

Compiler Construction: Principles and Practice
by Kenneth C. Louden

Chapter 1 Exercise Answers

Exercise 1.2

The parse tree is:

assign-expression

=expression

subscript-expression

identifier

[]

a

expression

additive-expression

expression expression+

number2subscript-expression

[]

expression

additive-expression

expression

number1

+expression

identifier
i

expression

expression

identifier
i

expression

identifier
a

expression

The syntax tree is:

assign-expression

subscript-expression

identifier
a

additive-expression

number
2

subscript-expression

identifier identifier
a i

additive-expression

number
1

identifier
i

Exercise 1.4

(a) and (b). The following table shows the assembly output of three compilers (slightly edited,
with optimizations turned on) for four similar short functions in C.

Compiler Construction: Principles and Practice Chapter 1 Exercise Answers, Page 2

C Source Code

Borland 3.0 (PC)

Sun C (Sparc) Gnu C (Sun Sparc)

int f(void)
{ int x = 2 + 3;
 return x;
}

_f proc near
 mov ax,5
 ret
_f endp

_f:
 retl
 add %g0,5,%o0

_f:
 save %sp,-112,%sp
 mov 5,%i0
 ret
 restore

int f(void)
{const int x = 2;
 const int y = 3;
 int z = x + y;
 return z;
}

_f proc near
 push bp
 mov bp,sp
 sub sp,2
 mov ax,2
 add ax,3
 mov word ptr

[bp-2],ax
 mov sp,bp
 pop bp
 ret
_f endp

_f:
 retl
 add %g0,5,%o0

_f:
 save %sp,-112,%sp
 mov 5,%i0
 ret
 restore

int f(void)
{ int x = 2;
 int y = 3;
 int z = x + y;
 return z;
}

_f proc near
 push bp
 mov bp,sp
 sub sp,2
 mov ax,2
 add ax,3
 mov word ptr

[bp-2],ax
 mov sp,bp
 pop bp
 ret
_f endp

_f:
 retl
 add %g0,5,%o0

_f:
 save %sp,-112,%sp
 mov 5,%i0
 ret
 restore

int f(void)
{ int x = 2;
 int y = 3;
 int z;
 if (z) z = x+y;
 else z = x-y;
 return z;
}

_f proc near
 push bp
 mov bp,sp
 sub sp,4
 mov word ptr

[bp-2],2
 mov word ptr

[bp-4],3
 or dx,dx
 je short @1@86
 mov dx,2
 add dx,3
 jmp short

@1@114
@1@86:
 mov dx,word ptr

[bp-2]
 sub dx,word ptr

[bp-4]
@1@114:
 mov ax,dx
 mov sp,bp
 pop bp
 ret
_f endp

_f:
 save %sp,-72,%sp
 ld [%fp-4],%o0
 tst %o0
 be,a L77005
 mov -1,%i5
 mov 5,%i5
L77005:
 ret
 restore

%g0,%i5,%o0

_f:
 save %sp,-112,%sp
 mov 2,%o2
 mov 3,%o1
 tst %o0
 be L2
 nop
 b L3
 mov 5,%o0
L2:
 sub %o2,%o1,%o0
L3:
 mov %o0,%i0
 ret
 restore

Compiler Construction: Principles and Practice Chapter 1 Exercise Answers, Page 3

The table shows that all three compilers perform constant folding, and that the Gnu C compiler
performs constant propagation except where control flow is present. The Sun C compiler is the
only one that performs propagation in all cases.

(c) Constant propagation is more difficult than constant folding because the value of a variable
must be tracked through a number of statements to determine that it is constant, while in constant
folding the constants are right in the statement itself (they are literals or "manifest" constants).
Tracking constant values of variables is particularly difficult in the presence of control flow, as
the fourth example in the table shows.

(d) Note that the use of const declarations had no effect on the code the above compilers
produce. This does not mean that the compilers could not have used the information provided by
such a declaration. In fact, a const variable could be of two different kinds: its value could be
determinable at compile time (such as in the code example above), or its value might not be
determinable until execution time, such as in a declaration

const char c = getchar();

Clearly only in the former case can optimizations be peformed.

Exercise 1.6

(a) A language preprocessor is a program that performs simple manipulations on a source
program file before it is sent to the compiler proper. Preprocessors perform such manipulations
as textual replacement, inclusion of additional files, conditional inclusion/exclusion of blocks of
code, etc. A standard example is the C preprocessor, which reads all lines beginning with the #
character, and performs textual replacements from a symbol table on remaining lines.
Preprcessors generally do not perform extensive compiler-like analysis, but only provide simple
macro-like operations.

(b) A pretty-printer is a program that will format a source file in a way that is especially
readable. Usually this includes adjusting indentations, printing keywords in boldface, and
possibly comments in italics. Pretty-printers must perform a full parse of the source text in order
to know when to indent, and to identify keywords and comments.

(c) A text formatter is a program that adjusts the spacing of text on a page to make it print in a
pleasing form. Usually this includes justification of text and font manipulations such as kerning
(variable spacing). Such a program is not all all concerned with the internal structure of source
code, since it treats all text alike. However, it geneally needs to be able to accept formatting
codes, and occasionally must perform certain automatic operations (like adjusting type size
during subscripting), and this involves some parsing and analysis similar to that peformed by a
compiler.

Exercise 1.7

Compiler Construction: Principles and Practice Chapter 1 Exercise Answers, Page 4

Let us represent Pascal programs with the letter P, C programs with the letter C, and programs
that run on the machine we are using by the letter M. Then the Pascal-to-C translator written in C
can be represented as

P C
C

and the working C compiler as

C M
M

We form a working Pascal compiler in two steps. First, we compile the Pascal-to-C translator
using the working C compiler to get a working Pascal-to-C translator:

P C
C C M

M

P C
M

Then we link the working Pascal-to-C translator with the working C compiler to form a working
Pascal compiler (this operation can be viewed as a pipe from the first translator to the second):

P C
M

C M
M

P M
M

