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Chapter 2. First-Order Equations

Section 2.1. Differential Equations and Solutions

1. ¢(t,y,y) =1t*y+(14+1)y = 0 must be solved for
Y. We get

;. (@+0y
y == 2

2. ¢(@t,y,y) =ty — 2y — t* must be solved for y'.
We get

,=2y+t2
t

3. y/(t) = —Cte~ WD and —ty(t) = —1Ce~ 127,
soy' = —ty.

12
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4. YO +yt)=Q2—Ce™)+ (2t -2+ Ce™) =2t

. Ify(t) = (4/5)cost + (8/5) sint + Ce‘“(‘/z)’, then

y®'+1/2)y(@)
= [—(4/5)sint + (8/5) cost — (C/2)e~1/?"]
+ (1/2)[(4/5) cost + (8/5) sint 4+ Ce /2]
=2cost.
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6. Ify(t) = 4/(1 + Ce=), then

,__16Ce4
(1 + Ce—4n)2

4
Y49 = g < 4= Ty G
16(1 + Ce™*) — 16
T T (1 + Cetin)2
16C &40
(1 + Ce—4n)2

y

7. For y(t) = 0, y'(¢) = 0 and y(t)(4 — y(t)) =
04-0)=0.

8. (a) Ift> + y? = C?, then

d o, o _d,
d#t+y)‘df
2t +2yy =0

t+yy =0

O I y@t) = £J/C?-12
Ft/+/C? —¢2, and

t+yy =1+ [V C2 - 2)[Ft/v/C? — 12]
=t—t
=0.

then y =

(c) For +/C% — 2 to be defined we must have
t? < C2. In order that y'(t) = Ft//C? — 12,
we must restrict the domain further. Hence the
interval of existence is —C <t < C.

G

9.

10.

2.1 Differential Equations and Solutions 13

(a) If 12 — 4y? = ¢?, then

d 2 _ 4,

(2 —4yY) = —t

a TYI=g
2t —8yy =0
t—4yy =0.

®) If y(t) = H£/t2-C2/2, then y =
+1/(2+/t2 — C?), and

t —4yy’
= 1 — A[£y1 — C2/2)[£1/ 2V — C2)]
=f—t
= 0.

(¢) The interval of existence is either —co0 < t <
—CorC <t < o0.

(d)

If y(#) = 3/(6t — 11), then y/ = —3 - 6/(6¢ —
11)2 = —18/(6¢ — 11)2. On the other hand, —2y? =
—2[3/(6t — 11)]*> = —18/(6¢ — 11)?, so we have a
solution to the differential equation. Since y(2) =
—3/(12 — 11) = -3, we have a solution to the ini-
tial value problem. The interval of existence is the
interval containing 2 where 6¢ — 11 # 0. This is the
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14 Chapter2 First-Order Equations

interval (11/6, 00). the interval (—o00, 00).
15 Y
OT L~
5 )
10
-1
>

5

(2,3) -

0 -

2 3 4 5
) —

1 5
. . ) ) 13. y(t) = = t>4—. Theinterval of existence is (0, 00).
11. See Exercise 6. The interval of existence is 3 3t

(=00, In(5)/4).

105

-2 -1 o, 1 )

(1.2)

14. Weneed ! = y(1) = e~ }(1 + C/(1)) = (1 +

C)e!. Hence C = 0, and our solution is y(¢) =

te™*. This function is defined and differentiable on

12. y(t) = (4/17)cost +(1/17) sint — (21/17)e™* on the whole real line. Hence the interval of existence
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is the whole real line.

15. y(t) = 2/(—14e~?/3). The interval of existence is
(—1n(3)/2, 00).

(1,e7)

16. The initial value problem is

Y =,

The first solution proposed by Maple, y(¢)
(1/4)(t + 2)?, satisfies the initial condition, y(0)

(1/4)(0+2)? = 1. Next,

and

1
()= E(’ +2),

VY@ =4/ %(t +2)

2.1 Differential Equations and Solutions 19

But this equals (1/2)(¢+2) onlyif f > —2, as shown
in the following figure.

Ao

A

[}
v
~

The second solution proposed by Maple, y(t) =
(1/4)(t—2)?, satisfies the initial condition, as y(0) =
(1/4)(0 —2)*> = 1. But

Y@ =52,

and

V3@ =36 -20 =21 - 21

But this agrees with (1/2)(t — 2) only if + > 2, as
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16 Chapter2 First-Order Equations

shown in the following figure. 18.
y' =y -t
/) /= N\
y
A
o/ / — N\
VA
o) /T N\
-2 -1 0 1 2
< L g > {
2,0) t
19.
y’ =ttan(y/2)
v

TN N — S/

Note that this graph does not pass through (0, 1).
Hence, y(t) = (1/4)(t — 2)? is not a solution of the

initial value problem. -1 / S — \

-2 -1 0 1 2
t
17. 20.
y =y +t y =2y +y)
1.5
it — / / / 1 / < T o /
0.5

05

AtV NN — AP\ —

2 - 0 1 2 B I— 0 1 2
t t
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17

2.1 Differential Equations and Solutions

the right-hand side of

21.

y+t

_ty

y'=

is undefined.
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24. Note the difficulty experienced by the solver as it ap-

proaches the line y = ¢, where the denominator of
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18 Chapter2 First-Order Equations

27. 30.
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2.1 Differential Equations and Solutions

33. tion curve.
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19

Using the solution curve, we estimate that P(10) =~
124. Thus, there are approximately 124 mg of bac-

teria present after 10 days.

34.
36. We must solve the initial value problem
dA
— = —0.254, A(0) = 400.
dt
Using our numerical solver, we input the equation
and initial condition, arriving at the following solu-
tion curve.
4 6
BOOF S SN A%y A s N aA S v v s Vv s
SNNNSNNNSNNS NN NN
P R R
400} xSNIvINT VIvVINVAVAIVAYY
> NNN N NN NN NNNANS NSNS S
SN NN SN NN S SNNNSNSSSSSNSSSY
300 A AN T AT
< IIIING ' NN
200 .;.$.\$.\\.\f .......... : :::
100 %Aﬁ.‘u%EA*H'F.\.*A\*h:*.\*N
35. We must solve the initial value problem 0
0 2 4 6
t
dP Use the solution curve to estimate A(4) ~ 150.
dr 0.44p, P(0) = L.5. Thus, there are approximately 150 mg of material

remaining after 4 days.

37. We must solve the initial value problem

Using our numerical solver, we input the equation dc

and initial condition, arriving at the following solu- a —0.055¢, c(0) = 0.10.
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38.

Chapter 2 First-Order Equations

Using our numerical solver, we input the equation
and initial condition, arriving at the following solu-
tion curve.
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.Use the solution curve to estimate that it takes a little
more than 29 days for the concentration level to dip
below 0.02.

The rate at which the rod cools is proportional to the
difference between the temperature of the rod and
the surrounding air (20° Celsius). Thus,

dT
— = —k(T —-20).
o ( )

With & = 0.085 and an initial temperature of 300°
Celsius, we must solve the initial value problem

dT
— = —0.085(T — 20),
R ( )

where T is the temperature of the rod at ¢+ minutes.
Note that since the initial temperature is larger than
the surrounding air (20° Celsius), the minus sign in-
sures that the model implies that the rod is cooling.
Using our numerical solver, we input the equation
and initial condition, arriving at the following solu-
tion curve.
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Use the solution curve to estimate that it takes a little
less than 15 minutes to cool to 100° Celsius.

The rate at which the population is changing with
respect to time is proportional to the product of the
population and the number of critters less than the
“carrying capacity” (100). Thus,

dP
— =kP(100 — P).
h ( )

With £ = 0.00125 and an initial population of 20
critters, we must solve the initial value problem

dpP
o= 0.00125P (100 — P),

P(0) = 20.
Note that the right-hand side of this equation is posi-
tive if the number of critters is less than the carrying
capacity (100). Thus, we have growth. Using our nu-
merical solver, we input the equation and the initial
condition, arriving at the following solution curve.
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t

Use the solution curve to estimate that there are about
91 critters in the environment at the end of 30 days.
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2.2 Solutions to Separable Equations 21

Section 2.2. Solutions to Separable Equations

1. Separate the variables and integrate. 5. Separate the variables and integrate.
zi—; =Xy dx yx+1)
dy lay=G+1)d
— = xdx y=x+1)dx
y y
1, 1n||—1x2+ +C
In|y| = Ex +C Y= 3 X
ly(x)| = */2+C ly| = /¥ +x+C
y(x) - :':ec . ex2/2 y(x) — iece(l/Z)x2+x
— Aex2/2’ Letting D= ieC’ y = De(1/2)x2+x‘
Where the constant A = %€ is arbitrary. 6. Separate the variables and integrate. Note: Factor
the right-hand side.
2. Separate the variables and integrate. dy N
d ZE=(€ + D —-2)
x-y =2y 1
ldx ) —dy=(+1)dx
y —
yO T Inly—2|=¢ +x+C
Injy|=2In|x|+C ,y_2'___ee"+x+c
Iyl = 3 +C y —2=+4ele
. C.2 X4y
y(x) = te"x Letting D = +¢C, y(x) = De€ +* 4 2.
Letling D = e, y(x) = Dx2 7. Separate the variables and integrate,
8 y P gt
3. Separate the variables and integrate. ‘_12 -
dx y+2’
@_’=ex—y (y+2)dy =xdx,
dx X 1 2 1 2
e’dy = e*dx Ey +2y=§x +C,
e = +C

Y +4y — *+ D) =0,
y(x) =" + C)
With D replacing 2C in the last step. We can use the

4. Separate the variables and integrate. quadratic formula to solve for y.

2
dy X _ —4+ /164467 1+ D)
=+ y(x) >
1 = -2 /x? D+4
—— dy = e*dx y) O
1+ y?
1.
tan" y=e"+C If we replace D + 4 with another arbitrary constant
y(x) = tan(e® + C) E,then y(x) = -2+ +/x2 + E.
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22 Chapter2 First-Order Equations

8. Separate the variables and integrate.

dy x
dx_y x—1

1 1

—dy = (1-1— )dx

y x—1

Injyl]=x+Injx—-1+C
Iyl =ex+]n|x-—1|+C

y(x) — ieCexelnlx«H

Letting D = #e€, y(x) = De*|x — 1]. It is impor-
tant to note that this solution is not differentiable at
x = 1 and further information (perhaps in the form
of an initial condition) is needed to remove the ab-
solute value and determine the interval of existence.

9. First a litile algebra.
x%y =ylny—y
(x*+ 1)y =ylny
Separate the variables and integrate.
1 1

dy = d
ylny Y x2+1 *
1 1
Jdu=——dx,
u x2+1 o

where u = Iny and du = %dy. Hence, In ju| =
tan~! x + C. Solve for u:
lul — etan“]x+C
u = :l___eCetan‘1 x
Let D = +eC, replace u with In y, and solve for y.

Iny = De™ '
~1,
y(x) = P

10.
d
x 2L = 31+ 247)
dx
d 1+ 2x2 1
Q= +2x dx=[—+2x] dx
y X x

In|y|=In|x| +x*+C
'y(-x)l — eln|x|+x2+C — ec‘xlex2

y(x) = Axe”
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11.
dy
3
=L =
o )dx *

® = 2)dy = xdx
4 2
y x
— —2y=—+C.
i
The solution is given implicitly by the equation
y* — 8y — 2x% = A, where we have set A = 4C.

12.
dy 2x(y+1)
e
dy 2x dx
mzxz—l
Inly+1=Inx>=1/+C
ly + 1 — n-1+C _ ,C Ix? — 1|

y(x) =A@ —1)—1.

13.
dy
dx —
dy
y
Ayl =Inlx| +C
D’(X)| — eln[xH—C

y(x) = Ax.

R

= e |x|

The initial condition y(1) = —2 gives A = —2. The
solution is y(x) = —2x. The solution is defined for
all x, but the differential equation is not defined at
x = 0 so the interval of existence is (0, 00).

14.
dy 2t(1 4+ y?)

o = _—y__

ydy

= —2tdt
1+ y?

1
5 Il + V) =—12+C

., 942
1+y2=627+C:eCe 2t

1+y* = Ae™’
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With y(0) = 1, 1+12 = Ae~2®” and A = 2. Thus,

14y = 22
y = +v2e-2% — 1,
We must choose the branch that contains the initial

condition y(0) = 1. Thus, y = v/2¢=2* — 1. This
solution is defined, provided that

2% —1>0
—2¢2 _1_
¢ 2

1
—2t2>1n~
> n 5

1
2 <=2In=
t2 <In4d

lt] < v/In4.

Thus, the interval of existence is (—+/In4, +/In4).

15.
dy sinx
dx ~ y
ydy =sinxdx
1

-2—y2 = —cosx + C;
y*=—2cosx+C (C=2C)
y(x) = £/C —2cosx

Using the initial condition we notice that we need
the plus sign, and 1 = y(/2) = +/C. Thus C = 1
and the solution is

y(x) =+1—2cosx.

The interval of existence will be the interval con-
taining 7r/2 where 2cosx < 1. Thisis 7/3 < x <
S5m/3.

2.2 Solutions to Separable Equations 23

16.
ﬂ = 1Y
dx
eVdy=¢e"dx
—e V=" +C
eV =—"-C
—y =In(—€e* — C)
y = —In(—e* = C)
With y(0) =1,
1=—1In(=e"-C)
—-1-C=¢"!
C=—-1-¢"
Thus,
y=—In(—e*+e ' +1).
This solution is defined provided that
—F+e ' +1>0
e <e 41
x <In(e™! +1).
Thus, the interval of existence is (—oo, In(e™! +1)).
17.
dy 2
=2 -1
dt +y
d
Y~ dt
1+y?
tan"l(y) =t +C
y(¢) =tan(t + C)
For the initial condition we have 1 = y(0) =tanC,
so C = m/4 and the solution is y(t) = tan(t +
7 /4). Since the tangent is continuous on the interval
(—m/2,7/2), the solution y(¢) = tan(r + 7 /4) is
continuous on the interval (—37/4, m/4).
18.
dy  x
dx 142y

(14+2y)dy =xdx
y+y =x*2+C

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.

No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



24

19.

Chapter 2 First-Order Equations

This last equation can be written as y> +y — (x2/2+
C) = 0. We solve for y using the quadratic formula

y(x) = [—1 +1+ 4022+ c,)] 2

=[—-1i 2x2+c]/2 (C=1+4C)

For the initial condition y(—1) = 0 we need to take
the plus sign in order to counter the —1. Then the
initial condition becomes 0 = [—1 + +/2 4+ C]/2,
which means that C = —1. Thus the solution is

~14+V/2x2 -1

y(x) = 5

For the interval of existence we need the interval con-
taining —1 where 2x%> — 1 > 0. Thisis —oc0 < x <

—1/4/2.

With y(0) = 1, we getthe solution y(x) = /1 + x2,
with interval of existence (—o00, 00). This solu-
tion is plotted with the solid curve in the follow-
ing figure. With y(0) = —1, we get the solu-
tion y(x) = —/1 + x2, with interval of existence
(—00, 00). This solution is plotted with the dashed
curve in the following figure.

4
0 > X
-2 0 2
—~ 71T ~
- - -2 o
- ~
- ~
-4
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20.

21.

dy x

dx — y
vdy = —xdx
1, 1,
= C
2y 2x +
y? =2C —x?

y =+y2C — x2

With y(0) = 2, we choose the positive branch
and 2 = +/2C leads to C = 2 and the solution
y = +/4 — x2 with interval of existence (-2, 2).
This solution is plotted as a solid curve in the fol-
lowing figure. With y(0) = —2, we choose the neg-
ative branch and —2 = —+/2C leads to C = 2 and
the solution y — +/4 — x2 with interval of existence
(—2, 2). This solution is shown as a dashed curve in
the figure.

>

With y(0) = 3 the solution is y(¢) = 2 + e~ %, on
(—o00, 00). This solution is plotted is the solid curve
in the next figure. With y(0) = 1 the solution is
y(@) =2—e", on (—oo, 00). This solution is plot-
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ted is the dashed curve in the next figure.

10
5
ol ~ t
7/
- 2 4
2 / 0
/
/ 51
22.
dy Yy +1
dx ~ y
ydy —dx
y +1

1
51n(y2+1)=x+c
y2+ 1 =er+2C =A62x
y2=A€2x—].
y(x) = kv A — 1

(A=)

This is the general solution. The initial condition

y(1) = 2 gives
2=+ Ae? -1
4=Ae"—1
A =5¢72

The particular solution is

y(x) = /522 — 1.

The interval of existence requires that
572 -1>0
2x —2 > In(1/5)
x >1-—1In(5)/2 = 0.1953.

Thus the interval of existence is 1 — In(5)/2 < x <
0.

2.2 Solutions to Separable Equations 25
23. We have N(t) = Npe ™, and

N(t 4 Tij2) = Noe M+T112)
= Nge ™™ . ¢~

= N(t)-e M1

1

ife™12 =1/2,0r T =In2/A.

24. (a) A=1In2/Ty) = 1.5507 x 1078,

(b) We have Ny = 1000 and N(¢) = 100. Hence
100 = 1000- e, 0rt =1n 10/ = 1.4849 x
108 years.

N(4) = 100e~*. Hence A
0.0558. Then T}/z = In 2/)\

25. We have 80
In(100/80)/4
12.4251 hours.

26. Using Ti;, = 6 hours, we have A = In2/Ty»
0.1155. Then N(9) = 10e~°* = 3.5355kg.

27. Using T, = 8.04 days, we have A = In2/Ty;» =
0.0862. Then N (20) = 500e~2%* = 89.1537mg.

28. The decay constants are related to the half-lives
by A0 = In(2)/2.42 = 0.2864 and Ay =
In(2)/15 = 0.0462. The amount of 2°Rn is given by
x(t) = xpe 210" and of 2'Rn by y(t) = ype 211",
The initial condition is that y(0)/x(0) = yo/xo =
0.2/0.8, = 1/4, so 4xy = 4y,. We are looking
for a time ¢ when 0.8/0.2 = 4 = y()/x(t) =
e'®210-%211) /4 Thus we need e'®2107%21) = 16.
From this we find that r = 11.5 hours.

29. (a) If N = Npe™, then substituting 7), = 1/A,

N = Nge
= Npe (/%
= Noe_l.
Therefore, after a period of one time constant
T, = 1/, the material remaining is Noe™'.

Thus, the amount of radioactive substance has
decreased to e~! of its original value Nj.
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26 Chapter2 First-Order Equations

(b) If the half-life is 12 hours, then

L No = Noe 02
? 1
e—lZA — 5 1
—12) = m51
In >
A= _—122

Hence, the time constant is

(c) If 1000 mg of the substance is present ini-
tially, then the amount of substance remain-
ing as a function of time is given by N =
1000e*"(1/2)/12_The graph over four time pe-
riods ([0, 4T,]) follows.

1000
800
600
400

200

30. The data is plotted on the following figure. The line
is drawn using the slope found by linear regression.
It has slope —A = —0.0869. Hence the half-life is
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31.

32.

T1/2 =In Z/A, = 7927days

6.8

6.6

InR

6.4

6.2

The half-life is related to the decay constant by

T In2
2= .
Y A226

The decay rate is related to the number of atoms
present by

R = Ay¢N.
Substituting,
NIn2
Ty = R

Calculate the number of atoms present in the 1g sam-
ple.

1mol 6.02 x 102 atoms
N =1gx X
226 g mole
=266 x 10! atoms.
Now,
2. 102! In2
Tip = (2.66 x 10 atoms)(n2) _ 4.99 x 10'%.

3.7 x 10! atom/s

Inyears, T;, ~ 1582 yr. The dedicated reader might
check this result in the CRC Table.

(a) Because half of the existing '*C decays every
5730 years, there will come a time when phys-
ical instruments can no longer measure the re-
maining '#C. After about 10 half-lives (57300
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years), the amount of original material remain-  34.

ing is
1\ 10
Ny (5) ~ 0.00097 Ny,

a very small amount.

(b) The decay constant is calculated with
In2 In2
= — = —— & 0.0001245.
Ty, 5568
We can now write

N = N06—0'0001245t.

The ratio remaining is 0.617 of the current ratio,

)
0.617N0 — Noe—0.0001245t
e—0.0001245t =0.617 35
—0.0001245¢ =1n0.617 ’
. In0.617
T —0.0001245
Thus, the charcoal is approximately 3879 years
old.

33. Lett = 0 correspond to midnight. Thus, T(0) =
31°C. Because the temperature of the surrounding
medium is A = 21°C,wecanuse T = A + (Ty —
A)e™™ and write

T =21+ 31-21)e ™ =214 107",
Att =1, T = 29°C, which can be used to calculate
k.
29 =21 4+ 10e7*®
k = —1n(0.8)
k ~ 0.2231
Thus, T = 21 + 1079223 Ty find the time of
death, enter “normal” body temperature, T = 37°C
and solve for ¢.
37 = 21 4 1025
P Inl.6 36.
T —0.2231
t ~ —2.1 hrs

Thus, the murder occurred at approximately 9:54
PM.

2.2 Solutions to Separable Equations 27

Let y(¢) be the temperature of the beer at time ¢
minutes after being placed into the room. From New-
ton’s law of cooling, we obtain

Y (t) = k(70 — y(t)) y(0) =40

Note k is positive since 70 > y(¢) and y'(t) > 0 (the
beer is warming up). This equation separates as

dy
=kdt
70 —y
which has solution y = 70 — Ce™®. From the
initial condition, y(0) = 40, C = 30. Using

y(10) = 48, we obtain 48 = 70 — 30e~'% or
k = (—1/10)In(11/15) or £k = .0310. When
t = 25, we obtain y(25) =70 — 30e~9 a2 56.18°.

The same differential equation and solution hold as
in the previous problem:

y(t) =70 — Ce™™

We let t = 0 correspond to when the beer was dis-
covered, so y(0) = 50. This means C = 20. We
also have y(10) = 60 or

60 = 70 — 20e~ 1%

Therefore, k = (—1/10)In(1/2) ~ .0693. We want
to find the time 7 when y(T') = 40, which gives the
equation

70 — 20e*T = 40

Since we know k, we can solve this equation for T
to obtain

T =(-1/k)In(3/2) ~ —5.85

or about 5.85 minutes before the beer was discovered
on the counter.

x' = [at+by+c] = a+by = a+bf(at+by+c) =
a+ f(x). For the equation y' = (y+1)?> weuse x =
t+y. Thenx’ = 14y = 14+(y+1)? = 14+x2. Solv-
ing this separable equation in the usual way we get
the general solution x(¢) = tan(t+C). Interms of the
unknown y, we get y(t) = x(t) —t = tan(t +C) —t.
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37.

38.

39.

Chapter 2 First-Order Equations

The tangent line at the point (x,y) is y —y =
¥'(x)(X — x) (the variables for the tangent line have
the hats). The X intercept is Xine = —y/y’ +x. Since
(x, y) bisects the tangent line, we have Xy, = 2x.
Therefore

2x=_y—/y+x

or
y -1

y x
This separable differential equation is easily solved
to obtain y(x) = C/x, where C is an arbitrary con-
stant.

With the notation as in the previous problem, the
equation of the normal line is

The x-intercept is found to be %,y = yy’ + x. Since
Xint — X is given to be =1, we obtain

vy ==+2

with solution y? = 44x + C, where C is an arbitrary
constant.

Let ¢ be the angle from the radius to the tangent.

4

From geometry, tan ¢ = rd6@/dr. Since 6 = 2¢, we
obtain

dr
F7 i rcot¢ = r cot(6/2)
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40.

41.

which can be separated as dr/r = cot(6/2)d6. This
can be solved for r as r(8) = C sin®(6/2), where C
is a constant.

The area under the curve y = y(¢) from 0 to x is

fx y(@)dt
0

which by assumption, equals (1/4)xy(x) (one-
fourth the area of the rectangle). Therefore

/0 Y@ di = (1/4)xy().

Differentiating this equation with respect to x and
using the Fundamental Theorem of Calculus for the
left side gives

yx) = 1/4) (yx) +xy'(x)) -

This equation separates as

y'
y X
which has the solution y(x) = Cx3.
Center the football at the origin with equation
2
245t =4
The top half of the football is the graph of the func-

tion
z=+4—x%2—y%/4.

The (x, y)-components of the path of a rain drop
form a curve in the (x, y)- plane which must always
point in the direction of the gradient of the function
z (the path of steepest descent). The gradient of z is

given by
—xi —(/4)Jj

V4 —x2—y?/4
where i and j are the unit vectors parallel to the x and

y-axis. Since the path traced by the drop, y = y(x),
must point in the direction of Vz, we must have

Vz =

d
A slope of the gradient = o 1.
dx Ty 4x
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42.

43.

This differential equation can be separated and
solved as x = Cy*. C can be solved from the initial
position of the drop (xg, yo) to be C = xo/y3. The
final answer is given by inserting x = Cy* into the
expression for z:

(x,3,2) = (CY*, 3, V4 — C2y8 — y2/4),
(here, y is the independent variable).

Let y(¢) be the level of the water and let V (¢) be the
volume of the water in the bowl] at time #. On the one
hand, we have dV /dt = cross sectional area of the
water level xdy/dt. The cross sectional area of the
water level is wx2, where x is the radius. Using the
equation of the side of the bowl (y = x?), we obtain

dv dy

_—= t)—.

ar ( )dt

On the other hand, dV /dt is equal to wa®v where v
is the speed of the water exiting the bowl. From the
hint, v = /2gy(¢). Thus we obtain the following
differential equation:

d dv
ny(r);% = = = —na?/2gy(0).

This equation can be separated and solved for y as

3 2/3
() = (c —~ EaZ\/@)

Since y(0) = 1, we obtain C = 1. Setting y(¢) = 0,

we obtain
2

P pe—
3a2./2g

in units of seconds (here g = 32).

Let the unknown curve forming the outside of the
bowl be given by y = y(x) (the bowl is then formed
by revolving this curve around the y-axis). We can
also write this equation as x = x(y) (reversing the
roles of the independent and dependent variables).
As in the analysis of the last problem, the rate of

44.

2.3 Models of Motion 29

change of volume, dV /dt is the cross sectional area

multiplied by the rate of change in height, dy/dt.

The cross sectional area is 7x? = wx(y)%. Thus
dv . ,dy
2 g2l
dt dt

From Torricelli’s law:

av
7 —mwa*v = —mwa*\/2gy

Since dy/dt = C (a negative constant), we obtain

Cnx? = —ma®\/2gy

Solving for y, we obtain y = Kx* where K is a
constant.

Following the hint, let 6 be the polar angle and lo-
cate the destroyer at 4 miles along the positive x-axis.
The destroyer wants to follow a path so that its arc
length is always three times that of the sub. To ac-
count for the possibility that the sub heads straight
along the positive x-axis, the destroyer should first
head from x = 4 to x = 1 (the sub would move
from x = 0 to x = 1 in this same time frame under
this scenario). Now the destroyer must circle around
the sub along a polar coordinate path r = r(6). We
have r(0) = 1. If the destroyer intersects the sub at
(8, r(6)), then the sub will have traveled r () and the
destroyer would have traveled [ /7/()2 + r(1)2 d6
(arc length along the curve r = r(#)). Since the
speed of the destroyer is three times that of the sub,
we obtain

]
3(r(@) — 1) = f V(@) +r()?db.
0

Differentiating this equation gives

3r' =/ N2 +7r2 or dr _r®)

e~ B

with solution 7(8) = e%/¥3.

r(0) =1
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Section 2.3. Models of Motion

1.

We need gt = ¢/5. ort = ¢/5¢g = 612,240 sec-
onds. The distance traveled will be s = gt?/2 =
1.84 x 10'* meters.

We need 0 = —9.8¢2/2 + 15¢ + 100. The answer is
6.3 seconds.

The depth of the well satisfies d = 4.9¢2, where t is
the amount of time it takes the stone to hit the water.
It also satisfies d = 340s, where s = 8 — ¢ is the
amount of time it takes for the noise of the splash
to reach the ear. Thus we must solve the quadratic
equation 4.9t> = 340(8 — t). The solution is t =
7.2438sec. The depth is d = 340(8 — ¢) = 257.1m.

In the first 60s the rocket rises to an elevation of
(100 —9.8)#%/2 = 162, 360m and achieves a veloc-
ity of v(60) = (100 — 9.8) x 60 = 5412m/s. After
that the velocity is 5412 — 9.8¢. This is zero at the
highest point, reached when #; = 552.2s. The alti-
tude at that point is 162, 360 + 5412 ¢, —9.8¢7/2 =
1.657 x 10°m. From there to the ground it takes t,s,
where 4.917 = 1.657 x 105, or t, = 581.5s. The
total trip takes 60 4 552.2 4 581.5 = 1193.7s.

The distance dropped in time ¢ is 4.9¢. If T is
the time taken for the first half of the trip, then
49(T +1)? =2x49T% or4.9(T?—-2T —1) =0.
Solving we find that T = 1 + +/2 = 2.4142s. So
the body fell 2 x 49T7? = 57.12m, and it took
T +1=13.4142s.

(a) vo/ 2g
(b) Both times are equal to vy/g.

(C) V.

The velocities must be changed to ft/s, so vy
60mi/h = 60 x 5280/3600 = 88ft/s, and v
30 mi/h = 44ft/s. Thena = (v> — vo)/2(x — X0)
—5.8ft/s%.

nn

We have v(t) = Ce™™/™ — mg/r. If v(0) = O then
C = mg/r, and v(t) = mg(e™""/™ — 1)/r. This is
equal to —mg/2r when e™"/™ = 1/2. Thus the time

required is t = m In(2)/r. The distance traveled is

x—/ v(s)ds
— / ( —rs/m __ l)dS

— [ (1 —rt/m) ]
_mg min2
T or 2r r
2
_mell 5
r2 |2
9. The resistance force has the form R = —rv. When

v =0.2, R = —1sor = 5. The terminal velocity is
Vierm = —mg/r = —0.196m/s.

10.  (a) First, the terminal velocity gives us 20 =
mg/r,orr = mg/20 = 70 x 9.8/20 = 34.3.
Next, we have v(t) = Ce™"/™ — mg/r. Since
v(0) =0,C = mg/r,and v(t) = mg(e™""/™ —
1)/r. Integrating and setting x(0) = 0, we get

X = /t v(s)ds
/(—”/'" 1)ds

[
—12.4938 and x(2) =

Hence v(2) =
—14.5025.

(b) The velocity is 80% of its terminal velocity
when 1 — e~"/™ = (.8. For the values of m =
70 and r = 34.3 this becomes t = 3.2846s.

11. Without air resistance, vp = /2 X% 13.5¢ =
16.2665m/s. With air resistance, vy is defined by

vdv ro

0
| o=l
Hence,
—vo + (mg/r)In(vo +mg/r) —
=135 or
m

(mg/r)In(mg/r)

—v9 +491In(vy + 49) — 491n(49) = —
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12.

13.

14.

This is an implicit equation for vy. Solving on a
calculator or a computer yields vy = 18.1142m/s.

The impact velocity v; is defined by

/‘”‘ vdv rof°
o v+mg/r m Jsg
From which we get
v — (mg/r)In(vi + mg/r) + (mg/r) In(mg/r)
= —SO—r—, or
m
v — 19.6In(v; + 19.6) + 19.61n(19.6) = —25

This is an implicit equation for v;. Solving on a cal-
culator or a computer yields v; = —17.3401m/s.

Following the lead of Exercise 11, we find that
vdv = (—g+ R(v)/m) dy = (=9.8 — 0.50%) dy
Hence if y; is the maximum height we have
O wdv 7
- = —0.5 dy.
/230 2 1196 ,
Hence

230
y; = log(v? +19.6)

0
= 7.9010.

dv __dvdy  dv

(a) Follows from a = i dydr vz);.

(b)
vdv = —(ITG—I:A%dy
v y M
fvo vdv = ——fo ————~(RG+S)2 ds
%(vz ~v) =-GM (—115 - 171?})
v2=v§»2GM(%—ﬁ_1{_—y)

2.3 Models of Motion 31

(¢) If y is the maximum height, the corresponding
velocity is v = 0, so from (3.16)

1 1
y

Solving for y we get the resuit.

(@ If vop < 2GM/R, then vé < 2GM/R,
and 2GM/R — v3 > 0. Hence by (c) the
object has a finite maximum height and does
not escape. However, when vy = /2GM/R,
2GM/R — v = 0, and there is no maximum
height.

15. Let x(r) be the distance from the mass to the center
of the Earth. The force of gravity is kx (proportional
to the distance from the center of the Earth). Since
the force of gravity at the surface (when x = R) is

—mg, we must have k = —mg/R. Newton’s law
becomes
d’x  —mgx
m— =
dr? R

Using the reduction of order technique as given in
the hint, we obtain

dv  —gx
dx R

which can be separated with a solution given by
v = /C — gx2/R. The constant C can be evalu-
ated from the initial condition, v(x = R) = 0, to
be C = gR. When x = 0 (the center of the Earth),
we obtain v = +/C = ,/gR or approximately 4.93
miles per second.

v

16. We will use GM = gR?. Once more we use

GM
®+y2

v 0
/ sds=—GM/ ———@7———2—
0 a (R‘l‘)/)

1 1
UZ:ZGM[—— ]

vdv =

R R+ta
_ 2agR
T a+R

17. The force acting on the chain is the force of grav-
ity applied to the piece of the chain that hangs off
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the table. This force is mgx(¢) where m is the mass
density of the chain. Newton’s law gives

mx"(t) = mgx(t)

Using the hint, x”(t) = dv/dt = v(dv/dx) and so
this equation becomes
v dv _ x
dx &
Separating this equation and integrating gives v? =
gx? + C. Since v = 0 when x = 2 (initial velocity
is zero), we obtain C = —4g. Therefore

18.

N rez) 19

Since dx/dt = v = /g(x? — 4), we can separate

this equation and integrate to obtain

In(x +vx2—4) = /gt +K

where K is a constant. From the initial condition that
x = 2 when ¢t = 0, we obtain K = In2. Inserting
x = 10 and solving for 7, we obtain

t= ~1—— In M ~ .405 seconds
NG 2
v = —g — (k/m)v, v = velocity. Velocity on im-

pact is 58.86 meters/per second downward and 90.9
seconds until he hits the ground.

Let x be the height of the parachuter and let v be
his velocity. The resistance force is proportional
to v and to e™**. Hence it is given by R(x,v) =
—ke™ v, where k is a positive constant. Newton’s
second law gives us mx” = —mg — ke™**x’, or
mx" + ke™x' + mg = 0.

Section 2.4. Linear Equations

1.

Compare y) = —y + 2 with y/ = a(t)y + f(t) and
note that a(t) = —1. Consequently, an integrating
factor is found with

u(t) = ef—a(t)dt — efldt =&
Multiply both sides of our equation by this integrat-

ing factor and check that the left-hand side of the
resulting equation is the derivative of a product.

e +y) =2¢
(e'y) =2¢

Integrate and solve for y. 3.

ey=2"+C

y() =2+ Ce™’
We have a(t) = 3, so u(t) = e~>. Multiplying we
see that the equation becomes

ey — 3¢~y = 567,

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.

We verify that the left-hand side is the derivative of
ey, so when we integrate we get

5
e y(r) = —-3-e—3’ +C.
Solving for y, we get

5
y(t) = -3+ ce.

Compare y’ + (2/x)y = (cosx)/x?> with y/ =
a(x)x + f(x) and note that a(x) = —2/x. Con-
sequently, an integrating factor is found with

u(x) — ef—a(x)dx — efZ/xdx — eZlnlxi — |x|2 — x2‘

Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting
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equation is the derivative of a product.

2 ( ’ 2 )
x“\y +—y]})=cosx
X
x%y' +2xy = cos x
(x%y) = cosx
Integrate and solve for x.
x?y =sinx +C

sinx 4+ C
y(x) = 2

We have a(t) = —2t, sou(t) = e Multiplying by
u, the equation becomes

e’zy' + 2te’2y = 5te'”.
We verify that the left-hand side is the derivative of
e’ ¥, so when we integrate we get
5
e’zy(t) =2 +C.
2
Solving for y we get the general solution

5
y() = 5 +C€_t2.

Compare x' — 2x/(t + 1) = (¢ + 1)? with x’ =
a(t)x + f(¢t) and note that a(t) = —2/(¢ + 1). Con-
sequently, an integrating factor is found with

() = of <0 _ oS A0
— g2l |t + 1|_2 =+ 1)“2-

Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting
equation is the derivative of a product.

2
t+ D)X - ——=x)=1
@+1) (x t+1x)
(t+1D72%) =1
Integrate and solve for x.

t+D2x=t+C
x@) =t + D>+ Ct+1)7°

2.4 Llinear Equations 33

If we write the equations as x’ = (4/t)x + 3, we
see that a(¢) = 4/¢. Thus the integrating factor is

u(t) = e~ SO — p=4int _ =4,
Multiplying by u, the equation becomes
7 =4t =17

After verifying that the left-hand side is the deriva-
tive of #~*x, we can integrate and get

t™*x(t) =Int + C.
Hence the general solution is

x(t) = t*Inr + Cr*.

Divide both sides by 1 + x and solve for y'.

1 + COs X
T+x° " 1+4x

7

y:

Compare this result with y/ = a(x)y + f(x) and
note that a(x) = —1/(1 4+ x). Consequently, an
integrating factor is found with

u(x) = ef ~aWdx — o[ 1/t dx  Jnllx] [14-x|.

fl4+x>0,then|]l4+x|=14+x.If14+x <0,
then |1 + x| = —(1 + x). In either case, if we mul-
tiply both sides of our equation by either integrating
factor, we arrive at

(1+x)y +y=-cosx.

Check that the left-hand side of this result is the deriv-
ative of a product, integrate, and solve for y.

(1 +x)y) =cosx
(1+x)y=sinx+C
sinx + C

y(x) = T3

Divide by 1+ x> to put the equation into normal form

3x?
Y =y +at
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34 Chapter2 First-Order Equations

We see that a(x) = 3x2/(1 + x3). Hence the inte-
grating factor is

— o I3+ dx . —n(4x%) _ _1_
ulx) =e e 1443
Multiplying by this we get
1 3x? x2

I__ — .
1+ T 0202 T 140

We first verify that the left-hand side is the derivative
of (1 4+ x*)~'y. Then we integrate, getting

1 1 ,

Solving for y, we get

+CA+x%).

1
YO = AT )

Divide both side of this equation by L and solve for
di/dt.

di R, + E

i~ L' L

Compare this with i’ = a(t)i + f(#) and note that
a(t) = —R/L. Consequently, an integrating factor
is found with

u(t) = ef ~4®dx _ oJ R/Ld1 _ Ri/L

Multiply both sides of our equation by this integrat-
ing factor and note that the resulting left-hand side
is the derivative of a product.

di R\ E
RyL (GF KN L RryL
¢ (dt + Ll) L

E
(eRr/Li)’ — ___eRt/L
Integrate and solve for i.
eRt/Li —_

E Rt/L
— c
Re +

E
() = = 1L ce—RUL
i(t) R-{— e
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10.

11.

12.

Compare y' = my +cje™ with y’ = a(x)y + f(x)
and note that a(x) = m. Consequently, an integrat-
ing factor is found with

u(x) = ef—a(x)dx — ef—mdx =%

Multiply both sides of the differential equation by
the integrating factor and check that the resulting
left-hand side is the derivative of a product.
y —my = c;e™
ey —me™™) = ¢y
( P y)’ =c
Integrate and solve for y.

e™My=cix+o

y = (c1x + cp)e™

Compare y' = cosx — ysecx with y) = a(x)y +
f(x) and note that a(x) = —secx. Consequently,
an integrating factor is found with

u(x) = el —a)dx _ efsecxdx
= gllseextanxl — | goc x + tan x|.

If secx + tan x > 0, then | sec x + tanx| = secx +
tanx. If secx + tanx < O, then |secx + tanx| =
— (secx 4+ tan x). In either case, when we multiply
both sides of the differential equation by this inte-
grating factor, we arrive at

(secx +tan x)(y'+ y sec x) = cos x(secx +tan x),
or
(secx+tanx)y’'+(sec? x +sec x tan x)y = 1+sin x

Again, check that the left-hand side of this equation
is the derivative of a product, then integrate and solve
for y.
((secx +tanx)y) =1 -+sinx
(secx +tanx)y =x —cosx +C
_x—cosx+C
" secx +tanx
Compare x’ —(n/t)x = e't” withx’ = a(t)x + f(t)
and note that a(¢) = n/t. Consequently, an integrat-
ing factor is found with

u(t) = ol —adr _ [ -njtdt _ ~nlnli| _ "
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13.

Depending on the sign of ¢ and whether » is even or
odd, |¢|™" either equals ™" or —¢t~". In either case,
when we multiply our equation by either of these
integrating factors, we arrive at

Ty — Tl =€

Note that the left-hand side of this result is the deriv-
ative of a product, integrate, and solve for x.

(t"x) =¢
tT"x=€e+C
x=t"e" +Cr"

(a) Compare y’ + ycosx = cosx with y/ =
a(x)y + f(x) and note that a(x) = —cosx.
Consequently, an integrating factor is found
with

u(x) = e~ Jawds _ efcosxdx — finx.
Multiply both sides of the differential equation
by the integrating factor and check that the re-

sulting left-hand side is the derivative of a prod-
uct.

SIn X COS X

M (y + ycosx) =e
% /
(esmxy)

Integrate and solve for y.

="  cosx

esinxy — esinx +C
y(x) =1+ Ce™ S0~
(b)

Separate the variables and integrate.
d
Y _ cosx(1—y)
dx

2 cos x dx
11—y
—In|l — y] =sinx + C.
Take the exponential of each side.
I]- _ }’I — e—sinx—-C
1— y = :l:e—Ce—sinx
If we let A = +e~C, then

y(x) =1— Ae™™"%,

14.

15.

35

2.4 Linear Equations

where A is any real number, except zero. How-
ever, when we separated the variables above by
dividing by y — 1, this was a valid operation
only if y # 1. This hints at another solution.
Note that y = 1 easily checks in the original
equation. Consequently,

y(x) =1= Ae—Sinx,
where A is any real number. Note that this will

produce the same solutions a y = 1+ Ce™ "%,
C any real number, the solution found in part

(a).
Compare y' = y + 2xe** with ¥y = a(x)y + f(x)

and note thata(x) = 1. Consequently, an integrating
factor is found with

u(x) = ol —awdx _ [ ~ldx _ ,—x
Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting

equation is the derivative of a product.

ey —e Ty =2xé*

(e7*y) = 2xe*

Integration by parts yields
f2xe" dx = 2xe” —fZe" =2xe" —2¢" +C.

Consequently,

ey =2xe" —2¢"+C

y(x) = 2xe* — 2% + ce*
The initial condition provides
3=y(0) =2(0)*? —2*¥ + Ce” = -2+ C.
Consequently, C = Sand y(x) = 2xe?* —2¢*+5¢ .
Solve for y'.

6x
x24+1

;L 3x +
y"‘ x2+1y
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Compare this with y' = a(x)y + f(x) and note that
a(x) = —3x/(x?+1). Consequently, an integrating
factor is found with

u(x) = el a@dx _ of 3x/(x%+1) dx
=eWﬂMﬂHh:u2+Dy;
Multiply both sides of our equation by the integrating

factor and note that the left-hand side of the resulting
equation is the derivative of a product.

2+ 12y 4 3x(x> + D2y = 6x(x% 4+ 1)1/2
(2 +D¥2y) =6x(x* + )2
Integrate and solve for y.
&2+ y =22 +1)"+C
y=2+CE*+1)7?

The initial condition gives
—1=y0)=24+C0O*+1)3?=2+C.
Therefore, C = —3 and y(x) = 2 — 3(x2 + 1)73/2.

Solve for y'.

4t + 1
1+27 T 112
Compare this with Y’ = a(t)y 4+ f(¢) and note that

a(t) = —4t/(1 + t?). Consequently, an integrating
factor is found with

u(t) =

— 21n|1+1 |

’

y ==

e/ —adx _ ef4t/(1+t2)dt
(1 + t2)2

Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting
equation is the derivative of a product.

1
14+ 2%y +4t(1 + 1) =
A4y +4e(1 419 7

1+ ¢ —_
(A +H%) = e

A+H%y=tan"'r+C
The initial condition y(1) = 0 gives
1+1%%0) =tan"'1 +C.
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17.

Consequently, C = —n /4 and

tan!

i1
-7

y(@) =

Compare x’ + xcost = (1/2)sin2¢t with x’ =
a(t)x + f(t) and note that a(t) = —cost. Con-
sequently, an integrating factor is found with

u(t) = e/ —andr _ efcostdt = St

Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting
equation is the derivative of a product.

. . 1
e x' e (cost)x = 3¢ " sin 2¢

: P |
(esm tx) — smt sm 2t
2
Use sin2¢ = 2sinf cost.
(eSi“’x) =™ sint cost

Let u = sint and dv = ¢ cos ¢ dt. Then,

/esm’costsintdt=/udv
:uv——fvdu

= (sinz)e™! — / SNt cos ¢ dt

— (Sin t)esint _ esint +C

Therefore,

sin ¢ sin ¢

e X =e

esint + C
x(t) =sinf — 1 + Ce™ "¢

sint —

The initial condition gives
1=x(0) =sin(0) — 1+ Ce™"® = _1 4 C.

Consequently, C =2 and x(¢) = sint — 1 +2¢~ 507,
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18. Solve xy’ + 2y = sinx for y'.

, 2 sinx
y=——-y+t—
x x

Compare this with y’ = a(x)y + f(x) and note that
a(x) = —2/x and f(x) = (sinx)/x. It is important
to note that neither a nor f is continuous at x = 0,
a fact that will heavily influence our interval of ex-
istence.

An integrating factor is found with
u(x) — ef——a(x)dx — ef2/xa'x — eZ]nlxI - |x|2 =x2

Multiply both sides of our equation by the integrating
factor and note that the left-hand side of the resulting
equation is the derivative of a product.

x%y +2xy = xsinx

(xzy)' = xsinx

Integration by parts yields

fxsinxdx = —xcosx+/cosxdx

= —xcosx +sinx + C.

Consequently,
x2y = —xcosx +sinx + C,
1 1 . C
y=-—=cosx + —sinx + —.
X X X

The initial condition provides

4 4C
0=y(m/2) = —+—.

Consequently, C = —1 and y = —(1/x)cosx +
(1/x?)sinx — 1/x2.

We cannot extend any interval to include x = 0, as
our solution is undefined there. The initial condition
¥(mw/2) = 0 forces the solution through a point with
x = /2, a fact which causes us to select (0, +00)
as the interval of existence. The solution curve is
shown in the following figure. Note how it drops to

2.4 Linear Equations 37

negative infinity as x approaches zero from the right.

° (n/2,0)
>
-25
0 X 6
Solve for y’.

1
r_ 2 4+ 3)~1/2
y 2x+3y+(x+ )

Compare this with y/ = a(x)y + f(x) and note
that a(x) = 1/(2x + 3) and f(x) = (2x + 3)"1/2.
It is important to note that a is continuous every-
where except x = —3/2, but f is continuous only
on (—3/2, +00), facts that will heavily influence our
interval of existence.

An integrating factor is found with
u(x) — ef—a(x)dx — ef—l/(2x+3)dx
— e—(1/2)ln 2x+3] _ ]2)6 + 3}——1/2.
However, we will assume that x > —3/2 (a do-
main where both a and f are defined), so u(x) =
(2x + 3)~/2, Multiply both sides of our equation
by the integrating factor and note that the left-hand

side of the resulting equation is the derivative of a
product.

Rx+3)V2y —2x+3)32y=@2x+3)7!
(Cx +3)72y) = @x +3)~"
Integrate and solve for y.
1
Qx +3)7V?y = FnCx+3) +C,

or

1
y= 5(2x +3)21n2x +3) + C(2x + 3)1/2
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38 Chapter2 First-Order Equations

The initial condition provides
0=y(-1)=C.

Consequently, y = (1/2)(2x+3)"/?In(2x +3). The
interval of existence is (—3/2, +00) and the solution
curve is shown in the following figure.

(_1 10)

-1
) 6

20. Compare y = cosx — ysecx with y' = a(x)y +
f(x) and note that a(x) = —secx and f(x) =
cosx. Although f is continuous everywhere, a has
discontinuities at x = 7 /2 + k7, k an integer.

An integrating factor is found with

[ —a(x)dx [secxdx

ux)=e =e

= glrlseex+tanxl — | gec x 4 tan x|.

If secx 4+ tanx > 0, the |secx +tanx| = secx +
tanx. If secx +tanx < O, the |secx + tanx| =
—(secx + tanx). Multiplying our equation by ei-
ther integrating factor produces the same result.

(secx + tan x)y’ + (secx tanx + sec® x)y
=1+ sinx,

From which follows:

((secx +tanx)y) =1+ sinx
(secx +tanx)y =x —cosx + C

Use the initial condition, y(0) = 1.

(sec0 +tan0)(1) =0 —cos(0) + C

21.

Consequently, C = 2 and

X —Ccosx + 2
Y= secx + tanx |

The initial condition forces the graph to pass through
(0, 1), but a(x) has nearby discontinuities at x =
—n/2 and x = 7/2. Consequently, the interval of
existence is maximally extended to (—m/2, /2), as
shown in the following figure.

25
>
(0,1)
-5
-1.57 X 1.57
Solve for x.
, 1 cost
AR P

Compare this result with x’ = a(t)x + f (t) and note
that a(t) = —1/(1 + 1) and f(r) = cost/(1 + 1),
neither of which are continuous at ¢ = —1. An inte-
grating factor is found with

u(t) = el ~aWdr — o[ 1D — Gl — |1 gy,

However, the initial condition dictates that our so-
lution pass through the point (—7/2,0). Because
of the discontinuity at t = —1, our solution must
remain to the left of t = —1. Consequently, with
t < —1,u(t) = —(1+1t). However, multiplying our
equation by u(t) produces
(1 4+1t)x"+x = cost,
((1 +1t)x) = cost,
(1 +8x =sint + C.

Use the initial condition.

(1 - %) (0) = sin (—12’-) +C
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Consequently, C = 1 and

_1+sint
o141

The interval of existence is maximally extended to
(—00, —1), as shown in the following figure.

0 (—n/2,0)

-1
-4 t -1

22. Letz = x!"". Then
dz dz dx

X
— =t =l —n)x " —.
dt  dx dt (1 =n)x dt
This motivates multiplying our equation by (1 —
n)x~" to produce
dx

1 —-n)x" n

- = (- na®)x™" + (1 —n) f@).

Replacing (1 — n)x"dx /dt with dz/dt and x'™"
with z produces the desired result.

dz

- =a- mya(t)z + (1 —n) f ()

23. Inthis case n = 2, so we set z = y~. Then

dz dzdy
dx  dydx
. Y
-]
x
1
= —X + —
xy
z
= —X+ —.
x

24 Linear Equations 39

This is a linear equation for z. The integrating factor
is 1/x, so we have

x|ldx x x
’
[i] =1
x
~=-—-x+C
X
z(x) =x(C —x)
Since z = 1/y, our solution is y(x) = ———.
x(C —Xx)
24. Inthis case n = 2, so we set z = y~!. Then
dz dzdy
dx ~ dydx
=y [y -]
1
y
=-1+z

This is a linear equation for z. The integrating factor
is e™*, so we have

d

o] = e
etz=e"+C
z(x) =1+ Ce".

Since z = 1/y our solution is y(x) =

1+ Ce*’
25. Solve for y'.

1
Y =—=y+xy

X
Compare this with y’ = a(x)y + f(x)y" and note
that this has the form of Bernoulli’s equation with
n=3.Letz=y'"3=y72 Then

dz_ﬁiﬁﬂ_.._z ~3fll

dx dydx Y dx
Multiply the equation by ~2y~3.

d 2
_2y—3d_y — = y—2 _ 2x3
X X
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40 Chapter2 First-Order Equations

Replace —2y~3(dy/dx) with dz/dx and y~? with z.
dz 2

o o B vt
dx )cZ o

This equation is linear with integrating factor
u(x) = ef AW dx _ of 2xdx _ =2zl _ =2,
Multiply by the integrating factor and integrate.
2727 =23 = —2x
(x7%2) = —2x
12z =—x*4C
7= —x*+Cx?
Replace z with y~2 and solve for y.
y2 = —x* + Cx?

y =+1/4/Cx% — x*

26. Compare this with P’ = a(t) P 4+ f(t) P" and note
that this has the form of Bernoulli’s equation with
n=2. Letz= P'"2= P~ Then

dz _dz dP _ P—zdP
dt — dP dt dt’
Multiply the equation by —P 2.
S LA B
dt
Replace — P~2(d P /dt) with dz/dt and P~ with z.
dz
2—; = —az + b

This equation is linear with integrating factor
u(t) = ef——a(r)dt — efadt — .

Multiply by the integrating factor and integrate.

eat_g_‘;_ +aeatz —_ beat
d
E; (EatZ) = be‘”
b

ez=—-e"+C
a

b
z=—+Ce™
a

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.

Replace z with P~! and solve for y.

P—-l — é + Ce—at
a
b 1
" bla+ Ceat

27.  (a) Sincey = y; +2z,y* = y? +2y1z +2z*. Hence
=y -y
= —[¥y* + &y + X1+ [¥27 + éy1 + x]
= ¥Iyi = ¥’ 1+ ¢y — ]
=—Y[2y1z+2°]1— ¢z
= -y + )z — ¥
(b) Since y; = 1/tisasolution, wesetz = y+1/¢.

Theny =z —1/¢t,and y? = 72 — 2z/t + 12,
)

1
Z/_y/____;_z___

1y 4, 1

2 t+y 2

3z
=-—=47

This is a Bernoulli equation with n = 2. Thus
we set w = 1/z. Differentiating, we get
1
!

.
w = tZZ

1 3
3]
t t

3
=——1

1z

3
=—w—1.

t

This is a linear equation, and ¢~ is an integrat-
ing factor.
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28.

29.

Now it is a matter of unravelling the changes of
variable. First

_ 2 _ 2
w@®)  t+2C " t+ B3’

z(t) =
Where we have set B = 2C. Then

1 2 1
N=z(t)—-= -
y(@) =z(0) t t+ B i

This looks a little better if we use partial frac-
tions to write

y(t)=t+Bt3~?
2 2B 1
Tt 1+B2 ¢
_1 2Bt
Tt 1+ B2

The model is N' = kN (1000 — N), where the pro-
portionality constant & is yet to be determined. Since
we know that when N = 100, the rate of infec-
tion is 90/day, we have k - 100 - 900 = 90, we find
that k = 1 x 1073, Hence the model equation is
N’ = N — N?/1000. This is a Bernoulli equation,
with n=2. Accordingly we set x = 1/N. Then

x'=—N'/N*
=—1/N+107°
=—x+1073.

Solving this linear equation, we get x(¢) = 1073[1+
Ce™*]. Hence N(t) = 1/x(r) = 1000/[1 + Ce™"].
Att =0,N =20 = 1/[14+C]. Hence C = 49, and
the solution is N (¢) = 1000/[1 + 49¢77].

We have N(r) = 0.9 x 1000 = 900 when ¢t = 6.089
days.

Newton’s law of cooling says the rate of change
of temperature is equal to k times the difference
between the current temperature and the ambient
temperature. In this case the ambient temperature
is decreasing from 0°C, and at a constant rate of
1°C per hour. Hence the model equation is T’ =
—k(T + t), where we are taking ¢ = 0 to be mid-
night. This is a linear equation. The solution is

30.

31.

24 Linear Equations 41

T(t) = —t + 1/k + Ce™. Since T(0) = 31, the
constant evaluates to C = 31 — 1/k. The solution is
T(t)=—t+ 1/k+ (31 —1/k)e .

We need to compute the time t5 when T'(fy) = 37,
using k ~ 0.2231 from Exercise 35 of Section 2.
This is a nonlinear equation, but using a calculator
or a computer we can find that #, &~ —0.8022. Since
t = 0 corresponds to midnight, this means that the
time of death is approximately 11:12 PM.

The homogeneous equation, y' = —3y has solution
yu(t) = e~>'. We look for a particular solution in
the form y,(¢) = v(#)yx(t), where v is an unknown
function. Since
Yy = vy + vy

= vy, — vy

= v'yn = 3yp,
and y, = =3y, + 4, we have v’ = 4/y, = 4e*.
Integrating we see that v(¢) = 4¢* /3, and

4 4
yp() = v yn() = 593’ e = 3

The general solution is
4 3t
YO =yp(t) + Cnlt) = 5 + Ce™™.

The homogeneous equation, y' = —2y has solution
yu(t) = e~%. We look for a particular solution in
the form y,(¢) = v(¢)y,(t), where v is an unknown
function. Since
¥, = vy + vy,

= v'yp — 2uy;

="y, — 2y,
and y, = -2y, + 5, we have v’ = 5/y, = 5¢”.
Integrating we see that v(¢) = 5¢% /2, and

5 5
Vo) = vOyn(t) = e - e = 2.

The general solution is

y(@) = y,(6) + Cyn(t) = % +Ce2,
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42 Chapter2 First-Order Equations

32. The homogeneous equation, ¥y = —(2/x)y has so-
lution y;, (x) = x~2. We look for a particular solution
in the form y,(x) = v(x)ys(x), where v is an un-
known function. Since

Y, = Vv + vy,
= vy, — 2y, /%,
and y, = —(2/x)yp + 8x, we have v = 8x/y, =
8x3. Hence v(x) = 2x*, and
Yp(x) = v(x)yp(x) = 2x°.
The general solution is

y(t) = yp(t) + Cyp(t) = 2x* + Cx 2.

33. The homogeneous equation, y’ = —y/t, has solu-
tion y,(¢) = 1/t. We look for a particular solution in
the form y,(t) = v(¢)y,(¢), where v is an unknown
function. Since

Yp = V'V + VY,
= vy, — 2vy
=v'yn — yp/1,
and y), = —yp/t + 4, we have v/ = 4t/y, = 4.
Integrating we get v(¢) = 4¢3/3, and

4,
Yp(t) = v()yn(t) = §t )

The general solution is
4
y(@®) = yp(t) + Cyn(t) = gzz +C/t.

34. The homogeneous equation, x’ = —2x has solution
x,(t) = e, We look for a particular solution in
the form x,(t) = v(t)x;(t), where v is an unknown
function. Since

! ’ !
X, =V Xp + vxy,
= v'x, — 2vxy
= v'xp — 2xp,
and x,, = —2x, + 1, we have v/ = t/x; = te®.
Integrating, we get v(t) = (t/2 — 1/4)e¥, and

1
xp(t) = v(@®)xp(t) = Z[Zt —1].

() = x, () + Cxnt) = %[Zt 1]+ e,

3s.

36.

The homogeneous equation, y' = —2xy has solution
yi(x) = e~ . We look for a particular solution in
the form y, (x) = v(x) y(x), where v is an unknown
function. Since

¥, = V'yn + vy

=0y, — 2xyp,

and y, = —2xy, + 4x, we have v’ = 4x/y, =

4xe*’ . Hence v(x) = 2e"2, and

yp(x) = v(x)yp(x) = 2.

The general solution is

Y(E) = yp(t) + Cyu(t) = 2+ Ce*.

The homogeneous equation, y’ = 3y has solution
yu(t) = e*. We look for a particular solution in
the form y, (¢) = v(¢)yx(t), where v is an unknown
function. Since

Yp = V'yn + ¥,
= vy, + 3vy
= v'yn + 3yp,

a'nd y/p = 3yp -+ 4, we haVe U/ = 4/}’11 = 43—3t'

Integrating we see that v(t) = —4e* /3, and

4 4
yp(t) = v()yr(t) = ——3—e“3’ et = -3

The general solution is
4 3t
y@) = yp(t) + Cyp(t) = -3t Ce™.

Since y(0) = 2, we must have 2 = —4/3 4+ C, or
C = 10/3. Thus the solution is

y() = (=4 +10¢™) /3.
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37.

38.

39.

The homogeneous equation y’ = —y/2 has solution
yu(t) = e™*/2. We look for a particular solution of
the form y,(¢) = v(¢#)y»(¢), where v is an unknown
function. Since

/

Y, =V'yn + vy,
=y, — vyn/2
="y — ¥p/2,

and y, = —y,/2+1, we have v’ = 1 /y, (1) = te'/>.
Integrating we find that v(t) = (2t — 4)e'/?, and
yp(t) = v(t)yn(t) = (2t — 4). The general solution
is y(t) = yp(t) + Cy(t) = (2t —4) + Ce™"/2. From
¥(0) = 1 we compute that C = 5, so the solution is

y(t) = (2t — 4) + Se7 /2.

The homogeneous equation y’ = —y has solution
yu(t) = e™'. We look for a particular solution of
the form y,(¢) = v(¢)y,(¢), where v is an unknown
function. Since

¥y =V'yn + vy,

=V'yn — vy
=0y, — Yp»
and y, = —y, + €', we see that v/ = ¢’ /y, = €*.

Integrating we get v(t) = ¥ /2, and yp(t) = €'/2.
The general solution is y(r) = y,(t) + Cy(t) =
e'/2 + Ce™. From y(0) = 1, we compute that
C = 1/2, so the solution is

(¢ +e7).

DN =

y@) =

The homogeneous equation y’ = —2xy has solution
y(x) = e=*. We look for a particular solution of
the form y, (x) = v(x)ys(x), where v is an unknown
function. Since
Yp =V'yn+ vy,
= vy, — 2xvy,

= vy, — 2xyp,

and y, = —2xy, + 2x>, we see that v’ = 2x3e*.
Integrating we get v(x) = (x2 — 1)e*, and yp(x) =

x* — 1. The general solution is y(x) = y,(x) +

40.

41.

24 Linear Equations 43

Cyn(x) = x2 — 1 + Ce™". Since y(0) = —1, we
have C = 0, and the solution is

yx) =x>—1.

The homogeneous equation x’ = (2/t%)x has solu-
tion x,(t) = e~%/*. We look for a particular solution
of the form x,(t) = v(t)x,(¢), where v is an un-
known function. Since

Xy, = v'xp +vxy,
= v'xp + 2vx,/12
=v'x, + 2xp/t2,
and x), = 2x,/1> + 1/1*, we have v/ = 1/(t*x;) =
€?/*/t2. Integrating we find that v(t) = —e*//2,
and x,(t) = —1/2. The general solution is x(¢) =

xp(8) + Cxp(t) = —1/2 + Ce™/". Since x(1) = 0,
we find that C = ¢?/2, and the solution is

=L (1 o)

The homogeneous equation x’ = —4tx /(1 +t%) has
solution x;,(¢) = (14 t2)~2. We look for a particular
solution of the form x,(¢) = v(¢)x,(t), where v is
an unknown function. Since

x, = v'xp + vxy,
= v'xy, — dtx, /(1 +1%),
and x), = —4tx,/(1 41> +1/(1 +1%), so

/ ! 1 2
=—— —— =t(1+1%).
v 14+122 x,() -+

Integrating, we get v(t) = t2/2 + t*/4. Thus

212 414
xp(t) = v(t)x;,(t) = m.
The general solution is
AC + 212 + 1
x(t) = xp(t) + Cxp(t) = T T

The initial condition x(0) = 1 implies that C = 1,
so the solution is
44262 414
YO =T
4(1 +12)
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44  Chapter2 First-Order Equations

42.

43.

(@)

(®)

©

@

(@)

(®

(©)

The equation T + kT = 0 is separable, with
solution Tj, = Ce™*, C an arbitrary constant.

The equation T’ = —k(T — A) is autonomous.
We seek a constant solution (see Section 2.9)
that makes the right side equal to zero. Hence,
T, = A is a particular solution of the inhomo-
geneous equation.

The general solution is T = T, + T, =
Ce™™ 4 A, with C an arbitrary constant.

Again, the solution of the homogeneous equa-
tion T' + kT = 0is T, = Ce™, with C an
arbitrary constant. The inhomogeneous equa-
tion T/ = —k(T — A) + H is also autonomous
(the right side is independent of ¢). We seek a
constant solution by setting the right side equal
to zero.

—k(T,—A)=H
H
T,—A=—
p K

H

T, =A+ —

2 +K

Hence, the general solution is given by the
equation

H
T=Th+Tp=Ce_k’+(A+—K-).

The solution of the homogeneous equation
T +kT = 0is T, = Fe™™, with F an ar-
bitrary constant.

We guess that T, = Ccoswt + Dsinwt is a
particular solution. Substituting T}, and TI; =
—Cwsinwt + Dwcoswt in the left side of
T' + kT = kAsinwt, then gathering coeffi-
cients of cos wt and sin w?, we obtain

44.

T,+kT, = (—wC+kD) sin wt+(kC+wD) cos wt.

4.1)
Comparing this with the right side of 7, +
kT, = kA sinwt, we see that

—wC+kD =kA and kC+wD =0.

Solving these equations simultaneously (for ex-
ample, multiply the first equation by £, the sec-
ond by w, then add the equations to eliminate

C) provides
wkA KA
C=—fraz ™ D=mgrn

Substituting these results in T, = C cos wt +
D sin wt provides the particular solution

kA

——— sin wt.
k2 4+ w?

T, =— cos wt +

k? + o?
Hence, the general solution is
T=T,+ Tp

=Fe™ +

kA
SR [k sin wt — w cos wt] .
[0

(a) If the period of the ambient temperature is 24

hours, then the computation

~_27r___2n_7r
T T 24 12

gives the angular frequency. Because the sinu-
soid has a maximum of 80° F and a minimum
of 40° F, the amplitude will be half of the dif-
ference, or 20. A sketch of the ambient tem-
perature follows.

80 -
70
< 60

50}-

40

Note the minimum at 6 am, then the maximum
at 6 pm. What we have is an upside-down sine,
with angular frequency 77 /12, that is shifted up-
ward 60° F. Thus, the equation for the ambient
temperature must be

A = 60 — 20sin -~
12
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Therefore, the model, adjusted for this ambient
temperature, becomes

ar 1 e
—_——= - in—}. 42
T 3 (T 60 + 205sin 12) “4.2)

(b) The homogeneous equation 7' + (1/2)T = 0
has solution 7}, = Ce™"/2, where C is an arbi-
trary constant. Now, consider the inhomoge-
neous equation

1 mt
T' 4 =T =30 — 10sin —. 4.3
+ 5 sin 5 (4.3)
Note that the right hand side consists of a con-
stant and a sinusoid. Let’s try a particular so-
lution having the form

wt e
T,=D+ Ecos— + Fsin —. 4.4
I3 + E cos 12—|~ sin = 4.4)
Substitute this guess and its derivative into the
left hand side of equation (4.4) and collect co-

efficients to get

1 1 b4 1 mt
T'+-T=-D+(——E+~F)sin—
+2T 5 +( D +2 )sm12
1 4 wt
_E+—F =
+<2 t )Coslz
4.5)

Comparing this with the right-hand side of
equation (4.3), we see that

1
~D = 30,
2
T 1
———l—iE—I—EF——lO, and
v Zr—o
2 127

Clearly, D = 60, and solving the remaining
two equations simultaneously, we obtain
1207 —720
= —_—— d F=—,
%6+nz " 36 + 72
These values of D, E, and F, when inserted
into equation (4.4), provide the particular solu-
tion
120m Tt 720 | @t

T, = 60 T ay
P = e O T 2 T 2

24 Linear Equations 49

Thus, the general solution is T = Ty, + T), or

T, = Ce™"/* + 60

120 [ wt _nt]
7T COS — — Osin — | .

Now, when the initial condition 7'(0) = 50
is substituted into equation (4.6), we obtain
C = —10—1207/(36+72). Thus, the general
solution becomes

1207
T=-1{10 ~12 4 60
( T n2) et
+ 120 o8 Tt 6sin Tt
%+ | 12 12

@.7)

(c) The plot of the ambient temperature is shown
as a dashed curve in the following figure. The
temperature 7' inside the cabin is shown as a
solid curve.

0 6 121824 30 36 42 48 54 60 66 72
t

Note that the transient part of the solution dies
out quickly. Indeed, because of the factor of
e~!/?, the time constant (See Section 2.2, Exer-
cise ??) is 7, = 2 hr. Thus, in about four time
constants, or 8 hours, this part of the temper-
ature solution is negligible. Finally, note how
the temperature in the cabin reacts to and trails
the ambient temperature outside, which makes
sense.
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Chapter 2 First-Order Equations

Section 2.5. Mixing Problems

1.

3.

(a) Let S(¢) denote the amount of sugar in the tank,
measured in pounds. The rate in is 3 gal/min x

0.21b/gal = 0.61b/min. The rate out is
3 gal/min x S/1001b/gal = 3S5/1001b/min.
Hence

as .
— = rate 1n — rate out
dt

=0.6 —35/100

This linear equation can be solved using the
integrating factor u(¢) = €3/1% to get the gen-
eral solution S(t) = 20 + Ce™3/190 Since
S(0) = 0, the constant C = —20 and the solu-
tion is S(¢) = 20(1 — ¢~3/100),

§(20) = 10(1 — e7%6) ~ 9.038Ib.

() S(t) = 15 when 7310 = 1 — 15/20
1/4. Taking logarithms this translates to ¢
(1001n4)/3 =~ 46.2098m.

(©) Ast — oo S(t) — 20.

i

(a) Let x(t) represent the number of pounds of
sugar in the tank at time ¢. The rate in is
0, and the rate out is 2 gal/min- x/50 1b/gal
= x/25 1b/min. Hence the model equation is
x' = —x/25. The general solution is x(¢) =
Ae~"/?3_ The initial condition implies that A =
x(0) = 50 gal x 2 1b/gal = 100 Ib. Hence the
solution is x () = 100e~"/?>. After 10 minutes
we have x(10) = 67.0321b of sugar in the tank.

(b) We have to find ¢ such that x(t) = 100e™"/% =
20. This comes to ¢t = 251In 5 =~ 40.2359 min.

(©) x(t) = 100e™"/% — 0 ast — oo.

(a) Letx(t) represent the number of pounds of salt
in the tank at time ¢. The rate at which the
salt in the tank is changing with respect to time
is equal to the rate at which salt enters the tank
minus the rate at which salt leaves the tank, i.e.,

dx .

— =rate in — rate out.

dt
In order that the units match in this equation,
dx/dt, the rate In, and the rate Out must each
be measured in pounds per minute (Ib/min).

Solution enters the tank at 5 gal/min, but the
concentration of this solution is 1/4 Ib/gal.
Consequently,

1 5
rate in = 5 gal/min x 7 Ib/gal = 7 Ib/min.

Solution leaves the tank at 5 gal/min, but at what
concentration? Assuming perfect mixing, the
concentration of salt in the solution is found by
dividing the amount of salt by the volume of
solution, ¢(¢) = x(¢)/100. Consequently,
t 1

rate out = 5 gal/minx % Ib/gal = %x(t) Ib/min.
As there are 2 Ib of salt present in the solution
initially, x(0) = 2 and

dx 5 1

—_— = ——x, 0) =2.

a~ 3 20 O
Multiply by the integrating factor, ¢'/297, and
integrate.

5
(e(1/20)tx)’ — _e(l/zo)x

/200ty — 05,0/20 4 &
x =254 Ce~ /201

The initial condition x(0) = 2 gives C = —23
and
x(t) = 25 — 23¢~ (/201

Thus, the concentration at time ¢ is given by

x(t) 25 —23e~0/201
cWy="2=2T20
100 100
and the eventual concentration can be found by
taking the limit as t — +o0.

25 — 23120
lim ————— = -1
e 100 5 1o/eal
Note that this answer is quite reasonable as the
concentration of solution entering the tank is
also 1/41b/gal.
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(b) We found it convenient to manipulate our
original differential equation before using our
solver. The key idea is simple: we want to
sketch the concentration c(t), not the salt con-
tent x(¢). However,

x(1)
c(t) = 100 or
Consequently, x'(t) = 100¢/(¢). Substituting
these into our balance equation gives

x(2) = 100c(?).

x’—-é——l—x
T4 207
5 1
100(:, = Z - *2“6(100C),
¢ = ! ———1—c
T80 20

with ¢(0) = x(0)/100 = 2/100 = 0.02. The
numerical solution of this ODE is presented in
the following figure. Note how the concentra-
tion approaches 0.251b/gal.

03 SANNNSSSNNNNSSNNSNNSSSSSS
. NN NSSSSNSSNSSSNSSNSNSSSSSSsSS
~~~~~~~~~~~~~~~~~~~~
—————————————————

P el e

02 s (R A AR R gt
- LA ar s PR AR AR AR AP AR aR P b & R anand
R and TR AR AR AN AN AN IR AN AR AR AV AN AR x4

VAR AW/ AV AR AV AN AN AN AV AN R R AN ¥ SR aF av 4

[&] 7/ VAR A AR AN AR AR AR AR AR SN AR AR AR A an 4
AR/ AN AN A AV AN A AN AV AN SN AN AX A R v 4

4 VAR AV AV Y A AV AV AV AN AN AV AN AV AN AN N

0.1 174N AN AT AN BN AN AN AN B Y AV AN S BN AR AR N 4
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VAN N A A B S B B B B B B B R B B A
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Let x(t) represent the amount of salt in the solution
attime ¢. Let r represent the rate (gal/min) that water
enters (and leaves) the tank. Consequently, the rate
at which salt enters the tank is 0 gal/min, but the

. x(D) r .

t = — = — Ib/min.
rate out = r gal/minx 500 1b/gal 5Oox(t) b/min
Thus,

dx .

— = rate 1in — rate out,
dt

dx T B

dt ~ 5007

6.

2.5 Mixing Problems 47

Let c(z) represent the concentration at time ¢. Thus,
c(t) = x(£)/500, or 500c(r) = x(¢) and 500¢’(¢) =
x'(¢). Substitute these into the rate equation to pro-
duce

r
500¢" = ———=(500c),
¢ = 56000
AN
500
This equation is separable, with solution ¢

Ae~/500%  Use the initial concentration, c(0)
.051b/gal, to produce

¢ = 0.05¢~/300%

/

{]

The concentration must reach 1% in one hour (60
min), so ¢(60) = 0.01 and

0.01 = 0.05¢= /50060

1 — G/
5
25
=—In5,
r=—<ln

r & 13.4 gal/min.

The volume is increasing at the rate of 2 gal/min, so
the volume at time ¢t is V (¢#) = 20 + 2¢. The tank is
full when V(¢) = 50, or when ¢ = 15 min. If x(¢)
is the amount of salt in the tank at time ¢, then the
concentration is x(¢)/ V (¢). The rate in is 4 gal/min
- 0.5 Ib/gal = 2 Ib/min. The rate out is 2 gal/min
-x/V Ib/gal. Hence the model equation is

X
1041

X =2-2x/V=2—

This linear equation can be solved using the integrat-
ing factor u(¢) = 10 + ¢, giving the general solution
x(t) = 10 + ¢t + C/(10 + ¢). The initial condition
x(0) = 0 enables us to compute that C = —100, so
the solution is x(#) = 10 + ¢ — 100/(10 + 7). At
t = 15, when the tank is full, we have x(15) = 21
Ib.

The volume in the tank is decreasing at 1 gal/min,
so the volume is V() = 100 — ¢. There is no
sugar coming in, and the rate out is 3 gal/min x
S(t)/ V () Ib/gal. Hence the differential equation is

ds _ -3$
dt ~ 100—¢"
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Chapter2  First-Order Equations

This equation is linear and homogeneous. It can be

solved by separating variables. The general solution

is S(t)+A(100—1¢)3. Since S(0) = 100 x0.05 = 5,

we see that A = 5 x 107%, and the solution is

S(t) =5 x 1076 x (100 — £)3.

When V(t) = 100 — ¢ = 50 gal,

S(t) =5 x 107° x 50° = 0.6251b.

(a) The volume of liquid in the tank is increasing
by 2 gal/min. Hence the volume is V() =
100 + 2¢ gal. Let x(¢) be the amount of pol-
lutant in the tank, measured in lbs. The rate
in during this initial period is 6 gal/min - 0.5
Ib/gal = 3 1b/gal. The rate out is 8 gl/min
-x/V = 4x/(50+t). Hence the model equation
is

x'=3—4x/(50 +1).
This linear equation can be solved using the in-
tegrating factor u(¢) = (50 + t)*. The general
solution is x(¢) = 3(50 +1)/5 + C(50 + t)~*.
The initial condition x(0) = 0 allows us to
compute the constant to be C = —1.875 x 108.
Hence the solution is

1.875 x 108

+30 Gor

x(t) =

After 10 minutes the tank contains x(10) =
21.5324 1b of salt.

(b) Now the volume is decreasing at the rate of
4 gal/min from the initial volume of 120 gal.
Hence if we start with ¢t = 0 at the 10 minute
mark, the volume is V () = 120 —4r gal. Now
the rate in is 0, and the rate out is 8 gal/min
x/V = 2x/(30 — t). Hence the model equa-
tion is

2x

30—t

This homogeneous linear equation can solved

by separating variables to find the general solu-

tion x(r) = AB0 —1)2. At ¢+ = 0 we have

x(0) = 21.5342, from which we find that

A = 21.5342/900, and the solution is

x'=-

21.5342

2
900 (30 — 1)~

x(t) =

We are asked to find when this is one-half of
21.5342. This happens when (30 — £)? = 450
or at t = 8.7868 min.

Let x(¢) represent the amount of drug in the organ at
time ¢. The rate at which the drug enters the organ is

rate in = a cm®/s x k g/em® = ak g/s.

The rate at which the drug leaves the organ equals
the rate at which fluid leaves the organ, multiplied
by the concentration of the drug in the fluid at that
time. Hence,

x(t)

= bcm? 3=
cm’ /sX Vit g/cm

rate out

b
t .
Vo +rtx( /s

Consequently,

dx b
— = 4K — X.
dt Vo +rt

The integrating factor is

M(t) — efb/(Vo-I'rt)dt — e(b/r) In(Vp+rt) — (Vo+rt)b/’.
Multiply by the integrating factor and integrate.

(Vo +rt)?"x) = aK(Vo +robh

\V/ tb/r _ tb/r+1 L
Mo+rt)""x = ~———-—~—(b/ Jrl)(o+r) +

= Vo+rt) + L(Vy+ re)t/
x b+r(0+r)+(o+r)

No drug in the system initially gives x(0) = 0 and
L = —ax V""" /(b +r). Consequently,

aK b/r+1
= —(V t—————V )7,
x b+r(0+r) b7 Vo +rt)”

ak b/r+1 —b/r—
x:——b+r(V0+rt)[l~ Vo (Vi + eyt

Vo b/r+1
- b+ (Vo-f—r‘t) :l ’

The concentration is found by dividing x(¢) by
V(t) = Vo + rt. Consequently,

Vo (b+r)/r
1 — .
b +r (Vo + Fl‘)

c(t) =
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9.

(a) The rate at which pollutant enters the lake is
rate in = pkm?/yr.

The rate at which the pollutant leaves the lake
is found by multiplying the flow rate by the
concentration of pollutant in the lake.

rate out = (¥ + p) km®/yr x x—glkm3/km3
=Py km?yr
|4
Consequently,
dx r+p
prial Sl atZ

Butc(t) = x(t)/V,s0 V'(#) = x'(¢) and

v =p-TLwo,

y rtp P
¢+ v c= v
(b) Withr = 50 and p = 2, the equation becomes
, 2 50+2
€= = c,
100 100

¢ =0.02 - 0.52c.

This is linear and solved in the usual manner.
Ii
(eO.SZIC) — 0.0230'052t

0.02
0.52¢ 0.052¢
= K
C TR’

1
— K —0.52r
¢ 26 +Re

The initial concentration is zero, so ¢(0) = 0
produces K = —1/26 and

_ 1 1 —0.52¢
“T2 265

The question asks when the concentration
reaches 2%, or when c(¢) = 0.02. Thus,

1 —0.52;
o.oz:ig(l A
e %% = (.48,

In0.48

0.52"°
t ~ 1.41 years.

2.5 Mixing Problems 49

10. Because the factory stops putting pollutant in the

lake, p = Oand ¢/’ + ((r + p)/V)c = p/V be-
comes
50
4
=0
“* Too°

Note that we carried r = 50 from Exercise 9.
This equation is separable, with general solution
¢ = Ke /2! The initial concentration is 3.5%,
so ¢(0) = 0.035 produces K = 0.035 and

c(t) = 0.035¢~1/2",

The question asks for the time required to lower the
concentration to 2%. That is, when does c(t) =
0.02?

0.02 = 0.035¢~1/21

L, 002
2! =" 0.035
0.035
=21
"0.02

t ~ 1.1years

11.  (a) The concentrations are plotted in the following
figure. In steady-state the concentration varies
periodically.

0.04

0.035

30 40 50 60

(b) The following figure shows one year of the os-
cillation, and indicates that the maximum con-
centration occurs early in February. This is four
months after the time of the minimum flow.
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50 Chapter2 First-Order Equations

Thus there is a shift of phase between the cause  13.  (a) Let x(#) be the amount of pollutant (measured
and the effect. in km?) in Lake Happy Times. The rate in for
Lake Happy Times is 2 km? /yr. The rate out is
52km®/yr x x/100 = 0.52x km®/yr. Hence
the model equation is

x'=2-0.52x.

This linear equation can be solved using the
integrating factor u(t) = ¢%*. With the ini-
tial condition x(0) = O we find the solution
x(t) = 2[1 — e~05211/0.52.

Let y(¢) be the amount of pollutant (measured

Feb Jul Jan in km?) in Lake Sad Times. The rate into lake
t Sad Times is the same as the rate out of Lake
Happy Times, or 0.52x km>/yr. The rate out is
12. For Tank A we have a constant volume of 100 gal. 52km?/yr x y/100 = 0.52y km>/yr. Hence
Let x(¢t) denote the amount of salt in Tank A. The the model equation is
rate into Tank A is 0, and the rate out is 5 gal/s x . 052
x/1001b/gal = x/201b/s. Hence the model equa- ¥y =0.52(x —y) =2[1 —e”"] - 0.52y.
ton s X = — x This linear equation can also be solved using
20 the integrating factor u(t) = e%>%. With the
The s</)21(1)1tion with initial value x(0) = 20 is x(¢) = initial condition y(0) = 0 we find the solution
20e174Y,
—0.52¢ —0.52¢
The volume of solution in Tank B is increasing at Yo =2[l-e 1/0.52 —2te
2.5 gal/s. Hence the volume at time ¢ is 200 + 2.5¢. = x(t) — 2te™0%,
Let y(t) denote the amount of salt in Tank B.
Then the rate into Tank B is the same as the rate After 3 months, when 7 = 1/4, we
out of Tank A, x/20. The rate out of Tank B is have x(1/4) = 0.468%m® and y(1/4) =
2.5 gal/s x y/(200 + 2.5¢) Ib/gal = y/(80 + t) Ib/s. 0.0298km”.
Hence the model equation is (b) If the factory is shut down, then the flow of
, X Y 40 y pollutant at the rate of 2km3/yr is stopped.
Y =20 " 80+: € T80 +1¢ This means that the flow between the lakes and

that out of Lake Sad Times will be reduced to
50km?/yr in order to maintain the volumes.
We will start time over at this point and we have

This linear equation can be solved using the inte-
grating factor u(¢#) = 80 + ¢. The general solution

18 the initial conditions x(0) = x; = 0.4689km>,
w0y = —C gm0 _ A0 i and y(0) = y; = 0.0298km”.

80 +1¢ 80 +¢ Now there is no flow of pollutant into Lake

Since y(0) = 40, we can compute that C = 65 x Happy Times, and the rate out is x/2km*/yr.

80 = 5200. Hence the solution is Hence the model equation is x’ = —x/2. The

solution is x(f) = x;e~*/2.

y(@) = 5200 20e/20 — i)Q—e"/zo. The rate into Lake Sad times is x /2 km?/yr,

80 +1¢ 80 +1 and the rate out is
Tank B will contain 250 gal when ¢ = 20. At this y/2km?/yr. The model equation is y =
point we have y(20) = 43.1709 Ib. (x — y)/2 = x1e7"?/2 — y/2. this time we
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use the integrating factor u(¢) = ¢'/? and find
the solution

y(t) = [x1t/2 + yile™"/2.

The plot of the solution over 10 years is shown
in the following figure. It is perhaps a little sur-
prising to see that the level of pollution in Lake
Sad Times continues to rise for some time after
the factory is closed.

0.2
0.15
> 0.1

0.05

0 5 10
Time in years

Using a computer or a calculator, we find that
y(t) = y1/2 when t = 10.18 yrs.

14. Letx(t) represent the amount of salt in Tank I at time

t. The rate at which salt enters Tank I is
rate In I = a Ib/gal x b gal/min = ab lb/min.
Salt leaves Tank II at
rate out I = x(¢)/V Ib/gal x b gal/min

= (b/ V)x(t) Ib/min.
Consequently,
dx b
= —ab-—=
a TV

This equation is linear with general solution

x=aV +Ke &V,

2.5 Mixing Problems 91

Initially, there is no salt in Tank I, so x(0) = O pro-
duces K = —aV and

x=aV —aVe &V,
Let y(¢) represent the amount of salt in Tank II at
time ¢. Salt enters Tank II at the same rate as it
leaves Tank 1. Consequently,

rate in II = (b/V)x(¢) Ib/min.
Salt leaves Tank II at

rate out Il = y(¢r)/V Ib/gal x b gal/min

= (b/V)y(¢) Ib/min.
Consequently,

dy bx b

a vV

Substitute the solution found for x.

dy b b
Y 2 (v —ave @y _ 2y
o =y @V —ave ) -y
dy

-7 _2 _ —(b/ V)t
2= Vy—l—(ab abe )-

This equation is also linear, with integrating factor
e®/V)t o

(e(b/V)ty)/ — ab (e(b/V)t _ 1) ,
e®/My — aVe®V _apr 4 L,
y= aV — abte‘(b/v)t + Le—-(b/V)t.

Initially, there is no salt in Tank II, so y(0) = 0
produces L = —aV and

y=aV —abte” V" _ qve~®/V),
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52 Chapter2 First-Order Equations

Section 2.6. Exact Differential Equations
With P =1 — ysinx and Q = cos x, we see that

1. dF =2ydx + (2x + 2y)dy 10.
2. dF = 2x —2y)dx + (—x + 2y)dy ﬁﬁz_sinx:B_Q
a 9
xdx + ydy M
3. dF = /T3 1 3 so the equation is exact. We solve by setting
VX +Yy
4 dpzw F(X,y)=/P(X,y)dx=/(l—ysinx)dx
) (xz + y2)3/2
=x+ ycosx + ¢(y).
5.
To find ¢, we differentiate
dF = ———(x*ydx + y’dx — ydx oF
iy 0(x,y) = 5~ = cosx +¢'(Y).
+ x°dy + xy*dy + xdy) Y
Thus ¢’ = 0, so we can take ¢ = 0. Hence the
6. dF = (1/x +2xy3)dx + (1/y + 3x%y?)dy solutionis F(x,y) = x + ycosx = C.
7. . _ y 1
11. With P =14 = and Q = ——, we compute
2x * *
iF = (st 1) s op_ 1,00 1
9 dy x 7 ax  x*
(22 -
x24+y2 ¥y Hence the equation is not exact.
. X y
12. With P = ———and Q = ———, we com-
8. dF ydx — xdy + 4x?y3dy + 4y’dy Vx2+y? Vx2+y2
: = 24 2 pute
Ay 9P —2xy 30
9. With P =2 d 6 that O YD ax
- With P =2x +yand = x — 6y, we see tha so the equation is exact. To find the solution we
oP 1= 00 integrate
dy  ox
. . F(x,y)=/P(x,y)dx
so the equation is exact. We solve by setting
x
= | ———dx
F(x,y)=/P(x,y)dx=/(2x+y)dx /,/x2+y2
=2 +xy + (). = Va2 452 +60).
To find ¢, we differentiate To find ¢, we differentiate
oF y
aF T e T e / .
Ox.y) =5 =x+¢0). =gy = Tmre Y
Hence ¢’ = —6y, and we can take ¢(y) = —3)2. Thus ¢’ = 0, so we can take ¢ = 0. Hence the
) solution is F(x,y) = {/x2+ y> = C.

Hence the solution is F(x, y) = x>+xy—-3y?>=C

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.
No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



13.
14.
15.
16.
17.
18.
19.
20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

Exactx3 +xy—y*=C

Not exact

Exact u?/2 +vu —v?/2 =C
ExactIn(u® 4+ v%) = C

Not exact

Exact. F(u,y)=ylhu—-2u=0C
Exact xsin2t —t> = C

Exact x2y? +x* = C
Not exact.

—x/y+hx=C
x2y?/2—~Inx+Iny=C

—(3 1)2
Ot _¢
X

x—(1/2)In(x>+y) =C

2y
wx) = 1/x% Fx,y) = 2 27Y _ ¢

1 y2
ux)=— Fx,y)=xy—Inx — — = C.

x 2
HO) =1/J3. F(x,y) =2x/3+ 2/3)y** = C

yx+x>

p) =1/y* F(x,y) = c

Fx,y)=x*3=C

x + y and x — y are homogeneous of degree one.

x? — xy — y? and 4xy are homogeneous of degree

two.

X — 4/x% + y? and —y are homogenous of degree
one.

34.

35.
36.

37.
38.

30.

40.

41.

2.6 Exact Differential Equations 53

Inx — Iny and 1 are homogeneous of degree zero.

2

x2—Cx =y?

2 2
F(x,y) = —(1/2)In (x J;y)
X

+ arctan(y/x) —~lnx = C

F(x,y) =xy+(3/2)x*=C,
y*x? —4lny —2Inx =C

x4+ Cx*

Y®) =150

y(x) =xIn(C +21nx)

(a) First,

dy dy/dt vysind —w

dx ~ dx/dt

vy cosd

However, cos® = x//x2+ y? and sinf =

y/Vxt+ ¥, 0

vy
————— 0
dy  /x2+y? vy — wy/x% 4 y?
dx ~ VoX - Vox )

Wea

Divide top and bottom by vy and replace w/vg
with k.

w
—_ 2 2
gy YTyYety

y—ky/x2+y?

dx x x
(b) Write the equation
dy y—kyx?+y?
dx X
in the form

@ —kyx2+y2)dx —xdy =0.
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54 Chapter2 First-Order Equations

Both terms are homogeneous (degree 1), so
make substitutions y = xv and dy = xdv +
vdx.

(xv—kvx? +x202)dx ~x(xdv+vdx) =0

After cancelling the common factor x and com-
bining terms,

kv14+v2dx —xdv=0.

Separate variables and integrate.

kdx — dv
xS+

klnx —In(v/1+v2+v)=C

Note the initial condition (x, y) = (a, 0). Be-
cause y = xv, v must also equal zero at this
point. Thus, (x, v) = (a, 0) and

klng ~In(+/1-024+0)=C
C=klna.

Therefore,

klnx —In(+/1+v2+v) =klna.
Taking the exponential of both sides,

o K —In(a/ 1402 +v) — ak

k
X k

RV A
(2)k=v+ 1422,

Solve for v.
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Finally, recall that y = xv, so

e o)
=27

(c) The following three graphs show the cases
where a = 1, and k = 1/2, 1, 3/2. When
0 < k < 1, the wind speed is less than that
of the goose and the goose flies home. When
k = 1 the two speeds are equal, and try as he
might, the goose can’t get home. Instead he
approaches a point due north of the nest. When
k > 1 the wind speed is greater, so the goose
loses ground and keeps getting further from the
nest.

0.2)
0.1
% 05 1
y
» X
0 05
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42.

43.

% 05 T

The hyperbolas with F(x, y) = y*/x = C are the
solid curves in the following figure. The orthogonal
family must satisfy

BF_ 2x

dy 9F
ax  y

dx _ ay '

The solution to this separable equation is found to be
given implicitly by G(x, y) = 2x2+ y? = C. These
curves are the dashed ellipses in the accompanying
figure. They do appear to be orthogonal.

(a) The curves are defined by the equation

F(x,y) = x/(x? + y*) = c. Hence the or-
thogonal family must satisfy

dy 9F [dF  2xy

dx — dy[ ax  x2—y¥

44.
45.
46.

47.

2.6 Exact Differential Equations 59

(b) The differential equation is homogeneous.
Solving in the usual way we find that the or-
thogonal family is defined implicitly by

G(x,y) = Ay C.
The original curves are the solid curves in the
following figure, and the orthogonal family is

dashed.

In(y*+x%) — (2/3)y* =C

arctan(y/x) — y*/4 =C

Assuming that m # n — 1, divide both sides of
xdy+ydx =x"y"dx

by x"y" to obtain

rayTyax dy +ydx = x""dx
(xy™)
d 1-n
G»™) _ e g
1—n

Thus, because m —n + 1 # 0,

(xy)]—n _ xm—n—H

1—n m—n-+1
m—n+ Dy -

+C

_ n)xm—n+1 =C.

arctan(y/x) — (1/4)(y* +x2)?* =C
x/y—In(xy+1)=C
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49.

50.
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X
ny:—iz
xX—=Yy

(a) An exterior angle of a triangle equals the sum
of its two remote interior angles, s0 0 = ¢ +a.
We’re given that « = 8 and ¢ and 8 are corre-
sponding angles on the same side of a transver-
sal cutting parallel lines, so ¢ = B. Thus,
0=¢+a=pF+B=28and

2t
tanf =tan2B = ,————?—Ilg-—.
1 —tan* B

However, tanf = y/x and tan 8 equals the
slope of the tangent line to y = y(x) at the
point (x, y); i.e., tan 8 = y’. Thus,

y 2y’

x 1=
(b) Use the result from part (a) and cross multiply.
y =y =2xy
0=y +2xy' -y

Use the quadratic formula to solve for y'.

, —x /x4 y?
y

Rearranging,
dy —x& x2+y?
dx y
becomes
:I:ﬁ)—c—j——y—d)i =dx.

Vx24y?

The trick now is to recognize that the left-hand

side equals +d(y/x% + y2). Thus, when we
integrate,

+d(/x*+y%) =dx

+/x24+y2=x+C.
Square, then solve for y2.

24+ 92 =x>+2Cx +C?
y? =2Cx + C?

This, as was somewhat expected, is the equa-
tion of a parabola.

Section 2.7. Existence and Uniqueness of Solutions

1.

The right hand side of the equation is f(¢,y) =
4 + y2. f is continuous in the whole plane. Its
partial derivative df/dy = 2y is also continuous on
the whole plane. Hence the hypotheses are satisfied
and the theorem guarantees a unique solution.

The right hand side of the equationis f(z, y) = /7.
f is defined only where y > 0, and it is continu-
ous there. However, 3f/3y = 1/(2,/y), which is
only continuous for y > 0. Our initial condition is
at yo = 0, and 7o = 4. There is no rectangle con-
taining (y, yo) where both f and 3f/dy are defined
and continuous. Consequently the hypotheses of the

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. Allrights reserved. This material is protected under all copyright laws as they currently exist.

theorem are not satisfied.

The right hand side of the equation is f(¢,y) =
ttan~! y, which is continuous in the whole plane.
af/dy = t/(1 + y?) is also continuous in the whole
plane. Hence the hypotheses are satisfied and the
theorem guarantees a unique solution.

The right hand side of the equation is f(s, w) =
o sin w + s, which is continuous in the whole plane.
df /0w = sinw + w cos w is also continuous in the
whole plane. Hence the hypotheses are satisfied and
the theorem guarantees a unique solution.
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The right hand side of the equation is f(¢,x) =
t/(x + 1), which is continuous in the whole plane,
except where x = —1. 9f/dx = —t/(x + 1)? is
also continuous in the whole plane, except where
x = —1. Hence the hypotheses are satisfied in a
rectangle containing the initial point (0, 0), so the
theorem guarantees a unique solution.

The right hand side of the equation is f(x,y) =
y/x + 2, which is continuous in the whole plane,
except where x = 0. Since the initial point is (0, 1),
f is discontinuous there. Consequently there is no
rectangle containing this point in which f is continu-
ous. The hypotheses are not satisfied, so the theorem
does not guarantee a unique solution.

The equation is linear. The general solution is
y(t) = tsint + Ct. Several solutions are plotted
in the following figure.

Since every solution satisfies y(0) = 0, there is no
solution with y(0) = —3. If we put the equation into
normal form

dy

1
= — tcost,
dt ty+

we see that the right hand side f(¢, y) fails to be
continuous at ¢+ = 0. Consequently the hypotheses
of the existence theorem are not satisfied.

The equation is linear. The general solution is
y(t) = t + 2Ct%. Several solutions are plotted in

10.

11.

2.7 Existence and Uniqueness of Solutions 97

the following figure.
D
1l
= Qb TS
b=
2 s 0 0.5 1

Since the general solution is y(¢) = ¢ + 2Ct2, every
solution satisfies y(0) = 0. There is no solution with
y(0) = 2. If we put the equation into normal form

dy 2y—t
. t

we see that the right hand side f (¢, y) = Qy —1)/¢
fails to be continuous at t = 0. Consequently the hy-
potheses of the existence theorem are not satisfied.

The y-derivative of the right hand side f(¢,y) =
3y?3 is 2y~1/3, which is not continuous at y = 0.
Hence the hypotheses of Theorem 7.16 are not sat-
isfied.

The y-derivative of the right hand side f(t,y) =
ty'/2 is ty~1/2 /2 which is not continuous at y = 0.
Hence the hypotheses of Theorem 7.16 are not sat-
isfied.

The exact solution is y(¢) = —1 + +/t2 — 3. The
interval of solution is (\/3T , 00). The solver has trou-
ble near +/3. The point where the difficulty arises is
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58 Chapter2 First-Order Equations

12.

13.

circled in the following figure.

The exact solutionis y(¢) = —1+4+/t> — 4t — 1.The
interval of existence is (—00,2 — V/5). The solver
has trouble near 2 — 4/5 ~ —0.2361. The point
where the difficulty arises is circled in the following
figure.

4

The exact solutionis y(t) = —14++/4 +21In(1 —1).

The interval of existence is (—o0o, 1 — e™2). The
solver has trouble near 1 — e~2 ~ 0.8647. The point
where the difficulty arises is circled in the following

14.

15.

figure.
y
4.
2.
\-4
0\ t
-2 -1 0 3)1 2
ol
4
The exact solution is y(t) = 3 —

/4 +2In(t + 2) — 21n 2. The interval of existence
is (=2 4+ 2e72,00). The solver has trouble near
—2 4 2¢~2 & —1.7293. The point where the diffi-
culty arises is circled in the following figure.

R

The solution is defined implicitly by the equation
y3/3 4 y? —3y = 2¢3/3. The solver has trouble near
(t1, 1), where t; = —(5/2)'/3 ~ —1.3572, and also
near (t,, —3), where 1, = (27/2)'/® ~2.3811. The
points where the difficulty arises are circled in the
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2.7 Existence and Uniqueness of Solutions 99

following figure. ure.
a
5..
ot 4
11 3
0 t
-2 -1 0 2 3 2
-1
1 L
-3t 0 1 2 3 4
-4+ ..
The exact solution is
o = 5—5e71, if0<t <2,
T =050 —e e, ifr>2
16. The solution is defined implicitly by the equation Hence g(4) = 5(1 — e 2)e~2 ~ 0.5851.
2y® — 15y% + 23 = —81. The solver that trouble
near (t;,0), where t; = —(81/2)'/* ~ —3.4341, 18. The computed solution is shown in the following fig-
and also near (£, 5), where r, = 221/3 ~ 2.8020. ure.
The points where the difficulty arises are circled in
the following figure.
7
3..
y 21
6 L
0
21 0 1 2 3 At
& 0 t The exact solution is
-4 -2 0 2
) = 0, if0<t<?2,
T =131 =21, ift>2

Hence g(4) = 3(1 — e72) &~ 2.5940.

17. The computed solution is shown in the following fig- 19. The computed solution is shown in the following fig-
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60 Chapter2 First-Order Equations

ure. 21. (a) If
0, ifr <t
1) =
YO =V — w3, ift > 1,
9
3 then
. y(®) — y(to)
1 () =1 YU ~ yo)
2 y () lim P—,
t—1)>—-0
1 s T
, = lim (z — 19)?
0 / ¢ 113
0 1 2 3 4 = (.
The exact solution is On the other hand,
- -, i - . y(@®) = y(to)
4(t) = 2t —14+e™), {f0<t<2, y’(t0)=hmy 0
2(1 4+ e 2)e, ift>2 t/n  t—1ty
. 0-0
= lim
Hence ¢(4) = 2(1 + e 2)e? ~ 0.3073. 15 t— 1o
=0.

20. The computed solution is shown in the following fig-

ure. Therefore, y'(tp) = 0, since both the left and
right-hand derivatives equal zero.

(b) The right hand side of the equation, f(t,y) =

Sﬂ 3y%/3, is continuous, but 3f/dy = 2y~ isnot
continuous where y = 0. Hence the hypothe-
ses of Theorem 7.16 are not satisfied.

2

22, (a If
14 3, ifr <1
y@) = 2 2t
5/24+ @B —5e/2)e™, ift>1
0 t
0 1 2 3 4 then it is easily seen that
The exact solution is o {——6e“2’, t <1
yi) = 24,2
—6+5 t 1.
o [ if0<r<2, (—6+3e)e™ 1>
- 1 2t :

t-l—-e, it 22 It remains to find the derivative at t = 1. Re-
5 member, because of the “cusp” at ¢t = 1, we
Hence g(4) =3 — e7* ~ 2.8647. suspect that this derivative will not exist. First,
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2.7 Existence and Uniqueness of Solutions 61

the derivative from the right, If

0, ifr<l1
! 1) =
(D) F@ {5, ift > 1,
— lim y(@) —y()
- 1+ r—1 then
1 5 5¢? —Ge~2 t <1
=lim —| {4+ [3——= e“Z’) — = ’
t_)1+z—1[(2 ( 2 ) 2+ @ 54+ (=645eHe”, t>1.
5 5¢2\ _, . ,
{3 +1{3~- )¢ Thus, y = y(t)isasolutionof y' = —2y+ f ()
on any interval not containing ¢ = 1.

TN
(98
|
Im
]
[+
N—
|
R
f
TN
w
|
STRS
[
N—
{
N
[\

3. If

= lim 0, t<0
—1+ r—1 1) = ’
! y() {t4’ ‘>0,

Note the indeterminant form 0/0, so 1’Hopital’s

rule applies. then it is easily seen that

5¢2 0 t<0
I : . . —2t / t — ’
y+",1_lff5r[ 2<3 2)e } y e {4:‘3, t>0.
s 2
=35—0e It remains to check the existence of y’(0). First, the
However, the derivative from the left, left-derivative.
. 1) — y(0) . 0-0
(0 = y() 'O = 1im 20O 079
yL(D) = Tim 2o 0= lm = =i =0
5 5¢% Secondly,
e -3+ (-5) ) '
= lim 7 T Y(t)_)’(o)* . t4__ . 3 _
=1 r-1 y+(0) - tEI(I)]Jr t—0 - t1—1>1(?+ _t— - zgr(l)l+t =0.
. 37 —3e2
= ,EI?— -1 Thus, y'(0) = 0 and we can write
Again, an indeterminant form 0/0, so we apply 1) = 0, <0
1" Hopital’s rule. YW =048, 120
yL(1) = lim (~6e™*) Now,
0 t<0
= —6 w2. ' () = ’
¢ y @) l4t4, t>0,
(b) The derivative from the left doesn’t equal the and
derivative from the right. The function y = 0 t<0
y(t) is not differentiable at + = 1 and cannot 4y(t) = 4’ 4 -0
be a solution of the differential equation on any rorz0
interval containing ¢ = 1. so y = y(t) is a solution of ry’ = 4y. Finally,
(c) We have that y(0) = 0. In a similar manner, it is not difficult to
show that
—Ge~ t<1 0 t<0
7 1) = ? £ = )
y® (—~6+5ee ™ 1> 1. @) {St“, t>0
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is also a solution of the initial value problem 7y’ =
4y, y(0) = 0. Atfirst glance, it would appear that we
have contradicted uniqueness. However, if ty’ = 4y
is written in normal form,

then

is not continuous on any rectangular region contain-
ing the vertical axis (Where t = 0), so the hypotheses
of the Uniqueness Theorem are not satisfied. There
is no contradiction of uniqueness.

(a) The point here is the fact that you don’t know
the moment the water completely drained.
Here are two possibilities.

»
>

A
4
~

(=2,0)
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»
>

v

(b) Let A represent the cross area of the drum and
h the height of the water in the drum. Then
Ah represents the change in height and AAh
the volume of water that has left the drum. A
particle of water leaving the drain at speed v
travels a distance vAr in a time Az. Because
a is the cross section of the drain, the volume
of water leaving the drain in time At is avAzr.
Because the water leaving the drum in time At
must exit the drain,

AAh = avAt
Ah
A— =av.
At
Taking the limit as Ar — 0,
dh
— =av.
dt
Using v = 2gh, v = v/2gh and
dh a
— = ——4/2gh.
dt Av<E
The minus sign is present because the drum is
draining.
(c) If welet w = ah and s = Bt, then by the chain
rule

dw_da) dh dt «adh

ds _dh dt ds  Bdt
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Multiply both sides of our equation by /8,
dh
ﬁ_z_(ﬁ) %) J2eh.
B dt AJ\B
Replace (a/B)(dh/dt) with dw/ds and h with

w/a.
-G
b4 () v

Let hy represent the height of a full tank. This
motivates the selection of @ = 1/hg and w =
h/ho, as @ = 0 when the tank is empty and
o = 1 when the tank is full. Thus,

-1

which motivates the selection of

p=(5) (2.

which upon substitution, gives us

dw_

=V,

(d) Separate the variables and integrate.

0 V?dw = —ds
207 =—s+C
1
12 _ 2o —
w 2( s)
w = l(C 5)?
T4

However, as evidenced in part (a), we only want
the left half of this parabola. After the drum
empties, it remains empty for all time. Thus,
for any C < sy,

1
Z(C —-5)?, s<C
0, s >C,

w(s) =

25.

26.

27.

28.

29.
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is asolution of ' = —./w, w(sp) = 0. Finally,
this emergence of multiple solutions does not
contradict uniqueness, because in

d 1
W V=3
is not continuous on any rectangle containing
the horizontal axis (defined by w = 0).

The equation x’ = f(z, x) satisfies the hypotheses
of the uniqueness theorem. Notice that x;(0) =
x2(0) = 0. If they were both solutions x’ = f(¢, x)
near t = 0, then by the uniqueness theorem they
would have to be equal everywhere. Since they are
not, they cannot both be solutions of the differential
equation.

The equation x’ = f(z, x) satisfies the hypotheses
of the uniqueness theorem. Notice that x;(7/2) =
x2(w/2) = 0. If they were both solutions x’ =
f(t,x) near t = /2, then by the uniqueness theo-
rem they would have to be equal everywhere. Since
they are not, they cannot both be solutions of the
differential equation.

Notice that x; (#) = 01is a solution to the same differ-
ential equation with initial value x1(0) =0 < 1 =
x(0). The right hand side of the differential equa-
tion, (¢, x) = x cos® ¢ and 3f/dx = cos? ¢ are both
continuous on the whole plane. Consequently the
uniqueness theorem applies, so the solution curves
for x and x; cannot cross. Hence we must have
x(t) > x1(t) = 0 for all ¢. ‘

Notice that y;(t) = 3 is a solution to the same dif-
ferential equation with initial value y;(1) = 3 >
1 = y(1). The right hand side of the differential
equation, f(t,y) = (y — 3)e**® and 3f/dy =
e*M[1 — t(y — 3) sin(y)] are both continuous on
the whole plane. Consequently the uniqueness theo-
rem applies, so the solution curves for y and y; can-
not cross. Hence we must have y(t) < y;(¢) = 3
for all 7.

Notice that the right hand side of the equation is
f(t,y) = (»* — 1)e” and f is continuous on
the whole plane. Its partial derivative 8f/0y =
2ye" +1t(y* — 1)e" is also continuous on the whole
plane. Thus the hypotheses of the uniqueness theo-
rem are satisfied. By direct substitution we discover
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that y;(r) = —1 and y,(r) = 1 are both solutions
to the differential equation. If y is a solution and
satisfies y(1) = 0, then y;(1) < y(1) < »(1).
By the uniqueness theorem we must have y;(f) <
y(t) < y2(¢) for all ¢ for which y is defined. Hence
~1 < y(t) < 1 for all t for which y is defined.

Notice that x;(r) = 0 and x,(t) = 1 are solu-
tions to the same differential equation with initial
values x1(0) = 0 < 1/2 = x(0) < 1 = x(0).
The right hand side of the differential equation,
f(t,%) = (6> —x)/(1 4 1*x?), and

of  (Bx*— D1+ 1x%) —2%x(x* — x)

ax (1 4 2x2)2 ’
are both continuous on the whole plane. Conse-
quently the uniqueness theorem applies, so the solu-

tion curves for x, x, and x, cannot cross. Hence we
must have 0 = x1(f) < x(t) < x2(¢t) = 1 forall t.

31

32.

Notice that x; (¢) = 2 is a solution to the same differ-
ential equation with initial value x;(0) =0 < 1 =
x(0). The right hand side of the differential equa-
tion, f(t,x) = x —t2 42t and 3f/dx = 1 are both
continuous on the whole plane. Consequently the
uniqueness theorem applies, so the solution curves
for x and x; cannot cross. Hence we must have
12 = x1(t) < x(t) for all t.

Notice that y; (f) = cost is a solution to the same dif-
ferential equation withinitial value v, (0) = 1 < 2 =
¥(0). The right hand side of the differential equa-
tion, f(¢,y) = y*> — cos’*t — sin ¢ and 3f/dy = 2y
are both continuous on the whole plane. Conse-
quently the uniqueness theorem applies, so the so-
lution curves for y and y; cannot cross. Hence we
must have y(¢t) > y;(t) = cost for all ¢.

Section 2.8. Dependence of Solutions on Initial Conditions

1.
2.
3.

10.
11.
12.

x(0) = 0.8009
x(0) = .9084
x(0) = 0.9596
x(0) = 0.9826
x(0) = 0.7275
x(0) = 0.72897

x(0) = 0.7290106

x{0) = 0.729011125
x(0) =-3.2314

x(0) = —3.23208

x(0) = —=3.2320923
x(0) = —3.23092999999
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13.
14.

Ten! :-)

1—e" —(1/10)e!! < y(1) < 1—e™" +(1/10)e"!
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15.

16.

The three middle curves are the solutions to the dif-
ferential equation corresponding to the initial condi-
tions x(0) = —.1, 0.1, and the outside curves are
the graphs of ¢;, and ey. Note how the solutions of
the differential equation remain inside the graphs of
er and e H-

The only adjustment from the previous exercise is
that we now want |xg — yo| < 0.01. This leads to

1— esint _ OOleltl < y(t) < 1— esinl‘ +O.01€It|

and this image.

A~

A

|
I

4

—4

(a) Theright hand side of the equation is f(¢, x) =
(x — 1)cost. Thus df/dx = cost, and
max |df/0x| = max | cost| = 1. Hence Theo-
rem 7.15 predicts that [x(#) — y()] < |x(0) —
y(0)le'!.

(b) The equation is separable and linear, and the
solutions are x(t) = 1 — e and y(t) = 1 —
9esint /10. Hence the separationis x (¢) —y(¢) =
e*"* /10. Since sin ¢ < |¢], we see that

17.

18.

[x(H)—y ()] = &' /10 < €"/10 = |x(0)—y(0)e".

(c) Since sint < |t| except at t = 0, we have
lx(®) — y(@)| < €/1/10, except at ¢ = 0.

2.9  Autonomous Equations and Stability 69

(a) Theright hand side of the equationis f (¢, x) =
—2x + sint, and 3f/3x = —2. Hence M =
max(|df/dx|) = 2, and Theorem 7.15 pre-
dicts that |y(t) — x(t)| < |y(0) — x(0)|eM =
|y(0) — x(0)|*!!.

(b) The equation is linear, and we find that x(¢) =
[2sint — cost]/5, and y(t) = [2sint —
cost]/5 — e~ /10. Hence

x(1) = y(0) = 7% /10 = |x(0) — y(0)|e™*

< y(0) — x(0)]*".

(c) Since e=% = &%l for r < 0, we see that the
maximum predicted error is achieved for all
t <0.

The right hand side of the equation is f(z,x) =
x2—t,and 3f/dx = 2x. On the rectangle R we have
x| < 2,s0 M = max|df/dx] = max|2x| = 4.
Thus the bound predicted by Theorem 7.15 is

Px1(8) = x2(0)] < 121(0) — x2(0) ™ = 3e*1 /4.
The maximum predicted error is where |¢| = 1, and

it is 40.9486. the two solutions are plotted in the
following figure.

1/
t
-1 . 0\0:5\1

The actual bound is about 2, which is much less than
41, the theoretical bound.
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Section 2.9. Autonomous Equations and Stability

1.

Note that P’ = 0.05P — 1000 is autonomous,
having form P’ = f(P). Solving the equation
0 = f(P) = 0.05P — 1000, we find the equilib-
rium point P = 20000. Thus, P(t) = 20000 is an
unstable equilibrium solution, as shown in the fol-
lowing figure.

x 10*

Qtrs 100000000000 0007007
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R R R RN N RN N NN N NN

3////////////////////
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P
e e

O 2 === ===
~e NSNS SS~SSS~~SN~~~~~~~
NS SSSSSSSSNSSSSSSSSSS
NANSNSNSSNSNSNNSNSSNSNSSSSSNSSNSNANS

1 NANNNNNNNNN NN NN NN NSNS
PN N N I N N N N SN
N N N N N N TN
N N N N N
L S N N N N N N NNV

OFvyyyvvvavvvv v vy vy t

Note that y/ = 1 — 2y + y? is autonomous, having
form y’ = f(y). Solve the equation f(y) = 0 to
find the equilibrium points.
1-2y+y*=0
y=1.

Thus, y(t) = 1 is an unstable equilibrium solution,
as shown in the following figure.

3 U B O I A I A I A B A B A B A A i |
IR
NN
NN
NN EEE

2V 7111711700107 70077707171
RN R R EREE:
P i i g i i i A

> 1 f============ —=
pr s s s s s
R R RN N NN

Qv2724440 0000000000 077017
NN
NN
I
A A A A A A A A A A B A A |

—ftrrrao v t

Note that x’ = > — x? is not autonomous, having
form x' = f(t,x), where f(t,x) = t> — x. The
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explicit dependence of the right-hand side of this
differential equation on the independent variable ¢
causes the equation to be non-autonomous.

Note that P’ = 0.13P(1 — P/200) is autonomous,
having form P’ = f(P). Solve the equation
f(P) = 0 to find the equilibrium points.

0.13P P =0
’ 200/

P=0 or P =200

Thus, P(¢t) = 0 and P(t) = 200 are equilibrium
solutions, as shown in the following figure. P = 0
unstable and P = 200 is asymptotically stable.

300
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ANV 22e
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112777
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IR Edd
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VAN 2777
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LAY
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VAV
AR AR RN RN
VAAAAAAY

-100

The equation is autonomous. The point ¢ = 2 is an
unstable equilibrium point, as the following figure
shows. In addition every solution of sing = 0 is an
equilibrium point. These are the points k7, where k
is any integer, positive of negative. The stability of
the equilibrium points alternates between asymptotic
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is asymptotically stable and y = 2 is unstable.

—2 and y

=2, y(t) = —1/2, y(®)

and y(r) = 2 are equilibrium solutions, and are plot-

2, all four are equilibrium points. Cor-

respondingly, y(¢)
ted in the following figure. y

10. Since f(y) haszerosaty = =2,y = —1/2,y =1,
and at y

2 are equilibrium solutions,

stable and unstable, as is seen in the figure.
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8. Note that the graph of f(y) intercepts the y-axis at

y =0and y = 2. Consequently, y =0and y = 2
are equilibrium points (f(0) = 0 and f(2) = 0) and

0 and y(¢)

y()

shown in the following figure. The solution y = 0
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asymptotically stable and the other two are unstable. in the following figure.
y I O T T A O O B O
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There are two equilibrium points. The smaller of

11. Because the differential equation y = f(y) is au- them is unstable and the other is asymptotically sta-
tonomous, the slope at any point (¢, x) in the direc- ble.

tion field does not depend on ¢, only on y, as shown
in the following figure.

13. The key thing to note is the fact that y’ and f(y) are
equal. Consequently, the value of f(y) is the slope
of the direction line positioned at (¢, y).

S S N U U U R SR U
\ | U W W W U U W W W
\ A VA W W W W W W WA ‘
\ AN W N U U W N U WA .
NN NN NN NN NN N ° Aty=.3, o ;.Oe}ndthe'slopels.ze‘ro. Thus
S y = 3 is an equilibrium point. This is shown
Ve SSS S S S S S S S in the following figure.

< VA A A S Y A
/ NN o To the right of y = 3, note that the graph of f
A A A

dips below the y-axis. Therefore, as y increases
beyond 3, the slope becomes increasingly nega-
tive. This is also shown in the following figure.

The equilibrium point is asymptotically stable.

e Totheleftof y = 3, note that the graph of f rise
above the y-axis. Therefore, as y decreases be-
low 3, the slope becomes increasingly positive.

12. Because the differential equation y’' = f(y) is au- This is also shown in the following figure. In
tonomous, the slope at any point (¢, x) in the direc- particular, this means that the equilibrium point
tion field does not depend on ¢, only on y, as shown y = 3 is asymptotically stable.
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Ay

Slope is more negative
as y increases.
3 Slope is zero at y = 3.

—> 7

Slope is more positive
as y decreases.

v

Finally, because the equation y' = f(y) is au-
tonomous, the slope of a direction line positioned at
(¢, ¥) depends only on y and not on t. Consequently,
the rest of the direction field is easily completed, as
shown in the next figure.
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The key thing to note is the fact that y’ and f(y) are
equal. Consequently, the value of f(y) is the slope
of the direction line positioned at (¢, y).

o Aty =0and y = 4, f(y) = 0, so the slope
of the direction lines at these y-values is zero.
These points are the equilibrium points. This
is shown in the following figure.

o To the right of y = 4, note that the graph of
f dips below the y-axis. Furthermore, as y in-
creases beyond 4, f(y) (the slope of the direc-
tion line at (¢, y)) becomes increasingly nega-
tive. This is also shown in the following figure.

2.9 Autonomous Equations and Stability 69

e Between y = 0 and y = 4, the graph of f
lies above the y-axis. Consequently, f(y) is
positive for 0 < y < 4. Moreover, the graph
of f has a maximum about halfway between
vy = 0 and y = 4. Consequently, the slope of
the direction field lines will be positive between
y = 0 and y = 4, with a maximum positive
slope occurring about halfway between y = 0
and y = 4. This is shown in the following
figure.

o To the left of y = 0, note that the graph of f
falls below the y-axis. Furthermore, as y de-
creases below 0, f(y) (the slope of the direction
line at (¢, y)) becomes increasingly negative.
This is also shown in the next figure.

From these considerations we see that the equilib-
rium point y = 0 is unstable, and y = 4 is asymp-
totically stable.

Slope is more negative
as y increases beyond y = 4.

Slope is zero at y = 4.

Slope is most positive midway
betweeny = Oand y =4

\\\I/__-__

Slope is zero at y = 0. !

| Slope is more negative
v as y decreases below y = 0.

Finally, because the equation y = f(y) is au-
tonomous, the slope of a direction line positioned at
(t, y) depends only on y and not on . Consequently,
the rest of the direction field is easily completed, as
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70 Chapter2 First-Order Equations

shown in the next figure.
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15. (i) In this case, f(y) = 2 — y, whose graph is shown

in the following figure.

ASON=2-y

AN

2,0)

(ii) The phase line is easily captured from the previ-
ous figure, and is shown in the following figure.

A
Y

Ne

(iii) The phase line in the second figure indicates that
solutions increase if y < 2 and decrease if y > 2.
This allows us to easily construct the phase portrait
shown in the ¢y plane in the next figure. Note the
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stable equilibrium solution, y(¢) = 2.

red

©,2) X

A
v
-

v

16. (i) Inthiscase, f(y) = 2y—7, whose graph is shown

in the next figure.

afO=2y-7

(7/2,0)

(i) The phase line is easily captured from this figure,
and is shown in next figure.

A
A

NI e

(iii) The phase line in the second figure indicates
that solutions decrease if y < 7/2 and increase if
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y > 7/2. This allows us to easily construct the phase
portrait shown in the ty plane in the next figure. Note

2.9  Autonomous Equations and Stability 71

(iii) The phase line in the second figure indicates
that solutions increase if y < —1, decrease for

—1 < y < 4, and increase if y > 4. This allows us
to easily construct the phase portrait shown in the ty
plane in the next figure. Note the unstable equilib-
Yy rium solution, y(¢) = 4, and the stable equilibrium
©.7/2) solution, y(1) = —1.

the unstable equilibrium solution, y(t) = 7/2.

4
\J
-~

No

A
v
~

0,-1) [

17. (@) Inthis case, f(y) = (y + 1)(y —4), whose graph

is shown in the next figure. A,
A fO)=0+D (-4 18. (i) In this case, f(y) = 6 + y — y? factors as
f ) = 2+y)(3—y), whose graph is shown in the
next figure.

A f)=6+y—y?

(-1,0)

(—2,0) 3,0

(ii) The phase line is easily captured from the previ-
ous figure, and is shown in the next figure.

v

(ii) The phase line is easily captured from the previ-
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ous figure, and is shown in the next figure. figure.

-2 3 Af)=9y—y3

(iii) The phase line in the second figure indicates
that solutions decrease if y < -2, increase for (=3,0) 3.0)
—2 < y < 3, and decrease if y > 3. This allows us : : y

. 0,0
to easily construct the phase portrait shown in the ¢y 0.0
plane in the next figure. Note the unstable equilib-
rium solution, y(¢) = —2, and the stable equilibrium
solution, y(¢) = 3.
v
e
(ii) The phase line is easily captured from the previ-
L ous figure, and is shown in the next figure.
©,3)
- >t
/(0,~2) < — . > o <« >y
\ -3 0 3
v

(iii) The phase line in the second figure indicates

that solutions increase if y < —3, decrease for

—3 < y < 0,increaseif 0 < y < 3, and decrease for

y > 3. This allows us to easily construct the phase

portrait shown in the ¢y plane in the next figure. Note

19. (i) In this case, f(y) = 9y — y> factors as f(y) = the stable equilibrium solution, y(t) = —3, the un-
y(y + 3)(y — 3), whose graph is shown in the next stable equilibrium solution, y(¢) = 0, and the stable
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2.9 Autonomous Equations and Stability 73

equilibrium solution, y(¢) = 3. -3 <y < —1, decrease if -1 < y < 3, and
increase for y > 3. This allows us to easily con-
struct the phase portrait shown in the ry plane in
the next figure. Note the unstable equilibrium so-
lution, y(t) = —3, the stable equilibrium solution,
y(#) = —1, and the unstable equilibrium solution,

y() =3.

>
~<

©.3) 7
103
\

0,-1

20. (i) In this case, f(y) = (y + 1)(y* — 9) factors as 0,-3)

fO) = @+ 1D (y—3)(y+3), whose graph is shown \
in the next figure.

©,-3)

A
v
-

*

AfO)=0+1)(2-9)

21. Due to the periodic nature of this equation, we sketch
only afew regions. You can easily use the periodicity
to produce more regions.

(1) In this case, f(y) = sin y, whose graph is shown
in the next figure.

AS()=siny

v

(0,0) (7,0
(i1) The phase line is easily captured from the previ- (27,0
ous figure, and is shown in the next figure.

(iii) The phase line in the second figure indicates
that solutions decrease if y < -3, increase for
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(ii) The phase line is easily captured from the previ-
ous figure, and is shown in the next figure.

(iii) The phase line in the second figure indicates
that solutions decrease if — < y < 0, increase for
0 <y < m, decrease if 1 < y < 2m, and increase
for 2mr < y < 3m. This allows us to easily con-
struct the phase portrait shown in the ¢y plane in the
next figure. Note the unstable equilibrium solution,
y(#) = 0, the stable equilibrium solution, y(t) = w,
and the unstable equilibrium solution, y(¢) = 27.

-

0,2m)

© )\
/

— 0,0

» !

T

Due to the periodic nature of this equation, we sketch
only afew regions. You can easily use the periodicity
to produce more regions.

(i) Inthis case, f(y) = cos 2y, whose graphis shown
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in the next figure.

4 f(y)=cos2y

(ii) The phase line is easily captured from the previ-
ous figure, and is shown in the next figure.

ISH
I3
=]

(iii) The phase line in the second figure indicates
that solutions increase if —7/4 < y < mw/4, de-
crease for /4 < y < 3m/4, and increase if
3n/4 < y < 57/4. This allows us to easily con-
struct the phase portrait shown in the ¢y plane in the
next figure. Note the stable equilibrium solution,
y(t) = 7 /4, and the unstable equilibrium solution,
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y(t) = 37 /4.

(0,37/4)

©,7/4)

23. The equation is linear, so multiply by the integrating

factor and integrate.

(e’y)l = 6e'
ey =6 +C
y(t) =6+ Ce™’

The initial condition y(0) = 2 produces C = —4
and y(t) = 6 — 4e~'. Now, e™! approaches zero as
t — +00, S0

b (g o
Am, 0 = Hm (6-47) =6

Compare y = f(y) with yY = 6 — y. Then
f(y) = 6 —y, whose graph is shown in the first fig-
ure below. The phase line on the y-axis in this figure
shows that y = 6 is a stable equilibrium point, so
a trajectory with initial condition y(0) = 2 should
approach the stable equilibrium solution y(t) = 6,
as shown in the second figure. This agrees nicely
with the analytical solution.

2.9  Autonomous Equations and Stability 79

A Sf()=6—y

(6,0)

A

0,6

0,2

24. Writing the equation as y’ = 5 — 2y, we see that

the right hand side is f(y) = 5 — 2y. The graph
of f is in the next figure. We have also indicated
the direction of the solutions on the y-axis, which
shows that y = 5/2 is an asymptotically stable equi-
librium point. Thus any solution curve will approach
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Chapter 2 First-Order Equations

y = 5/2 as t increases.

f=5-2y
A

(5/2,0)

The exact solution can be found since the equations
is separable (and linear). With some work we find
that it is v(t) = 5[1 — e~%]/2. Clearly the solution
has the indicated limiting behavior.

25. The equation has the form y’ = f(y), where f(y) =

(1 4+ y)(5 — y). The graph of f is in the next figure.
We have also indicated the direction of the solutions
on the y-axis. This shows that y = —1 is an unsta-
ble equilibrium point, and y = 5 is an asymptotically
stable equilibrium point. Therefore, a solution start-
ing with y(0) = 2 will increase and approach y = 5
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as t increases.

f=0+nNGE-y

(-1,0) (5,0)

v

To find the exact solution, we separate variables and
use partial fractions to get

17 1 1
Ny =y =dr
6[l+y+5——y] Y

Integrate,

i 1
glnll—l-yl—gln[S‘yl:t-i—C,
In|l+y|—In|5—y| =6t +6C,

1
n |2 ] =6t +6C
y—35
y+1 6t
21 = Ae®,
y—=5 ¢
where A = #¢°C. Using the initial condition y(0) =
2 we see that A = —1, so
y+l_ e
y—35
Solving for y, we find that
5¢% —1 5—¢
y() =

T+ef  14eo

From this we see that y(#) — 5ast — oo, agreeing
with what we discovered earlier.
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26. Separating variables,

d
2 G+pa-y

dt
d
—————-—-y———-—-—-=dt.
BG+yd-y
A partial fraction decomposition allows us to con-
tinue.
1 1 1
— |+ —— | dy=dt
4[3+y+1—y:| Y
In3+yl—-Injl—yl=44+C
3
I ‘Ti—y —4+C
34y _
l1—y
3+y Act
-y
with y(0) = 2,
342 4
halimpny L) A=—
T3 e = 5
and
3+_y=_5e4f
-y

34y =—5¢" + 5ye*
34 5e¥ = y(5¢* — 1)
3+ 5¢eH
Y= 5 _ 1

Multiply top and bottom by e=#.

3¢ +5
T
Thus,
_0+5 !
fmy=3—5="
Using qualitative analysis, plot the graph of the right-
hand side of
dy
2 =03 1-—
I G+yd-y

217.

28.

29.

30.

2.9 Autonomous Fquations and Stability 77

versus y.

fMH=06+»l-y
A

(=3,0) (1,0)

v

Note the equilibrium points at y = —3 and y = 1.
Moreover, note that between —3 and 2, solutions in-
crease to the stable point at y = 1. Thus,

lim y(t) = 1.
1—=>00

We have the equation x’ = f(x) = 4 — x%. The
equilibrium points are at x = £2, where f(x) = 0.
We have f'(x) = —2x. Since f'(-2) = 4 > 0,
x = —2 is unstable. Since f'(2) = -4 < 0,x =2
is asymptotically stable.

We have the equation x’ = f(x) = x(x — 1)(x +2).
The equilibrium points are at x = 0, 1, and -2,
where f(x) = 0. We have f’(x) = 3x% 4+ 2x — 2.
Since f/(0) = —2 < 0, x = 0 is asymptotically
stable. Because f’(1) = 3 > 0, x = 1 is unstable.
Finally, because f'(—2) =2 > 0, x = —2 is also
unstable.

(@ f(x)=x% f(x)=x>or f(x) =x*
) f(x)=—x3 f(x) =—x5,0r f(x) = —x.

Notice that we are measuring the displacement as
positive below the plane. First divide through by m
to get

dv k

a fTm”
Note that this equation is autonomous, having form

v/ = f(v). The graph of f is a line, with slope
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31.

Chapter 2  First-Order Equations

—k/m and intercept g, as shown in the following
figure.

Af=g—£v

\ 0,8

The phase line on the v-axis in this figure shows that
v = (mg)/k is a stable equilibrium point. Our sky-
diver starts from rest, so the solution trajectory with
v(0) = 0 should approach the stable equilibrium so-
lution, v(t) = (mg)/k. Consequently, the terminal
velocity is (mg)/ k.

Let x(¢) represent the amount of salt in the tank at
time ¢. The rate at which solution enters the tank is
given by

Rate In = 2 gal/min x 31b/gal = 61b/min.

The rate at which solution leaves the tank is

x 1
Rat t=2 i — = — in.
ate Ou gal/min x 100 Ib/gal 50" Ib/min

Consequently,
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Let c(t) represent the concentration of salt in the
solution at time f. Thus, ¢(f) = x(¢)/100 and
100¢’ = x'.

1
100¢’ = 6 — =(100c)

OO I I
7100 50

Let f(c) = 6/100 — (1/50)c. Setting f(c) = 0
produces the equilibrium point ¢ = 3, as shown in
the following figure.

6 1
ASf©O=15—"35¢

B (3.0
pra— c

The phase line on the c-axis in this figure shows that
¢ = 3 is a stable equilibrium point so a trajectory
with initial condition ¢(0) = 0 (the initial concen-
tration of salt is zero) should approach the stable
equilibrium solution c¢(¢) = 3.
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