


Chapter 2
Instruction Set Architecture

2.1. No; any binary pattern can be interpreted as a number or as an instruction.

2.2. Byte contents in hex, starting at location 1000, will be 43, 6F, 6D, 70, 75, 74, 65, 72. The two words at 1000
and 1004 will be 436F6D70 and 75746572.

2.3. Byte contents in hex, starting at location 1000, will be 43, 6F, 6D, 70, 75, 74, 65, 72. The two words at 1000
and 1004 will be 706D6F43 and 72657475.

2.4. (a) 2012, (b) 5000, (c) 5028, (d) 2000, (e) 1996.

2.5. A RISC-style program that computes SUM = 580 + 6840 + 80000:

Move R2, #NUMBERS Get the address of numbers.
Load R3, (R2) Load 580.
Load R4, 4(R2) Load 68400.
Add R3, R3, R4 Generate 580 + 80000.
Load R4, 8(R2) Load 80000.
Add R3, R3, R4 Generate the final sum.
Store R3, 12(R2) Store the sum.
next instruction

ORIGIN 0x500
NUMBERS: DATAWORD 580, 68400, 80000 Numbers to be added.
SUM: RESERVE 4 Space for the sum.

2.6. A CISC-style program that computes SUM = 580 + 6840 + 80000:

Move R2, #NUMBERS Get the address of numbers.
Move R3, (R2)+ Load 580.
Add R3, (R2)+ Generate 580 + 80000.
Add R3, (R2) Generate the final sum.
Move SUM, R3 Store the sum.
next instruction

ORIGIN 0x500
NUMBERS: DATAWORD 580, 68400, 80000 Numbers to be added.
SUM: RESERVE 4 Space for the sum.

1



2.7. A RISC-style program that computes ANSWER = A × B + C × D:

Move R2, #A Get the address of A.
Load R3, (R2) Load the operand A.
Move R2, #B Get the address of B.
Load R4, (R2) Load the operand B.
Multiply R5, R3, R4 Generate A × B.
Move R2, #C Get the address of C.
Load R3, (R2) Load the operand C.
Move R2, #D Get the address of D.
Load R4, (R2) Load the operand D.
Multiply R6, R3, R4 Generate C × D.
Add R7, R5, R6 Compute the final answer.
Move R2, #ANSWER Get the address and
Store R7, (R2) store the answer.
next instruction

ORIGIN 0x500
A: DATAWORD 100 Test data.
B: DATAWORD 50
C: DATAWORD 20
D: DATAWORD 400
ANSWER: RESERVE 4 Space for the answer.

2.8. A CISC-style program that computes ANSWER = A × B + C × D:

Move R2, A Load the operand A.
Multiply R2, B Generate A × B.
Move R3, C Load the operand C.
Multiply R3, D Generate C × D.
Add R3, R2 Compute the final answer.
Move ANSWER, R3 Store the answer.
next instruction

ORIGIN 0x500
A: DATAWORD 100 Test data.
B: DATAWORD 50
C: DATAWORD 20
D: DATAWORD 400
ANSWER: RESERVE 4 Space for the answer.

2



2.9. An alternative program is given below. The size of the list in bytes is computed by shifting the value n to
the left by two bit positions, which multiplies the value by 4. This is then added to the starting address of
the list to generate the address that follows the last entry in the list.

The loop in this program has only four instructions. Note that we could use a similar arrangement to process
the list in the direction of increasing addresses.

Load R2, N Load the size of the list.
LShiftL R2, R2, #2 Multiply by 4.
Clear R3 Initialize sum to 0.
Move R4, #NUM1 Get address of the first number.
Add R2, R2, R4 Address past the last entry.

LOOP: Subtract R2, R2, #4 Decrement the pointer to the list.
Load R5, (R2) Get the next number.
Add R3, R3, R5 Add this number to sum.
Branch if [R4]<[R2] LOOP Branch back if not finished.
Store R3, SUM Store the final sum.

2.10. Memory word location J contains the number of tests, j, and memory word location N contains the number
of students, n. The list of student marks begins at memory word location LIST in the format shown in Figure
2.10. The parameter Stride = 4(j + 1) is the distance in bytes between scores on a particular test for adjacent
students in the list.

Move R2, #J Compute and place
Load R2, (R2) Stride = 4(j + 1)
Add R2, R2, #1 into register R2.
LShiftL R2, R2, #2
Move R3, #LIST Initialize register R3 to the location
Add R3, R3, #4 of the test 1 score for student 1.
Move R4, #SUM Initialize register R4 to the location

of the sum for test 1.
Move R5, #J Initialize outer loop counter
Load R5, (R5) R5 to j.

OUTER: Move R6, #N Initialize inner loop counter
Load R6, (R6) R6 to n.
Move R7, R0
Move R8, R0 Clear the sum register R8.
Add R9, R3, R7 Use R9 as an index register.

INNER: Load R10, (R9) Accumulate the sum
Add R8, R8, R10 of test scores.
Add R9, R9, R2 Increment index register by Stride value.
Subtract R6, R6, #1 Check if all student scores on current
Branch if [R6]>[R0] INNER test have been accumulated.
Store R8, (R4) Store sum of current test scores and
Add R4, R4, #4 increment sum location pointer.
Add R3, R3, #4 Increment R3 to point to the next

test score for student 1.
Subtract R5, R5, #1 Check if the sums for all tests have
Branch if [R5]>[R0] OUTER been computed.
next instruction

3



2.11. The following program determines the number of negative integers.

Move R2, #N Get the address N.
Load R2, (R2) Load the size of the list.
Move R3, R0 Initialize the counter to 0.
Move R4, #NUMBERS Load address of the first number.

LOOP: Load R5, (R4) Get the next number.
Branch if [R5]≥[R0] NEXT Test if number is negative.
Add R3, R3, #1 Increment the count.

NEXT: Add R4, R4, #4 Increment the pointer to list.
Subtract R2, R2, #1 Decrement the list counter.
Branch if [R2]>[R0] LOOP Loop back if not finished.
Move R6, #NEGNUM Get the address NEGNUM.
Store R3, (R6) Store the result.
next instruction

ORIGIN 0x500
NEGNUM: RESERVE 4 Space for the result.
N: DATAWORD 6 Size of the list.
NUMBERS: DATAWORD 23,−5, −128 Test data.

DATAWORD 44,−23, −9

2.12. The assembler directives ORIGIN and DATAWORD cause the object program memory image constructed
by the assembler to indicate that 300 is to be placed at memory word location 1000 at the time the program
is loaded into memory prior to execution.

The Move and Store instructions place 300 into memory word location 1000 when these instructions are
executed as part of a program.

4



2.13. An assembly-language program in the style of Figure 2.13 is:

ORIGIN 100
MOV R2, #LIST Get the address LIST.
CLR R3
CLR R4
CLR R5
LD R6, N Load the value n.

LOOP: LD R7, 4(R2) Add the mark for next student’s
ADD R3, R3, R7 Test 1 to the partial sum.
LD R7, 8(R2) Add the mark for that student’s
ADD R4, R4, R7 Test 2 to the partial sum.
LD R7, 12(R2) Add the mark for that student’s
ADD R5, R5, R7 Test 3 to the partial sum.
ADD R2, R2, #16 Increment the pointer.
SUB R6, R6, #1 Decrement the counter.
BGT R6, R0, LOOP Branch back if not finished.
ST R3, SUM1 Store the total for Test 1.
ST R4, SUM2 Store the total for Test 2.
ST R5, SUM3 Store the total for Test 3.
next instruction

ORIGIN 300
SUM1: RESERVE 4
SUM2: RESERVE 4
SUM3: RESERVE 4
N: DATAWORD 50
LIST: RESERVE 800

END

2.14. A CISC-style program corresponding to Figure 2.33 is:

Move R2, #STRING R2 points to the start of the string.
Clear R3 R3 is a counter that is cleared to 0.
Move R4, #0x0D ASCII code for Carriage Return.

LOOP: CompareByte R4, (R2)+ Check the next character.
Branch=0 DONE Finished if character is CR.
Add R3, R3, #1 Increment the counter.
Branch LOOP Not finished, loop back.

DONE: Move LENGTH, R3 Store the count in location LENGTH.

5



2.15. A CISC-style program corresponding to Figure 2.34 is:

LIST EQU 1000 Starting address of the list.

ORIGIN 400
Move R2, #LIST R2 points to the start of the list.
Move R3, 4(R2) R3 is a counter, initialize it with n.
Move R4, R2
Add R4, #8 R4 points to the first number.
Move R5, (R4) R5 holds the smallest number found so far.

LOOP: Subtract R3, #1 Decrement the counter.
Branch=0 DONE Finished if R3 is equal to 0.
Compare R5, (R4)+
Branch≤0 LOOP Check if smaller number found.
Move R5, −4(R4) Update the smallest number found.
Branch LOOP

DONE: Move (R2), R5 Store the smallest number into SMALL.

ORIGIN 1000
SMALL: RESERVE 4 Space for the smallest number found.
N: DATAWORD 7 Number of entries in the list.
ENTRIES: DATAWORD 4,5,3,6,1,8,2 Entries in the list.

END

2.16. A CISC-style program corresponding to Figure 2.35 is:

Move R2, N Initialize counter R2 with n.
Move R3, #DECIMAL R3 points to the ASCII digits.
Clear R4 R4 will hold the binary number.

LOOP: MoveByte R5, (R3)+ Get the next ASCII digit.
And R5, #0x0F Form the BCD digit.
Add R4, R5 Add to the intermediate result.
Subtract R2, #1 Decrement the counter.
Branch=0 DONE
Multiply R4, #10 Multiply by 10.
Branch LOOP Loop back if not done.

DONE: Move BINARY, R4 Store result in location BINARY.

2.17. Assume that the subroutine can change the contents of any register used to pass parameters.

SUB: LShiftL R5, #2 Use R5 to contain distance in bytes
between successive elements in a column.

Subtract R3, R2 Form (y − x).
LShiftL R3, #2 Form 4(y − x).
LShiftL R2, #2 Set R6 to
Add R6, R2 address A(0,x).

LOOP: Move R2, (R6) Add corresponding
Add (R6, R3), R2 column elements.
Add R6, R5 Move to next row.
Decrement R4 Repeat until all
Branch>0 LOOP elements are added.
Return Return to calling program.

6



2.18. A RISC-style program for Example 2.5 is:

Move R2, #LIST Get the address LIST.
Move R3, #N Get the address N.
Load R3, (R3) Initialize outer loop pointer
Add R3, R2, R3 to LIST + n.

OUTER: Subtract R3, R3, #1 Decrement the pointer.
Branch if [R3]≤[R2] DONE Check if last entry.
LoadByte R5, (R3) Starting max value in sublist.
Subtract R4, R3, #1 Initialize inner loop pointer.

INNER: LoadByte R6, (R4) Check if the next entry
Branch if [R5]≥[R6] NEXT is lower.
StoreByte R6, (R3) If yes, then swap
StoreByte R5, (R4) the entries and
Move R5, R6 update the max value.

NEXT: Subtract R4, R4, #1 Adjust the inner loop pointer.
Branch if [R4]≥[R2] INNER
Branch OUTER

2.19. The tasks can be performed as follows:

(a)

Move R2, (R5)+
Add R2, (R5)+
Move −(R5), R2

(b)

Move R3, 16(R5)

(c)

Add R5, #40

2.20. (a) The stack will contain the first 4 entries shown in Figure 2.19. However, the stack pointer will point
to address 976, because it has already been adjusted to this value by the first Subtract instruction in the
subroutine.

(b) The stack pointer will have the value 976. The stack contents will be the same as shown in Figure 2.19,
except that NUM1 will have been replaced by the sum.

(c) The stack pointer will have value 992. There will be 2 entries in the stack - n and the sum.

7



2.21. (a) Neither nesting nor recursion are supported.

(b) Nesting is supported, because different Call instructions will save the return address at different memory
locations. Recursion is not supported.

(c) Both nesting and recursion are supported.

2.22. The contents of register R2 can be safely pushed on the second stack, or poped from it, by calling the fol-
lowing RISC-style subroutines:

SPUSH: Subtract SP, SP, #4 Save register R3 on
Store R3, (SP) the processor stack.
Move R3, #TOP
Branch if [R5]≤[R3] FULLERROR
Subtract R5, R5, #4
Store R2, (R5)
Load R3, (SP) Restore register R3.
Add SP, SP, #4
Return

SPOP: Subtract SP, SP, #4 Save register R3 on
Store R3, (SP) the processor stack.
Move R3, #BOTTOM
Branch if [R5]≥[R3] EMPTYERROR
Load R2, (R5)
Add R5, R5, #4
Load R3, (SP) Restore register R3.
Add SP, SP, #4
Return

2.23. The contents of register R2 can be safely pushed on the second stack, or poped from it, as follows:

SPUSH: Compare R5, #TOP If R5 has a value equal to
Branch≤0 FULLERROR or less than TOP, then stack is full.
Move −(R5), R2 Otherwise, push the new entry.

SPOP: Compare R5, #BOTTOM If R5 has a value equal to or
Branch≥0 EMPTYERROR greater than BOTTOM, then stack is empty.
Move R2, (R5)+ Otherwise, pop the entry from stack.

8



2.24. (a) Wraparound must be used. That is, the next item must be entered at the beginning of the memory region,
assuming that location is empty.

(b) A current queue of bytes is shown in the memory region from byte location 1 to byte location k in the
following diagram.

Current queue
of bytes

Increasing addresses

INOUT

1 k

. . .. . .

The IN pointer points to the location where the next byte will be appended to the queue. If the queue is not
full with k bytes, this location is empty, as shown in the diagram.

The OUT pointer points to the location containing the next byte to be removed from the queue. If the queue
is not empty, this location contains a valid byte, as shown in the diagram.

Initially, the queue is empty and both IN and OUT point to location 1.

(c) Initially, as stated in Part b, when the queue is empty, both the IN and OUT pointers point to location
1. When the queue has been filled with k bytes and none of them have been removed, the OUT pointer
still points to location 1. But the IN pointer must also be pointing to location 1, because (following the
wraparound rule) it must point to the location where the next byte will be appended. Thus, in both cases,
both pointers point to location 1; but in one case the queue is empty, and in the other case it is full.

(d) One way to resolve the problem in Part (c) is to maintain at least one empty location at all times. That
is, an item cannot be appended to the queue if ([IN] + 1) Modulo k = [OUT]. If this is done, the queue is
empty only when [IN] = [OUT].

(e) Append operation:

• LOC← [IN]

• IN← ([IN] + 1) Modulo k

• If [IN] = [OUT], queue is full. Restore contents of IN to contents of LOC and indicate failed append
operation, that is, indicate that the queue was full. Otherwise, store new item at LOC.

Remove operation:

• If [IN] = [OUT], the queue is empty. Indicate failed remove operation, that is, indicate that the queue
was empty. Otherwise, read the item pointed to by OUT and perform OUT← ([OUT] + 1) Modulo k.

9



2.25. Use the following register assignment:

R2 − Item to be appended to or removed from queue

R3 − IN pointer

R4 − OUT pointer

R5 − Address of beginning of queue area in memory

R6 − Address of end of queue area in memory

R7 − Temporary storage for [IN] during append operation

Assume that the queue is initially empty, with [R3] = [R4] = [R5]. The following APPEND and REMOVE
routines implement the procedures required in part (e) of Problem 2.24.

APPEND routine:

Move R7, R3
Add R3, R3, #1 Increment IN pointer
Branch if [R6]≥[R3] CHECK modulo k.
Move R3, R5

CHECK: Branch if [R3]=[R4] FULL Check if queue is full.
Store R2, (R7) If queue not full, append item.
Branch CONTINUE

FULL: Move R3, R7 Restore IN pointer and send
Call QUEUEFULL message that queue is full.

CONTINUE: . . .

REMOVE routine:

REMOVE: Branch if [R3]=[R4] EMPTY Check if queue is empty.
Load R2, (R4) Remove byte and
Add R4, R4, #1 increment r4 modulo k.
Branch if [R6]≥[R4] CONTINUE
Move R4, R5
Branch CONTINUE

EMPTY: Call QUEUEEMPTY
CONTINUE: . . .

10



2.26. The values of OUT signals can be computed using the expression

OUT(k) = IN(k)>>3 + IN(k+1)>>2 + IN(k+2)>>1

A possible program is:

Move R2, #N Get the number of entries, n, that
Load R2, (R2) that have to be generated.
Move R3, #IN Pointer to the IN list.
Move R4, #OUT Pointer to the OUT list.

LOOP: Load R5, (R3) Get the value IN(k) and
AShiftR R5, R5, #3 divide it by 8.
Load R6, 4(R3) Get the value IN(k+1) and
AShiftR R6, R6, #2 divide it by 4.
Add R5, R5, R6
Load R6, 8(R3) Get the value IN(k+2) and
AShiftR R6, R6, #1 divide it by 2.
Add R5, R5, R6 Compute the sum and
Store R5, (R4) store it in OUT list.
Add R3, R3, #4 Increment the pointers
Add R4, R4, #4 to IN and OUT lists.
Subtract R2, R2, #1 Continue until all values in
Branch if [R2]>[R0] LOOP OUT list have been generated.
next instruction

11



2.27. A sequence of bytes can be copied using the program:

Move R2, #N Load the length parameter
Load R2, (R2) into R2.
Move R3, #FROM Pointer to from list.
Move R4, #TO Pointer to to list.
Call MEMCPY
next instruction

MEMCPY: Subtract SP, SP, #12 Save registers.
Store R5, 8(SP)
Store R6, 4(SP)
Store R7, (SP)
Add R5, R3, R2 Compute address of the last
Subtract R5, R5, #1 entry in the from list.
Branch if [R4]≥[R5] UP Scan upwards if to list
Branch if [R4]≤[R3] UP begins inside from list.
Add R6, R4, R2 Compute the pointer for
Subtract R6, R6, #1 scanning downwards.

DOWN: LoadByte R7, (R5) Transfer a byte and
StoreByte R7, (R6)
Subtract R5, R5, #1 adjust the pointers downwards.
Subtract R6, R6, #1
Branch if [R5]≥[R3] DOWN
Branch DONE

UP: LoadByte R7, (R3) Transfer a byte and
StoreByte R7, (R4)
Add R3, R3, #1 adjust the pointers upwards.
Add R4, R4, #1
Branch if [R3]≤[R5] UP

DONE: Load R7, (SP) Restore registers.
Load R6, 4(SP)
Load R5, 8(SP)
Add SP, SP, #12
Return

12



2.28. The comparison task can be performed as follows:

Move R2, #N Load the length parameter
Load R2, (R2) into R2.
Move R3, #FIRST Pointer to first list.
Move R4, #SECOND Pointer to second list.
Call MEMCMP
next instruction

MEMCMP: Subtract SP, SP, #12 Save registers.
Store R5, 8(SP)
Store R6, 4(SP)
Store R7, (SP)
Move R5, R0 Clear the counter.

LOOP: LoadByte R6, (R3) Load the bytes that have
LoadByte R7, (R4) to be compared.
Branch if [R6]=[R7] NEXT
Add R5, R5, #1 Increment the counter.

NEXT: Add R3, R3, #1 Increment the pointers
Add R4, R4, #1 to the lists.
Subtract R2, R2, #1 Branch back if the end of
Branch if [R2]>[R0] LOOP lists is not reached.
Move R2, R5 Return the result via R2.
Load R7, (SP) Restore registers.
Load R6, 4(SP)
Load R5, 8(SP)
Add SP, SP, #12
Return

13



2.29. The subroutine may be implemented as follows:

Move R2, #STRING Pointer to the string.
Call EXCLAIM
next instruction

EXCLAIM: Subtract SP, SP, #12 Save registers.
Store R3, 8(SP)
Store R4, 4(SP)
Store R5, (SP)
Move R3, #0x2E ASCII code for period.
Move R4, #0x21 ASCII code for exclamation mark.

LOOP: LoadByte R5, (R2)
Branch if [R5]=[R0] R5, R0, DONE Check if NUL.
Branch if [R5]6=[R3] NEXT If period, then replace
StoreByte R4, (R2) with exclamation mark.

NEXT: Add R2, R2, #1
Branch LOOP

DONE: Load R5, (SP) Restore registers.
Load R4, 4(SP)
Load R3, 8(SP)
Add SP, SP, #12
Return

14



2.30. ASCII codes for lower-case letters are in the hexadecimal range 61 to 7A. Whenever a character in this
range is found, it can be converted into upper case by clearing bit 5 to zero. A possible program is:

Move R2, #STRING Pointer to the string.
Call ALLCAPS
next instruction

ALLCAPS: Subtract SP, SP, #12 Save registers.
Store R3, 8(SP)
Store R4, 4(SP)
Store R5, (SP)
Move R3, #0x61 ASCII code for a.
Move R4, #0x7a ASCII code for z.

LOOP: LoadByte R5, (R2)
Branch if [R5]=[R0] DONE Check if NUL.
Branch if [R5]<[R3] NEXT Check if in the range
Branch if [R5]>[R4] NEXT a to z.
And R5, R5, #0xDF Create ASCII for the capital letter.
StoreByte R5, (R2) Store the capital letter.

NEXT: Add R2, R2, #1 Move to the next character.
Branch LOOP

DONE: Load R5, (SP) Restore registers.
Load R4, 4(SP)
Load R3, 8(SP)
Add SP, SP, #12
Return

15



2.31. Words can be counted by detecting the SPACE character. Assuming that words are separated by single
SPACE characters, a possible program is:

Move R2, #STRING Pointer to the string.
Call WORDS
next instruction

WORDS: Subtract SP, SP, #12 Save registers.
Store R3, 8(SP)
Store R4, 4(SP)
Store R5, (SP)
Move R3, #0x20 ASCII code for SPACE.
Move R4, R0 Clear the word counter.

LOOP: LoadByte R5, (R2)
Branch if [R5]=[R0] DONE Check if NUL.
Branch if [R5]6=[R3] NEXT Check if SPACE.
Add R4, R4, #1. Increment the word count.

NEXT: Add R2, R2, #1 Move to the next character.
Branch LOOP

DONE: Move R2, R4 Pass the result in R2.
Load R5, (SP) Restore registers.
Load R4, 4(SP)
Load R3, 8(SP)
Add SP, SP, #12
Return

16



2.32. Assume that the calling program passes the parameters via registers, as follows:

R2 contains the length of the list

R3 contains the starting address of the list

R4 contains the new value to be inserted into the list

Then, the desired subroutine may be implemented as follows:

INSERT: Subtract SP, SP, #20 Save registers.
Store R2, 16(SP)
Store R3, 12(SP)
Store R4, 8(SP)
Store R5, 4(SP)
Store R6, (SP)
LShiftL R2, R2, #2 Multiply by 4.
Add R5, R3, R2 End of the list.

LOOP: Load R6, (R3) Check entries in the list
Branch if [R4]≤[R6] TRANSFER until insertion point is reached.
Add R3, R3, #4
Branch if [R3]<[R5] LOOP
Branch DONE

TRANSFER: Load R6, (R3) Insert the new entry and
Store R4, (R3) move the rest of the entries
Move R4, R6 upwards in the list.
Add R3, R3, #4 Increment the list pointer.
Branch if [R3]<[R5] TRANSFER

DONE: Store R4, (R3) Store the last entry.
Load R6, (SP) Restore registers.
Load R5, 4(SP)
Load R4, 8(SP)
Load R3, 12(SP)
Load R2, 16(SP)
Add SP, SP, #20
Return

2.33. Assume that the calling program passes the parameters via registers, as follows:

R10 contains the starting address of the unsorted list

R11 contains the length of the unsorted list

R12 contains the starting address of the new list

Then, using the INSERT subroutine derived in Problem 2.32, the desired subroutine may be implemented
as follows:

17



INSERTSORT: Subtract SP, SP, #20 Save registers.
Store LINK reg, 16(SP)
Store R2, 12(SP)
Store R3, 8(SP)
Store R4, 4(SP)
Store R10, (SP)
Load R4, (R10) Transfer one number from old list
Store R4, (R12) to new list.
Move R3, R12
Move R2, #1

SCAN: Add R10, R10, #4 Increment pointer to old list.
Load R4, (R10) Next number to be inserted.
Call INSERT
Add R2, R2, #1 Increment the length of new list.
Branch if [R2]<[R11] SCAN
Load R10, (SP) Restore registers.
Load R4, 4(SP)
Load R3, 8(SP)
Load R2, 12(SP)
Load LINK reg, 16(SP)
Add SP, SP, #20
Return

INSERT: Subtract SP, SP, #20 Save registers.
Store R2, 16(SP)
Store R3, 12(SP)
Store R4, 8(SP)
Store R5, 4(SP)
Store R6, (SP)
LShiftL R2, R2, #2 Multiply by 4.
Add R5, R3, R2 End of the list.

LOOP: Load R6, (R3) Check entries in the list
Branch if [R4]≤[R6] TRANSFER until insertion point is reached.
Add R3, R3, #4
Branch if [R3]<[R5] LOOP
Branch DONE

TRANSFER: Load R6, (R3) Insert the new entry and
Store R4, (R3) move the rest of the entries
Move R4, R6 upwards in the list.
Add R3, R3, #4 Increment the list pointer.
Branch if [R3]<[R5] TRANSFER

DONE: Store R4, (R3) Store the last entry.
Load R6, (SP) Restore registers.
Load R5, 4(SP)
Load R4, 8(SP)
Load R3, 12(SP)
Load R2, 16(SP)
Add SP, SP, #20
Return

18


