SOLUTIONS MANUAL

Unit 1
 Limits and Derivatives

Topic 5 Exercises

1. As x approaches 3 from the right, $f(x)$ is approaching 1 . So, $\lim _{x \rightarrow 3^{+}} f(x)=1$.
2. As x approaches 2 from the right, $f(x)$ is approaching 2. So, $\lim _{x \rightarrow 2^{+}} f(x)=2$.
3. As x approaches 4 from the left, $f(x)$ is approaching -4. So, $\lim _{x \rightarrow 4^{-}} f(x)=-4$.
4. As x approaches 4 from the left, $f(x)$ is approaching -7. So, $\lim _{x \rightarrow 4^{-}} f(x)=-7$.
5. As x approaches 2 from the left, $f(x)$ is approaching $-\infty$. As x approaches 2 from the right, $f(x)$ is approaching ∞. So, $\lim _{x \rightarrow 2} f(x)$ does not exist, because the left-hand limit and the right-hand limit are not the same.
6. As x approaches 3 from the left, $f(x)$ is approaching $-\infty$. As x approaches 3 from the right, $f(x)$ is approaching ∞. So, $\lim _{x \rightarrow 3} f(x)$ does not exist, because the left-hand limit and the right-hand limit are not the same.
7. As x approaches 1 from the left, $f(x)$ is approaching 1. As x approaches 1 from the right, $f(x)$ is approaching 4 . So, $\lim _{x \rightarrow 1} f(x)$ does not exist, because the left-hand limit and the righthand limit are not the same.
8. As x approaches 2 from the left, $f(x)$ is approaching $-\infty$. As x approaches 2 from the right, $f(x)$ is approaching ∞. So, $\lim _{x \rightarrow 2} f(x)$ does not exist, because the left-hand limit and the right-hand limit are not the same.
9. Choose a small interval around $x=3$ and allow that interval to "close in" on $x=3$. Notice that the corresponding y values are closing in on the point (3,2). So, $\lim _{x \rightarrow 3} f(x)=2$.
10. Choose a small interval around $x=2$ and allow that interval to "close in" on $x=2$. Notice that the corresponding y values are closing in on the point $(2,1)$. So, $\lim _{x \rightarrow 2} f(x)=1$.
11. Choose a small interval around $x=3$ and allow that interval to "close in" on $x=3$. Notice that the corresponding y values are closing in on the point (3,2). So, $\lim _{x \rightarrow 3} f(x)=2$. Remember that $f(x)$ does not have to include the limit, it just has to get extremely close to that limit.
12. Choose a small interval around $x=2$ and allow that interval to "close in" on $x=2$. Notice that the corresponding y values are closing in on the point (2,1). So, $\lim _{x \rightarrow 2} f(x)=1$. Remember that $f(x)$ does not have to include the limit, it just has to get extremely close to that limit.
13. Choose a small interval around $x=3$ and allow that interval to "close in" on $x=3$. Notice that the corresponding y values are closing in on the point $(3,2)$. So, $\lim _{x \rightarrow 3} f(x)=2$. Defining $f(3)$ by adding a point to the graph does not change the limit.
14. Choose a small interval around $x=2$ and allow that interval to "close in" on $x=2$. Notice that the corresponding y values are closing in on the point $(2,1)$. So, $\lim _{x \rightarrow 2} f(x)=1$. Defining $f(2)$ by adding a point to the graph does not change the limit.
15. As x approaches 3 from the left, $f(x)$ is approaching ∞. As x approaches 3 from the right, $f(x)$ is approaching $-\infty$. So, $\lim _{x \rightarrow 3} f(x)$ does not exist, because the left-hand limit and the right-hand limit are not the same.
16. As x approaches 2 from the left, $f(x)$ is approaching $-\infty$. As x approaches 2 from the right, $f(x)$ is approaching ∞. So, $\lim _{x \rightarrow 2} f(x)$ does not exist, because the left-hand limit and the right-hand limit are not the same.
17. As x approaches 3 from the left and right, $f(x)$ is approaching ∞. So, $\lim _{x \rightarrow 3} f(x)=\infty$.
18. As x approaches 2 from the left and right, $f(x)$ is approaching $-\infty$. So, $\lim _{x \rightarrow 3} f(x)=-\infty$.
19. a. $\lim _{x \rightarrow 3^{-}} f(x)=3$
b. $\lim _{x \rightarrow 3^{+}} f(x)=-1$
c. $\lim _{x \rightarrow 3} f(x)$ does not exist, because the lefthand limit and the right-hand limit are not the same.
20. a. $\lim _{x \rightarrow 2^{-}} f(x)=1$
b. $\lim _{x \rightarrow 2^{+}} f(x)=3$
c. $\lim _{x \rightarrow 2} f(x)$ does not exist, because the lefthand limit and the right-hand limit are not the same.
21. a. $\lim _{x \rightarrow 1^{-}} f(x)=2$
b. $\lim _{x \rightarrow 1^{+}} f(x)=-2$
c. $\lim _{x \rightarrow 1} f(x)$ does not exist, because the lefthand limit and the right-hand limit are not the same.
22. a. $\lim _{x \rightarrow 1^{-}} f(x)=3$
b. $\lim _{x \rightarrow 1^{+}} f(x)=-3$
c. $\lim _{x \rightarrow 1} f(x)$ does not exist, because the lefthand limit and the right-hand limit are not the same.
23. a. $\lim _{x \rightarrow-4} f(x)=2$
b. $\lim _{x \rightarrow-2} f(x)$ does not exist, because the lefthand limit and the right-hand limit are not the same.
c. $\lim _{x \rightarrow-1} f(x)=-1$
d. $\lim _{x \rightarrow 2} f(x)$ does not exist, because the lefthand limit and the right-hand limit are not the same.
e. $\lim _{x \rightarrow 3} f(x)$ does not exist, because the lefthand limit and the right-hand limit are not the same.
f. $\lim _{x \rightarrow 5} f(x)$ does not exist, because the lefthand limit and the right-hand limit are not the same.
24. a. $\lim _{x \rightarrow-3} f(x)$ does not exist, because the lefthand limit and the right-hand limit are not the same.
b. $\lim _{x \rightarrow-1} f(x)$ does not exist, because the lefthand limit and the right-hand limit are not the same.
c. $\lim _{x \rightarrow 0} f(x)=-4$
d. $\lim _{x \rightarrow 1} f(x)=-\infty$
e. $\lim _{x \rightarrow 3} f(x)=-3$
f. $\lim _{x \rightarrow 4} f(x)=-2$
25. Part a is false because a hole at $x=a$ does not mean the limit does not exist. Part b is true because we are given that $f(a)$ is not defined. So, the correct answer is choice b.
26. Part a is true because a jump at $x=a$ will cause the left-hand and right-hand limits to be different. Part b is false because the function may be undefined at both endpoints at which the jump occurs (identified as open circles). So, the correct answer is choice a.
27. a. true
b. true
c. false; because the left-hand limit and the right-hand limit are not the same.
d. true
e. false; because as x is approaching $-3, f(x)$ is approaching 1 .
f. true
28. a. false; because the left-hand limit and the right-hand limit are not the same.
b. true
c. true
d. true
e. true
f. false; because as x is approaching 3 from the left, $f(x)$ is approaching 1.
29. $\lim _{x \rightarrow 3}(3 x-2)=7$ because $f(3)=3(3)-2=7$.
30. $\lim _{x \rightarrow 2}\left(x^{2}-5\right)=-1$ because $f(2)=2^{2}-5=-1$.
31. $\lim _{x \rightarrow 7} 42=42$ because $f(x)=42$ is a constant function. So, $f(7)=42$.
32. $\lim _{x \rightarrow 11} 54=54$ because $f(x)=54$ is a constant function. So, $f(11)=54$.
33. $\lim _{x \rightarrow-3} \frac{2 x}{x+4}=-6$ because
$f(-3)=\frac{2(-3)}{-3+4}=\frac{-6}{1}=-6$.
34. $\lim _{y \rightarrow-2} \frac{3 y}{y+5}=-2$ because
$f(-2)=\frac{3(-2)}{-2+5}=\frac{-6}{3}-2$.
35. $\lim _{d \rightarrow 2} \sqrt{2 d+5}=3$ because
$f(2)=\sqrt{2(2)+5}=\sqrt{9}=3$. Only the principal (nonnegative) square root is considered because functions can only have one y value for any given d value.
36. $\lim _{a \rightarrow 5} \sqrt[3]{5 a+2}=3$ because
$f(5)=\sqrt[3]{5(5)+2}=\sqrt[3]{27}=3$.
37. $\lim _{t \rightarrow 1}\left(2 t^{3}-5 t+4\right)=1$ because
$f(1)=2(1)^{3}-5(1)+4=2-5+4=1$.
38. $\lim _{x \rightarrow 2} \frac{-2 x}{x-3}=4$ because $f(2)=\frac{-2(2)}{2-3}=\frac{-4}{-1}=4$.
39. $\lim _{x \rightarrow 1} \frac{3 x}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{3 x}{(x+1)(x-1)}=\frac{3}{0}=$ undefined

Examining one-sided limits shows that
$\lim _{x \rightarrow 1^{-}} \frac{3 x}{x^{2}-1}=-\infty$ and $\lim _{x \rightarrow 1^{+}} \frac{3 x}{x^{2}-1}=\infty$.
So, $\lim _{x \rightarrow 1} \frac{3 x}{x^{2}-1}$ does not exist.
40. $\lim _{x \rightarrow 3} \frac{4 x+12}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{4(x+3)}{(x+3)(x-3)}=\lim _{x \rightarrow 3} \frac{4}{(x-3)}=\frac{4}{0}=$ undefined

Examining one-sided limits shows that $\lim _{x \rightarrow 3^{-}} \frac{4 x+12}{x^{2}-9}=-\infty$ and $\lim _{x \rightarrow 3^{+}} \frac{4 x+12}{x^{2}-9}=\infty$.
So, $\lim _{x \rightarrow 3} \frac{4 x+12}{x^{2}-9}$ does not exist.
41. Direct substitution of $x=1$ gives the indeterminate form $\frac{0}{0}$.

Simplify the rational expression by factoring and reducing, then evaluate the limit.
$\lim _{x \rightarrow 1} \frac{3 x-3}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{3(x-1)}{(x+1)(x-1)}=\lim _{x \rightarrow 1} \frac{3}{x+1}=\frac{3}{2}$
42. Direct substitution of $x=3$ gives the indeterminate form $\frac{0}{0}$.

Simplify the rational expression by factoring and reducing, then evaluate the limit.
$\lim _{x \rightarrow 3} \frac{4 x-12}{x^{2}-9}=\lim _{x \rightarrow 3} \frac{4(x-3)}{(x+3)(x-3)}=\lim _{x \rightarrow 3} \frac{4}{x+3}=\frac{4}{6}=\frac{2}{3}$
43. Direct substitution of $x=-3$ gives the indeterminate form $\frac{0}{0}$.

Simplify the rational expression by factoring and reducing, then evaluate the limit.
$\lim _{x \rightarrow-3} \frac{x^{2}+3 x}{x^{2}-9}=\lim _{x \rightarrow-3} \frac{x(x+3)}{(x+3)(x-3)}=\lim _{x \rightarrow-3} \frac{x}{x-3}=\frac{-3}{-6}=\frac{1}{2}$
44. Direct substitution of $x=2$ gives the indeterminate form $\frac{0}{0}$.

Simplify the rational expression by factoring and reducing, then evaluate the limit. $\lim _{x \rightarrow 2} \frac{3 x-6}{x^{2}-4}=\lim _{x \rightarrow 2} \frac{3(x-2)}{(x+2)(x-2)}=\lim _{x \rightarrow 2} \frac{3}{x+2}=\frac{3}{4}$
45. $\lim _{x \rightarrow 4} \frac{3 x+12}{x^{2}-16}=\lim _{x \rightarrow 4} \frac{3(x+4)}{(x+4)(x-4)}=\lim _{x \rightarrow 4} \frac{3}{(x-4)}=\frac{3}{0}=$ undefined

Examining one-sided limits shows that $\lim _{x \rightarrow 4^{-}} \frac{3 x+12}{x^{2}-16}=-\infty$ and $\lim _{x \rightarrow 4^{+}} \frac{3 x+12}{x^{2}-16}=\infty$.
So, $\lim _{x \rightarrow 4} \frac{3 x+12}{x^{2}-16}$ does not exist.
46. $\lim _{x \rightarrow 2} \frac{x^{2}+4}{x^{2}-2 x}=\lim _{x \rightarrow 2} \frac{x^{2}+4}{x(x-2)}=\frac{8}{0}=$ undefined

Examining one-sided limits shows that $\lim _{x \rightarrow 2^{-}} \frac{x^{2}+4}{x^{2}-2 x}=-\infty$ and $\lim _{x \rightarrow 2^{+}} \frac{x^{2}+4}{x^{2}-2 x}=\infty$. So, $\lim _{x \rightarrow 2} \frac{x^{2}+4}{x^{2}-2 x}$ does not exist.
47. $\lim _{x \rightarrow 4} \frac{x^{3}}{x^{2}-16}=\lim _{x \rightarrow 4} \frac{x^{3}}{(x+4)(x-4)}=\frac{64}{0}=$ undefined

Examining one-sided limits shows that $\lim _{x \rightarrow 4^{-}} \frac{x^{3}}{x^{2}-16}=-\infty$ and $\lim _{x \rightarrow 4^{+}} \frac{x^{3}}{x^{2}-16}=\infty$.
So, $\lim _{x \rightarrow 4} \frac{x^{3}}{x^{2}-16}$ does not exist.
48. $\lim _{x \rightarrow 5} \frac{-x^{3}}{x^{2}-25}=\lim _{x \rightarrow 5} \frac{-x^{3}}{(x+5)(x-5)}=\frac{-125}{0}=$ undefined

Examining one-sided limits shows that $\lim _{x \rightarrow 5^{-}} \frac{-x^{3}}{x^{2}-25}=\infty$ and $\lim _{x \rightarrow 5^{+}} \frac{-x^{3}}{x^{2}-25}=-\infty$.
So, $\lim _{x \rightarrow 5} \frac{-x^{3}}{x^{2}-25}$ does not exist.
49. $\lim _{h \rightarrow 0} \frac{4 a^{2} h-3 a h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h\left(4 a^{2}-3 a+h\right)}{h}=\lim _{h \rightarrow 0}\left(4 a^{2}-3 a+h\right)=4 a^{2}-3 a$
50. $\lim _{h \rightarrow 0} \frac{-6 a^{2} h-12 a h-h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h\left(-6 a^{2}-12 a-h\right)}{h}=\lim _{h \rightarrow 0}\left(-6 a^{2}-12 a-h\right)=-6 a^{2}-12 a$
51. $f(x)= \begin{cases}2 x-3 & \text { if } x<1 \\ x^{2} & \text { if } x \geq 1\end{cases}$

a. x is approaching 0 , which belongs to the domain of the first part of the function. So, $\lim _{x \rightarrow 0} f(x)=-3$.
b. x is approaching 3 , which belongs to the domain of the second part of the function. So, $\lim _{x \rightarrow 3} f(x)=9$.
c. x is approaching 1 , which is the break-point of the domain of the two parts of the function. Thus, the left-hand and the right-hand limits need to be evaluated.

$$
\begin{aligned}
& \lim _{x \rightarrow 1^{-}} f(x)=-1 \\
& \lim _{x \rightarrow 1^{+}} f(x)=1
\end{aligned}
$$

Because the left-hand and the right-hand limit are not equal, $\lim _{x \rightarrow 1} f(x)$ does not exist.
52. $f(x)= \begin{cases}1-x^{2} & \text { if } x \leq-2 \\ 3 x+1 & \text { if } x>-2\end{cases}$

a. x is approaching -5 , which belongs to the domain of the first part of the function. So, $\lim _{x \rightarrow-5} f(x)=-24$.
b. x is approaching 0 , which belongs to the domain of the second part of the function. So, $\lim _{x \rightarrow 0} f(x)=1$.
c. x is approaching -2 , which is the break-point of the domain of the two parts of the function. Thus, the lefthand and the right-hand limits need to be evaluated.
$\lim _{x \rightarrow-2^{-}} f(x)=-3$
$\lim _{x \rightarrow-2^{+}} f(x)=-5$
Because the left-hand and the right-hand limit are not equal, $\lim _{x \rightarrow 2} f(x)$ does not exist.
53. $f(x)= \begin{cases}x+5 & \text { if } x<-1 \\ -x^{2}-3 & \text { if }-1 \leq x<2 \\ \sqrt{x-1} & \text { if } x \geq 2\end{cases}$
a. x is approaching 0 , which belongs to the domain of the second part of the function. So,
$\lim _{x \rightarrow 0} f(x)=f(0)=-0^{2}-3=-3$.
b. x is approaching -1 , which is the break-point of the domain of the first and second parts of the function. Thus, the left-hand and the right-hand limits need to be evaluated.
$\lim _{x \rightarrow-1^{-}} f(x)=f(-1)=-1+5=4$
$\lim _{x \rightarrow-1^{+}} f(x)=f(-1)=-(-1)^{2}-3=-4$
Because the left-hand and the right-hand limit are not equal, $\lim _{x \rightarrow-1} f(x)$ does not exist.
c. x is approaching 2 , which is the break-point of the domain of the second and third parts of the function. Thus, the left-hand and the right-hand limits need to be evaluated.

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=f(2)=-2^{2}-3=-7 \\
& \lim _{x \rightarrow 2^{+}} f(x)=f(2)=\sqrt{2-1}=1
\end{aligned}
$$

Because the left-hand and the right-hand limit are not equal, $\lim _{x \rightarrow 2} f(x)$ does not exist.
54. $f(x)= \begin{cases}\frac{x^{2}}{2} & \text { if } x \leq-3 \\ -x^{2}-3 & \text { if }-3<x \leq 2 \\ \sqrt{x+2} & \text { if } x>2\end{cases}$
a. x is approaching 0 , which belongs to the domain of the second part of the function. So,
$\lim _{x \rightarrow 0} f(x)=f(0)=-0^{2}-3=-3$.
b. x is approaching -3 , which is the break-point of the domain of the first and second parts of the function. Thus, the left-hand and the right-hand limits need to be evaluated.

$$
\begin{aligned}
\lim _{x \rightarrow-3^{-}} f(x) & =f(-3) \\
\lim _{x \rightarrow-3^{+}} f(x) & =f(-3) \\
2 & =-(-3)^{2}-3=-12
\end{aligned}
$$

Because the left-hand and the right-hand limit are not equal, $\lim _{x \rightarrow-3} f(x)$ does not exist.
c. x is approaching 2, which is the break-point of the domain of the second and third parts of the function. Thus, the left-hand and the right-hand limits need to be evaluated.

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{-}} f(x)=f(2)=-2^{2}-3=-7 \\
& \lim _{x \rightarrow 2^{+}} f(x)=f(2)=\sqrt{2+2}=2
\end{aligned}
$$

Because the left-hand and the right-hand limit are not equal, $\lim _{x \rightarrow 2} f(x)$ does not exist.
55. a. $f(x)=5 x-7$

Step 1: $f(a)=5 a-7$
Step 2: $f(a+h)=5(a+h)-7$

$$
=5 a+5 h-7
$$

Step3: $f(a+h)-f(a)=(5 a+5 h-7)-(5 a-7)$

$$
\begin{aligned}
& =5 a+5 h-7-5 a+7 \\
& =5 h
\end{aligned}
$$

Step 4: $\frac{f(a+h)-f(a)}{h}=\frac{5 h}{h}=5$
b. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} 5=5$
56. a. $f(x)=-46$

Step 1: $f(a)=-46$
Step 2: $f(a+h)=-46$
Step3: $f(a+h)-f(a)=(-46)-(-46)=0$
Step 4: $\frac{f(a+h)-f(a)}{h}=\frac{0}{h}=0$
b. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} 0=0$
57. a. $f(x)=x^{2}+2$

Step 1: $f(a)=a^{2}+2$
Step 2: $f(a+h)=(a+h)^{2}+2$

$$
=a^{2}+2 a h+h^{2}+2
$$

Step3: $f(a+h)-f(a)=\left(a^{2}+2 a h+h^{2}+2\right)-\left(a^{2}+2\right)$

$$
\begin{aligned}
& =a^{2}+2 a h+h^{2}+2-a^{2}-2 \\
& =2 a h+h^{2}
\end{aligned}
$$

Step 4: $\frac{f(a+h)-f(a)}{h}=\frac{2 a h+h^{2}}{h}$

$$
\begin{aligned}
& =\frac{h(2 a+h)}{h} \\
& =2 a+h
\end{aligned}
$$

b. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0}(2 a+h)=2 a$
58. a. $f(x)=3-2 x$

Step 1: $f(a)=3-2 a$
Step 2: $f(a+h)=3-2(a+h)$

$$
=3-2 a-2 h
$$

Step3: $f(a+h)-f(a)=(3-2 a-2 h)-(3-2 a)$

$$
\begin{aligned}
& =3-2 a-2 h-3+2 a \\
& =-2 h
\end{aligned}
$$

Step 4: $\frac{f(a+h)-f(a)}{h}=\frac{-2 h}{h}=-2$
b. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0}-2=-2$
59. a. $f(x)=12$

Step 1: $f(a)=12$
Step 2: $f(a+h)=12$
Step3: $f(a+h)-f(a)=12-12=0$
Step 4: $\frac{f(a+h)-f(a)}{h}=\frac{0}{h}=0$
b. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} 0=0$

TOPIC 5 INTRODUCTION TO LIMITS

60. a. $f(x)=3-x^{2}$

Step 1: $f(a)=3-a^{2}$
Step 2: $f(a+h)=3-(a+h)^{2}$

$$
=3-a^{2}-2 a h-h^{2}
$$

Step3: $f(a+h)-f(a)=\left(3-a^{2}-2 a h-h^{2}\right)-\left(3-a^{2}\right)$

$$
\begin{aligned}
& =3-a^{2}-2 a h-h^{2}-3+a^{2} \\
& =-2 a h-h^{2}
\end{aligned}
$$

Step 4: $\frac{f(a+h)-f(a)}{h}=\frac{-2 a h-h^{2}}{h}$

$$
\begin{aligned}
& =\frac{h(-2 a-h)}{h} \\
& =-2 a-h
\end{aligned}
$$

b. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0}(-2 a-h)=-2 a$
61. a. $f(x)=-2 x^{2}+7 x-1$

Step 1: $f(a)=-2 a^{2}+7 a-1$
Step 2: $f(a+h)=-2(a+h)^{2}+7(a+h)-1$

$$
=-2 a^{2}-4 a h-2 h^{2}+7 a+7 h-1
$$

Step3: $f(a+h)-f(a)=\left(-2 a^{2}-4 a h-2 h^{2}+7 a+7 h-1\right)-\left(-2 a^{2}+7 a-1\right)$

$$
\begin{aligned}
& =-2 a^{2}-4 a h-2 h^{2}+7 a+7 h-1+2 a^{2}-7 a+1 \\
& =-4 a h-2 h^{2}+7 h
\end{aligned}
$$

Step 4: $\frac{f(a+h)-f(a)}{h}=\frac{-4 a h-2 h^{2}+7 h}{h}$

$$
\begin{aligned}
& =\frac{h(-4 a-2 h+7)}{h} \\
& =-4 a-2 h+7
\end{aligned}
$$

b. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0}(-4 a-2 h+7)=-4 a+7$
62. a. $f(x)=3 x^{2}-2 x+4$

Step 1: $f(a)=3 a^{2}-2 a+4$
Step 2: $f(a+h)=3(a+h)^{2}-2(a+h)+4$

$$
=3 a^{2}+6 a h+3 h^{2}-2 a-2 h+4
$$

Step3: $f(a+h)-f(a)=\left(3 a^{2}+6 a h+3 h^{2}-2 a-2 h+4\right)-\left(3 a^{2}-2 a+4\right)$

$$
\begin{aligned}
& =3 a^{2}+6 a h+3 h^{2}-2 a-2 h+4-3 a^{2}+2 a-4 \\
& =6 a h+3 h^{2}-2 h
\end{aligned}
$$

Step 4: $\frac{f(a+h)-f(a)}{h}=\frac{6 a h+3 h^{2}-2 h}{h}$

$$
\begin{aligned}
& =\frac{h(6 a+3 h-2)}{h} \\
& =6 a+3 h-2
\end{aligned}
$$

b. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0}(6 a+3 h-2)=6 a-2$
63. a. $f(x)=\frac{2}{x+1}$

Step 1: $f(a)=\frac{2}{a+1}$
Step 2: $f(a+h)=\frac{2}{a+h+1}$
Step 3: $f(a+h)-f(a)=\frac{2}{a+h+1}-\frac{2}{a+1}$

$$
\begin{aligned}
& =\frac{2(a+1)}{(a+h+1)(a+1)}-\frac{2(a+h+1)}{(a+1)(a+h+1)} \\
& =\frac{2 a+2}{(a+h+1)(a+1)}-\frac{2 a+2 h+2}{(a+1)(a+h+1)} \\
& =\frac{2 a+2-(2 a+2 h+2)}{(a+h+1)(a+1)} \\
& =\frac{2 a+2-2 a-2 h-2}{(a+h+1)(a+1)} \\
& =\frac{-2 h}{(a+h+1)(a+1)}
\end{aligned}
$$

Step 4: $\frac{f(a+h)-f(a)}{h}=\frac{-2 h}{h(a+h+1)(a+1)}$

$$
=\frac{-2}{(a+h+1)(a+1)}
$$

b. $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=\lim _{h \rightarrow 0} \frac{-2}{(a+h+1)(a+1)}=\frac{-2}{(a+1)^{2}}$

