, and then
calculate 1(4.7992) =—43.489.

19.  Equation: Vv = 4-(1/400)*, v(0) = 0

Solution: J# = J dr; (1/4—()”’"2 _ J 1 dt
4—-(1/400)v 1—-(v/40) 10

tanh™' (v/40) = ¢t/10+C; C=0; v(¢) = 40tanh(¢/10)
Answer: v(10) =30.46 ft/sec, V(o) = 40 ft/sec

20.  Equation: v = —32—(1/800)v*, w(0) = 160, y(0) = 0

Solution: J dv > == Idt; M = —Jldt;
32+(1/800)v 1+(v/160) 5
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tan”' (v/160) = —¢/5+C; v(0)=160 implies C=7x/4

Tt

v(t) = 160tan (Z - gj

(1) = 800 1n[cos(%—§jj+4oom2
We solve v(f) = 0 for t=3.92699 and then calculate 1(3.92699) = 277.26 ft.

21. Equation: Vi=—g-pv, v0)=v, p0)=0

gdv .
g+pv - J(— \/p/gV)2 -~ Heods
tan” (Jp/gv) = —Jep t+C;  w(0)=v, implies C=tan™'(\/p/gv,)

W) = —\E tan(t ep —tan” [VO\EJJ

We solve v(t) = 0 for ¢ = \/l_tan1 [vo Bj and substitute in Eq. (17) for y(?):
gp g

Solution: J

1, ‘cos(tan*IVOW tan"'v,\[p/ g ‘
Vo = ; n‘ cos(tan‘ VOW) ‘

= %ln(sec(tan‘1 vm/p/g)) = %ln }1+p(;°

2
Viax = Lln {1+&j
2p g

22. By an integration similar to the one in Problem 19, the solution of the initial value problem
Vv = =32+0.075v*, v(0)=0 is

W) = —20.666tanh(1.549197)

so the terminal speed is 20.666 ft/sec. Then a further integration with »(0) =0 gives

y(t) = 10000-13.333 In(cosh(1.54919¢)) .

We solve »(0)=0 for t=484.57. Thus the descent takes about 8 min 5 sec.
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23.

24.

25.

26.

102

Before opening parachute:

V = —32+0.00075v>, v(0)=0, y(0)=10000
w(f) = —206.559tanh(0.154919¢)  v(30) = —206.521 fi/sec
y(¢) = 10000 —1333.33 In(cosh(0.154919¢)), »(30) = 4727.30 ft

After opening parachute:

Vo= —32+40.075v%, v(0)=-206.521, »(0)=4727.30
w(t) = —20.6559 tanh(1.54919¢ +0.00519595)

(1) = 4727.30—13.3333In(cosh(1.54919 ¢ +0.00519595))
y = 0 when ¢=229.304

Thus she opens her parachute after 30 sec at a height of 4727 feet, and the total
time of descent is 30 +229.304 = 259.304 sec, about 4 minutes and 19.3 seconds.

Let M denote the mass of the Earth. Then

(a) 2GM /R = ¢ implies R = 0.884x10™° meters, about 0.88 cm;

(b) \/2G(329320M)/R = cimplies R = 2.91x10° meters, about 2.91 kilometers.

(a) The rocket's apex occurs when v =0. We get the desired formula when we set
v=0 in Eq. (23),

Vo= v§+2GM(1—lj,
R

r
and solve for r.

(b)  Wesubstitute v=0, »=R+10° (100 km = 10’ m) and the mks values
G=6.6726x10", M = 5.975x10*, R = 6.378x10° in Eq. (23) and solve for

v, =1389.21 m/s =1.389 kmy/s.

(c) When we substitute v, =(9/10)v2GM /R in the formula derived in part (a), we
find that »_ =100R/19.

By an elementary computation (as in Section 1.2) we find that an initial velocity of v, =16
ft/sec is required to jump vertically 4 feet high on earth. We must determine whether this
initial velocity is adequate for escape from the asteroid. Let » denote the ratio of the radius
of the asteroid to the radius R = 3960 miles of the earth, so that

1.5 1

"7 3960  2640°
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27.

28.

Then the mass and radius of the asteroid are given by

M,=rM ad R, =R

a

in terms of the mass M and radius R of the earth. Hence the escape velocity from the
asteroid's surface is given by

2GM 2G-r'M 2GM
v, = = =r =rv,
R, IR, R

in terms of the escape velocity v, from the earth's surface. Hence v, =36680/2640

=~13.9 ft/sec. Since the escape velocity from this asteroid is thus less than the initial
velocity of 16 ft/sec that your legs can provide, you can indeed jump right off this asteroid
into space.

(@)  Substitution of v; =2GM /R=k/R in Eq. (23) of the textbook gives

ﬂ—v— /2GM_L
dt r \/;

We separate variables and proceed to integrate:

Nrar = [kat = 2,0 2y 2R
3 3
(using the fact that =R when t=0). We solve for r(¢)= (%kt +R"? )2/3 and note that

r(t) > oo as t — oo,

(b) If vy>2GM /R then Eq. (23) gives

dr 2GM (2 2GM) K k
— =y = + Vo————— | = — =+ > —F—.
dt r R r Jr

Therefore, at every instant in its ascent, the upward velocity of the projectile in this part is
greater than the velocity at the same instant of the projectile of part (a). It's as though the
projectile of part (a) is the fox, and the projectile of this part is a rabbit that runs faster.
Since the fox goes to infinity, so does the faster rabbit.

(a) Integration of gives

and we solve for

ar_ - 2GM(l—lj

rn
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taking the negative square root because v <0 in descent. Hence

t = —\/ % " ar (r =1, cos’ 0)
2GM Ty—r

1 12GM [27,c05’ 6 d6

3/2
To

J2GM
T r
t = O | Jrr—r* +rcos’ |—
\2GMm [ ° ’ A ]

(b)  Substitution of G=6.6726x10"", M = 5975x10*kg, r=R = 6.378x10° m,

and 7, =R+10° yields 7= 510.504, that is, about 81 minutes for the descent to the
surface of the earth. (Recall that we are ignoring air resistance.)

(@ +sinf cosB)

(¢ Substitution of the same numerical values along with v, =0 in the original
differential equation of part (a) yields v=-4116.42 m/s =—-4.116 km/s for the velocity at
impact with the earth's surface where = R.

29. Integration of vﬂ = — ﬂz, »(0)=0, v(0)=v, gives
dy (y+R)
1, GM GM 1 ,
—v° = -+,
2 y+R R 2

which simplifies to the desired formula for v*. Then substitution of
G=6.6726x10"", M = 5.975x10**kg, R = 6.378%x10°m v=0,and vo=1
yields an equation that we easily solve for y = 51427.3, that is, about 51.427 km.

30.  When we integrate

vﬂ = - GAfe + GM’"2 , r(0)=R, r(0)=v,
dr r (S—r)

in the usual way and solve for v, we get

\/ZGMe 2GM, 2GM, 2GM,
- - + +v; .
r R r—=S R-S

The earth and moon attractions balance at the point where the right-hand side in the
acceleration equation vanishes, which is when
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L AM. s
M, - M,

If we substitute this value of 7, M, =7.35x10” kg, S =384.4x10°, and the usual values

of the other constants involved, then set v =0 (to just reach the balancing point), we can
solve the resulting equation for vy = 11,109 m/s. Note that this is only 71 m/s less
than the earth escape velocity of 11,180 m/s, so the moon really doesn't help much.

SECTION 2.4

NUMERICAL APPROXIMATION: EULER'S METHOD

In each of Problems 1-10 we also give first the explicit form of Euler's iterative formula for the
given differential equation y"= f(x,y). As we illustrate in Problem 1, the desired iterations are
readily implemented, either manually or with a computer system or graphing calculator. Then we
list the indicated values of y(4) rounded off accurate to 3 decimal places.

1.

For the differential equation "= f(x,y) with f(x,y)=—y, the iterative formula of

Euler's method is y,+1 = y, + A(-y,). The TI-83 screen on the left shows a graphing
calculator implementation of this iterative formula.

3. TH: B 2y
HHHH T Y HH T -

e e e
LT =C
CNEaE
ooEE
== =2

e T ] ]l
() I Y T = T
ot S W Tl 1| T
oy Bt e T [ [t |
[t O e o e [ [t |

After the variables are initialized (in the first line), and the formula is entered, each press of
the enter key carries out an additional step. The screen on the right shows the results of 5
steps from x =0 to x=0.5 with step size #=0.1 — winding up with y(0.5) = 1.181.
Approximate values 1.125 and 1.181; true value y(3)=1.213

The following Mathematica instructions produce precisely this line of data.

filx ,y 1 = -y;
glx 1 = 2 Expl-x];
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h = 0.25; x = 0; vyl = y0;

Dol[ k = flIx,yl]; (* the left-hand slope
vl = yl + h*k; (* Euler step to update y
X =X + h, (* update x
{i,1,2} 1

h =0.1; x = 0; y2 = yO0;

Dol k = fl[x,y2]; (* the left-hand slope
y2 = y2 + h*k; (* Euler step to update y
X =X + h, (* update x
{i,1,5} 1

Print[x,“ ",Yl," ll’Yz’“ ||’g-[0.5]]

0.5 1.125 1.18098 1.21306

Iterative formula: Y1 = Yu + h(2yp)

Approximate values 1.125 and 1.244; true value y(3)=1.359

Iterative formula: V1= Ynth(y, + 1)

Approximate values 2.125 and 2.221; true value y(3)=2.297

Iterative formula: V1 =Y+ h(xy, — yn)

Approximate values 0.625 and 0.681; true value y(3)=0.713

Iterative formula: Vi1 = Yot h(y—x,— 1)

Approximate values 0.938 and 0.889; true value y(3)=0.851

Iterative formula: V1 = Y+ B(=2%,)

Approximate values 1.750 and 1.627; true value y(3)=1.558

Iterative formula: Vur1 = Yo T h(—3x,fy,,)

Approximate values 2.859 and 2.737; true value y(3)=2.647

Iterative formula: Vel = Y+ hexp(—yy)

Approximate values 0.445 and 0.420; true value y(3)=0.405

Vurl = Ya T h(1+y3)/4
Approximate values 1.267 and 1.278; true value y(3)=1.287

Iterative formula:
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10.

Iterative formula: Va1 = Wn T h(2xny3 )

Approximate values 1.125 and 1.231; true value y(3)=1.333

The tables of approximate and actual values called for in Problems 11-16 were produced using the
following MATLAB script (appropriately altered for each problem).

11.

12.

Section 2.4, Problems 11-16
= 0; YO = 1;
first run:

0.01;

x0; vy =vy0; vyl
= 1:100

Yy =y + h*(y-2);
vyl = [yl,yl;

X = X + h;

end

% second run:
h = 0.005;
X
f

o

y0;

Fh M B o X o°

(o]
R
ns

= x0; y =y0; vy2 y0;
or n = 1:200
Yy =y + h*(y-2);
y2 = [y2,y];
X = X + h;
end
% exact values
x =x0 : 0.2 : x0+1;
ve = 2 - exp(x);
% display table
va = y2(1:40:201) ;
err = 100* (ye-ya)./ye;
[x; v1(1:20:101); va; ye; err]

The iterative formula of Euler's method is  y,+1 = v, + A(y, — 2), and the exact solution is
y(x) = 2—¢". The resulting table of approximate and actual values is

X 0.0 0.2 0.4 0.6 0.8 1.0
y (h=0.01) 1.0000 0.7798 0.5111 0.1833 | —0.2167 | —0.7048
y (h=0.005) 1.0000 0.7792 0.5097 0.1806 | —-0.2211 | -0.7115
y actual 1.0000 0.7786 0.5082 0.1779 | -0.2255 | —0.7183
error 0% —0.08% | —0.29% | -1.53% 1.97% 0.94%

Iterative formula: Vel = Yo T h(n — 1)2/ 2
Exact solution: yx) = 1+2/2-x)

Section 2.4
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13.

14.

15.

16.
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X 0.0 0.2 04 0.6 0.8 1.0
v (h=0.01) 2.0000 2.1105 2.2483 2.4250 2.6597 2.9864
vy (h=0.005) 2.0000 2.1108 2.2491 2.4268 2.6597 2.9931
y actual 2.0000 2.1111 2.2500 2.4286 2.6597 3.0000
error 0% 0.02% 0.04% 0.07% 0.13% 0.23%
Iterative formula: Yl = Yn T 2hx3 /Vn
Exact solution: yx) = (8+ x4)1/ 2
X 1.0 1.2 1.4 1.6 1.8 2.0
v (h=0.01) 3.0000 3.1718 3.4368 3.8084 4.2924 4.8890
vy (h=0.005) 3.0000 3.1729 3.4390 3.8117 42967 4.8940
y actual 3.0000 3.1739 3.4412 3.8149 4.3009 4.8990
error 0% 0.03% 0.06% 0.09% 0.10% 0.10%
Iterative formula: Vurl = Yn T hy,f [Xn
Exact solution: yx) = 1/(1 —Inx)
X 1.0 1.2 1.4 1.6 1.8 2.0
v (h=0.01) 1.0000 1.2215 1.5026 1.8761 2.4020 3.2031
y (h=0.005) 1.0000 1.2222 1.5048 1.8814 2.4138 3.2304
y actual 1.0000 1.2230 1.5071 1.8868 2.4259 3.2589
error 0% 0.06% 0.15% 0.29% 0.50% 0.87%
Iterative formula: Vur1 = Yo+ h(3 = 2y,/x,)
Exact solution: y(x) = x+4/x°
X 2.0 2.2 24 2.6 2.8 3.0
v (h=0.01) 3.0000 3.0253 3.0927 3.1897 3.3080 3.4422
y (h=0.005) 3.0000 3.0259 3.0936 3.1907 3.3091 3.4433
y actual 3.0000 3.0264 3.0944 3.1917 3.3102 3.4444
error 0% 0.019% 0.028% 0.032% 0.033% 0.032%
Iterative formula: Vurl = Yn T 2hx,f / y,%
Exact solution: yx) = «*-37)"?
X 2.0 2.2 2.4 2.6 2.8 3.0
v (h=0.01) 3.0000 4.2476 5.3650 6.4805 7.6343 8.8440
vy (h=0.005) 3.0000 4.2452 5.3631 6.4795 7.6341 8.8445
y actual 3.0000 4.2429 5.3613 6.4786 7.6340 8.8451
error 0% -0.056% | —0.034% | —0.015% | 0.002% 0.006%
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The tables of approximate values called for in Problems 17-24 were produced using a MATLAB
script similar to the one listed preceding the Problem 11 solution above.

17.

X 0.0 0.2 0.4 0.6 0.8 1.0
y (h=0.1) 0.0000 0.0010 0.0140 0.0551 0.1413 0.2925
y (h=0.02) 0.0000 0.0023 0.0198 0.0688 0.1672 0.3379
vy (h=0.004) 0.0000 0.0026 0.0210 0.0717 0.1727 0.3477
y (h=0.0008) | 0.0000 0.0027 0.0213 0.0723 0.1738 0.3497

These data indicate that y(1) = 0.35, in contrast with Example 5 in the text, where the
initial condition is »(0) = 1.

In Problems 18—24 we give only the final approximate values of y obtained using Euler's method
with step sizes 4 = 0.1, & = 0.02, 7 = 0.004, and ~ = 0.0008.

18.  With xp = 0 and yy, = 1, the approximate values of )(2) obtained are:

h 0.1 0.02 0.004 0.0008
y 1.6680 1.6771 1.6790 1.6794

19. With xo = 0 and yy = 1, the approximate values of )(2) obtained are:

h 0.1 0.02 0.004 0.0008
y 6.1831 6.3653 6.4022 6.4096

20.  With xp = 0 and yy = —1, the approximate values of y(2) obtained are:

h 0.1 0.02 0.004 0.0008
y —-1.3792 —1.2843 —-1.2649 -1.2610

21.  With xo = 1 and yy = 2, the approximate values of y(2) obtained are:

h 0.1 0.02 0.004 0.0008
y 2.8508 2.8681 2.8716 2.8723

22. With xo = 0 and yy = 1, the approximate values of )(2) obtained are:

h 0.1 0.02 0.004 0.0008
y 6.9879 7.2601 7.3154 7.3264

23. With xo = 0 and yy = 0, the approximate values of y(1) obtained are:

h 0.1 0.02 0.004 0.0008
y 1.2262 1.2300 1.2306 1.2307
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24.

25.

26.

27.

28.
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With xp = —1 and yy = 1, the approximate values of )(1) obtained are:

h 0.1 0.02
y 0.9585 0.9918

0.004
0.9984

0.0008
0.9997

Here f(t,v)=32-1.6v and ¢,=0, v,=0.

With /4 =0.01, 100 iterations of v, =v, +h f(¢,,v,) yield v(1) =16.014, and 200
iterations with 4 =0.005 yield v(1) =15.998. Thus we observe an approximate velocity of
16.0 ft/sec after 1 second — 80% of the limiting velocity of 20 ft/sec.

With 4 =0.01, 200 iterations yield v(2)=19.2056, and 400 iterations with 4 = 0.005
yield v(2)=19.1952. Thus we observe an approximate velocity of 19.2 ft/sec after 2
seconds — 96% of the limiting velocity of 20 ft/sec.

n+l

Here f(t,P)=0.0225P—0.003P> and 1,=0, P, =25.

With /=1, 60 iterations of P, P) yield P(60)=~49.3888, and 120

iterations with 2 =0.5 yield P(60)=49.3903. Thus we observe a population of 49 deer
after 5 years — 65% of the limiting population of 75 deer.

With 4 =1, 120 iterations yield P(120) = 66.1803, and 240 iterations with 42 =0.5 yield
P(60) = 66.1469. Thus we observe a population of 66 deer after 10 years — 88% of the
limiting population of 75 deer.

=P +hf(t

n?

Here f(x,y)=x"+y>—-1 and x,=0, y,=0. The following table gives the

approximate values for the successive step sizes /# and corresponding numbers 7n of steps.
It appears likely that »(2) =1.00 rounded off accurate to 2 decimal places.

h 0.1 0.01 0.001 0.0001 0.00001
n 20 200 2000 20000 200000
y(2) 0.7772 0.9777 1.0017 1.0042 1.0044

Here f(x,y)=x+1y* and x,=-2, y,=0. The following table gives the

approximate values for the successive step sizes /# and corresponding numbers 7 of steps.

It appears likely that y(2) =1.46 rounded off accurate to 2 decimal places.

h 0.1 0.01 0.001 0.0001 0.00001
n 40 400 4000 40000 400000
y(2) 1.2900 1.4435 1.4613 1.4631 1.4633
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29.  Withstepsizes & = 0.15, & = 0.03, and # = 0.006 we get the following results:

X

-1.0
—0.7
-0.4
-0.1

+0.2

+0.5

y with
h=0.15

1.0000
1.0472
1.1213
1.2826
0.8900
0.7460

y with v with
h=0.03 h=0.006
1.0000 1.0000
1.0512 1.0521
1.1358 1.1390
1.3612 1.3835
1.4711 0.8210
1.2808 0.7192

While the values for 2 = 0.15 alone are not conclusive, a comparison of the values of y
for all three step sizes with x >0 suggests some anomaly in the transition from negative to

positive values of x.

30. Withstepsizes 2 = 0.1 and 2 = 0.01 we get the following results:

0.0
0.1
0.2
0.3

1.8
1.9
2.0

vy with
h=0.1

0.0000
0.0000
0.0010
0.0050

2.8200
3.9393
5.8521

vy with
h=0.01

0.0000
0.0003
0.0025
0.0086

4.3308
7.9425
28.3926

Clearly there is some difficulty near x = 2.

31.  Withstepsizes 2 = 0.1 and & = 0.01 we get the following results:

0.0
0.1
0.2

0.7

vy with
h=0.1

1.0000

1.2000
1.4428

4.3460

vy with
h=0.01

1.0000
1.2200
1.4967

6.4643

Section 2.4 111



11.8425
39.5010

0.8
0.9

5.8670
8.3349

Clearly there is some difficulty near x = 0.9.

SECTION 2.5
A CLOSER LOOK AT THE EULER METHOD

In each of Problems 1-10 we give first the predictor formula for u,:; and then the improved Euler
corrector for y,.;. These predictor-corrector iterations are readily implemented, either manually or
with a computer system or graphing calculator (as we illustrate in Problem 1). We give in each
problem a table showing the approximate values obtained, as well as the corresponding values of
the exact solution.

A, 1+HIB+x 25Y Y=HatN sl Y+ CHA2 Dk
i 11 A D W LY

W—Ha 8 Y CHA 2 ok 1.5108H

e L 1.53581
1.21808 1.4224
1.6351 1.3416
1.4224 1.2142

1. Upr1 = Y+ h(=vy)
Yurt = Yo+ (W2)[=yn — thp11]

The TI-83 screen on the left above shows a graphing calculator implementation of this
iteration. After the variables are initialized (in the first line), and the formulas are entered,
each press of the enter key carries out an additional step. The screen on the right shows the
results of 5 steps from x=0 to x=0.5 with step size 4= 0.1 — winding up with

v(0.5) = 1.2142 — and we see the approximate values shown in the second row of the

112

table below.
X 0.0 0.1 0.2 0.3 0.4 0.5
y with £=0.1 2.0000 1.8100 1.6381 1.4824 1.3416 1.2142
y actual 2.0000 1.8097 1.6375 1.4816 1.3406 1.2131
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Upr1 = Yn T+ 20y,

Vo1 = Yu+ (W2) 2y, + 2up41]

X 0.0 0.1 0.2 0.3 04 0.5
y with 4=0.1 0.5000 0.6100 0.7422 0.9079 1.1077 1.3514
y actual 0.5000 0.6107 0.7459 09111 1.1128 1.3591
Uptl = Vn + h(yn + 1)
Yurt = Yo+ (W2)[(n + 1) + (uprr + 1)]
X 0.0 0.1 0.2 0.3 04 0.5
y with 4=0.1 1.0000 1.2100 1.4421 1.6985 1.9818 2.2949
y actual 1.0000 1.2103 1.4428 1.6997 1.9837 2.2974
Up+t1 = Vn + h(xn _J’n)
Yurt = Yo+ (W2) [0 = yu) + (on + 1 — )]
X 0.0 0.1 0.2 0.3 04 0.5
y with h=0.1 1.0000 0.9100 0.8381 0.7824 0.7416 0.7142
y actual 1.0000 0.9097 0.8375 0.7816 0.7406 0.7131
Up+t1 = Vn + h(yn —Xn— 1)
Yntl = Vn + (h/z)[(yn —Xn— 1) + (un+1 —Xn— h - 1)]
X 0.0 0.1 0.2 0.3 04 0.5
y with 4=0.1 1.0000 0.9950 0.9790 0.9508 0.9091 0.8526
y actual 1.0000 0.9948 0.9786 0.9501 0.9082 0.8513
Uptl = Vn— 22X uh
Vi1 = Yn— (W2)[ 2%, + 200, + Ity ]
X 0.0 0.1 0.2 0.3 04 0.5
y with 4=0.1 2.0000 1.9800 1.9214 1.8276 1.7041 1.5575
y actual 2.0000 1.9801 1.9216 1.8279 1.7043 1.5576

Upt] = Yn— 3x,fyn h

Vet = Y= (B2)[3%pvn + 360 + h) thys1]
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10.

X 0.0 0.1 0.2 0.3 0.4 0.5
y with 4=0.1 3.0000 2.9955 2.9731 2.9156 2.8082 2.6405
y actual 3.0000 2.9970 2.9761 2.9201 2.8140 2.6475
Upt1 = Yu T hexp(=yn)
Yur1 = Yo+ (B2)[exp(—yn) + exXp(—itp+1)]
X 0.0 0.1 0.2 0.3 04 0.5
y with h=0.1 0.0000 0.0952 0.1822 0.2622 0.3363 0.4053
y actual 0.0000 0.0953 0.1823 0.2624 0.3365 0.4055
nit = yut (1 +y3)/4
Vel = Va B[ +yr+ 1+ (p1)']/8
X 0.0 0.1 0.2 0.3 0.4 0.5
y with 4=0.1 1.0000 1.0513 1.1053 1.1625 1.2230 1.2873
y actual 1.0000 1.0513 1.1054 1.1625 1.2231 1.2874
Uil = Yo+ 2X00h
Va1 = Y+ B[xyn + (60 + B)tt1)’]
X 0.0 0.1 0.2 0.3 0.4 0.5
y with 4=0.1 1.0000 1.0100 1.0414 1.0984 1.1895 1.3309
y actual 1.0000 1.0101 1.0417 1.0989 1.1905 1.3333

The results given below for Problems 11-16 were computed using the following MATLAB script.

% Section 2.5, Problems 11-16
x0 = 0; yO0 =1;

% first run:

h = 0.01;

x =x0; y=1y0; vyl = y0;

for n = 1:100
u =y + h*f(x,y); %$predictor
v =y + (h/2)*(£(x,y)+£(x+h,u)); %corrector
vyl = [yl,v]l;
X =x + h;
end

% second run:

h = 0.005;

x =x0; y=y0; y2=y0;
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for n 1:200

u y + h*f(x,vy); %$predictor
y =y + (h/2)*(£(x,y)+£(x+h,u)); %corrector
y2 = [y2,yl;
X = X + h;

end

% exact values
x =x0 : 0.2 : x0+1;
ye = g(x);

% display table
vya = y2(1:40:201) ;

err = 100* (ye-ya)./yve;

X = sprintf('%10.5f',x), sprintf('\n');

vyl = sprintf('%$10.5f',y1(1:20:101)), sprintf('\n');
va = sprintf('%10.5f',ya), sprintf('\n');

yve = sprintf('%10.5f',ye), sprintf('\n');

err = sprintf('%10.5f',err), sprintf('\n');

table = [x; yl; va; ye; err]

For each problem the differential equation "= f(x,y) and the known exact solution y = g(x)
are stored in the files £.m and g.m— for instance, the files

function yp =
Yp = y-2;

f(x,y)

function ye = g(x,y)
ye = 2-exp(x);

for Problem 11. (The exact solutions for Problems 11-16 here are given in the solutions for
Problems 11-16 in Section 2.4.)

11.

12.

X 0.0 0.2 0.4 0.6 0.8 1.0
vy (h=0.01) 1.00000 | 0.77860 | 0.50819 | 0.17790 | —0.22551 | —0.71824
y (h=0.005) | 1.00000 | 0.77860 | 0.50818 | 0.17789 | —0.22553 | —0.71827
y actual 1.00000 | 0.77860 | 0.50818 | 0.17788 | —0.22554 | —0.71828
error 0.000% | —0.000% | —0.001% | —0.003% | 0.003% 0.002%

X 0.0 0.2 0.4 0.6 0.8 1.0
vy (h=0.01) 2.00000 | 2.11111 | 2.25000 | 2.42856 | 2.66664 | 2.99995
y (h=0.005) | 2.00000 | 2.11111 2.25000 | 2.42857 | 2.66666 | 2.99999
y actual 2.00000 | 2.11111 2.25000 | 2.42857 | 2.66667 | 3.00000
error 0.0000% | 0.0000% | 0.0001% | 0.0001% | 0.0002% | 0.0004%
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13.

X 1.0 1.2 1.4 1.6 1.8 2.0
vy (h=0.01) 3.00000 | 3.17390 | 3.44118 | 3.81494 | 4.30091 4.89901
y (h=0.005) | 3.00000 3.17390 3.44117 | 3.81492 | 4.30089 | 4.89899
y actual 3.00000 3.17389 3.44116 | 3.81492 | 4.30088 | 4.89898
error 0.0000% | —0.0001% | —0.0001% | 0.0001% | —0.0002% | —0.0002%
14.
X 1.0 1.2 1.4 1.6 1.8 2.0
y (h=0.01) 1.00000 1.22296 1.50707 1.88673 | 2.42576 | 3.25847
vy (h=0.005) 1.00000 1.22297 1.50709 1.88679 | 2.42589 | 3.25878
y actual 1.00000 1.22297 1.50710 1.88681 | 2.42593 | 3.25889
error 0.0000% | 0.0002% | 0.0005% | 0.0010% | 0.0018% | 0.0033%
15.
X 2.0 2.2 24 2.6 2.8 3.0
y (h=0.01) 3.000000 3.026448 3.094447 3.191719 3.310207 3.444448
vy (h=0.005) 3.000000 3.026447 3.094445 3.191717 3.310205 3.444445
y actual 3.000000 3.026446 3.094444 3.191716 3.310204 3.444444
error 0.00000% | —0.00002% | —0.00002% | —0.00002% | —0.00002% | —0.00002%
16.
X 2.0 2.2 24 2.6 2.8 3.0

y (h=0.01) 3.000000 4.242859 5.361304 6.478567 7.633999 8.845112

y (h=0.005) 3.000000 4242867 5.361303 6.478558 7.633984 8.845092

y actual 3.000000 4.242870 5.361303 6.478555 7.633979 8.845085

error 0.00000% 0.00006% | —0.00001% | —0.00005% | —0.00007% | —0.00007%

17.  With 2 = 0.1: (1) = 035183

With # = 0.02: (1) = 0.35030
With & = 0.004: (1) = 0.35023
With 4 = 0.0008: (1) = 0.35023

The table of numerical results is

y with y with y with y with
X h=0.1 h=0.02 h=0.004 h=10.0008
0.0 0.00000 0.00000 0.00000 0.00000
0.2 0.00300 0.00268 0.00267 0.00267
0.4 0.02202 0.02139 0.02136 0.02136
0.6 0.07344 0.07249 0.07245 0.07245
0.8 0.17540 0.17413 0.17408 0.17408
1.0 0.35183 0.35030 0.35023 0.35023
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In Problems 18-24 we give only the final approximate values of y obtained using the improved
Euler method with step sizes 2 = 0.1, A~ = 0.02, 2 = 0.004, and ~# = 0.0008.

18.

19.

20.

21.

22.

23.

24.

25.

With » = 0.1:

With 2 = 0.02:
With 2 = 0.004:
With 2 = 0.0008:
With 27 = 0.1:

With 7 = 0.02:
With & = 0.004:
With 2 = 0.0008:
With h = 0.1:

With 2 = 0.02:
With & = 0.004:
With ~ = 0.0008:
With h = 0.1:

With 7 = 0.02:
With 2 = 0.004:
With 2 = 0.0008:
With 27 = 0.1:

With 2 = 0.02:
With & = 0.004:

With # = 0.0008:

With » = 0.1:
With A = 0.02:
With 2 = 0.004:

With 2 = 0.0008:

With 27 = 0.1:

With 2 = 0.02:
With & = 0.004:
With 2 = 0.0008:

1(2) = 1.68043
1(2) = 1.67949
1(2) = 1.67946
12) = 1.67946

1(2) =~ 6.40834
1(2) = 6.41134
1(2) = 6.41147
1(2) = 641147

1(2) = —1.26092
1(2) = —1.26003
1(2) = —1.25999
1(2) = —1.25999

1(2) = 2.87204
1(2) = 2.87245
1(2) = 2.87247
1(2) = 2.87247

1(2) = 7.31578
1(2) = 7.32841
12) = 7.32916
12) = 7.32920

(1) = 1.22967
(1) = 1.23069
(1) = 1.23073
(1) = 1.23073

(1) = 1.00006
(1) = 1.00000
(1) = 1.00000
(1) = 1.00000

Here f(t,v)=32-1.6v and ¢t,=0, v,=0.

With /2 =0.01, 100 iterations of

k= f(t,v,),

k,= f(t+h,v, +hk),

Section 2.5
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26.

27.

28.

In the solutions for Problems 29 and 30 we illustrate the following general MATLAB ode solver.

118

yield v(1) =15.9618, and 200 iterations with 4 =0.005 yield v(1) =15.9620. Thus we
observe an approximate velocity of 15.962 ft/sec after 1 second — 80% of the limiting
velocity of 20 ft/sec.

With 4 =0.01, 200 iterations yield v(2)=19.1846, and 400 iterations with 4 = 0.005
yield v(2)=19.1847. Thus we observe an approximate velocity of 19.185 ft/sec after 2
seconds — 96% of the limiting velocity of 20 ft/sec.

Here f(¢,P)=0.0225P—-0.003P* and ¢,=0, P,=25.
With & =1, 60 iterations of

k=f&P), k,=f({t+hP +hk), P

n+l

= P, +§(k1 +k2)

yield P(60)=49.3909, and 120 iterations with 2 =0.5 yield P(60)=49.3913. Thus we
observe an approximate population of 49.391 deer after 5 years — 65% of the limiting
population of 75 deer.

With /4 =1, 120 iterations yield P(120) = 66.1129, and 240 iterations with £ =0.5 yield
P(60) = 66.1134. Thus we observe an approximate population of 66.113 deer after 10
years — 88% of the limiting population of 75 deer.

Here f(x,y)=x"+y>—-1 and x,=0, y,=0. The following table gives the

approximate values for the successive step sizes /# and corresponding numbers 7 of steps.
It appears likely that y(2)=1.0045 rounded off accurate to 4 decimal places.

h 0.1 0.01 0.001 0.0001
n 20 200 2000 20000
y(2) 1.01087 ]1.00452 [1.00445 [1.00445

Here f(x,y)=x+1y* and x,=-2, y,=0. The following table gives the

approximate values for the successive step sizes /# and corresponding numbers n of steps.
It appears likely that y(2) =1.4633 rounded off accurate to 4 decimal places.

h 0.1 0.01 0.001 0.0001
n 40 400 4000 40000
y(2) 1.46620 |1.46335 1.46332 [1.46331

function
% [t,yl

[t,y] = ode(method, yp,
ode (method, yp.

t0,b, y0, n)
t0,b, y0, n)

% calls the method described by 'method' for the
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ODE 'yp' with function header

y' = yp(t,y)

on the interval [t0,b] with initial (column)

vector y0. Choices for method are 'euler',
'impeuler', 'rk' (Runge-Kutta), 'ode23', 'ode45'.
Results are saved at the endPoints of n subintervals,
that is, in steps of length h = (b - t0)/n. The
result t is an (n+l)-column vector from b to tl1,
while y is a matrix with n+l rows (one for each
t-value) and one column for each dependent variable.

0% o ° 0% o o° O o o° J° o° o°

h = (b - t0)/n; % step size
t=t0 : h : b;
t=1t'; % col. vector of t-values
y = y0'; % lst row of result matrix
for i =2 : n+l % for i=2 to i=n+l

t0 = t(i-1); % old t

tl = t(1); % new t

y0 = y(i-1,:)"'; % old y-row-vector

[T,Y] = feval (method, yp, tO0,tl, yO0);

v = [y;Y']; % adjoin new y-row-vector
end

To use the improved Euler method, we call as 'method' the following function.

29.

function [t,y] = impeuler(yp, tO,tl, yO0)

[t,y] = impeuler(yp, tO0,tl, yO0)
Takes one improved Euler step for

y' = yprime( t,y ),

from t0 to tl with initial value the
column vector yoO.

0% o° 0° o o o° o° o°

h = tl - t0;

k1l = feval( yp, tO0, yO ) ;
k2 = feval( yp, tl, y0 + h#*kl );
k = (k1 + k2)/2;

t = tl;

y = y0 + h¥*k;

Here our differential equation is described by the MATLAB function

vpboltl (t,v)
9.8;

function vp
vp = -0.04*v

Then the commands
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n = 50;

[t1l,v1]

n = 100;
[t2,v2] = ode('impeuler', 'vpboltl',0,10,49,n);
t = (0:10)"';

ve = 294*exp(-t/25) -245;

[t, v1(1:5:51), v2(1:10:101), wvel

ode ('impeuler', 'vpboltl',0,10,49,n);

generate the table

t withn=50 withn=100 actual v
0 49.0000 49.0000 49.0000
1 37.4722 37.4721 37.4721
2 26.3964 26.3963 26.3962
3 15.7549 15.7547 15.7546
4 5.5307 5.5304 5.5303
5 -4.2926 -4.2930 -4 .2932
6 -13.7308 -13.7313 -13.7314
7 -22.7989 -22.7994 -22.7996
8 -31.5115 -31.5120 -31.5122
9 -39.8824 -39.8830 -39.8832
10 -47.9251 -47.9257 -47.9259

We notice first that the final two columns agree to 3 decimal places (each difference being
less than 0.0005). Scanning the » =100 column for sign changes, we suspect that v=0 (at
the bolt's apex) occurs just after #=4.5 sec. Then interpolation between ¢t =4.5 and ¢=4.6
in the table

[t2(40:51),v2(40:51)]

3.9000 6.5345
4.0000 5.5304
4.1000 4.5303
4.2000 3.5341
4.3000 2.5420
4.4000 1.5538
4.5000 0.5696
4.6000 -0.4108
4.7000 -1.3872
4.8000 -2.3597
4.9000 -3.3283
5.0000 -4.2930

indicates that #=4.56 at the bolt's apex. Finally, interpolation in
[£2(95:96) ,v2(95:96)]

9.4000 -43.1387
9.5000 -43.9445
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30.

gives the impact velocity v(9.41) = -43.22 m/s.

Now our differential equation is described by the MATLAB function

function vp = vpbolt2(t,v)

vp = -0.0011*v.*abs (v)

Then the commands

n = 100;
[t1l,v1]
n = 200;
[t2,v2]

= ode('impeuler', 'vpbolt2',0,10,49,n);

t = (0:10)"';
[t, v1(1:10:101),

generate the table

P W oo JO0 Ul b WNPREOo

with n =100

49.
37.
26.
15.

6.
-3.

-13.

-22

-31.
-40.

-47

0000
1547
2428
9453
0041
8020
5105
.9356
8984
2557
.9066

9.8;

ode ('impeuler', 'vpbolt2',0,10,49,n);

v2(1:20:201)]

with n =200

49.
37.
26.
15.

6.
-3.

0000
1547
2429
9455
0044
8016

-13.5102
-22.9355
-31.8985
-40.2559
-47.9070

We notice first that the final two columns agree to 2 decimal places (each difference being
less than 0.005). Scanning the n =200 column for sign changes, we suspect that v=0 (at

the bolt's apex) occurs just after = 4.6 sec. Then interpolation between ¢=4.60 and

t =4.65 in the table

[£2(91:101),v2(91:101)]

L T ST S Y S o

.5000 1
.5500 0.
.6000 0.
.6500 -0
.7000 -0.
.7500 -1.
.8000 -1
.8500 -2.
.9000 -2.

.0964

6063
1163

L3737

8636
3536

.8434

3332
8228
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indicates that #=4.61 at the bolt's apex. Finally, interpolation in

[£2(189:190),v2(189:190)]

4.9500
5.0000

9.4000
9.4500

-3.3123
-3.8016

-43.4052
-43.7907

gives the impact velocity v(9.41) = —43.48 m/s.

SECTION 2.6

THE RUNGE-KUTTA METHOD

Each problem can be solved with a "template" of computations like those listed in Problem 1. We
include a table showing the slope values &, k,, k;, k, and the xy-values at the ends of two

successive steps of size £ =0.25.

1.

122

To make the first step of size 4 =0.25 we start with the function defined by

flx , y 1 :=

and the initial values

X =

0; b'e

4

= 2; h

and then perform the calculations

k1l
k2
k3
k4

Y
X

fIlx, yl

0.25;

flx + h/2, y + h*kl/2]
flx + h/2, y + h*k2/2]

flx + h, y + h*k3]

y + (h/6)*(kl + 2*k2 + 2*k3 + k4)

x + h

in turn. Here we are using Mathematica notation that translates transparently to standard
mathematical notation describing the corresponding manual computations. A repetition
of this same block of calculations carries out a second step of size /£ =0.25. The

following table lists the intermediate and final results obtained in these two steps.

k1 ko ks ka X Approx.y | Actual y
-2 -1/75 -1.78125 | —1.55469 0.25 1.55762 1.55760
-1.55762 | —-1.36292 | —1.38725 -1.2108 0.5 1.21309 1.21306
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10.

k1 k> ks ka X Approx.y | Actual y

1 1.25 1.3125 1.65625 0.25 0.82422 0.82436

1.64844 2.06055 2.16357 2.73022 0.5 1.35867 1.35914

k1 k> ks ka X Approx.y | Actual y

2 2.25 2.28125 2.57031 0.25 1.56803 1.56805

2.56803 2.88904 2.92916 3.30032 0.5 2.29740 2.29744

k1 ko ks ka X Approx.y | Actual y

-1 -0.75 -0.78128 -55469 0.25 0.80762 0.80760

-0.55762 | —0.36292 | —0.38725 | —0.21080 0.5 0.71309 0.71306

k1 k> ks ka X Approx.y | Actual y

0 -0.125 -0.14063 | —0.28516 0.25 0.96598 0.96597

-28402 -0.44452 | —0.46458 | —0.65016 0.5 0.85130 0.85128

ki ky ks ky X Approx.y | Actual y

0 -0.5 —0.48438 | —0.93945 0.25 1.87882 1.87883

-0.93941 | —1.32105 | —1.28527 | —1.55751 0.5 1.55759 1.55760

ki ky ks ky X Approx.y | Actual y

0 -0.14063 | —0.13980 | —0.55595 0.25 2.95347 2.95349

-0.55378 | -1.21679 | —1.18183 | —1.99351 0.5 2.6475 2.64749

ki ky ks ky X Approx.y | Actualy

1 0.88250 0.89556 0.79940 0.25 0.22315 0.22314

0.80000 0.72387 0.73079 0.66641 0.5 0.40547 0.40547

k1 k> ks ka X Approx.y | Actual y

0.5 0.53223 0.53437 0.57126 0.25 1.13352 1.13352

0.57122 0.61296 0.61611 0.66444 0.5 1.28743 1.28743

k1 ko ks ka X Approx.y | Actual y

0 0.25 0.26587 0.56868 0.25 1.06668 1.06667

0.56891 0.97094 1.05860 1.77245 0.5 1.33337 1.33333
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The results given below for Problems 11-16 were computed using the following MATLAB script.

% Section 2.6, Problems 11-16
0=0; y0=1;

X%

% first run:
h =0.2;
x = x0; y=y0; vyl =y0;
for n = 1:5
kl = £(x,y):
k2 = f(x+h/2,y+h*kl1l/2);
k3 = f(x+h/2,y+h*k2/2);
k4 = f(x+h,y+h*k3);

vy =y +(h/6)* (k1+2*k2+2*k3+k4) ;
vyl = [yl,v]l;

X = x + h;

end

% second run:
h =10.1;
x = x0; y=y0; y2 =y0;
for n = 1:10
kl = £(x,y);
k2 = f(x+h/2,y+h*kl1l/2);
k3 = f(x+h/2,y+h*k2/2);
k4 = f(x+h,y+h*k3);
vy =y +(h/6)* (k1l+2*k2+2*k3+k4) ;
y2 = [y2,y]:;
X = X + h;
end

% exact values
x =x0 : 0.2 : x0+1;
ye = g(x);

% display table

y2 = y2(1:2:11) ;

err = 100* (ye-y2)./ye;

X = sprintf('%10.6f',x), sprintf('\n');

vyl = sprintf('%$10.6£f',yl), sprintf('\n');
y2 = sprintf('%10.6£f',y2), sprintf('\n');
ye = sprintf('%10.6£f',ye), sprintf('\n');

err = sprintf('%10.6f',err), sprintf('\n');
table = [x;yl;y2;ye;err]

For each problem the differential equation "= f(x,y) and the known exact solution y = g(x)
are stored in the files £.m and g.m— for instance, the files

function yp = £(x,y)
YP = y-2;

124 Chapter 2



and

11.

12.

13.

14.

15.

function ye = g(x,y)
yve = 2-exp(x);
for Problem 11.
X 0.0 0.2 04 0.6 0.8 1.0
y (h=0.2) | 1.000000 0.778600 0.508182 0.177894 | —0.225521 | -0.718251
y (h=0.1) 1.000000 0.778597 0.508176 0.177882 | —0.225540 | —0.718280
y actual 1.000000 0.778597 0.508175 0.177881 | —0.225541 | —0.718282
error 0.00000% | —0.00002% | —0.00009% | —0.00047% | —0.00061% | —0.00029%
X 0.0 0.2 04 0.6 0.8 1.0
y (h=0.2) | 2.000000 2.111110 2.249998 2.428566 2.666653 2.999963
y (h=0.1) | 2.000000 2.111111 2.250000 2.428571 2.666666 2.999998
y actual 2.000000 2.111111 2.250000 2.428571 2.666667 3.000000
error 0.000000% | 0.000002% | 0.000006% | 0.000014% | 0.000032% | 0.000080%
X 1.0 1.2 1.4 1.6 1.8 2.0
y (h=0.2) | 3.000000 3.173896 3.441170 3.814932 4.300904 4.899004
y (h=0.1) | 3.000000 3.173894 3.441163 3.814919 4.300885 4.898981
y actual 3.000000 3.173894 3.441163 3.814918 4.300884 4.898979
error 0.00000% | —0.00001% | —0.00001% | —0.00002% | —0.00003% | —0.00003%
X 1.0 1.2 1.4 1.6 1.8 2.0
y (4h=0.2) | 1.000000 1.222957 1.507040 1.886667 2.425586 3.257946
y (h=0.1) 1.000000 1.222973 1.507092 1.886795 2.425903 3.258821
y actual 1.000000 1.222975 1.507096 1.886805 2.425928 3.258891
error 0.0000% 0.0001% 0.0003% 0.0005% 0.0010% 0.0021%
X 2.0 2.2 2.4 2.6 2.9 3.0
y (h=0.2) | 3.000000 3.026448 3.094447 3.191719 3.310207 3.444447
y (h=0.1) | 3.000000 3.026446 3.094445 3.191716 3.310204 3.444445
y actual 3.000000 3.026446 3.094444 3.191716 3.310204 3.444444
error 0.000000% | —0.000004% | —0.000005% | —0.000005% | —0.000005% | —0.000004%
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16.

17.

x 2.0 2.2 2.4 2.6 2.9 3.0
v (h=0.2) 3.000000 4.243067 5.361409 6.478634 7.634049 8.845150
y (h=0.1) 3.000000 4.242879 5.361308 6.478559 7.633983 8.845089
y actual 3.000000 4.242870 5.361303 6.478555 7.633979 8.845085
error 0.000000% | —0.000221% | —0.000094% | —0.000061% | —0.000047% | —0.000039%
With 7 = 0.2: (1) = 0.350258
With 4 = 0.1: (1) = 0.350234
With 4 = 0.05: (1) = 0.350232
With 4 = 0.025: (1) = 0.350232
The table of numerical results is
y with y with y with y with
X h=0.2 h=0.1 h=0.05 h=0.025
0.0 0.000000 0.000000 0.000000 0.000000
0.2 0.002667 0.002667 0.002667 0.002667
04 0.021360 0.021359 0.021359 0.021359
0.6 0.072451 0.072448 0.072448 0.072448
0.8 0.174090 0.174081 0.174080 0.174080
1.0 0.350258 0.350234 0.350232 0.350232

In Problems 18-24 we give only the final approximate values of y obtained using the Runge-Kutta
method with step sizes # = 0.2, & = 0.1, # = 0.05,and & = 0.025.

18. With 2 = 0.2: ¥(2) = 1.679513
With 7 = 0.1: ¥(2) = 1.679461
With 2 = 0.05: W2) = 1.679459
With 2 = 0.025: ¥(2) = 1.679459
19. With 2 = 0.2: ¥(2) = 6.411464
With 2 = 0.1: ¥(2) = 6.411474
With & = 0.05: ¥(2) = 6.411474
With 2 = 0.025:  ¥(2) = 6.411474
20. With 2 = 0.2: ¥(2) = —1.259990
With 4 = 0.1: ¥(2) = —1.259992
With 2 = 0.05: ¥(2) = —1.259993
With 2 = 0.025: ¥(2) = —1.259993
21.  With A = 0.2 W(2) = 2.872467
With 7 = 0.1: y(2) = 2.872468
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22,

23.

24.

25.

26.

With £ = 0.05:  1(2) = 2.872468

With /# = 0.025:  1(2) = 2.872468
With & = 0.2: 12) = 7.326761
With & = 0.1: 1(2) = 7.328452
With £ = 0.05:  3(2) = 7.328971
With £ = 0.025:  1(2) = 7.329134
With & = 0.2: y(1) = 1230725
With & = 0.1: (1) = 1230731
With # = 0.05: (1) = 1.230731

With 7 = 0.025: (1) = 1.230731

With & = 0.2: 3(1) = 1.000000
With & = 0.1: 3(1) = 1.000000
With 4 = 0.05: (1) = 1.000000

With 4 = 0.025: (1) = 1.000000

Here f(t,v)=32-1.6v and ¢,=0, v,=0.
With £ =0.1, 10 iterations of

k= f(t,,v,), k,= f(t,+Lh,v, +1hk),
k3 = f(tn +%havn +%hk2)’ k4 = f(tn +h,Vn +hk3),
k =+(k +2k, + 2k, +k,), V.=V, +hk

yield v(1) =15.9620, and 20 iterations with 2 =0.05 yield v(1) =15.9621. Thus we

observe an approximate velocity of 15.962 ft/sec after 1 second — 80% of the limiting
velocity of 20 ft/sec.

With 4 =0.1, 20 iterations yield v(2) =19.1847, and 40 iterations with 2 =0.05 yield
v(2) =19.1848. Thus we observe an approximate velocity of 19.185 ft/sec after 2
seconds — 96% of the limiting velocity of 20 ft/sec.

Here f(¢,P)=0.0225P—0.003P*> and t,=0, P,=25.
With & =6, 10 iterations of

ko= f(@,F), k,= f(t, +L+h,P +L1hk),
k3:f(tn+%h’vn+%hk2)’ k4:f(tn+h,Pn+hk3),
k =+(k +2k, + 2k, +k,), P. =P +hk

yield P(60)=49.3915, as do 20 iterations with 4 = 3. Thus we observe an approximate
population of 49.3915 deer after 5 years — 65% of the limiting population of 75 deer.
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27.

28.

With 4 =6, 20 iterations yield P(120) = 66.1136, as do 40 iterations with 4 =3. Thus we

observe an approximate population of 66.1136 deer after 10 years — 88% of the limiting
population of 75 deer.

Here f(x,y)=x"+y>—-1 and x,=0, y,=0. The following table gives the

approximate values for the successive step sizes 4 and corresponding numbers 7 of steps.
It appears likely that y(2)=1.00445 rounded off accurate to 5 decimal places.

h 1 0.1 0.01 0.001
n 2 20 200 2000
y(2) 1.05722  11.00447 11.00445 [1.00445

Here f(x,y)=x+1y* and x,=-2, y,=0. The following table gives the

approximate values for the successive step sizes /# and corresponding numbers n of steps.
It appears likely that »(2) =1.46331 rounded off accurate to 5 decimal places.

h 1 0.1 0.01 0.001
n 4 40 00 40000
y(2) 1.48990 |1.46332 1.46331 [1.46331

In the solutions for Problems 29 and 30 we use the general MATLAB solver ode that was listed
prior to the Problem 29 solution in Section 2.5. To use the Runge-Kutta method, we call as
'method' the following function.
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function [t,y] = rk(yp, t0,tl, yO0)

% [t, y]l = rk(yp, t0, t1, yO)

% Takes one Runge-Kutta step for

% y' =yp( t,¥y ),

%

% from t0 to tl with initial value the
% column vector yoO.

h = tl1l - t0;

kl = feval(yp, tO , YO ) ;
k2 = feval(yp, t0O + h/2, y0 + (h/2)*kl );
k3 = feval(yp, t0O + h/2, y0 + (h/2)*k2 );
k4 = feval(yp, t0O + h ;Y0 + h *k3 );
k = (1/6)* (k1 + 2*k2 + 2*k3 + k4);

t = tl;

y = y0 + h*k;
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29.  Here our differential equation is described by the MATLAB function

function vp = vpboltl(t,v)
vp = -0.04*v - 9.8;

Then the commands

n = 100;
[tl,v1] = ode('rk',6 'vpboltl',0,10,49,n);
n = 200;

[t2,v] = ode('rk', 'vpboltl',0,10,49,n);
t = (0:10)"';

ve = 294*exp(-t/25) -245;

[t, v1(1:n/20:1+n/2), v(1l:n/10:n+l), vel

generate the table

t withn =100 withn=200 actualv

0 49.0000 49.0000 49.0000
1 37.4721 37.4721 37.4721
2 26.3962 26.3962 26.3962
3 15.7546 15.7546 15.7546
4 5.5303 5.5303 5.5303
5 -4.2932 -4 .2932 -4.2932
6 -13.7314 -13.7314 -13.7314
7 -22.7996 -22.7996 -22.7996
8 -31.5122 -31.5122 -31.5122
9 -39.8832 -39.8832 -39.8832
10 -47.9259 -47.9259 -47.9259

We notice first that the final three columns agree to the 4 displayed decimal places.
Scanning the last column for sign changes in v, we suspect that v=0 (at the bolt's apex)
occurs just after #=4.5 sec. Then interpolation between ¢#=4.55 and #=4.60 in the table

[£2(91:95),v(91:95)]

4.5000 0.5694
4.5500 0.0788
4.6000 -0.4109
4.6500 -0.8996
4.7000 -1.3873

indicates that t=4.56 at the bolt's apex. Now the commands

zeros (n+1,1);

Y
h 10/n;
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for j = 2:n+l
y(3) = y(3-1) + v(j-1)*h +
0.5*%(-.04*v(j-1)
end
ye = 7350* (1 - exp(-t/25)) - 245*t;

[t, y(1:n/10:n+1), vel

generate the table

t Approx y

0
43.1974
75.0945
96.1342
106.7424
107.3281
98.2842
79.9883
52.8032
17.0775

0 -26.8540

P WO o0oJ0 Ul b WNREOo

Actual y

0
43.1976
75.0949
96.1348
106.7432
107.3290
98.2852
79.9895
52.8046
17.0790
-26.8523

- 9.8)*h™2;

We see at least 2-decimal place agreement between approximate and actual values of y.
Finally, interpolation between =9 and 7= 10 here suggests that y =0 just after =9.4.
Then interpolation between ¢=9.40 and 7= 9.45 in the table

[t2(187:191),y(187:191)]

9.3000 4.7448
9.3500 2.6182
9.4000 0.4713
9.4500 -1.6957
9.5000 -3.8829

indicates that the bolt is aloft for about 9.41 seconds.

30.  Now our differential equation is described by the MATLAB function
function vp = vpbolt2(t,v)
vp = -0.0011l*v.*abs(v) - 9.8;

Then the commands

n = 200;
[tl,vl] = ode('rk', 'vpbolt2',0,10,49,n);
n = 2*n;
[t2,v] = ode('rk', 'vpbolt2',0,10,49,n);
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t =
ve =

ve(6:11) =

[t, v1(1:n/20:1+n/2),

(

0:10)';

zeros (size(t));
ve(l:5)= 94.388*tan(0.478837

generate the table

P O o0 J0 Uldbd WNEFEO

with n =200

49.0000
37.1548
26.2430
15.9456
6.0046
-3.8015
13.5101
-22.9354
-31.8985
-40.2559
-47.9071

with n =400
49.0000 49.
37.1548 37.
26.2430 26.
15.9456 15.
6.0046
-3.8015 -3.
-13.5101 -13.
-22.9354 -22.
-31.8985 -31.
-40.2559 -40.
-47.9071 -47.

6.

- 0.103827*t(1:5));

v(l:n/10:n+1), vel

actual v

0000
1547
2429
9455
0045
8013
5100
9353
8984
2559
9071

-94.388*tanh(0.103827*(t(6:11)-4.6119)) ;

We notice first that the final three columns almost agree to the 4 displayed decimal places.
Scanning the last colmun for sign changes in v, we suspect that v=0 (at the bolt's apex)
occurs just after #=4.6 sec. Then interpolation between ¢#=4.600 and ¢=4.625 in the

table

[t2(185:189),v(185:189)]

L N

indicates that

Y
h =
for

v(3) = y(3-1) + v(§-1)*h + 0.5%(-.04*v(§-1)

end
ye =

ye(l:5)= 108.465+909.091*1log(cos(0.478837

.6000 0.
.6250 -0.
.6500 -0.
.6750 -0.
.7000 -0.

t=4.61 atthe bolt's apex. Now the commands

1165
1285
3735
6185
8635

zeros (n+1,1);
10/n;

3

= 2:n+1

zeros (size(t));

0.103827*t(1:5)));

ye(6:11)= 108.465-909.091*1log(cosh(0.103827
*(t(6:11)-4.6119)));

[t, y(1:n/10:n+1), vel

Section 2.6

- 9.8)*h"2;
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generate the table

t Approx y Actual y
0 0 0.0001
1 42.9881 42.9841
2 74.6217 74.6197
3 95.6719 95.6742
4 106.6232 106.6292
5 107.7206 107.7272
6 99.0526 99.0560
7 80.8027 80.8018
8 53.3439 53.3398
9 17.2113 17.2072
10 -26.9369 -26.9363

We see almost 2-decimal place agreement between approximate and actual values of y.
Finally, interpolation between =9 and = 10 here suggests that y =0 just after t=9.4.
Then interpolation between ¢=9.400 and ¢#=9.425 in the table

[£2(377:381),y(377:381)]

9.4000 0.4740
9.4250 -0.6137
9.4500 -1.7062
9.4750 -2.8035
9.5000 -3.9055

indicates that the bolt is aloft for about 9.41 seconds.
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