SOLUTIONS MANUAL

Complex Variables with Applications

Third Editlon
By A. David Wunsch University of Massachusetts Lowell

Solutions Manual

By

A. David Wunsch

8

Michael F. Brown

Complex Variables WITH Applications
 Third Edition
 By A. David Wunsch
 University of Massachusetts Lowell

Solutions Manual

By

A. David Wunsch
8

Michael F. Brown

The bulky volume you are holding represents the solutions to all the problems in the $3^{\text {rd }}$ edition of my textbook Complex Variables with Applications. Both Michael Brown and I have separately worked through all the solutions, but I can say with overwhelming confidence that in spite of this redundancy there are some remaining errors. Please tell me of any that you find. My e mail address is David_Wunsch@UML.edu (note the underscore). Those preferring an older medium of communication may write to me at the Electrical and Computer Engineering Dept. University of Massachusetts Lowell, Lowell, MA 01854. I promise to acknowledge all e-mail and postal mail that I receive. I would also appreciate learning of any errors in the textbook itself.

I plan to post corrections to both the book and this manual at the web address http://faculty.uml.edu/awunsch/Wunsch_Complex_Variables/

This manual has been written primarily for college faculty who are teaching from my text. Whether it is to be made freely available to students- perhaps at the school library- is a matter I leave up to each individual instructor. Notice however, that there is little point in assigning the textbook problems involving computer programming if students already have the MATLAB code supplied in this manual. Regarding this code, I must assert that I am not a professional programmer and I'm certain that in many cases the reader will find more efficient ways of solving the same problem.

Finally, I must apologize for the idiosyncrasies of the handwriting. They are my own and not to blamed on Mr. Brown.
A. David Wunsch

Belmont, Massachusetts
July 8, 2004

$$
e^{i \pi}+1=0
$$

Table of Contents

1 Complex Numbers
1.1 Introduction
1.2 More Properties of Complex Numbers
1.3 Complex Numbers and the Argand Plane
1.4 Integer and Fractional Powers of Complex Numbers
1.5 Points, Sets, Loci, and Regions in the Complex Plane
2 The Complex Function and its Derivative
2.1 Introduction
2.2 Limits and Continuity
2.3 The Conmplex Derivative
2.4 The Derivative and Analyticity
2.5 Harmonic Functions
2.6 Some Physical Applications of Harmonic Functions
3 The Basic Transcendental Functions
3.1 The Exponential Function
3.2 Trigonometric Functions
3.3 Hyperbolic Functions
3.4 The Logarithmic Function
3.5 Analyticity of the Logarithmic Function
3.6 Complex Exponentials
3.7 Inverse Trigonometric and Hyperbolic Functions
8.8 More on Branch Cuts and Branch PointsAppendix: Phasors
4 Integration in the Complex Plane
4.1 Introduction to Line Integration
4.2 Complex Line Integration
4.3 Contour Integration and Green's Theorem
4.4 Path Independence, Indefinite Integrals, Fundamental Theorem of Calculus inthe Complex Plane
4.5 The Cauchy Integral Formula and Its Extension
4.6 Some Applications of the Cauchy Integral Fonmula
8.8 Introduction to Dirichlet Problems- The Poisson Integral Formula for the Circleand Half PlaneAppendix: Green's Theorem in the Plane
5 Infinite Series Involving a Complex Variable
5.1 Introduction and Review of Real Series
5.2 Complex Sequences and Convergence of Complex Series
5.3 Uniform Convergence of Series
$5.4 \quad$ Power Series and Taylor Series
5.5 Techniques for Obtaining Taylor Series Expansions
5.6 Laurent Series
5.7 Properties of Analytic Functions Related to Taylor Series:
Isolation of Zeros, Analytic Continuation, Zeta Function, Reflection
8.8 The \boldsymbol{z} Transformation
Appendix: Fractals and the Mandelbrot Set
6 Residues and Their Use in Integration
6.1 Introduction, and Definition of the Residue
6.2 Isolated Singularities
6.3 Finding the Residue
6.4 Evaluation of Real Integrals with Residue Calculus, I
6.5 Evaluation of Integrals, II
6.6 Evaluation of Integrals, III
6.7 Integrals Involving Indented Contours
6.8 Contour Integrations Involving Branch Points and Branch Cuts
6.9 Residue Calculus Applied to Fourier Transforms
6.10 The Hilbert Transform
6.11 Uniform Convergence of Integrals and the Gamma Function
6.12 Principle of the Argument
7 Laplace Transforms and Stability of Systems
7.1 Laplace Transforms and Their Inversion
7.2 Stability -An Introduction
7.3 The Nyquist Stability Criterion
7.4 Generalized Functions, Laplace Transforms, and Stability
8 Conformal Mapping and Some of Its Applications
8.1 Introduction
8.2 The Conformal Property
8.3 One-to-One Mappings and Mappings of Regions
8.4 The Bilinear Transformation
8.5 Conformal Mapping and Boundary Value Problems
8.6 More on Boundary Value Problems-Streamlines as Boundaries
8.7 Boundary Value Problems with Sources
8.8 The Schwarz-Christoffel Transformation
Appendix: The Stream Function and Capacitance
9 Advanced Topics in Infinite Series and Products
9.1 The Use of Residues to Sum Certain Numerical Series
9.2 Partial Fraction Expansions of Functions with an Infinite Number of Poles
9.3 Introduction to Infinite Products
9.4 Expanding Functions in Infinite Products

1

Complex Numbers

Chapter 1
section 1.1

1) $4 x+3=0, x=-3 / 4$, rational number system
2) $x^{2}-x-1=0, x=\frac{1 t \sqrt{5}}{2}$ which is real but irrational. Need real number system
3) $x^{2}+x+1=0 \quad x=\frac{-1 \pm \sqrt{-3}}{2}$ need complex number
4) $\sin x=0, x=0$, integers
5) $\cos x=0, \quad x= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2},+ \pm \frac{a \pi}{2}$
6) $(x+2)(x+1)=0 \quad x=-2,-1, \quad$ integers node \uparrow
7) $\sin (\log x)=0, \quad x=1, \sin (\log 1)=0$, integers
8) $z^{4}=16, z=2$, integers
9) $z^{4}=-16, \quad z=(-16)^{1 / 4}$
10) a) $\left[1+10^{-2}+10^{-4} \ldots\right]=\frac{1}{1-10^{-2}}=\frac{10^{2}}{100^{-1}}=\frac{100}{99}$
b) $23.2323 \cdots=23 \frac{(100)}{99}=\frac{2300}{99}$
c) $376.376376=376\left[1+10^{-3}+10^{-6}+10^{-9}.\right]$

$$
=376 \frac{1}{1-10^{-3}}=376 \frac{1000}{999}=\frac{376000}{999}
$$

il (a) consider $4.0404 \cdots=4\left[1+10^{-2}+10^{-4} \ldots\right]$

$$
\begin{aligned}
& =4\left[\frac{1}{1-10^{-2}}\right]=\frac{400}{99} \cdot \text { Now } 3.0404 \ldots \\
& \left.=\frac{400}{99}-1=\frac{400-99}{99}=\frac{301}{99}\right] \\
& \text { b) } .999 \ldots=-9\left[1+10^{-1}+10^{-2} \ldots\right] \\
& =.9 \frac{1}{1-10^{-1}}=\frac{.9}{1-.1}=\frac{.9}{-9}=1 \text { q.e.d. }
\end{aligned}
$$

12(a) We begin by showing that the square of any odd number is odd. Let N_{0} be that number.
Then $N_{0}=N_{s}+1$ where N_{e} is even. Now $N_{0}^{2}=\underbrace{N_{8}^{2}+2 N_{0}+1}_{\text {even }}$

$$
\mathrm{No}^{2}=\text { even }+1=\text { odd }
$$

Chapter 1
Sec. 1.1
12(a) continued) We showed that the square of an odd integer is odd. Thus the square root of a perfect square l that is even) must not be odd, $\therefore \circ$ is even.

12(b) $\quad m^{2}=2 n^{2}, \quad 2 n^{2}$ is even, \therefore from
part (a) the square root of $2 n^{2}$, which is m, must be even.
12.(c) $n^{2}=\frac{m}{2} * m$. Since m is even, $\frac{m}{2}$
is an integer. $\therefore n^{2}$ is even, and from (a)
so is n.
12 (d) We assumed that $\sqrt{2}=\frac{m}{n}$ can be expressed as the ratio of 2 integers having no common integer factor. Our assumption says that m and n both can it be even. This resulted in a contradiction, since in parts (b) and (c)wefound that m and n were both even
12(e). Assume $n+\sqrt{2}$ is rational $=a$
$a=n+\sqrt{2}, \quad a-n=\sqrt{2}$. The left side is rational [the difference of rational numbers] bat the right side is irrational. Have a contradiction suppose $\sqrt{2 n^{2}}$ is rational. Then $\sqrt{2} n=a$ is rational $\frac{a}{n}=\sqrt{2}$. The lest side is the quotient of rational numbers and is rational, the right side is irrational, have a contradiction.

Assure $a=\sqrt{\sqrt{2}}$ is rational $a^{2}=\sqrt{2}$. Left side is rational, right side is irrational. Have contradubion.
(chap 1, page 2

13(a) $\quad x^{2}+b x+c=0 \quad x=\frac{-b \pm}{2} \sqrt{b^{2}-4 c}=1+\sqrt{2} \quad b=-2, \frac{\sqrt{4-4 c}}{2}=\sqrt{2}$ $\therefore x^{2}-2 x-1=0$ will work 13 (b) $x=\sqrt{\sqrt{2}} \quad x^{4}=2 \quad x^{4}-2=0$
14] a) Using Matlab: $\exp (1)=2.718281828 \underbrace{45905}_{\text {pattern }}$ breaks.
Use long format

$$
\begin{aligned}
& \text { Use long format } \\
& \text { (b) } 201 / 26=7.7,307692,3076923
\end{aligned}
$$ repeating decimals Is $54-4 i] \quad 161-5+21+15 i+7 i=16+22 i$

17] $(3-2 i)(4+3 i)(3+2 i)=(3-2 i)(3+2 i)(4+3 i)=$

$$
(9+4)(4+3 i)=52+i 39
$$

Chap 1 $\sec 1.1$, continued
18) $\quad(1+i)^{3}=(1+i)^{2}(1+i)=2 i(1+i)=-2+2 i$

Imas part $=2$
19. $\quad \operatorname{Im}(1+i)=1,[\operatorname{Im}(1+i)]^{3}=1^{s}=1$
20. $\quad(x+i y)(u-i v)(x-i y)(u+i v)=$

$$
\begin{aligned}
& (x+i y)(x-i \beta)(u-i v)(u+i v)=\left(x^{2}+y^{2}\right)\left(u^{2}+v^{2}\right) \\
& =u^{2} x^{2}+v^{2} x^{2}+w^{2} y^{2}+v^{2} y^{2}
\end{aligned}
$$

24. (a) binonial theorem

$$
(a+b)^{n}=\sum_{k=0}^{n} \frac{a^{n-k} b^{k} n 0}{(n-k)!k 0}
$$

let $a=1, b=i y$

$$
\begin{aligned}
& (1+i y)^{n}=\sum_{k=0}^{n} \frac{(i y)^{k} n!}{(n-k)!k!} \\
& \text { b) }(1+2 i)^{5}=\sum_{k=0}^{5} \frac{(i 2)^{k} 5!}{(5-k)!k!}= \\
& \frac{5!}{5!}+\frac{(i 2) 5!}{4!!}+\frac{(-4) 5!}{3!2!}+\frac{-i 85!}{20 \cdot 3!}+\frac{165!}{1!}+\frac{i 32 \cdot 5!}{5!}
\end{aligned}
$$

Real part is $1+\frac{(-4)(120)}{12}+80=41$
Imag pant is (i2) 5-8.10+32=-38

$$
\begin{aligned}
& 22 \int_{z_{1} z_{2}}=\left(x_{1}+i y_{1}\right)\left(x_{2}+i y_{2}\right)=x_{1} x_{2}-y_{1} y_{2}+i x_{1} y_{2}+i x_{2} y_{1} \\
& \operatorname{Re}\left(z_{1} z_{1}\right)=x_{1} x_{2}-y_{1} y_{2}=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}
\end{aligned}
$$

23.3.

From the above $\operatorname{In}\left(z, z_{2}\right)=x_{1} y_{2}+x_{2} y_{1}=R 2 z_{1} \operatorname{In} z+R_{2} z_{2} \operatorname{In} z_{1}$
24.

Chap 1, $\sec 1.1$

$$
i, \quad l^{2}=-1, i^{3}=-6, l^{4}=-i \cdot i=1
$$

$t^{5}=i$, etc, \therefore the form possible
V values are $i,-1,-i, 1$

$$
i^{n+4}=l^{4} i^{n} \text {, but } i^{4}=1, \quad \therefore l^{n+4}=l^{n}
$$

$$
\begin{aligned}
& \quad l^{1023}=i^{1020} i^{3}=i^{1020}(-i) \\
& =\left(l^{455}(-i)=1^{255}(-i)=-i\right.
\end{aligned}
$$

(26) Fid: $(1-i)^{1025}$, note: $(1-i)^{2}=-2 i$

$$
\begin{aligned}
& \text { (26) Find : } 1-1)=\left[(1-i)^{2}\right]^{512}(1-i) \\
& (1-i)^{1025}=(1-i)^{1024}(1-i)=2^{512}(-1)^{512} i^{512}(1-i) \\
& =\left(-2^{512}(1-i)=2^{512}(1-i)\right. \\
& =2^{512}\left[(i)^{4}\right]^{128}(1-i)=2^{512} 1^{128}(1-i)=2^{1-i)}
\end{aligned}
$$

271

$$
\begin{aligned}
& x=2 x \\
& \therefore \quad x=0 \\
& y+1=2, \\
& \therefore y=1, \text { ans } x=0, y=1
\end{aligned}
$$

281

$$
\begin{aligned}
& x^{2}-y^{2}+i 2 x y=y+i x \\
& x^{2}-y^{2}=y, \quad 2 x y=x \Rightarrow \text { assure } x \neq 0 \\
& x^{2}-\frac{1}{4}=1 / 2 \quad x^{2}-3 / 4, x= \pm \sqrt{3} / 2
\end{aligned}
$$

Set of answers $x= \pm \sqrt{3} / 2, y=1 / 2$
Now assurte $x=0, \quad 2 x y=x$ is satisfied

$$
x^{2}-y^{2}=y \quad-y^{2}=y \quad y+y^{2}=0
$$

$y((t y)=0, \quad y=0$ or $y=-1$
second set of answer $x=0, y=0$ or -1
29)

$$
e^{x^{2}+y^{2}}=e^{-2 x y} \quad 2 y=1, \quad \therefore \quad y=\frac{1}{2}
$$

Now $x^{2}+y^{2}=-2 x y, \quad x^{2}+y^{2}+2 x y=0$

$$
(x+y)^{2}=0 \quad \therefore \quad x=-y, \quad x=-1 / 2
$$

answer $x=\frac{-1}{2}, y=1 / 2$
$30]$

$$
\log (x+y)=1 \quad y=x y
$$

If $\log (x+y)=1, \quad x+y=e$
Now assume $y \neq 0 \quad y=x y \quad \Rightarrow \quad x=1$ Since $x+y=e, y=e-1 \quad$ Aster: $x=1, y=e-1$
Now assunce $y=0, y=x y$ is satisfied
$x+y=e \quad \Rightarrow x=e \quad$ Answer $\quad x=e, y=0$
31)

$$
\begin{gathered}
{[\log (x)-1]^{2}=1, \quad[\log (y)-1]^{2}=0 \therefore \log (x)-1= \pm 1, \log x-1=-1} \\
\log x=0, \quad x=1 \quad \text { or } \log x-1=1
\end{gathered}
$$

$$
\log x=2, \quad x=e^{2}
$$

Answer $y=e, x=1$ or e^{2}
831

solved if $y=1$ and $x=2 n \pi, \quad n=0, \pm 1, \pm 2 \ldots$
Now need $\sin x=x y \quad \sin x=x \quad(\sin \alpha y=1)$

$\sin x=x$ if and ones if $x=0$
Io Answer $x=0, y=1$
$\sec 1.2$

1) $z_{1}-z_{2}=\left(x_{1}-x_{2}\right)+i\left(y_{1}-y_{2}\right)$,

$$
\begin{aligned}
& \overline{z_{1}-z_{2}}=\left(x_{1}-x_{2}\right)-i\left(y_{1}, y_{2}\right)=x_{1}-i y_{1}-\left[x_{2}-i y_{2}\right] \\
& =\bar{z}_{1}-\bar{z}_{2}
\end{aligned}
$$

2)

$$
\begin{aligned}
& z_{1} z_{\sim}=\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left[y_{1} x_{2}+y_{2} x_{1}\right] \\
& \overline{z_{1} z_{\sim}}=\left(x_{1} x_{2}-y_{1} y_{\sim}\right)-i\left[y_{1} x_{2}+y_{2} x_{1}\right]= \\
& \left(x_{1}-i y_{1}\right)\left(x_{2}-i y_{\sim}\right)=\bar{z}_{1} \bar{z}_{\sim}
\end{aligned}
$$

3) $\frac{1}{x_{1}}=\frac{1}{x_{1}+i y_{1}}=\frac{x_{1}-1 y_{1}}{x_{1}^{2}+y_{1}^{2}}$

$$
\therefore\left(\overline{\frac{1}{z}}\right)=\frac{x_{1}+i y_{1}}{x_{1}^{2}+y_{1}^{2}} \quad \frac{1}{z_{1}}=\frac{1}{x_{1}-i y_{1}}=\frac{x_{2}+i y_{1}}{x_{1}^{2}+y_{1}^{2}}
$$

Thus $\sqrt{\left(\frac{1}{z_{1}}\right)}=\frac{1}{\bar{z}_{1}}$
4

$$
\begin{aligned}
& \pm \frac{z_{1}}{z_{2}}-\frac{x_{1}+\left(y_{1}\right.}{x_{2}+i y_{2}}=\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-\left(y_{2}\right)\right.}{x_{2}^{2}+y_{2}^{2}}= \\
& \frac{x_{1} x_{2}+y_{1} y_{2}+i\left[y_{1} x_{2}-y_{2} x_{1}\right]}{x_{2}^{2}+y_{2}{ }^{2}} \quad \text { Now } z_{1} \frac{1}{z_{2}} \\
& =\left(x_{1}+i y_{1}\right)\left[\frac{\left(x_{2}-i y_{2}\right)^{2}}{\left.x_{2}^{2}+y_{2}^{2}\right]}=\frac{x_{1} x_{2}+y_{1} y_{2}+i\left[x_{1} x_{2}-x_{1} y_{2}\right]}{x_{2}^{2}+y_{2}^{2}}\right.
\end{aligned}
$$

Thus $z_{1} \frac{1}{z_{2}}=\left(\frac{z_{1}}{z_{2}}\right)$
s) $\overline{\left(\frac{x_{1}+i y_{1}}{x_{2}+i y_{2}}\right)}=\overline{\left(\frac{z_{1}}{z_{2}}\right)}=\frac{\left(x_{1}+i y_{1}\right)\left(x_{2}-i y_{2}\right)}{x_{2}^{2}+y_{2}^{2}}$

$$
=\frac{\left(x_{2}+i y_{1}\right)}{\frac{x_{1} x_{2}+y_{1} y_{2}+i\left(y_{1} x_{2}-y_{2} x_{1}\right)}{x_{2}^{2}+y_{2}^{2}}}=\frac{x_{1} x_{2}+y_{1} y_{2}+i\left[y_{2} x_{1}-y_{1} x_{2}\right]}{x_{2}^{2}+y_{2}^{2}}
$$

Now $\frac{\overline{z_{1}}}{\overline{z_{2}}}=\frac{x_{1}-\left(y_{1}\right.}{x_{2}-i y_{1}}=\frac{\left(x_{1}-\left(y_{1}\right)\left(x_{2}+i y_{d}\right]\right.}{x_{2}^{2}+y_{2}^{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}+i\left[y_{1} x_{1}-y_{1} x_{2}\right]}{x_{2}^{2}+y_{2} y_{2}^{2}}$
Thees $\frac{\bar{z}_{1}}{\overline{z_{2}}}=\overline{\left(\frac{z_{1}}{z_{2}}\right)}$
sec. 1.2 continued

$$
\text { 6) } \begin{aligned}
z_{1} z_{2} & =x_{1} x_{2}-y_{1} y_{2}+i\left[y_{1} x_{2}+y_{2} x_{1}\right] \\
\bar{z}_{1} \bar{z}_{2} & =x_{1} x_{2}-y_{1} y_{2}-i\left[y_{1} x_{2}+y_{2} x_{1}\right]
\end{aligned}
$$

Re $\left[z_{1}, z_{-}\right]=\operatorname{Re}\left[\overline{z_{1}}, \overline{z_{2}}\right]$. Alternatively:
Re $\left[z_{1} z_{2}\right]=\operatorname{Re}\left[\overline{z_{1}} \bar{z}_{2}\right]$ since real part is unaffected by taking cons.
But $\overline{z_{1} z_{\sim}}=\overline{z_{1}} \bar{z}_{\sim}$ from prob 2
\therefore he $\left[z_{1} z_{2}\right]=\operatorname{Re}\left[\bar{z}_{1} \bar{z}_{\sim}\right]$
1] From part 6] $z_{1} z_{2}=x_{1} x_{2}-y_{1} y_{n}+i\left[y_{1} x_{2}+y_{2} x_{1}\right]$ thus: $\bar{z}_{1} \bar{z}_{2}=x_{1} x_{2}-y_{1} y_{2}-i\left[y_{1} x_{2}+y_{2} x_{1}\right]$
Note $\operatorname{Im}\left(z_{1}, z_{\sim}\right)=-\operatorname{Im} \overline{z_{1}} \bar{z}_{2}=y_{1} x_{2}+y_{\sim} x_{1}$
8) $\frac{1}{1+2 i}=\frac{1-2 i}{1^{2}+2^{2}}=\frac{1}{5}-i \frac{2}{5}$
9) $i+\frac{1}{1-2 i}=i+\frac{1+2 i}{5}=\frac{1}{5}+\frac{7 i}{5}$

$$
\begin{aligned}
& \left(i+\frac{1}{1-2 i}\right)^{2}=\frac{1}{25}+\frac{14}{25} i-\frac{49}{25}= \\
= & -\frac{48}{25}+i \frac{14}{25}
\end{aligned}
$$

$$
\text { 10] } \begin{aligned}
& \frac{3-4 i}{1+2 i}=\frac{(3-4 i)(1-2 i)}{5}=\frac{1}{5}[3-8+i[-4-6]] \\
& =\frac{1}{5}[-5-110]=-1-2 i
\end{aligned}
$$

11) $\frac{3-4 i}{1+2 i}+\frac{3+4 i}{1-2 i}$. This must equal $2 \operatorname{Re}\left[\frac{3-4 i}{1+2 i}\right]=-2$ Use ans from 10
12) contid $2 i+\frac{3-4 i}{1+2 i}=2 i+(-1-2 i)=[-1$ ch. 1 pase 8
$\sec 1.2 \operatorname{con}^{-1} d$
13 ($\left.\frac{4-4 i}{2+a}\right)^{7}=\left(\frac{2-a i}{1+i}\right)^{2}=\left[2^{2}\left[\frac{(1-i)}{1+i}\right]^{7}\right]$

$$
\begin{aligned}
& =2^{7}\left[\frac{(1-i)^{2}}{2}\right]^{7}=\frac{2^{7}}{2^{7}}(1-i)^{14}= \\
& {\left[(-i)^{2}\right]^{7}=(-2 i)^{7}=(-1)^{7} 2^{7} i^{7}=i \times 2^{7}=128 i}
\end{aligned}
$$

14 $\left(\frac{4-4 i}{2+2 i}\right)^{7}+\left(\frac{4+4 i}{2-2 i}\right)^{7}$. Note the
second tern is the conjugate of the first. \therefore ans is $2 \operatorname{Re}\left[\frac{4-4 i}{2+2 i}\right]^{7}=2 \operatorname{Re}[128 i] \begin{gathered}\left(\begin{array}{c}\text { see } \\ \text { prop } \\ 13\end{array}\right)\end{gathered}$

$$
=0
$$

PROBLEM 15 .

$$
\begin{array}{ll}
\text { "\%8 } & \text { " } \% 9 \\
>1 /(1+2 i) & \text { " }(i+1 /(1-2 i))^{\wedge} 2 \\
\text { ans }= & \text { ans }= \\
0.2000-0.4009 i & -1.9200+0.5689 i
\end{array}
$$

\% \%11

$$
\ggg(3-4 i) /(1+2 i)+(3+4 i) /(1-2 i)
$$

ans $=$ ans $=$ -1

$$
\begin{aligned}
& \text { \% \%18 } \\
& \text { " }(3-4 i) /(1+2 i) \\
& \text { ans }= \\
& -1.3060-2.89801 \\
& \text { 3 } \$ 12 \\
& \geqslant 2 i+(3-4 i) /(1+2 i) \\
& \text { ans }=
\end{aligned}
$$

SEC 1.2 continued, prob. Is, contra
2\% 214
$\geqslant((4-4 i) /(2+2 i))^{\wedge} 7+((4+4 i) /(2-2 i))^{\wedge} 7$
ans $=$
6
16

$$
\overline{\left(\frac{z_{1}}{z_{2} z_{3}}\right)}=\frac{\bar{z}_{1}}{\overline{z_{2} z_{3}}}=\frac{\bar{z}_{1}}{\overline{z_{2}} \bar{z}_{3}}=\bar{z}_{1} \frac{1}{\bar{z}_{2} \bar{z}_{3}}
$$

this is not equal to $\bar{z}_{1} \frac{1}{\bar{z}_{2} z_{3}} \quad \therefore$ not Tue
[7] $\overline{z_{1} \bar{z}_{2} z_{3}}=\bar{z}_{1} \overline{\bar{z}_{2}} z_{3}^{-}=\bar{z}_{1} z_{2} \bar{z}_{3}$ 8.e.d time
18) $\overline{6\left(z_{1}+z_{2}+z_{3}\right)}=\bar{l}\left(\bar{z}_{1}+\bar{z}_{2}+\bar{z}_{3}\right)=$
$-i\left(\overline{z_{1}}+\overline{z_{\nu}}+\overline{z_{3}}\right)$. This is not equal to
$1\left(\bar{z}_{1}+\bar{z}_{2}+\bar{z}_{3}\right) . \quad \therefore$ not Nus
19]
Consider $Z_{1} \bar{z}_{\nu} \quad \bar{z}_{3}$. Its conjugate is

$$
\begin{aligned}
& \overline{z_{1} \bar{z}_{v} z_{3}}=\overline{z_{1}} \overline{\bar{z}}_{v} \bar{z}_{3}=\bar{z}_{1} z_{2} \bar{z}_{3} \\
& \therefore \operatorname{Re}\left[\begin{array}{ll}
z_{1} \bar{z}_{2} & \left.z_{3}\right]=\operatorname{Re}\left[\begin{array}{l}
\bar{z}_{1} \\
z_{2}
\end{array} \bar{z}_{3}\right] \quad \text { q.e.d. Two }
\end{array}\right. \text { Fin }
\end{aligned}
$$

20 Consider $z_{1}, \bar{z}_{\nu} z_{3}$. Ito conjugate is $\overline{z_{1} \bar{z}_{\nu} z_{3}}=\overline{z_{1}} \bar{z}_{2} \bar{z}_{3}$. If 2 quantities are conjugates of each other, their imas. parts differ in sign. $\because \operatorname{Im}\left(z, \bar{z}_{2} z_{3}\right)=-\operatorname{Im}\left(\bar{z}, z_{2} \bar{z}_{3}\right)$
Note the minus sig. $\therefore 0$ the result given in the problem is not tues.
sec 1.2 continued
21
Observe that $\bar{z}_{1} z_{2} \bar{z}_{3}$ is the convigate of z, \bar{z}_{2}, z_{3}, suppose $\bar{z}=a+i$

$$
i \bar{z}=i(a-c l)=b+i a \text {. Not Rolz})=-m i z
$$

$\therefore \operatorname{Re}\left(z_{1} \bar{z}_{\nu} z_{3}\right)=\operatorname{Im}\left(c \overline{z_{1}} z_{2} \bar{z}_{3}\right)$. Is The

22
a) If $p+i q=(k+i l)(m+i h)$

$$
\begin{aligned}
& \overline{p+i q}=\overline{(k+i l)}(\overline{m+i n)} \\
& p-i q=(1<-i l)(m-i n)
\end{aligned}
$$

Now if $(p+i q)=(k+i l)(m+i n)=k m-l n+i(l m+k n)$
Enate reals
$p=k m-l n$, require $p \geq 0 \therefore$ take
$P=1 \mathrm{~km}$-l nl since only P^{2} is of interest
Nouvequate imasinaries in the above:

$$
q=l m+k n \text { which means }
$$

that $(p+i q)=(k+i l)(m+i n)$ is satisfied and so is $(p-i q)=(k-i l)(m-i n)$ and so is

$$
\left(p^{2}+q^{2}\right)=\left(k^{2}+e^{2}\right)\left(m^{2}+n^{2}\right)
$$

b) $\left(p^{2}+q^{2}\right)=(p+i q)(p-i q)=(k+i l)(m-i n)(k-i l)(m+i n)$

Take $(P+i q)=(k+i l)(m-i n) . \quad(p-i q)=(k-i l)(m+i n)$
The second eqn. is the conjugate of the first.
so if the $1^{\text {st }}$ is satisfied, so is the second.

$$
p+i q=k m+\ln +i[\ln -k n] . \quad \text { Take } p=k m+l n
$$

$q=|l m-k N| \quad[\operatorname{sigh}$ is mode pos.].
sec 1.2 continued.
prob 22. con til
$c] \quad\left(3^{2}+5^{2}\right)\left(2^{2}+7^{2}\right)=p^{2}+q^{2}$

$$
\begin{gathered}
k=3, \ell=5, m=2, n=7 \\
p=|k m-n l|=29, q=l m+k n=31 \\
2 q^{2}+31^{2}=\left(3^{2}+5^{2}\right)\left(2^{2}+7^{2}\right)=1802 \\
\operatorname{Tr} y p=k m+n l=41, q=|\ell m-k n| \\
=11 \\
p^{2}+q^{2}=(122)(53)=\left(11^{2}+1^{2}\right)\left(7^{2}+2^{2}\right)=6466
\end{gathered}
$$

Take $k=11, \ell=1, m=7, n=2$

$$
\therefore|k m-n l|=75, l m+k n=29, p=75, q=29
$$

Note $75^{2}+29^{2}=6466$

$$
\begin{array}{ll}
75+29=6466 \\
k m+n l=79, \quad(\mathrm{~m}-\mathrm{kn} \mid=15 \quad p=79, q=15
\end{array}
$$

$23{ }^{99} \frac{(c, d)}{(a, b)}=(e, f) \quad(c, d)=(a, b)(e, f)$
$(c, d)=(a e-b f, b e+a f)$ (b) Thus
ae-bf $=c$ (c) Apply Cramerls rule to this pat $b e+a f=d \quad$ of linear simult. equations with unlenowns e, f. assume $a \neq 0, b \neq 0$

$$
\begin{aligned}
& \left.e=\left[\begin{array}{cc}
c & -b \\
d & a
\end{array}\right] /\left(a^{2}+b^{2}\right)=\frac{a c+b d}{a^{2}+b^{2}}\right]=e \\
& f=\left[\begin{array}{cc}
a & c \\
b & d
\end{array}\right] /\left(a^{2}+b^{2}\right)=\frac{a d-b c}{a^{2}+b^{2}} \neq f \\
& \frac{c+i d}{a+i b}=\frac{(c+i d)(a-i b)}{a^{2}+b^{2}}=\frac{a c+b d+i(a d-b c)}{a^{2}+b^{2}}
\end{aligned}
$$

$=e+i f$. Thus. $e=\frac{a c+b d}{a^{2}+b^{2}}, \quad f=\frac{a d-b c}{a^{2}+b^{2}}$ (sain eresult).
[assuring $a^{2}+b^{2} \neq 0$]
$\sec 1.2$ contd
probe 24 For $\frac{p}{q}=\frac{r}{s} \quad$ requic $q \neq 0$ and $s \neq 0$
mull both sides by is

$$
\frac{p q s}{q}=\frac{r}{s} q s \quad p s=q r
$$

Summary: $\frac{p}{q}=\frac{r}{s} \quad$ Necessary and sufficient conditions: $q \neq 0$ and $s \neq 0$ and $p s=8 r$

Chap 1, sec 1.3
1] $|3-i|=\sqrt{3^{2}+1^{2}}=\sqrt{10}$
2) $|(2 i)(3+i)|=|2 i||3+i|=2 \sqrt{3^{2}+1}=2 \sqrt{10}$
3) $|(2-3 i)(3+i)|=|2-3 i||3+i|=\sqrt{2^{2}+3^{2}} \sqrt{3^{2}+1^{2}}$

$$
=\sqrt{13} \sqrt{10}
$$

4] $\left|(2-3 i)^{2}(3+3 i)^{3}\right|=\left|(2-3 i)^{2}\right|\left|(3+3 i)^{3}\right|$ $=\sqrt{130}$

$$
\begin{aligned}
& =(4+9)(\sqrt{9+9})^{3}=13(\sqrt{18})^{3}=993 \\
& 5 \perp|2 i+2 i(3+i)|=|2 i+6 i-2|=|-2+8 i|
\end{aligned}
$$

$$
=\sqrt{4+64}=\sqrt{68}=2 \sqrt{17}
$$

6) $\left|1+i+\frac{1}{1+i}\right|=\left|(1+i)+\frac{(1-i)}{2}\right|=\left|\frac{3}{2}+\frac{6}{2}\right|=\sqrt{\frac{9}{4}+\frac{1}{4}}$ $=\frac{\sqrt{10}}{2}$

$$
\text { I) }\left|\frac{(1+i)^{5}}{(2+3 i)^{5}}\right|=\left|\frac{1+i}{2+3 i}\right|^{5}=\left|\frac{\sqrt{2}}{\sqrt{13}}\right|^{5}=\left[\left[\frac{2}{13}\right]^{5}=.0093\right.
$$

8] $\left|\frac{(1-i)^{n}}{(2+2 i)^{n}}\right|=\left|\frac{(\sqrt{2})^{n}}{2^{n}|1+i|^{n}}\right|=\left|\frac{(\sqrt{2})^{n}}{2^{n}(\sqrt{2})^{n}}\right|=\frac{1}{2^{n}}$

$$
=|1+1-2 i|=|2-2 i|=2 \sqrt{2}
$$

Chap 1, pare 14

Sec 1.3 continued
10
$0|\alpha+i \beta+\alpha-i \beta|=1$
$|2 \alpha|=1 \quad$ take $\alpha=1 / 2$

$$
\begin{array}{lr}
\sqrt{\alpha^{2}+\beta^{2}}+\sqrt{\alpha^{2}+\beta^{2}}=2 \quad \sqrt{\alpha^{2}+\beta^{2}}=1 \\
\sqrt{\frac{1}{4}+\beta^{2}}=1 & 1 / 4+\beta^{2}=1, \beta^{2}=3 / 4
\end{array}
$$

$\beta= \pm \sqrt{3} / 2$. Take ans. as $\frac{1}{2}+i \frac{\sqrt{3}}{2}$
and $\frac{1}{2}-i \frac{\sqrt{3}}{2}$
11) $z_{1}=\alpha+i \beta, \quad z_{2}=\alpha-i \beta$

$$
\begin{array}{ll}
\quad\left|z_{1}+z_{2}\right|=a & 2|\alpha|=a, \quad \operatorname{Tr} y \alpha=\left.a\right|_{2} \\
\left|z_{1}\right|+\left|z_{2}\right|=\frac{1}{a} & \sqrt{\alpha^{2}+\beta^{2}}+\sqrt{\alpha^{2}+\beta^{2}}=\frac{1}{a} \\
2 \sqrt{\alpha^{2}+\beta^{2}}=\frac{1}{a} & \alpha^{2}+\beta^{2}=\frac{1}{4 a^{2}} \\
\frac{a^{2}}{4}+\beta^{2}=\frac{1}{4 a^{2}} & \beta^{2}=\frac{1}{4}\left[\frac{1}{a^{2}}-a^{2}\right] \quad>0 \\
\beta= \pm \frac{1}{2} \sqrt{\frac{1}{a^{2}}-a^{2}} &
\end{array}
$$

answer: $\quad z_{1}=\frac{a}{2}+\frac{i}{2} \sqrt{\frac{1}{a^{2}}-a^{2}}$

$$
z_{2}=\frac{a}{2}-\frac{i}{2} \sqrt{\frac{1}{a^{2}}-a^{2}}
$$

Chicle $\left|z_{1}+z^{2}\right|=a$

$$
\begin{aligned}
& \sqrt{\frac{a^{2}}{4}+\frac{1}{4 a^{2}}-\frac{a^{2}}{4}}+\sqrt{\frac{a^{2}}{4}+\frac{1}{4}\left(\frac{1}{a^{2}}-a^{2}\right)} \\
& =2 \sqrt{\frac{1}{4 a^{2}}}=\frac{1}{a}
\end{aligned}
$$

chap 1, page is
sec 1.3 continued
12) Because their difference is purely imasinary, then real parts must be 1 identical. Let the numbers be $z_{1}=x+i \mu \quad$ and $z_{2}=x+i \beta$

Now $z_{1}-z_{2}=i \quad \therefore \quad y-\beta=1$

$$
z_{1} z_{2}=x^{2}-\alpha \beta+i x[y+\beta]=2
$$

Now $x[y+\beta]=0$
either $x=0$ or $y=-\beta$
suppose $x=0$, then using $z_{1} z_{2}=2$
have $-y \beta=2, \quad \beta=-2 / y$
Since $y-\beta=1$ have $y+\frac{z}{y}=1$
Use quadratic formula, \rightarrow has mo real sol' n. \therefore Take $y=-\beta$, Now $y=\beta=1$

$$
\begin{aligned}
& y+y=1, \quad y=1 / 2, \beta=-1 / 2 \\
& \text { Recall } x^{2}-y \beta=2
\end{aligned}
$$

Recall $x^{2}-y \beta=2$

$$
x^{2}+\frac{1}{4}=2
$$

$$
x= \pm \sqrt{7} / 2
$$

answers: $\sqrt{7} / 2+i / 2, \sqrt{7} / 2-i / 2$
also $-\sqrt{2} / 2+1 / 2,-\sqrt{7} / 2-1 / 2$
(3) $1-(-1)+i[4-(-3)]=2+17$
14) $5 \cos 30^{\circ}+i 5 \sin 30^{\circ}=5 \frac{\sqrt{3}}{2}+i \frac{5}{2}$

15]

$$
\begin{aligned}
& \alpha_{1,2}^{4,3} \quad \cos \alpha=\frac{2}{\sqrt{5}}, \sin \alpha=\frac{1}{\sqrt{5}} \\
& a=5 \cos \alpha=2 \sqrt{5}=a \quad \sin \alpha=\sqrt{5}=b
\end{aligned}
$$

chops, page ll

$\sec 1.3$ contd
$16]$

$$
x+2 y=6
$$

$z=a+i b$ or

$$
z=x_{1}+i y_{1} \quad x_{1}+2 y_{1}=6, \quad y_{1}=3-\frac{x_{1}}{2}
$$

$$
\left.z=x_{1}+i\left[3-\frac{\left(x_{1}\right)}{2}\right)\right]
$$

slope of given line is $-1 / 2$
slope of vector is $\frac{3-x_{1} / 2}{x_{1}}$ must $=2$
two slopes are ned. recips

$$
3-x_{1} / 2=2 x_{1} ; x_{1}=\frac{6}{5} \quad y_{1}=3-\frac{x_{1}}{2}=3-\frac{3}{5}=22 / 5
$$

answer: $\frac{6}{5}+\frac{i}{5} \quad y_{1}=\frac{12}{5}$
17] Let $x_{1}+i y_{1}$, be the vector $=a+i b$

$$
\begin{aligned}
& (x-1)^{2}+y_{1}^{2}=1 \\
& x_{1}^{2}-2 x_{1}+1+y_{1}^{2}=1 \\
& \text { Now } \sqrt{x_{1}+y_{1}^{2}}=3 / 2
\end{aligned}
$$

use here
$\therefore \quad-2 x_{1}+1+9 / 4=1$

$$
9 / 8=x_{1}
$$

Now $\left(\frac{9}{8}\right)^{2}+y_{1}^{2}=9 / 4$

$$
\sqrt{9 / 4-(9 / 8)^{2}}=y_{1} \quad y_{1}=\frac{3}{8} \sqrt{7}
$$

18 ans is $3.14=0$ since $-\pi<\theta \leqslant \pi$
19 Note the angle 3.15 exceeds π

$\sec 1.3$ contd
20] $-3 \operatorname{cis}(3.14)=3 \operatorname{cis}(3.14+\pi)$
The angle $3.14+\pi$ does not satisfy $-\pi<\theta \leqslant \pi$, But we can subtract off 2π

$$
\text { use } 3.14+\pi-2 \pi=3.14-\pi=-.001593
$$

The preceding is the prince. value,
21] -4 cis $(73.7 \pi)=4$ cis (74.7π)
can subtract 74π from argument get $\theta=.7 \pi$ prince, value.
22 3 cis $(1.1 \pi) * 4$ cis $(1.2 \pi)=12$ cis (2.3π)
subtract 2π form arg , set 3π
23] $\frac{3 \angle 1.5 \pi}{3 \angle-1.57}=1 \angle 3.14$
$-\pi<3.14 \leqslant \pi, \quad 3.14$ is a prince. value
$24 \frac{3 \angle 1.57}{3 \angle-1.58}=1 \angle 3.15 \quad 3.15$ not a
prino. value, but we can subtract 2π $3.15-2 \pi=-3.133$
25 $5 \operatorname{cis}(-98.5 \pi)$ we can add 98π to the argument set $-.5 \pi=-\pi / 2$
26) 5 cis $\left(\mathrm{Hr}^{2}\right)=5$ cis 29.6 ! does not lie between $-T$ and π. Subtract 10π

$$
\therefore \quad 29.61-10 \pi=-1.81
$$

27] $3[\cos 4+i \sin (-4)]=-1.96+i 2.27$
28) $4\left[\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right]=2 \sqrt{2+i 2 \sqrt{2}}$
chi, P. 18
$\sec 1.3$ cont'd
29] $r=\sqrt{3+1}=2$
$\theta=\frac{5 \pi}{6} \quad$ princ. $\quad 2 \angle \frac{5 \pi}{6}+2 k \pi$
p.V. when $k=0$
$30](1+i)(-\sqrt{3}+i)=\sqrt{2} / \frac{\pi}{4} 2 / \frac{5 \pi}{6}$

$$
\begin{aligned}
& =2 \sqrt{2} \angle \frac{13 \pi}{12}=2 \sqrt{2} \angle \frac{-11 \pi}{12} \\
& 2 \sqrt{2} \angle \frac{-11 \pi}{12}+2 k \pi
\end{aligned}
$$

$31 \sqrt{2}<-\frac{3 \pi}{4}\left(2<+\frac{5 \pi}{6}\right)^{3}$

$$
\begin{aligned}
& =\sqrt{2} * 8 \angle-\frac{3 \pi}{4}+\frac{15 \pi}{6}= \\
& 8 \sqrt{2} \angle \frac{-3 \pi}{4}+2 \frac{1}{2} \pi=8 \sqrt{2} /-\frac{3 \pi}{4}+\frac{\pi}{2} \\
& =8 \sqrt{2} \angle \frac{-\pi}{4}=8 \sqrt{2} \angle-\frac{\pi}{4}+2 k \pi \quad \text { م.v.k=0 }
\end{aligned}
$$

32) $(-4+3 i)^{2}=7-24 i=\sqrt{7^{2}+24^{2}}<-\tan ^{-1} \frac{24}{7}+2 k \pi$

$$
=25<-1.287+2 k \pi \quad \text { p.v. when } k=0 \text {. }
$$

33 angle $(z 1 * z 2)=2.879$

$$
\text { angle }\left(z_{1}\right)+\text { angle }\left(z_{2}\right)=2.879
$$

angle $\left(z_{1} * z 3\right)=-2.8797$, andle z_{1} ansle $z_{3}=3.40$
angle $(z 1 * z 3) \neq$ angle $z_{1}+$ ansle z_{3} because.
angle $z_{1}+$ ansle $z_{3}=3.4$ not a prisic value, hut -2.87 is princ.

34

$$
\begin{aligned}
& \frac{-1-i}{\sqrt{3}+i}=\frac{\sqrt{2}<-\frac{3 \pi}{4}}{2 / \pi / 6}=\frac{1}{\sqrt{2}}<-\frac{22 \pi}{24} \\
& =\frac{1}{\sqrt{2}<-\frac{11 \pi}{12}}
\end{aligned}
$$

${ }^{35} \frac{\sqrt{2} \angle-\frac{3 \pi}{4}, L \pi / 4}{(2 \angle 30)^{2}}=\frac{\sqrt{2} / \frac{-\pi}{2}}{4 / \pi / 3}=\frac{1}{2 \sqrt{2}\left(\frac{-5 \pi}{6}\right)}$
36) $\quad \frac{\operatorname{cis}(2 \pi)}{\operatorname{cis}(-4 \pi / 3)}=\operatorname{cis}\left[\frac{6 \pi}{3}+\frac{4 \pi}{3}\right]=\operatorname{cis}\left[\frac{10 \pi}{3}\right]$

$$
=\operatorname{cis}[3 / 3 \pi]=\operatorname{cis}\left[-\frac{2}{3} \pi\right]
$$

-37]

$$
\varepsilon_{q_{n}}(1.3-7) \quad\left|z_{1}+z_{2}\right| \leqslant\left|z_{1}\right|+\left|z_{2}\right|
$$

If $\wedge_{i} z_{1}$ and z_{2} are both pointing in same direction, then equality will hold. (They cannot point in opposite directions). Thus for equality arg $z_{1}=a \operatorname{sig} z_{2}+2 k \pi$ where k is any integer.
38
next pase

Sec 1.3 cont ld
38] al Given: $\left|z_{1}+z_{2}\right| \leqslant\left|z_{1}\right|+\left|z_{2}\right|$
Use - Zn in place of z_{2}

$$
\begin{aligned}
& \left|z_{1}-z_{2}\right| \leqslant\left|z_{1}\right|+\left|-z_{2}\right| \quad \text { but }\left|-z_{2}\right|=\left|z_{2}\right| \\
& \therefore \quad\left|z_{1}-z_{2}\right| \leqslant\left|z_{1}\right|+\left|z_{2}\right|
\end{aligned}
$$

The leg of the triangle with length $\left|z_{1}-z_{2}\right|$ Must be \leqslant sum of lensths of remaining two legs, ic. $\left|z_{1}\right|+\left|z_{2}\right|$
(b) If z_{1} and $-z_{2}$ are in same direction equality will hold, ie. z_{1} and z_{2} are in opposite dircebions, lie. $\operatorname{ang} z_{1}=a \wedge g z_{2}+\pi+2 k t, k i s$ an integer.

39
a)

From figure, $\quad M \geq N$

$$
L \geq M-N
$$

(b) $\underbrace{\text { lensth }}_{z_{1}} \underbrace{z_{1}+z_{2}+z_{2}}_{\text {length }\left|z_{1}\right|}$ length $\left|z_{2}\right|$

Referring to part (a) have

$$
\left|z_{1}+z_{2}\right| \geq\left|z_{1}\right|-\left|z_{2}\right|
$$

sec 1.3 contld prob 39, (b) conbld.
Explanation Eon (1.3-20)
If $\left|z_{\sim}\right| \geqslant\left|z_{1}\right|$ then $\left|\left|z_{\sim}\right|-\left|z_{1}\right|\right|=\left|z_{2}\right|-\left|z_{1}\right|$
If $\left|z_{1}\right| \geqslant\left|z_{\sim}\right|$ then $\left|\left|z_{\sim}\right|-\left|z_{1}\right|\right|=\left|z_{1}\right|-\left|z_{2}\right|$
Thus by using $||z \sim|-|z,| |$ we always get the required right hand side.
401 a)

$$
\begin{aligned}
& \left|z_{1}-z_{2}\right|^{2}+\left|z_{1}+z_{2}\right|^{2}= \\
& \left(\bar{z}_{1}-\bar{z}_{2}\right)\left(z_{1}-z_{2}\right)+\left(\bar{z}_{1}+\bar{z}_{v}\right)\left(z_{1}+z_{2}\right)= \\
& \left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-\bar{z}_{1} z_{2}-\bar{z}_{2} z_{1}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\bar{z}_{1} z_{2}+z_{1} \bar{z}_{2} \\
& =2\left|z_{1}\right|^{2}+2\left|z_{2}\right|^{2} \text { qed }
\end{aligned}
$$

b)

91f $(a)(p-q)^{2} \geq 0 \quad$ since $p-q$ is real.

$$
p^{2}-2 p q+q^{2} \geq 0
$$

$p^{2}+q^{2} \geq 2 p q \quad$ reverse this
$2 p q \leqslant p^{2}+q^{2}$, add $p^{2}+q^{2}$ to both sides

$$
p^{2}+q^{2}+2 p q \leqslant 2 p^{2}+2 q^{2}
$$

$(p+q)^{2} \leqslant 2\left(p^{2}+q^{2}\right)$ take square root both sides. $p+q \leqslant \sqrt{2} \sqrt{p^{2}+q^{2}} \quad$ q.e.d.

