

INSTRUCTOR’S MANUAL

TO ACCOMPANY

Database Processing

Fundamentals, Design, and Implementation
12th Edition

CHAPTER TWO

INTRODUCTION TO STRUCTURE QUERY LANGUAGE

Prepared By

David J. Auer

Western Washington University

DAVID M. KROENKE AND DAVID J. AUER

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Chapter Two – Introduction to Structured Query Language

Page 2-3

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

 CHAPTER OBJECTIVES

 To understand the use of extracted data sets

 To understand the use of ad-hoc queries

 To understand the history and significance of Structured Query Language (SQL)

 To understand the basic SQL SELECT/FROM/WHERE framework as the basis for
database queries

 To be able to write queries in SQL to retrieve data from a single table

 To be able to write queries in SQL to use the SQL SELECT, FROM, WHERE,
ORDER BY, GROUP BY, and HAVING clauses

 To be able to write queries in SQL to use SQL DISTINCT, AND, OR, NOT,
BETWEEN, LIKE, and IN keywords

 To be able to use the SQL built-in functions of SUM, COUNT, MIN, MAX, and AVG
with and without the use of a GROUP BY clause

 To be able to write queries in SQL to retrieve data from a single table but restricting
the data based upon data in another table (subquery)

 To be able to write queries in SQL to retrieve data from multiple tables using an SQL
JOIN

 ERRATA

 Page 84 – [23-JUL-11 – Corrected in the Instructor’s Manual for Chapter 2] — The

introductory text between Review Questions 2.16 and 2.17 should refer to Review Question

2.39 instead of Review Question 2.40:

Use only the INVENTORY table to answer Review Questions 2.17 through 2.39:

 Page 96 – [19-JUL-11 – Corrected in DBP e12 International Edition, Chapter 2 PowerPoint

Slideshow, and the Instructor’s Manual for Chapter 2] — Figure 2-40 is mislabeled for

Martha’s Dry Cleaning (MDC) instead of Morgan Importing (MI). The figure title should

read:

The MI Database

 Page 97 – [23-JUL-11 – Corrected in the Instructor’s Manual for Chapter 2] — The

introductory text before Project Question A should refer to the MI data instead of the MDC

data:

Write SQL statements and show the results based on the MI data for each of the
following:

 Page 97 – [23-JUL-11 – Corrected in the Instructor’s Manual for Chapter 2] — The next to

the last introductory text line before Figure 2-40 contains a misplaced hyphen (-) in the word

Alter-natively. It should read:

Alternatively, SQL scripts for creating the MI-CH02 database in SQL Server, Oracle
Data-

Chapter Two – Introduction to Structured Query Language

Page 2-4

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

 TEACHING SUGGESTIONS

 Database files to illustrate the examples in the chapter and solution database
files for your use are available in the Instructor’s Resource Center on the text’s
Web site (www.pearsonhighered.com/kroenke).

 The best way for students to understand SQL is by using it. Have your students
work through the Review Questions, Project Questions and the Marcia’s Dry
Cleaning and Morgan Importing Project Questions in an actual database.
Students can create databases in Microsoft Access with basic tables,
relationships and data from the material in the book. SQL scripts for Microsoft SQ
Server, Oracle Database and MySQL versions of Cape Codd, WPC, MDC and
MI are available in the Instructor’s Resource Center on the text’s Web site
(www.pearsonhighered.com/kroenke).

 Microsoft Access database files for Cape Codd and the NASDAQ data
(NDX.accdb), together with SQL scripts for Microsoft SQ Server, Oracle
Database and MySQL versions of Cape Codd, MDC and MI are available for
student use in the Student Resources on the text’s Web site
(www.pearsonhighered.com/kroenke).

 The SQL processors in the various DBMSs are very fussy about character sets
used for SQL statements. They want to see plain ASCII text, not fancy fonts.

This is particularly true of the single quotation (') used to designate character

strings, but I’ve also had problems with the minus sign. If your students are
having problems getting a “properly structured SQL statement” to run, look
closely for this type of problem.

 There is a useful teaching technique which will allow you to demonstrate the SQL
queries in the text using Microsoft SQL Server if you have it available.

 Open the Microsoft SQL Server Management Studio, and create a new
SQL Server database named Cape-Codd.

 In the Microsoft SQL Server Management Studio, use the SQL
statements in the *.sql text file DBP-e12-MSSQL-Cape-Codd-Create-
Tables.sql to create the RETAIL_ORDER, ORDER_ITEM and
SKU_DATA tables [the WAREHOUSE and INVENTORY tables, used in
the Review Questions, are also created].

 In the Microsoft SQL Server Management Studio, use the SQL
statements *.sql text file DBP-e12-MSSQL-Cape-Dodd-Insert-Data.sql to
populate the RETAIL_ORDER, ORDER_ITEM and SKU_DATA tables
[the WAREHOUSE and INVENTORY tables, used in the Review
Questions, are also populated].

 In the Microsoft SQL Server Management Studio, open the *.sql text file
DBP-e12-MSSQL-Cape-Codd-Query-Set-CH02.sql. This file contains all
the queries shown in the Chapter Two text.

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-5

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

 Highlight the query you want to run and Execute Query button to display
the results of the query. An example of this is shown in the following
screenshot.

 All of the *.sql text files needed to do this are available in the Instructor’s
Resource Center on the text’s Web site
(www.pearsonhighered.com/kroenke).

 Microsoft Access 2010 does not support all SQL-92 (and newer) constructs.
While this chapter still considers Microsoft Access as the DBMS most likely to be
used by students at this point in the course, there are some Review Questions
and Project Questions that use the ORDER BY clause with aliased computed
columns that will not run in Access (see Review Questions 2.42 – 2.44 and
Project Questions 2.63.e – 2.63.g). The correct solutions for these questions
were obtained using Microsoft SQL Server 2008 R2. The Microsoft Access
results without the ORDER BY clause are also shown, so you can assign these
problems without the ORDER BY part of the questions.

 Microsoft Access 2010 does not support SQL wildcard characters (see Review
Questions 2.36 – 2.38), although it does have equivalent wildcard characters as
described in the chapter. The correct solutions for these questions were
obtained using Microsoft SQL Server 2008 R2.

 For those students who are used to procedural languages, they may have some
initial difficulty with a language the does set processing like SQL. These students

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-6

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

are accustomed to processing rows (records) rather than sets. It is time well
spent to make sure they understand that SQL processes tables at a time, not
rows at a time.

 Students may have some trouble understanding the GROUP BY clause. If you
can explain it in terms of traditional control break logic (sort rows on a key then
process the rows until the value of the key changes) they will have less trouble.
This also explains why the GROUP BY clause will present the rows sorted even
though you do not use an ORDER BY clause.

 At this point, students familiar with Microsoft Access will wonder why they are
learning SQL. They have made queries in Microsoft Access using Microsoft
Access's version of Query-By-Example (QBE), and therefore never had to
understand the SQL. In many cases, they will not know that Microsoft Access
generates SQL code when you create a query in design view. It is worth letting
them know this is done and even showing them the SQL created for and
underlying a Microsoft Access query.

 It is also important for students to understand that, in many cases, the Query-By-
Example forms such as Microsoft Access’ design view can be very inefficient.
Also, the QBE forms are not available from within an application program such as
Java or C, and so SQL must be written.

 It has been our experience that a review of a Cartesian Product from an algebra
class is time well spent. Show students what will happen if a WHERE statement
is left off of a join. The following example will work. Assume you create four
tables with five columns each and 100 rows each. How many columns and rows
will be displayed by the statement:

 SELECT * FROM TABLE1, TABLE2, TABLE3, TABLE4;

The result is 20 columns (not bad) but 100,000,000 rows (100 * 100 = 10,000,
10,000 * 100 = 1,00,000, 1,000,000 * 100 = 100,000,000). This happens because
the JOIN is not qualified. If they understand Cartesian products then they will
understand how to fix a JOIN where the results are much too large.

 Note that in the Marcia's Dry Cleaning project, where in previous editions we
have used tables named ORDER and ORDER_ITEM, we have changed these
table names to INVOICE and INVOICE_ITEM. We did this because ORDER is
an SQL reserved word (part of ORDER BY). Therefore, when the table name
ORDER is used as part of a query, it may need to be ("must be" in Access 2010)
enclosed in delimiters as [ORDER] if the query is going to run correctly. The topic
of reserved words and delimiters is discussed in more detail in Chapters 6 and 7.
However, now is a good time to introduce it to your students.

Chapter Two – Introduction to Structured Query Language

Page 2-7

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

 ANSWERS TO REVIEW QUESTIONS

2.1 What is a business intelligence (BI) system?

A business intelligence (BI) system, is a system used to support management decisions by

producing information for assessment, analysis, planning and control.

2.2 What is an ad-hoc query?

An ad-hoc query is a query created by the user as needed, rather than a query programmed into an

application.

2.3 What does SQL stand for, and what is SQL?

SQL stands for Structured Query Language. SQL is the universal query language for relational

DBMS products.

2.4 What does SKU stand for, and what is an SKU?

SKU stands for stock keeping unit. An SKU is a an identifier used to label and distinguish each

item sold by a business.

2.5 Summarize how data were altered and filtered in creating the Cape Codd data
extraction.

Data from the Cape Codd operational retail sales database were used to create a retail sales

extraction database with three tables: RETAIL_ORDER, ORDER_ITEM and SKU_DATA.

The RETAIL_ORDER table uses only a few of the columns in the operational database. The

structure of the table is:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
 OrderTotal)

For this table, the original column OrderDate (in the data format MM/DD/YYYY [04/26/2010])

was converted into the columns OrderMonth (in a Character(12) format so that each month is

spelled out [April]) and OrderYear (in an Integer format with each year appearing as a four-digit

year [2010]).

We also note that the OrderTotal column includes tax, shipping and other charges that do not

appear in the data extract. Thus, it does not equal the sum of the related ExtendedPrice column in

the ORDER_ITEM table discussed below.

The ORDER_ITEM table uses an extract of the items purchased for each order. The structure of

the table is:

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

Chapter Two – Introduction to Structured Query Language

Page 2-8

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

For this table, there is one row for each SKU associated with a given OrderNumber, representing

one row for each type of item purchased in a specific order.

The SKU_DATA table uses an extract of the item identifying and describing data in the complete

operational table. The structure of the table is:

SKU_DATA (SKU, SKU_Description, Department, Buyer)

For this table, there is one row to describe each SKU, representing one particular item that is sold

by Cape Codd.

2.6 Explain, in general terms, the relationships of the RETAIL_ORDER, ORDER_ITEM, and
SKU_DATA tables.

In general, each sale in RETAIL_ORDER relates to one or more rows in ORDER_ITEM that

detail the items sold in the specific order. Each row in ORDER_ITEM is associated with a

specific SKU in the SKU_DATA table. Thus one SKU may be associated once with each

specific order number, but may also be associated with many different order numbers (as long as

it appears only once in each order).

Using the Microsoft Access Relationship window, the relationships (including the additional

relationships with the INVENTORY and WAREHOUSE tables described after Review Question

2.15) are shown in Figure 2-23 and look like this:

Figure 2-23 – The Cape Codd Database with the WAREHOUSE and INVENTORY tables

In traditional database terms (which will be discussed in Chapter 6) OrderNumber and SKU in

ORDER_ITEM are foreign keys that provide the links to the RETAIL_ORDER and SKU_DATA

tables respectively. Using an underline to show primary keys and italics to show foreign keys,

the tables and their relationships are shown as:

Chapter Two – Introduction to Structured Query Language

Page 2-9

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
 OrderTotal)

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

SKU_DATA (SKU, SKU_Description, Department, Buyer)

2.7 Summarize the background of SQL.

SQL was developed by IBM in the late 1970s, and in 1992 it was endorsed as a national standard

by the American National Standards Institute (ANSI). That version is called SQL-92. There is a

later version called SQL3 that has some object-oriented concepts, but SQL3 has not received

much commercial attention.

2.8 What is SQL-92? How does it relate to the SQL statements in this chapter?

SQL-92 is the version of SQL endorsed as a national standard by the American National

Standards Institute (ANSI) in 1992. It is the version of SQL supported by most commonly used

database management systems. The SQL statements in the chapter are based on SQL-92 and the

SQL standards that followed and modified it.

2.9 What features have been added to SQL in versions subsequent to the SQL-92?

Versions of SQL subsequent to SQL-92 have extended features or added new features to SQL,

the most important of which, for our purposes, is support for Extensible Markup Language

(XML).

2.10 Why is SQL described as a data sublanguage?

A data sublanguage consists only of language statements for defining and processing a database.

To obtain a full programming language, SQL statements must be embedded in scripting

languages such as VBScript or in programming languages such as Java or C#.

2.11 What does DML stand for? What are DML statements?

DML stands for data manipulation language. DML statements are used for querying and

modifying data.

2.12 What does DDL stand for? What are DDL statements?

DDL stands for data definition language. DDL statements are used for creating tables,

relationships and other database querying and modifying data.

Chapter Two – Introduction to Structured Query Language

Page 2-10

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.13 What is the SQL SELECT/FROM/WHERE framework?

The SQL SELECT/FROM/WHERE framework is the basis for queries in SQL. In this

framework:

 The SQL SELECT clause specifies which columns are to be listed in the query results.

 The SQL FROM clause specifies which tables are to be used in the query.

 The SQL WHERE clause specifies which rows are to be listed in the query results.

2.14 Explain how Microsoft Access uses SQL.

Microsoft Access uses SQL, but generally hides the SQL from the user. For example, Microsoft

Access automatically generates SQL and sends it to the Microsoft Access’s internal Access

Database Engine (ADE, which is a variant of the Microsoft Jet engine) every time you run a

query, process a form or create a report. To go beyond elementary database processing, you need

to know how to use SQL in Microsoft Access.

2.15 Explain how enterprise-class DBMS products use SQL.

Enterprise-class DBMS products, which include Microsoft SQL Server, Oracle Corporation’s

Oracle Database and MySQL, and IBM’s DB2, require you to know and use SQL. All data

manipulation is expressed in SQL in these products.

Chapter Two – Introduction to Structured Query Language

Page 2-11

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

The Cape Codd Outdoor Sports sale extraction database has been modified to include two
additional tables, the INVENTORY table and the WAREHOUSE table. The table schemas for
these tables, together with the SKU table, are as follows:

RETAIL_ORDER (OrderNumber, StoreNumber, StoreZip, OrderMonth, OrderYear,
OrderTotal)

ORDER_ITEM (OrderNumber, SKU, Quantity, Price, ExtendedPrice)

SKU_DATA (SKU, SKU_Description, Department, Buyer)

WAREHOUSE (WarehouseID, WarehouseCity, WarehouseState, Manager, Squarefeet)

INVENTORY (WarehouseID, SKU, SKU_Description, QuantityOnHand,
QuantityOnOrder)

The five tables in the revised Cape Codd database schema are shown in Figure 2-23. The
column characteristics for the WAREHOUSE table are shown in Figure 2-24, and the column
characteristics for the INVENTORY table are shown in Figure 2-25. The data for the
WAREHOUSE table are shown in Figure 2-26, and the data for the INVENTORY table are
shown in Figure 2-27.

Figure 2-23 – The Cape Codd Database with the WAREHOUSE and INVENTORY tables

Chapter Two – Introduction to Structured Query Language

Page 2-12

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Figure 2-24 - Column Characteristics for the WAREHOUSE Table

Figure 2-25 - Column Characteristics for the INVENTORY Table

Figure 2-26 - Cape Codd Outdoor Sports WAREHOUSE Data

Chapter Two – Introduction to Structured Query Language

Page 2-13

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Figure 2-27 - Cape Codd Outdoor Sports INVENTORY Data

Chapter Two – Introduction to Structured Query Language

Page 2-14

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

If at all possible, you should run your SQL solutions to the following questions against an actual
database. A Microsoft Access database named Cape-Codd.accdb is available on our Web site
(www.pearsonhighered.com/kroenke) that contains all the tables and data for the Cape Codd
Outdoor Sports sales data extract database. Also available on our Web site are SQL scripts for
creating and populating the tables for the Cape Codd database in SQL Server, Oracle
Database, and MySQL.

NOTE: All answers below show the correct SQL statement, as well as SQL statements modified

for Microsoft Access 2010 when needed. Whenever possible, all results were obtained by

running the SQL statements in Microsoft Access 2010, and the corresponding screen shots of the

results are shown below. As explained in the text, some queries cannot be run in Microsoft

Access 2010, and for those queries the correct result was obtained using Microsoft SQL Server

2008 R2. The SQL statements shown should run with little, if any, modification needed for

Oracle Database 11g and MySQL 5.5.

Solutions to Project Questions 2.16 – 2.53 are contained in the Microsoft Access database DBP-

e12-IM-CH02-Cape-Codd.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

If your students are using a DBMS other than Microsoft Access, the SQL code to create and

populate the Cape Codd database is available in the *.sql script files for SQL Server 2008 R2,

Oracle Database 11g, and MySQL 5.5 in the Instructor’s Resource Center on the text’s Web site

(www.pearsonhighered.com/kroenke).

2.16 There is an intentional flaw in the design of the INVENTORY table used in these
exercises. This flaw was purposely included in the INVENTORY tables so that you can
answer some of the following questions using only that table. Compare the SKU and
INVENTORY tables, and determine what design flaw is included in INVENTORY.
Specifically, why did we include it?

The flaw is the inclusion of the SKU_Description attribute in the INVENTORY table. This

attribute duplicates the SKU_Description attribute and data in the SKU_DATA table, where the

attribute rightfully belongs. By duplicating SKU_Description in the INVENTORY table, we can

ask you to list the SKU and its associated description in a single table query against the

INVENTORY table. Otherwise, a two table query would be required. If these tables were in a

production database, we would eliminate the INVENTORY.SKU_Description column.

http://www.pearsonhighered.com/kroenke
http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-15

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Use only the INVENTORY table to answer Review Questions 2.17 through 2.39:

2.17 Write an SQL statement to display SKU and SKU_Description.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description

FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-16

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

The question does not ask for unique SKU and SKU_Description data, but could be obtained by

using:

SELECT UNIQUE SKU, SKU_Description

FROM INVENTORY;

Chapter Two – Introduction to Structured Query Language

Page 2-17

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.18 Write an SQL statement to display SKU_Description and SKU.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU_Description, SKU

FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-18

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

The question does not ask for unique SKU and SKU_Description data, but could be obtained by

using:

SELECT UNIQUE SKU_Description, SKU

FROM INVENTORY;

2.19 Write an SQL statement to display WarehouseID.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT WarehouseID

FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-19

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.20 Write an SQL statement to display unique WarehouseIDs.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT DISTINCT WarehouseID

FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-20

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.21 Write an SQL statement to display all of the columns without using the SQL asterisk (*)
wildcard character.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT WarehouseID, SKU, SKU_Description,

 QuantityOnHand, QuantityOnOrder

FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-21

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.22 Write an SQL statement to display all of the columns using the SQL asterisk (*) wildcard
character.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT *

FROM INVENTORY;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-22

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.23 Write an SQL statement to display all data on products having a QuantityOnHand
greater than 0.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT *

FROM INVENTORY

WHERE QuantityOnHand >0;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-23

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.24 Write an SQL statement to display the SKU and SKU_Description for products having
QuantityOnHand equal to 0.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description

FROM INVENTORY

WHERE QuantityOnHand =0;

2.25 Write an SQL statement to display the SKU, SKU_Description, and Warehouse for
products having QuantityOnHand equal to 0. Sort the results in ascending order by
Warehouse.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID

FROM INVENTORY

WHERE QuantityOnHand =0

ORDER BY WarehouseID;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-24

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.26 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID for
products having QuantityOnHand greater than 0. Sort the results in descending order by
WarehouseID and ascending order by SKU.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID

FROM INVENTORY

WHERE QuantityOnHand > 0

ORDER BY WarehouseID DESC, SKU;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-25

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.27 Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all
products that have a QuantityOnHand equal to 0 and a QuantityOnOrder greater than 0.
Sort the results in descending order by WarehouseID and in ascending order by SKU.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID

FROM INVENTORY

WHERE QuantityOnHand = 0

 AND QuantityOnOrder > 0

ORDER BY WarehouseID DESC, SKU;

2.28 Write an SQL statement to display SKU, SKU_Description, and WarehouseID for all
products that have a QuantityOnHand equal to 0 or a QuantityOnOrder equal to 0. Sort
the results in descending order by WarehouseID and in ascending order by SKU.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID

FROM INVENTORY

WHERE QuantityOnHand = 0

 OR QuantityOnOrder = 0

ORDER BY WarehouseID DESC, SKU;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-26

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.29 Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less than
10. Do not use the BETWEEN keyword.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID, QuantityOnHand

FROM INVENTORY

WHERE QuantityOnHand > 1

 AND QuantityOnhand < 10;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-27

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.30 Write an SQL statement to display the SKU, SKU_Description, WarehouseID, and
QuantityOnHand for all products having a QuantityOnHand greater than 1 and less than
10. Use the BETWEEN keyword.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID, QuantityOnHand

FROM INVENTORY

WHERE QuantityOnHand BETWEEN 2 AND 9;

2.31 Write an SQL statement to show a unique SKU and SKU_Description for all products
having an SKU description starting with ‘Half-dome’.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

Note that, as discussed in Chapter 2, Microsoft Access 2010 uses wildcard characters that differ

from the SQL standard.

For Microsoft SQL Server, Oracle Database and MySQL:

SELECT DISTINCT SKU, SKU_Description

FROM INVENTORY

WHERE SKU_Description LIKE 'Half-dome%';

For Microsoft Access:

SELECT DISTINCT SKU, SKU_Description

FROM INVENTORY

WHERE SKU_Description LIKE 'Half-dome*';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-28

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.32 Write an SQL statement to show a unique SKU and SKU_Description for all products
having a description that includes the word 'Climb'.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

Note that, as discussed in Chapter 2, Microsoft Access 2010 uses wildcard characters that differ

from the SQL standard.

For Microsoft SQL Server, Oracle Database and MySQL:

SELECT DISTINCT SKU, SKU_Description

FROM INVENTORY

WHERE SKU_Description LIKE '%Climb%';

For Microsoft Access:

SELECT DISTINCT SKU, SKU_Description

FROM INVENTORY

WHERE SKU_Description LIKE '*Climb*';

2.33 Write an SQL statement to show a unique SKU and SKU_Description for all products
having a ‘d’ in the third position from the left in SKU_Description.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

Note that, as discussed in Chapter 2, Microsoft Access 2010 uses wildcard characters that differ

from the SQL standard.

For Microsoft SQL Server, Oracle Database and MySQL:

SELECT DISTINCT SKU, SKU_Description

FROM INVENTORY

WHERE SKU_Description LIKE '__d%';

For Microsoft Access:

SELECT DISTINCT SKU, SKU_Description

FROM INVENTORY

WHERE SKU_Description LIKE '??d*';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-29

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.34 Write an SQL statement that uses all of the SQL built-in functions on the QuantityOn-
Hand column. Include meaningful column names in the result.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT COUNT(QuantityOnHand) AS NumberOfRows,

 SUM(QuantityOnHand) AS TotalQuantityOnHand,

 AVG(QuantityOnHand) AS AverageQuantityOnHand,

 MAX(QuantityOnHand) AS MaximumQuantityOnHand,

 MIN(QuantityOnHand) AS MinimumQuantityOnHand

FROM INVENTORY;

2.35 Explain the difference between the SQL built-in functions COUNT and SUM.

COUNT counts the number of rows or records in a table, while SUM adds up the data values in

the specified column.

2.36 Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand,
grouped by WarehouseID. Name the sum TotalItemsOnHand and display the results in
descending order of TotalItemsOnHand.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

For Microsoft SQL Server, Oracle Database and MySQL:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHand

FROM INVENTORY

GROUP BY WarehouseID

ORDER BY TotalItemsOnHand DESC;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-30

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

The correct results, obtained from SQL Server 2008 / 2008 R2, are:

For Microsoft Access:

Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an

aliased computed result. To correct this, we use an SQL statement with the un-aliased

computation:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHand

FROM INVENTORY

GROUP BY WarehouseID

ORDER BY SUM(QuantityOnHand) DESC;

Chapter Two – Introduction to Structured Query Language

Page 2-31

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.37 Write an SQL statement to display the WarehouseID and the sum of QuantityOnHand,
grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand from
the sum, and name the sum TotalItemsOnHandLT3 and display the results in
descending order of TotalItemsOnHandLT3.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

For Microsoft SQL Server, Oracle Database and MySQL:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3

FROM INVENTORY

WHERE QuantityOnHand < 3

GROUP BY WarehouseID

ORDER BY TotalItemsOnHandLT3 DESC;

For Microsoft Access:

Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an

aliased computed result. To correct this, we use an SQL statement with the un-aliased

computation:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3

FROM INVENTORY

WHERE QuantityOnHand < 3

GROUP BY WarehouseID

ORDER BY SUM(QuantityOnHand) DESC;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-32

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.38 Write an SQL statement to display the WarehouseID and the sum of QuantityOn-Hand
grouped by WarehouseID. Omit all SKU items that have 3 or more items on hand from
the sum, and name the sum TotalItemsOnHandLT3. Show Warehouse ID only for
warehouses having fewer than 2 SKUs in their TotalItemsOnHandLT3 and display the
results in descending order of TotalItemsOnHandLT3.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

For Microsoft SQL Server, Oracle Database and MySQL:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3

FROM INVENTORY

WHERE QuantityOnHand < 3

GROUP BY WarehouseID

HAVING COUNT(*) < 2

ORDER BY TotalItemsOnHandLT3 DESC;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-33

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

For Microsoft Access:

Unfortunately, Microsoft Access cannot process the ORDER BY clause because it contains an

aliased computed result. To correct this, we use an SQL statement with the un-aliased

computation:

SELECT WarehouseID, SUM(QuantityOnHand) AS TotalItemsOnHandLT3

FROM INVENTORY

WHERE QuantityOnHand < 3

GROUP BY WarehouseID

HAVING COUNT(*) < 2

ORDER BY SUM(QuantityOnHand) DESC;

2.39 In your answer to Review Question 2.38, was the WHERE or HAVING applied first?
Why?

The WHERE clause is always applied before the HAVING clause. Otherwise there would be

ambiguity in the SQL statement and the results would differ according to which clause was

applied first.

Chapter Two – Introduction to Structured Query Language

Page 2-34

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Use both the INVENTORY and WAREHOUSE tables to answer Review Questions 2.40
through 2.52:

2.40 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the IN keyword.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description,

 WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState

FROM INVENTORY, WAREHOUSE

WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID

 AND (WarehouseCity = 'Atlanta'

 OR WarehouseCity = 'Bangor'

 OR WarehouseCity = 'Chicago')

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-35

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.41 Write an SQL statement to display the SKU, SKU_Description, and WarehouseID,
WarehouseCity, and WarehouseState for all items stored in the Atlanta, Bangor, or
Chicago warehouse. Use the IN keyword.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description,

 WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState

FROM INVENTORY, WAREHOUSE

WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID

 AND WarehouseCity IN ('Atlanta', 'Bangor' ,'Chicago');

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-36

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.42 Write an SQL statement to display the SKU, SKU_Description, WarehouseID,
WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Do not use the NOT IN keyword.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

NOTE: The symbol for “not equal to” is < >. Since we want the query output for warehouses

that are not Atlanta or Bangor or Chicago as a set, we must ask for warehouses that are not in the

group (Atlanta and Bangor and Chicago). This means we use AND in the WHERE clause – if

we used OR in the WHERE clause, we would end up with ALL warehouses being in the query

output. This happens because each OR eliminates only one warehouse, but that warehouse still

qualifies for inclusion in the other OR statements. To demonstrate this, substitute OR for each

AND in the SQL statement below.

SELECT SKU, SKU_Description,

 WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState

FROM INVENTORY, WAREHOUSE

WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID

 AND WarehouseCity <> 'Atlanta'

 AND WarehouseCity <> 'Bangor'

 AND WarehouseCity <> 'Chicago';

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-37

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.43 Write an SQL statement to display the SKU, SKU_Description, WarehouseID,
WarehouseCity, and WarehouseState of all items not stored in the Atlanta, Bangor, or
Chicago warehouse. Use the NOT IN keyword.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description,

 WAREHOUSE.WarehouseID, WarehouseCity, WarehouseState

FROM INVENTORY, WAREHOUSE

WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID

 AND WarehouseCity NOT IN ('Atlanta', 'Bangor' ,'Chicago');

2.44 Write an SQL statement to produce a single column called ItemLocation that combines
the SKU_Description, the phrase “is in a warehouse in”, and WarehouseCity. Do not be
concerned with removing leading or trailing blanks.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

Note that the SQL syntax will vary depending upon the DBMS – see the discussion in Chapter 2.

SELECT SKU_Description+' is in a warehouse in '

 +WarehouseCity AS ITEM_Location

FROM INVENTORY, WAREHOUSE

WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-38

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Chapter Two – Introduction to Structured Query Language

Page 2-39

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.45 Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items
stored in a warehouse managed by ‘Lucille Smith’. Use a subquery.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WarehouseID

FROM INVENTORY

WHERE WarehouseID IN

 (SELECT WarehouseID

 FROM WAREHOUSE

 WHERE Manager = 'Lucille Smith');

2.46 Write an SQL statement to show the SKU, SKU_Description, WarehouseID for all items
stored in a warehouse managed by ‘Lucille Smith’. Use a join.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT SKU, SKU_Description, WAREHOUSE.WarehouseID

FROM INVENTORY, WAREHOUSE

WHERE INVENTORY.WarehouseID=WAREHOUSE.WarehouseID

 AND Manager = 'Lucille Smith';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-40

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.47 Write an SQL statement to show the WarehouseID and average QuantityOnHand of all
items stored in a warehouse managed by ‘Lucille Smith’. Use a subquery.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT WarehouseID,

 AVG(QuantityOnHand) AS AverageQuantityOnHand

FROM INVENTORY

WHERE WarehouseID IN

 (SELECT WarehouseID

 FROM WAREHOUSE

 WHERE Manager = 'Lucille Smith')

GROUP BY WarehouseID;

2.48 Write an SQL statement to show the WarehouseID and average QuantityOnHand of all
items stored in a warehouse managed by ‘Lucille Smith’. Use a join.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT INVENTORY.WarehouseID,

 AVG(QuantityOnHand) AS AverageQuantityOnHand

FROM INVENTORY, WAREHOUSE

WHERE INVENTORY.WarehouseID = WAREHOUSE.WarehouseID

 AND Manager = 'Lucille Smith'

GROUP BY INVENTORY.Warehouse.ID;

Note the use of the complete references to INVENTORY.Warehouse – the query will NOT

work without them.

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-41

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.49 Write an SQL statement to display the WarehouseID, the sum of QuantityOnOrder and
sum of QuantityOnHand, grouped by WarehouseID and QuantityOnOrder. Name the
sum of QuantityOnOrder as TotalItemsOnOrder and the sum of QuantityOnHand as
TotalItemsOnHand.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT WarehouseID,

 SUM(QuantityOnOrder) AS TotalItemsOnOrder,

 SUM(QuantityOnHand) AS TotalItemsOnHand

FROM INVENTORY

GROUP BY WarehouseID, QuantityOnHand;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-42

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.50 Write an SQL statement to show the WarehouseID, WarehouseCity, WarehouseState,
Manager, SKU, SKU_Description, and QuantityOnHand of all items with a Manager of
‘Lucille Smith’. Use a join.

SQL Solutions to Project Questions 2.17 – 2.52 are contained in the Microsoft Access database

DBP-e12-IM-CH02-Cape-Codd-RQ.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

SELECT W.WarehouseID, WarehouseCity,

 WarehouseState, Manager,

 SKU, SKU_Description, QuantityOnHand

FROM INVENTORY AS I, WAREHOUSE AS W

WHERE I.WarehouseID=W.WarehouseID

 AND Manager = 'Lucille Smith';

Note the use of the complete references to INVENTORY.WarehouseID (aliased as

I.Warehouse) and WAREHOUSE.WarehouseID (aliased as W.WarehouseID) – the query

will NOT work without them.

2.51 Explain why you cannot use a subquery in your answer to question 2.50.

In a query that contains a subquery, only data from fields in the table used in the top-level query

can be included in the SELECT statement. If data from fields from other tables are also needed, a

join must be used. In question 2.51 we needed to display WAREHOUSE.Manager but

INVENTORY would have been the table in the top-level query. Therefore, we had to use a join.

2.52 Explain how subqueries and joins differ.

(1) In a query that contains a subquery, only data from fields in the table used in the top-level

query can be included in the SELECT statement. If data from fields from other tables are also

needed, a join must be used. See the answer to question 2.51.

(2) The subqueries in this chapter are non-correlated subqueries, which have an equivalent join

structure. In Chapter 8, correlated subqueries will be discussed, and correlated subqueries do

not have an equivalent join structure – you must use subqueries.

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-43

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

 ANSWERS TO PROJECT QUESTIONS

For this set of project questions, we will continue creating a Microsoft Access database for the
Wedgewood Pacific Corporation (WPC). Founded in 1957 in Seattle, Washington, WPC has
grown into an internationally recognized organization. The company is located in two buildings.
One building houses the Administration, Accounting, Finance, and Human Resources
departments, and the second houses the Production, Marketing, and Information Systems
departments. The company database contains data about company employees, departments,
company projects, company assets such as computer equipment, and other aspects of
company operations.

In the following project questions, we have already created the WPC.accdb database with the
following two tables (see Chapter 1 Project Questions):

DEPARTMENT (DepartmentName, BudgetCode, OfficeNumber, Phone)

EMPLOYEE (EmployeeNumber, FirstName, LastName, Department, Phone, Email)

Now we will add in the following two tables:

PROJECT (ProjectID, Name, Department, MaxHours, StartDate, EndDate)

ASSIGNMENT (ProjectID, EmployeeNumber, HoursWorked)

The four tables in the revised WPC database schema are shown in Figure 2-28. The column
characteristics for the PROJECT table are shown in Figure 2-29, and the column characteristics
for the ASSIGNMENT table are shown in Figure 2-31. Data for the PROJECT table are shown
in Figure 2-30, and the data for the ASSSIGNMENT table are shown in Figure 2-32.

Figure 2-28 – The WPC Database with the PROJECT and ASSIGNMENT Tables

2.53 Figure 2-29 shows the column characteristics for the WPC PROJECT table. Using the
column characteristics, create the PROJECT table in the WPC.accdb database.

SQL Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database

DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-44

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Figure 2-29 - Column Characteristics for the PROJECT Table

2.54 Create the relationship and referential integrity constraint between PROJECT and
DEPARTMENT. Enable enforcing of referential integrity and cascading of data updates,
but do not enable cascading of data from deleted records.

SQL Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database

DBP-e12-IM-CH02-WPC.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-45

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.55 Figure 2-30 shows the data for the WPC PROJECT table. Using the Datasheet view,
enter the data shown in Figure 2-27 into your PROJECT table.

Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-

e12-IM-CH02-WPC.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

Figure 2-30 - Sample Data for the PROJECT Table

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-46

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.56 Figure 2-31 shows the column characteristics for the WPC ASSIGNMENT table. Using
the column characteristics, create the ASSIGNMENT table in the WPC.accdb database.

Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-

e12-IM-CH02-WPC.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

Figure 2-31 - Column Characteristics for the ASSIGNMENT Table

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-47

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.57 Create the relationship and referential integrity constraint between ASSIGNMENT and

EMPLOYEE. Enable enforcing of referential integrity, but do not enable either cascading
updates or the cascading of data from deleted records.

Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-

e12-IM-CH02-WPC.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-48

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.58 Create the relationship and referential integrity constraint between ASSIGNMENT and
PROJECT. Enable enforcing of referential integrity and cascading of deletes, but do not
enable cascading updates.

Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-

e12-IM-CH02-WPC.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-49

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.59 Figure 2-32 shows the data for the WPC ASSIGNMENT table. Using the Datasheet
view, enter the data shown in Figure 2-32 into your ASSIGNMENT table.

Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-

e12-IM-CH02-WPC.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

Figure 2-32 - Sample Data for the PROJECT Table

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-50

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.60 In Project Question 2.55, the table data was entered after referential integrity constraints
were created in Project Question 2.54. In Project Question 2.59, the table data was
entered after referential integrity constraints were created in Project Questions 2.57 and
2.58. Why was the data entered after the referential integrity constraints were created
instead of before the constraints were created?

Both the PROJECT and ASSIGNMENT tables have foreign keys. PROJECT.Department is the

foreign key in PROJECT, and both ASSIGNMENT.ProjectID and

ASSIGNMENT.EmployeeNumber are foreign keys in ASSIGNMENT, If data was entered into

these columns before the referential integrity constraints were established, it would be possible to

enter foreign key data that had no corresponding primary key data. Thus, we establish the

referential integrity constraints so that the DBMS will not allow inconsistent data to be entered

into the foreign key columns.

2.61 Using Access SQL, create and run queries to answer the following questions. Save each
query using the query name format SQL-Query-02-##, where the ## sign is replaced by
the letter designator of the question. For example, the first query will be saved as SQL-
Query-02-A.Write SQL queries to produce the following results:

Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-

e12-IM-CH02-WPC.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

A. What projects are in the PROJECT table? Show all information for each project.

/***** Question A - SQL-Query-02-A ************************/

SELECT * FROM PROJECT;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-51

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

B. What are the ProjectID, Name, StartDate, and EndDate values of projects in the
PROJECT table?

/***** Question B - SQL-Query-02-B ************************/

SELECT ProjectID, Name, StartDate, EndDate

FROM PROJECT;

C. What projects in the PROJECT table started before August 1, 2010? Show all the
information for each project.

Note that the answer is an empty set – there are no PROJECTs that were started before

August 1, 2010. This answer may surprise students, but it is the correct and intended answer.

Point out in class that sometimes the results of a query will be an empty set. Then ask your

class to rerun the query with the dates August 1, 2011 and August 1, 2012 and compare the

results of the three queries.

/***** Question C - SQL-Query-02-C ************************/

SELECT *

FROM PROJECT

WHERE StartDate < #01-AUG-10#;

D. What projects in the PROJECT table have not been completed? Show all the
information for each project.

/***** Question D - SQL-Query-02-D ************************/

SELECT *

FROM PROJECT

WHERE EndDate IS NULL;

Chapter Two – Introduction to Structured Query Language

Page 2-52

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

E. Who are the employees assigned to each project? Show ProjectID, Employee-
Number, LastName, FirstName, and Phone.

/***** Question E - SQL-Query-02-E ************************/

SELECT ProjectID, E.EmployeeNumber, LastName, FirstName, Phone

FROM ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E

 ON A.EmployeeNumber=E.EmployeeNumber;

Chapter Two – Introduction to Structured Query Language

Page 2-53

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

F. Who are the employees assigned to each project? Show the ProjectID, Name, and
Department. Show EmployeeNumber, LastName, FirstName, and Phone.

Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and

EmployeePhone)

/***** Question F - SQL-Query-02-F ************************/

SELECT P.ProjectID, Name AS ProjectName,

 P.Department AS ProjectDepartment,

 E.EmployeeNumber, LastName, FirstName,

 Phone AS EmployeePhone

FROM (ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E

 ON A.EmployeeNumber=E.EmployeeNumber)

 INNER JOIN PROJECT AS P

 ON A.ProjectID=P.ProjectID;

Chapter Two – Introduction to Structured Query Language

Page 2-54

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

G. Who are the employees assigned to each project? Show ProjectID, Name,
Department, and Department Phone. Show EmployeeNumber, LastName,
FirstName, and Employee Phone. Sort by ProjectID in ascending order.

Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and

EmployeePhone.

/***** Question G - SQL-Query-02-G ************************/

SELECT P.ProjectID, Name AS ProjectName,

 D.DepartmentName AS ProjectDepartment,

 D.Phone AS DepartmentPhone,

 E.EmployeeNumber, LastName, FirstName,

 E.Phone AS EmployeePhone

FROM ((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E

 ON A.EmployeeNumber=E.EmployeeNumber)

 INNER JOIN PROJECT AS P

 ON A.ProjectID=P.ProjectID)

 INNER JOIN DEPARTMENT AS D

 ON P.Department=D.DepartmentName

ORDER BY P.ProjectID;

Chapter Two – Introduction to Structured Query Language

Page 2-55

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

H. Who are the employees assigned to projects run by the marketing department?
Show ProjectID, Name, Department, and Department Phone. Show
EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in
ascending order.

Note the use of the aliases ProjectName, ProjectDepartment, DepartmentPhone and

EmployeePhone.

/***** Question H - SQL-Query-02-H ************************/

SELECT P.ProjectID, Name AS ProjectName,

 D.DepartmentName AS ProjectDepartment,

 D.Phone AS DepartmentPhone,

 E.EmployeeNumber, LastName, FirstName,

 E.Phone AS EmployeePhone

FROM ((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E

 ON A.EmployeeNumber=E.EmployeeNumber)

 INNER JOIN PROJECT AS P

 ON A.ProjectID=P.ProjectID)

 INNER JOIN DEPARTMENT AS D

 ON P.Department=D.DepartmentName

WHERE DepartmentName='Marketing'

ORDER BY P.ProjectID;

I. How many projects are being run by the marketing department? Be sure to assign an
appropriate column name to the computed results.

Note the use of the alias NumberOfMarketingProjects.

/***** Question I - SQL-Query-02-I ************************/

SELECT COUNT(*) AS NumberOfMarketingProjects

FROM PROJECT

WHERE Department='Marketing';

Chapter Two – Introduction to Structured Query Language

Page 2-56

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

J. What is the total MaxHours of projects being run by the marketing department? Be
sure to assign an appropriate column name to the computed results.

Note the use of the alias TotalMaxHoursForMarketingProjects.

/***** Question J - SQL-Query-02-J ************************/

SELECT SUM(MaxHours) AS TotalMaxHoursForMarketingProjects

FROM PROJECT

WHERE Department='Marketing';

K. What is the average MaxHours of projects being run by the marketing department?
Be sure to assign an appropriate column name to the computed results.

Note the use of the alias AverageMaxHoursForMarketingProjects.

/***** Question K - SQL-Query-02-K ************************/

SELECT AVG(MaxHours) AS AverageMaxHoursForMarketingProjects

FROM PROJECT

WHERE Department='Marketing';

L. How many projects are being run by each department? Be sure to display each
DepartmentName and to assign an appropriate column name to the computed
results.

Note the use of the alias NumberOfDepartmentProjects.

/***** Question L - SQL-Query-02-L ************************/

SELECT Department, COUNT(*) AS NumberOfDepartmentProjects

FROM PROJECT

GROUP BY Department;

Chapter Two – Introduction to Structured Query Language

Page 2-57

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.62 Using Access QBE, create and run new queries to answer the questions in exercise
2.61. Save each query using the query name format QBE-Query-02-##, where the ##
sign is replaced by the letter designator of the question. For example, the first query will
be saved as QBE-Query-02-A.

Solutions to Project Questions 2.53 – 2.62 are contained in the Microsoft Access database DBP-

e12-IM-CH02-WPC.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

The results of each query will be identical to the corresponding SQL query in the previous Project

Question. Here we will show the QBE design of the query.

A. What projects are in the PROJECT table? Show all information for each project.

B. What are the ProjectID, Name, StartDate, and EndDate values of projects in the
PROJECT table?

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-58

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

C. What projects in the PROJECT table started before August 1, 2008? Show all the
information for each project.

D. What projects in the PROJECT table have not been completed? Show all the
information for each project.

Chapter Two – Introduction to Structured Query Language

Page 2-59

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

E. Who are the employees assigned to each project? Show ProjectID, Employee-
Number, LastName, FirstName, and Phone.

F. Who are the employees assigned to each project? Show the ProjectID, Name, and
Department. Show EmployeeNumber, LastName, FirstName, and Phone.

Chapter Two – Introduction to Structured Query Language

Page 2-60

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

G. Who are the employees assigned to each project? Show ProjectID, Name,
Department, and Department Phone. Show EmployeeNumber, LastName,
FirstName, and Employee Phone. Sort by ProjectID in ascending order.

This question is more complicated than it seems. It also raises the important question of why

students need to know SQL, and provides one answer: QBE equivalents may not always

work, or at least they don’t work as intended. You should use this question as the basis for a

discussion of this issue.

We have already run this query as an SQL query, and gotten the correct results. That SQL

Query (from RQ 2.61-G) is

/***** Question G - SQL-Query-02-G ************************/

SELECT P.ProjectID, Name AS ProjectName,

 D.DepartmentName AS ProjectDepartment,

 D.Phone AS DepartmentPhone,

 E.EmployeeNumber, LastName, FirstName,

 E.Phone AS EmployeePhone

FROM ((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E

 ON A.EmployeeNumber=E.EmployeeNumber)

 INNER JOIN PROJECT AS P

 ON A.ProjectID=P.ProjectID)

 INNER JOIN DEPARTMENT AS D

 ON P.Department=D.DepartmentName

ORDER BY P.ProjectID;

The results, which are correct, of this query are:

If we build the obvious corresponding QBE query we get (note the use of the aliases

ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone):

Chapter Two – Introduction to Structured Query Language

Page 2-61

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

This QBE query shows the solution to the question as stated, but it will not run correctly due

to how Microsoft Access interprets the JOIN...ON commands in the QBE query it itself

created! The QBE query results are:

Compare these results with those shown for SQL-Query-2-G above, and you will see the

difference and these results are clearly wrong. Looking at the data itself and thinking about

what the query results should be also make it obvious that there is a problem here.

For reference, here is the SQL code that Microsoft Access created from the QBE query:

SELECT PROJECT.ProjectID, PROJECT.Name AS [Project Name],

PROJECT.Department, DEPARTMENT.Phone AS DepartmentPhone,

EMPLOYEE.EmployeeNumber, EMPLOYEE.LastName, EMPLOYEE.FirstName,

EMPLOYEE.Phone AS EmployeePhone

FROM ((DEPARTMENT INNER JOIN PROJECT ON

 DEPARTMENT.DepartmentName = PROJECT.Department)

 INNER JOIN EMPLOYEE ON

 DEPARTMENT.DepartmentName = EMPLOYEE.Department)

 INNER JOIN ASSIGNMENT ON

 (PROJECT.ProjectID = ASSIGNMENT.ProjectID)

 AND

 (EMPLOYEE.EmployeeNumber = ASSIGNMENT.EmployeeNumber)

ORDER BY PROJECT.ProjectID;

Chapter Two – Introduction to Structured Query Language

Page 2-62

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

What can we do? There are two work arounds.

First, create the query without Department Phone. This is the only column needed from the

DEPARTMENT table, which can thus be eliminated from the query. The QBE query is

((note the use of the aliases ProjectName, ProjectDepartment and EmployeePhone):

The results will be correct, but without the DepartmentPhone column. The results are:

Alternatively, as devised by Professor John Schauf of Edgewood College, Madison, WI, you

can illustrate building a set of queries, where each one uses the previous query and adds one

additional table. This is possible because Microsoft Access allows saved queries to be used as

the equivalent of a table in a query. By adding in one table at a time, you can control the

JOIN...ON statement sequence, and obtain the correct answer.

This is a much better solution, because the end result is exactly what we want, rather than a

truncated version of it.

You should use this solution in class to illustrate how to use Microsoft Access query objects

as pseudo tables in queries, and point out that they can also be used in forms and reports.

Chapter Two – Introduction to Structured Query Language

Page 2-63

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

The steps below show how to create the needed sequence of QBE queries:

(1) Create a query that joins PROJECT and ASSIGMENT, and name it QBE-Query-02-G-

PA. Note that you must include ASSIGNMENT.EmployeeNumber in this query. Also note

the use of the two aliases ProjectName and ProjectDepartment:

(2) Create a query that joins QBE-Query-02-G-PA and DEPARTMENT, and name it QBE-

Query-02-G-PAD. Note that you will have to manually link the DEPARTMENT primary

key to the foreign key in QBE-Query-02-G-PA. Also note the use of the alias

DepartmentPhone:

Chapter Two – Introduction to Structured Query Language

Page 2-64

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

(3) Create a query that joins QBE-Query-02-G-PAD and EMPLOYEE, and name it QBE-

Query-02-G-PADE. Note that you will have to manually link the DEPARTMENT primary

key to the foreign key in QBE-Query-02-G-PAD. Also note the use of the alias

EmployeePhone:

The query results are now correct:

Chapter Two – Introduction to Structured Query Language

Page 2-65

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

H. Who are the employees assigned to projects run by the marketing department?
Show ProjectID, Name, Department, and Department Phone. Show
EmployeeNumber, LastName, FirstName, and Employee Phone. Sort by ProjectID in
ascending order.

This question is identical to question G except for the restriction to marketing department

projects. And, again, this question is more complicated than it seems. It also raises the

important question of why students need to know SQL, and provides one answer: QBE

equivalents may not always work, or at least they don’t work as intended. You should use this

question as the basis for a discussion of this issue.

We have already run this query as an SQL query, and gotten the correct results. That SQL

Query (from RQ 2.61-H) is

/***** Question H - SQL-Query-02-H ************************/

SELECT P.ProjectID, Name AS ProjectName,

 D.DepartmentName AS ProjectDepartment,

 D.Phone AS DepartmentPhone,

 E.EmployeeNumber, LastName, FirstName,

 E.Phone AS EmployeePhone

FROM ((ASSIGNMENT AS A INNER JOIN EMPLOYEE AS E

 ON A.EmployeeNumber=E.EmployeeNumber)

 INNER JOIN PROJECT AS P

 ON A.ProjectID=P.ProjectID)

 INNER JOIN DEPARTMENT AS D

 ON P.Department=D.DepartmentName

WHERE DepartmentName='Marketing'

ORDER BY P.ProjectID;

The results, which are correct, of this query are:

If we build the obvious corresponding QBE query we get (note the use of the aliases

ProjectName, ProjectDepartment, DepartmentPhone and EmployeePhone):

Chapter Two – Introduction to Structured Query Language

Page 2-66

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

The results are:

Compare these results with those shown for SQL-Query-02-H above, and you will see the

difference.

For reference, here is the SQL code that Microsoft Access created from the QBE query:

SELECT PROJECT.ProjectID, PROJECT.Name AS [Project Name],

 PROJECT.Department AS ProjectDepartment,

 DEPARTMENT.Phone AS DepartmentPhone, EMPLOYEE.EmployeeNumber,

 EMPLOYEE.LastName, EMPLOYEE.FirstName,

 EMPLOYEE.Phone AS EmployeePhone

FROM ((DEPARTMENT INNER JOIN PROJECT ON

 DEPARTMENT.DepartmentName = PROJECT.Department)

 INNER JOIN EMPLOYEE ON

 DEPARTMENT.DepartmentName = EMPLOYEE.Department)

 INNER JOIN ASSIGNMENT ON

 (PROJECT.ProjectID = ASSIGNMENT.ProjectID)

 AND

 (EMPLOYEE.EmployeeNumber = ASSIGNMENT.EmployeeNumber)

WHERE (((PROJECT.Department)="Marketing"))

ORDER BY PROJECT.ProjectID;

The problem we are encountering here is the same as described above in 2.62 G. Again, there

are two work arounds. First, create the query without Department Phone. This is the only

column needed from the DEPARTMENT table, which can thus be eliminated from the query.

The QBE Query is (note the use of the aliases ProjectName, ProjectDepartment and

EmployeePhone):

Chapter Two – Introduction to Structured Query Language

Page 2-67

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

The results will be correct, but without the DepartmentPhone column:

Alternatively, as devised by Professor John Schauf of Edgewood College, Madison, WI, you

can illustrate building a set of queries, where each one uses the previous query and adds one

additional table. This is possible because Microsoft Access allows saved queries to be used as

the equivalent of a table in a query. By adding in one table at a time, you can control the

JOIN...ON statement sequence, and obtain the correct answer.

This is a much better solution, because the end result is exactly what we want, rather than a

truncated version of it.

You should use this solution in class to illustrate how to use Microsoft Access query objects

as pseudo tables in queries, and point out that they can also be used in forms and reports.

The steps below show how to create the needed sequence of QBE queries:

Chapter Two – Introduction to Structured Query Language

Page 2-68

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

(1) Create a query that joins PROJECT and ASSIGMENT, and name it QBE-Query-0H-G-

PA. Note that you must include ASSIGNMENT.EmployeeNumber in this query, and note the

use of the aliases ProjectName and ProjectDepartment:

(2) Create a query that joins QBE-Query-02-H-PA and DEPARTMENT, and name it QBE-

Query-02-H-PAD. Note that you will have to manually link the DEPARTMENT primary

key to the foreign key in QBE-Query-02-H-PA, and note the use of the alias

DepartmentPhone:

Chapter Two – Introduction to Structured Query Language

Page 2-69

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

(3) Create a query that joins QBE-Query-02-H-PAD and EMPLOYEE, and name it QBE-

Query-02-H-PADE. Note that you will have to manually link the DEPARTMENT primary

key to the foreign key in QBE-Query-02-H-PAD, and note the use of the alias

EmployeePhone:

The query results are now correct:

Chapter Two – Introduction to Structured Query Language

Page 2-70

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

I. How many projects are being run by the marketing department? Be sure to assign an
appropriate column name to the computed results.

J. What is the total MaxHours of projects being run by the marketing department? Be
sure to assign an appropriate column name to the computed results.

Chapter Two – Introduction to Structured Query Language

Page 2-71

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

K. What is the average MaxHours of projects being run by the marketing department?
Be sure to assign an appropriate column name to the computed results.

L. How many projects are being run by each department? Be sure to display each
DepartmentName and to assign an appropriate column name to the computed
results.

Chapter Two – Introduction to Structured Query Language

Page 2-72

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

The following questions refer to the NDX table of data as described starting on page 72. You
can obtain a copy of this data in the Access database, DBPe11-NDX.accdb located on this
text's Web site at www.pearsonhighered.com/kroenke.

2.63 Write SQL queries to produce the following results:

A. The ChangeClose on Fridays.

Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access

database DBP e12-IM-CH02-NDX.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

/* *** SQL-Query-2-63-A *** */

SELECT ChangeClose

FROM NDX

WHERE TDayOfWeeK = 'Friday';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-73

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

B. The minimum, maximum, and average ChangeClose on Fridays.

Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access

database DBP-e12-IM-CH02-NDX.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

/* *** SQL-Query-2-63-B *** */

SELECT MIN (ChangeClose) AS MinFridayChangeClose,

 MAX (ChangeClose) AS MaxFridayChangeClose,

 AVG (ChangeClose) AS AverageFridayChangeClose

FROM NDX

WHERE TDayOfWeeK = 'Friday';

C. The average ChangeClose grouped by TYear. Show TYear.

Since TYear is being displayed, it makes sense to sort the results by TYear although this is

not explicitly stated in the question.

Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access

database DBP-e12-IM-CH02-NDX.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

/* *** SQL-Query-2-63-C *** */

SELECT TYear, AVG (ChangeClose) AS AverageChangeClose

FROM NDX

GROUP BY TYear

ORDER BY TYear;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-74

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

D. The average ChangeClose grouped by TYear and TMonth. Show TYear and
TMonth.

Since TYear and TMonth are being displayed, it makes sense to sort the results by TYear and

TMonth although this is not explicitly stated in the question.

Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access

database DBP-e12-IM-CH02-NDX.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

/* *** SQL-Query-2-63-D-A *** */

SELECT TYear, TMonth,

 AVG (ChangeClose) AS AverageChangeClose

FROM NDX

GROUP BY TYear, TMonth

ORDER BY TYear, TMonth;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-75

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Unfortunately, the table NDX does not contain a numeric value of the month, so in order to

sort the months correctly, we need a TMonthNumber which has a column containing a

representative number for each month (January = 1, February = 2, etc.)

Although the SQL DDL and DML for doing this is not covered until Chapter 7, this is a good

exercise in adding a column to an existing table, and you may want to show this to your

students at this time.

We can create this column as follows (note that Microsoft Access can only run one SQL

command at a time!):

/* *** SQL-ALTER-TABLE-2-63-D *** */

ALTER TABLE NDX

 ADD COLUMN TMonthNumber Int NULL;

/* *** SQL-UPDATES-2-63-D *** */

UPDATE NDX

 SET TMonthNumber = 1

 WHERE TMonth = 'January';

UPDATE NDX

 SET TMonthNumber = 2

 WHERE TMonth = 'February';

UPDATE NDX

 SET TMonthNumber = 3

 WHERE TMonth = 'March';

UPDATE NDX

 SET TMonthNumber = 4

 WHERE TMonth = 'April';

UPDATE NDX

 SET TMonthNumber = 5

 WHERE TMonth = 'May';

UPDATE NDX

 SET TMonthNumber = 6

 WHERE TMonth = 'June';

UPDATE NDX

 SET TMonthNumber = 7

 WHERE TMonth = 'July';

UPDATE NDX

 SET TMonthNumber = 8

 WHERE TMonth = 'August';

UPDATE NDX

 SET TMonthNumber = 9

 WHERE TMonth = 'September';

Chapter Two – Introduction to Structured Query Language

Page 2-76

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

UPDATE NDX

 SET TMonthNumber = 10

 WHERE TMonth = 'October';

UPDATE NDX

 SET TMonthNumber = 11

 WHERE TMonth = 'November';

UPDATE NDX

 SET TMonthNumber = 12

 WHERE TMonth = 'December';

===

An SQL or QBE Query can be used to show the data in the table (use GROUP BY):

Now that the NDX table includes this column, we can use it as follows to sort the data

correctly:

/* *** SQL-Query-2-63-D-B *** */

SELECT TYear, TMonth,

 AVG (ChangeClose) AS AverageFridayChangeClose

FROM NDX

GROUP BY TYear, TMonth, TMonthNumber

ORDER BY TYear, TMonthNumber;

Chapter Two – Introduction to Structured Query Language

Page 2-77

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

E. The average ChangeClose grouped by TYear, TQuarter, TMonth shown in
descending order of the average (you will have to give a name to the average in
order to sort by it). Show TYear, TQuarter, and TMonth. Note that months appear in
alphabetical and not calendar order. Explain what you need to do to obtain months
in calendar order.

Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access

database DBP-e12-IM—CH02-NDX.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

For Microsoft SQL Server, Oracle Database and MySQL:

/* *** SQL-Query-2-63-E *** */

SELECT TYear, TQuarter, TMonth,

 AVG(ChangeClose) AS AverageChangeClose

FROM NDX

GROUP BY TYear, TQuarter, TMonth

ORDER BY AverageChangeClose DESC;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-78

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

For Microsoft Access:

Unfortunately, as discussed above, Microsoft Access cannot process the ORDER BY clause

correctly when an SQL built-in function is used in it. Therefore we rewrite the query as:

/* *** SQL-Query-2-63-E-Access *** */

SELECT TYear, TQuarter, TMonth,

 AVG(ChangeClose) AS AverageChangeClose

FROM NDX

GROUP BY TYear, TQuarter, TMonth

ORDER BY AVG(ChangeClose) DESC;

The result is:

In order to obtain the months in calendar order, we would have to use the TMonthNumber

column we created in PQ 2.63-D with a numerical value for each month (1, 2, 3, …, 12) and

sort by those values.

Chapter Two – Introduction to Structured Query Language

Page 2-79

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

F. The difference between the maximum ChangeClose and the minimum ChangeClose
grouped by TYear, TQuarter, TMonth shown in descending order of the difference
(you will have to give a name to the difference in order to sort by it). Show TYear,
TQuarter, and TMonth.

Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access

database DBP-e12-IM—CH02-NDX.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

For Microsoft SQL Server, Oracle Database and MySQL:

/* *** SQL-Query-2-63-F *** */

SELECT TYear, TQuarter, TMonth,

 (MAX(ChangeClose) – MIN(ChangeClose)) AS DifChangeClose

FROM NDX

GROUP BY TYear, TQuarter, TMonth

ORDER BY DifChangeClose DESC;

For Microsoft Access:

Unfortunately, as discussed above, Microsoft Access cannot process the ORDER BY clause

correctly when an SQL built-in function is used in it. Therefore we rewrite the query as:

/* *** SQL-Query-2-63-F-Access *** */

SELECT TYear, TQuarter, TMonth,

 (MAX(ChangeClose) – MIN(ChangeClose)) AS DifChangeClose

FROM NDX

GROUP BY TYear, TQuarter, TMonth

ORDER BY (MAX(ChangeClose) – MIN(ChangeClose)) DESC;

The query result is:

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-80

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

G. The average ChangeClose grouped by TYear shown in descending order of the
average (you will have to give a name to the average in order to sort by it). Show
only groups for which the average is positive.

Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access

database DBP-e12-IM—CH02-NDX.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

For Microsoft SQL Server, Oracle Database and MySQL:

/* *** SQL-Query-2-63-G *** */

SELECT TYear,

 AVG(ChangeClose) AS AverageChangeClose

FROM NDX

GROUP BY TYear

HAVING AVG(ChangeClose) > 0

ORDER BY AverageChangeClose DESC;

For Microsoft Access:

Unfortunately, as discussed above, Microsoft Access cannot process the ORDER BY clause

correctly when an SQL built-in function is used in it. Therefore we rewrite the query as:

/* *** SQL-Query-2-63-G-Access *** */

SELECT TYear,

 AVG(ChangeClose) AS AverageChangeClose

FROM NDX

GROUP BY TYear

HAVING AVG(ChangeClose) > 0

ORDER BY AVG(ChangeClose) DESC;

The result is:

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-81

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

H. Display a single field with the date in the form: day/month/year. Do not be concerned
with trailing blanks.

Solutions to Project Questions 2.63.A – 2.63.H are contained in the Microsoft Access

database DBP-e12-IM—CH02-NDX.accdb which is available on the text’s Web site

(www.pearsonhighered.com/kroenke).

The solution to this question requires the student to use the DBMS help function or other

references to figure out a conversion function to convert the numerical day of the month to a

character string that can be combined with other data already in character format. The

original table NDX does not have a numeric value for month, so the names of the months will

appear in the solution. If we want the numeric value of the month, we could use the modified

NDX table, which has a numeric value TMonthNumber column. We would need to use the

data type conversion on this field as well.

The SQL Statement using SQL Server 2008 R2 character string functions is:

/* *** SQL-Query-2-63-H *** */

SELECT CAST (TDayOfMonth AS Char (2)) + ' / ' +

 TMonth + ' / ' + TYear AS DisplayDate

FROM NDX;

The SQL Statement (as created with Expression Builder) for Microsoft Access 2010 is:

/* *** SQL-Query-2-63-H-Access *** */

SELECT [NDX]![TDayOfMonth]

 &'/'&[NDX]![TMonth]

 &'/'&[NDX]![TYear] AS DisplayDate

FROM NDX;

The Microsoft Access 2010 result is:

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-82

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

2.64 It is possible that volume (the number of shares traded) has some correlation with the
direction of the stock market. Use the SQL you have learned in this chapter to
investigate that possibility. Develop at least five different SQL statements in your
investigation.

If volume is correlated with the direction of the stock market, this means that there should be

either:

(1) POSITIVE CORRELEATION: Higher volume when the market closes higher, or

(2) NEGATIVE CORRELATION: Higher volume when the market closes lower.

When does the market close higher? When NDX.ChangeClose is positive.

/* *** SQL-Query-2-64-A *** */

SELECT TMonth, TDayOfMonth, TYear, ChangeClose

FROM NDX

WHERE ChangeClose > 0;

When does the market close lower? When NDX.ChangeClose is negative.

/* *** SQL-Query-2-64-B *** */

SELECT TMonth, TDayOfMonth, TYear, ChangeClose

FROM NDX

WHERE ChangeClose < 0;

Chapter Two – Introduction to Structured Query Language

Page 2-83

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Now, what are the average positive and negative changes?

/* *** SQL-Query-2-64-C *** */

SELECT AVG (ChangeClose) AS AvgPositiveChange

FROM NDX

WHERE ChangeClose > 0;

/* *** SQL-Query-2-64-D *** */

SELECT AVG (ChangeClose) AS AvgNegativeChange

FROM NDX

WHERE ChangeClose < 0;

Now, what are the average volumes associated with the positive and negative changes?

/* *** SQL-Query-2-64-E *** */

SELECT AVG (ChangeClose) AS AvgPositiveChange,

 AVG (Volume) AS AvgVolumeOnPositiveChange

FROM NDX

WHERE ChangeClose > 0;

Chapter Two – Introduction to Structured Query Language

Page 2-84

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

/* *** SQL-Query-2-64-F *** */

SELECT AVG (ChangeClose) AS AvgNegativeChange,

 AVG (Volume) AS AvgVolumeOnNegativeChange

FROM NDX

WHERE ChangeClose < 0;

So, when there is a positive, or upward, change in the market we have an average volume of

641417.1117318 shares traded, and when we have a negative, or downward, change in the market

we have an average volume of 6742500.66698428 shares. These numbers do not look

significantly different, we will conclude that there is no correlation between the direction of the

market movement and the volume of shares traded (if we wanted to be more formal, we could use

a statistical procedure and do a hypothesis test as to whether or not there is really a statistically

significant difference between these two numbers).

Chapter Two – Introduction to Structured Query Language

Page 2-85

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

 ANSWERS TO MARCIA’S DRY CLEANING PROJECT QUESTIONS

Marcia Wilson owns and operates Marcia’s Dry Cleaning, which is an upscale dry cleaner in a
well-to-do suburban neighborhood. Marcia makes her business stand out from the competition
by providing superior customer service. She wants to keep track of each of her customers and
their orders. Ultimately, she wants to notify them that their clothes are ready via e-mail. To
provide this service, she has developed an initial database with several tables. Three of those
tables are the following:

CUSTOMER (CustomerID, FirstName, LastName, Phone, Email)

INVOICE (InvoiceNumber, CustomerNumber, DateIn, DateOut, TotalAmount)

INVOICE_ITEM (InvoiceNumber, ItemNumber, Item, Quantity, UnitPrice)

In the database schema above, the primary keys are underlined and the foreign keys are shown
in italics. The database that Marcia has created is named MDC, and the three tables in the MDC
database schema are shown in Figure 2-33.

FIGURE 2-33 – The MDC Database

The column characteristics for the tables are shown in Figures 2-34, 2-35, and 2-36. The
relationship between CUSTOMER and INVOICE should enforce referential integrity, but not
cascade updates or deletions, while the relationship between INVOICE and INVOICE_ITEM
should enforce referential integrity and cascade both updates and deletions. The data for these
tables are shown in Figures 2-37, 2-38, and 2-39.

We recommend that you create a Microsoft Access 2010 database named MDC-CH02.accdb
using the database schema, column characteristics, and data shown above, and then use this
database to test your solutions to the questions in this section. Alternatively, SQL scripts for
creating the MDC-CH02 database in SQL Server, Oracle Database, and MySQL are available
on our Web site at www.pearsonhighered.com/kroenke .

http://www.pearsonhighered.com/kroenke

Chapter Two – Introduction to Structured Query Language

Page 2-86

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Figure 2-34 - Column Characteristics for the CUSTOMER Table

Figure 2-35 - Column Characteristics for the INVOICE Table

Figure 2-36 - Column Characteristics for the INVOICE_ITEM Table

Chapter Two – Introduction to Structured Query Language

Page 2-87

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Figure 2-37 - Sample Data for the CUSTOMER table

Figure 2-38 - Sample Data for the ORDER table

Chapter Two – Introduction to Structured Query Language

Page 2-88

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Figure 2-39 - Sample Data for the ORDER_ITEM table

Chapter Two – Introduction to Structured Query Language

Page 2-89

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Write SQL statements and show the results based on the MDC data for each of the
following:

A. Show all data in each of the tables.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-A-CUSTOMER *** */

SELECT *

FROM CUSTOMER;

Note there are two customers both named Betsy Miller.

/* *** SQL-Query-MDC-A-INVOICE *** */

SELECT *

FROM INVOICE;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-90

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

/* *** SQL-Query-MDC-A-INVOICE-ITEM *** */

SELECT *

FROM INVOICE_ITEM;

Chapter Two – Introduction to Structured Query Language

Page 2-91

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

B. List the Phone and LastName of all customers.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-B *** */

SELECT Phone, LastName

FROM CUSTOMER;

C. List the Phone and LastName for all customers with a FirstName of “Nikki”.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-C *** */

SELECT Phone, LastName

FROM CUSTOMER

WHERE FirstName = 'Nikki';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-92

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

D. List the Phone, DateIn, and DateOut of all orders in excess of 100.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-D *** */

SELECT Phone, DateIn, DateOut

FROM CUSTOMER, INVOICE

WHERE TotalAmount >100

 AND CUSTOMER.CustomerID = INVOICE.CustomerNumber;

E. List the Phone and FirstName of all customers whose first name starts with 'B'.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

The correct SQL-92 statement, which uses the wildcard %, is:

/* *** SQL-Query-MDC-E *** */

SELECT Phone, FirstName

FROM CUSTOMER

WHERE FirstName LIKE 'B%';

/* *** SQL-Query-MDC-E-Access *** */

However, Microsoft Access uses the wildcard *, which gives the following SQL statement:

/* *** SQL-Query-MDC-E-Access *** */

SELECT Phone, FirstName

FROM CUSTOMER

WHERE FirstName LIKE 'B*';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-93

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

F. List the Phone and FirstName of all customers whose last name includes the
characters, 'cat'.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

The correct SQL-92 statement, which uses the wildcard %, is:

/* *** SQL-Query-MDC-F *** */

SELECT Phone, FirstName

FROM CUSTOMER

WHERE LastName LIKE '%cat%';

However, Microsoft Access uses the wildcard *, which give the following SQL statement:

/* *** SQL-Query-MDC-F-Access *** */

SELECT Phone, FirstName

FROM CUSTOMER

WHERE LastName LIKE '*cat*';

G. List the Phone, FirstName, and LastName for all customers whose second and third
characters of phone number is 23.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

Note that since the phone numbers in this database include the area code, we are really

finding phone numbers with ‘23’ as the second and third numbers in the area code. We

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-94

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

could, off course, write statements to find ‘23’ in the prefix or in the 4-digit sequence portion

of the phone number.

The correct SQL-92 statement, which uses the wildcards % and _, is:

/* *** SQL-Query-MDC-G *** */

SELECT Phone, FirstName, LastName

FROM CUSTOMER

WHERE Phone LIKE '_23%';

However, Microsoft Access uses the wildcards * and ?, which give the following SQL

statement:

/* *** SQL-Query-MDC-G-Access *** */

SELECT Phone, FirstName, LastName

FROM CUSTOMER

WHERE Phone LIKE '?23*';

H. Determine the maximum and minimum TotalAmounts.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-H *** */

SELECT MAX (TotalAmt) AS MaxTotalAmount,

 MIN (TotalAmt) AS MinTotalAmount

FROM INVOICE;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-95

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

I. Determine the average TotalAmount.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

Note that since ORDER is an SQL reserved word, it must be enclosed in delimiters (square

brackets []).

/* *** SQL-Query-MDC-I *** */

SELECT AVG (TotalAmt) AS AvgTotalAmount

FROM [ORDER];

J. Count the number of customers.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-J *** */

SELECT Count (*)AS NumberOfCustomers

FROM CUSTOMER;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-96

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

K. Group customers by LastName and then by FirstName.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-K *** */

SELECT LastName, FirstName

FROM CUSTOMER

GROUP BY LastName, FirstName;

L. Count the number of customers having each combination of LastName and
FirstName.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-L *** */

SELECT LastName, FirstName,

 COUNT (*) AS Last_First_Combination_Count

FROM CUSTOMER

GROUP BY LastName, FirstName;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-97

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

M. Show the FirstName and LastName of all customers who have had an order with
TotalAmount greater than 100. Use a subquery. Present the results sorted by
LastName in ascending order and then FirstName in descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-M *** */

SELECT FirstName, LastName

FROM CUSTOMER

WHERE CustomerID IN

 (SELECT CustomerNumber

 FROM INVOICE

 WHERE TotalAmount > 100)

ORDER BY LastName, FirstName DESC;

N. Show the FirstName and LastName of all customers who have had an order with
TotalAmount greater than 100. Use a join. Present the results sorted by LastName
in ascending order and then FirstName in descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-N *** */

SELECT FirstName, LastName

FROM CUSTOMER, INVOICE

WHERE CUSTOMER.CustomerID = INVOICE.CustomerNumber

 AND TotalAmount > 100

ORDER BY LastName, FirstName DESC;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-98

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

O. Show the FirstName and LastName of all customers who have had an order with an
Item named “Dress Shirt”. Use a subquery. Present the results sorted by LastName
in ascending order and then FirstName in descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-O *** */

SELECT FirstName, LastName

FROM CUSTOMER

WHERE CustomerID IN

 (SELECT CustomerNumber

 FROM INVOICE

 WHERE InvoiceNumber IN

 (SELECT InvoiceNumber

 FROM INVOICE_ITEM

 WHERE Item = 'Dress Shirt'))

ORDER BY LastName, FirstName DESC;

P. Show the FirstName and LastName of all customers who have had an order with an
Item named “Dress Shirt”. Use a join. Present the results sorted by LastName in
ascending order and then FirstName in descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MDC-P *** */

SELECT FirstName, LastName

FROM CUSTOMER, INVOICE, INVOICE_ITEM

WHERE CUSTOMER.CustomerID = INVOICE.CustomerNumber

 AND INVOICE.InvoiceNumber = INVOICE_ITEM.InvoiceNumber

 AND INVOICE_ITEM.Item = 'Dress Shirt'

ORDER BY LastName, FirstName DESC;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-99

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Q. Show the FirstName, LastName and TotalAmount of all customers who have had an
order with an Item named “Dress Shirt”. Use a join with a subquery. Present results
sorted by LastName in ascending order and then FirstName in descending order.

Solutions to Marcia’s Dry Cleaning questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MDC.accdb which is available at the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

Since we want to display data in fields from two tables, these tables must be combined with a

join. Data in a table without displayed fields can still be brought into the query with a

subquery. Therefore, we will join CUSTOMER and INVOICE, while using a subquery with

INVOICE_ITEM.

/* *** SQL-Query-MDC-Q *** */

SELECT FirstName, LastName, TotalAmount

FROM CUSTOMER, INVOICE

WHERE CUSTOMER.CustomerID = INVOICE.CustomerNumber

 AND INVOICE.InvoiceNumber IN

 (SELECT InvoiceNumber

 FROM INVOICE_ITEM

 WHERE Item = 'Dress Shirt')

ORDER BY LastName, FirstName DESC;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-100

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

 ANSWERS TO MORGAN IMPORTING PROJECT QUESTIONS

James Morgan owns and operates Morgan Importing, which purchases antiques and home
furnishings in Asia, ships those items to a warehouse facility in Los Angeles, and then sells
these items in the United States. James tracks the Asian purchases and subsequent shipments
of these items to Los Angeles by using a database to keep a list of items purchased, shipments
of the purchased items, and the items in each shipment. His database includes the following
tables:

ITEM (ItemID, Description, PurchaseDate, Store, City, Quantity, LocalCurrencyAmt,
ExchangeRate)

SHIPMENT (ShipmentID, ShipperName, ShipperInvoiceNumber, DepartureDate, ArrivalDate,
InsuredValue)

SHIPMENT_ITEM (ShipmentID, ShipmentItemID, ItemID, Value)

In the database schema above, the primary keys are underlined and the foreign keys are shown
in italics. The database that James has created is named MI, and the three tables in the MI
database schema are shown in Figure 2-40.

Figure 2-40 – The MI Database

The column characteristics for the tables are shown in Figures 2-41, 2-42, and 2-43. The data
for the tables are shown in Figures 2-44, 2-45, and 2-46. The relationship between ITEM and
SHIPMENT_ITEM should enforce referential integrity, and although it should cascade updates,
it should not cascade deletions. The relationship between SHIPMENT and SHIPMENT_ITEM
should enforce referential integrity and cascade both updates and deletions.

We recommend that you create a Microsoft Access 2010 database named MI-Ch02.accdb
using the database schema, column characteristics, and data shown above, and then use this
database to test your solutions to the questions in this section. Alternatively, SQL scripts for
creating the MI-CH02 database in SQL Server, Oracle Database, and MySQL are available on
our Web site at www.pearsonhighered.com/kroenke.

http://www.pearsonhighered.com/kroenke

Chapter Two – Introduction to Structured Query Language

Page 2-101

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Figure 2-41 - Column Characteristics for the ITEM Table

Figure 2-42 - Column Characteristics for the SHIPMENT Table

Chapter Two – Introduction to Structured Query Language

Page 2-102

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Figure 2-43 - Column Characteristics for the SHIPMENT_ITEM Table

Figure 2-44 - Sample Data for the ITEM Table

Figure 2-45 - Sample Data for the SHIPMENT Table

Chapter Two – Introduction to Structured Query Language

Page 2-103

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Figure 2-46 - Sample Data for the SHIPMENT_ITEM Table

Write SQL statements and show the results based on the MI data for each of the following:

A. Show all data in each of the tables.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-A-ITEM *** */

SELECT *

FROM ITEM;

/* *** SQL-Query-MI-A-SHIPMENT *** */

SELECT *

FROM SHIPMENT;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-104

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

/* *** SQL-Query-MI-A-SHIPMENT-ITEM *** */

SELECT *

FROM SHIPMENT_ITEM;

B. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shipments.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-B *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber

FROM SHIPMENT;

C. List the ShipmentID, ShipperName, and ShipperInvoiceNumber for all shipments
with an insured value greater than $10,000.00.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-C *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber

FROM SHIPMENT

WHERE InsuredValue > 10000;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-105

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

D. List the ShipmentID, ShipperName, and ShipperInvoiceNumber of all shippers
whose name starts with “AB”.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

The correct SQL-92 statement, which uses the wildcard %, is:

/* *** SQL-Query-MI-D *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber

FROM SHIPMENT

WHERE Shipper LIKE 'AB%';

However, Microsoft Access uses the wildcard *, which give the following SQL statement:

/* *** SQL-Query-MI-D-Access *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber

FROM SHIPMENT

WHERE Shipper LIKE 'AB*';

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-106

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

E. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
ShipmentID, ShipperName, and ShipperInvoiceNumber and ArrivalDate of all
shipments that departed in December.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

The correct SQL-92 statement, which uses the wildcard %, is:

/* *** SQL-Query-MI-E *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate

FROM SHIPMENT

WHERE DepartureDate LIKE '12%';

However, Microsoft Access uses the wildcard *, which gives the following SQL statement:

/* *** SQL-Query-MI-E-Access *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate

FROM SHIPMENT

WHERE DepartureDate LIKE '12*';

F. Assume DepartureDate and ArrivalDate are in the format MM/DD/YY. List the
ShipmentID, ShipperName, and ShipperInvoiceNumber and ArrivalDate of all
shipments that departed on the 10th of any month.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

The correct SQL-92 statement, which uses the wildcards % and _, is:

/* *** SQL-Query-MI-F *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate

FROM SHIPMENT

WHERE DepartureDate LIKE '___10%';

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-107

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

However, Microsoft Access uses the wildcards * and ?, which give the following SQL

statement:

/* *** SQL-Query-MI-F-Access-A *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate

FROM SHIPMENT

WHERE DepartureDate LIKE '???10*';

Further, Microsoft Access does NOT show the leading zero in MM, so we must add a

compound WHERE clause to get months without the leading zeros:

/* *** SQL-Query-MI-F-Access-B *** */

SELECT ShipmentID, ShipperName, ShipperInvoiceNumber, ArrivalDate

FROM SHIPMENT

WHERE DepartureDate LIKE '???10*'

 OR DepartureDate LIKE '??10*';

G. Determine the maximum and minimum InsuredValue.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-G *** */

SELECT MAX (InsuredValue) AS MaxInsuredValue,

 MIN (InsuredValue) AS MinInsuredValue,

FROM SHIPMENT;

http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-108

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

H. Determine the average InsuredValue.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-H *** */

SELECT AVG (InsuredValue) AS AvgInsuredValue

FROM SHIPMENT;

I. Count the number of shipments.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-I *** */

SELECT COUNT (*) AS NumberOfShipments

FROM SHIPMENT;

J. Show ItemID, Description, Store, and a calculated column named
StdCurrencyAmount that is equal to LocalCurrencyAmt times the ExchangeRate for
all rows of ITEM.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-J *** */

SELECT Item, Store,

 LocalCurrencyAmt * ExchangeRate AS StdCurrencyAmount

FROM ITEM;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-109

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

K. Group item purchases by City and Store.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-K *** */

SELECT City, Store

FROM ITEM

GROUP BY City, Store;

L. Count the number of purchases having each combination of City and Store.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-L *** */

SELECT City, Store

 COUNT (*) AS City_Store_Combination_Count

FROM ITEM

GROUP BY City, Store;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-110

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

M. Show the ShipperName and DepartureDate of all shipments that have an item with a
value of 1000 or more. Use a subquery. Present results sorted by ShipperName in
ascending order and then DepartureDate in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-M *** */

SELECT ShipperName, DepartureDate

FROM SHIPMENT

WHERE ShipmentID IN

 (SELECT ShipmentID

 FROM SHIPMENT_ITEM

 WHERE Value = 1000

 OR Value > 1000)

ORDER BY ShipperName, DepartureDate DESC;

N. Show the ShipperName and DepartureDate of all shipments that have an item with a
value of 1000 or more. Use a join. Present results sorted by ShipperName in
ascending order and then DepartureDate in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

This question is a little more complicated than it appears. Note how the following three

queries determine that there are actually only two shipments that meet the criteria.

/* *** SQL-Query-MI-N-A *** */

SELECT ShipperName, DepartureDate

FROM SHIPMENT, SHIPMENT_ITEM

WHERE SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID

 AND (Value = 1000 OR Value > 1000)

ORDER BY ShipperName, DepartureDate DESC;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-111

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

We'll add some more details to confirm the fact that the three lines for International are

actually only one shipment. Note that we can use the greater than or equal to operator >= to

simplify the WHERE clause:

/* *** SQL-Query-MI-N-B *** */

SELECT SHIPMENT.ShipmentID, ShipmentItemID, Description,

 ShipperName, DepartureDate

FROM SHIPMENT, SHIPMENT_ITEM, ITEM

WHERE SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID

 AND SHIPMENT_ITEM.ItemID = ITEM.ItemID

 AND Value >= 1000

ORDER BY ShipperName, DepartureDate DESC;

Now that we can see that all three lines for International are for ShipmentID 4, we’ll get the

proper results from the revised query by adding the DISTINCT keyword:

/* *** SQL-Query-MI-N-C *** */

SELECT DISTINCT ShipperName, DepartureDate

FROM SHIPMENT, SHIPMENT_ITEM

WHERE SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID

 AND Value >= 1000

ORDER BY ShipperName, DepartureDate DESC;

Chapter Two – Introduction to Structured Query Language

Page 2-112

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

O. Show the ShipperName and DepartureDate of all shipments that have an item that
was purchased in Singapore. Use a subquery. Present results sorted by
ShipperName in ascending order and then DepartureDate in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-O *** */

SELECT ShipperName, DepartureDate

FROM SHIPMENT

WHERE ShipmentID IN

 (SELECT ShipmentID

 FROM SHIPMENT_ITEM

 WHERE ItemID IN

 (SELECT ItemID

 FROM ITEM

 WHERE City = 'Singapore'))

ORDER BY ShipperName, DepartureDate DESC;

P. Show the ShipperName and DepartureDate of all shipments that have an item that
was purchased in Singapore. Use a join. Present results sorted by ShipperName in
ascending order and then DepartureDate in descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

As in question N, we will have to use a DISTINCT keyword to get the appropriate answer.

/* *** SQL-Query-MI-P *** */

SELECT DISTINCT ShipperName, DepartureDate

FROM SHIPMENT, SHIPMENT_ITEM, ITEM

WHERE SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID

 AND SHIPMENT_ITEM.ItemID = ITEM.ItemID

 AND City = 'Singapore'

ORDER BY ShipperName, DepartureDate DESC;

http://www.pearsonhighered.com/kroenke/
http://www.pearsonhighered.com/kroenke/

Chapter Two – Introduction to Structured Query Language

Page 2-113

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall

Q. Show the ShipperName, DepartureDate of shipment, and Value for items that were
purchased in Singapore. Use a combination of a join and a subquery. Present
results sorted by ShipperName in ascending order and then DepartureDate in
descending order.

Solutions to Morgan Importing questions are contained in the Microsoft Access database

DBP-e12-IM-CH02-MI.accdb which is available in the Instructor’s Resource Center on the

text’s Web site (www.pearsonhighered.com/kroenke).

/* *** SQL-Query-MI-Q *** */

SELECT ShipperName, DepartureDate, Value

FROM SHIPMENT, SHIPMENT_ITEM

WHERE SHIPMENT.ShipmentID = SHIPMENT_ITEM.ShipmentID

 AND ItemID IN

 (SELECT ItemID

 FROM ITEM

 WHERE City = 'Singapore')

ORDER BY ShipperName, DepartureDate DESC;

http://www.pearsonhighered.com/kroenke/

	INSTRUCTOR’S MANUAL
	TO ACCOMPANY
	Fundamentals, Design, and Implementation
	12th Edition
	CHAPTER TWO
	INTRODUCTION TO STRUCTURE QUERY LANGUAGE
	Prepared By
	David J. Auer
	Western Washington University
	 CHAPTER OBJECTIVES
	 ERRATA
	 TEACHING SUGGESTIONS
	 ANSWERS TO REVIEW QUESTIONS
	 ANSWERS TO PROJECT QUESTIONS
	 ANSWERS TO MARCIA’S DRY CLEANING PROJECT QUESTIONS
	 ANSWERS TO MORGAN IMPORTING PROJECT QUESTIONS

