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Chapter 1

Problem 1.1

A nucleus, originally at rest, decays radioactively by emitting an electron of mo-
mentum 1.73 MeV/c, and at right angles to the direction of the electron a neutrino
with momentum 1.00 MeV/c. ( The MeV (million electron volt) is a unit of energy,
used in modern physics, equal to 1.60 x 10~% erg. Correspondingly, MeV/c is a
unit of linear momentum equal to 5.34 x 10~!7 gm-cm/sec.) In what direction does
the nucleus recoil? What is its momentum in MeV/c? If the mass of the residual
nucleus is 3.90 x 10722 gm, what is its kinetic energy, in electron volts?

Place the nucleus at the origin, and suppose the electron is emitted in the
positive y direction, and the neutrino in the positive z direction. Then the
resultant of the electron and neutrino momenta has magnitude

IPesr] = V/(1.73)2 + 12 = 2 MeV /c,

and its direction makes an angle

1.
6 = tan~! ? = 60°

with the z axis. The nucleus must acquire a momentum of equal magnitude
and directed in the opposite direction. The kinetic energy of the nucleus is

P’ 4 MeV? ¢2 1.78-10727 gm

om 239102 gm  IMeVe2 01

This is much smaller than the nucleus rest energy of several hundred GeV, so
the non-relativistic approximation is justified.
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Problem 1.2

The escape velocity of a particle on the earth is the minimum velocity required
at the surface of the earth in order that the particle can escape from the earth’s
gravitational field. Neglecting the resistance of the atmosphere, the system is con-
servative. From the conservation theorem for potential plus kinetic energy show
that the escape velocity for the earth, ignoring the presence of the moon, is 6.95
mi/sec.

If the particle starts at the earth’s surface with the escape velocity, it will
just manage to break free of the earth’s field and have nothing left. Thus after
it has escaped the earth’s field it will have no kinetic energy left, and also no
potential energy since it’s out of the earth’s field, so its total energy will be zero.
Since the particle’s total energy must be constant, it must also have zero total
energy at the surface of the earth. This means that the kinetic energy it has at
the surface of the earth must exactly cancel the gravitational potential energy
it has there:

SO

1/2

oo | (2GMR\ _ (2 (6.67 - 10 m? kg™> s72) - (5.98 - 10%* kg)
B Rr ) 6.38 - 106 m
1m

= 6.95 mi/s.
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Problem 1.3

Rockets are propelled by the momentum reaction of the exhaust gases expelled from
the tail. Since these gases arise from the reaction of the fuels carried in the rocket
the mass of the rocket is not constant, but decreases as the fuel is expended. Show
that the equation of motion for a rocket projected vertically upward in a uniform
gravitational field, neglecting atmospheric resistance, is

m@ __,dm
dt dt

where m is the mass of the rocket and v’ is the velocity of the escaping gases relative
to the rocket. Integrate this equation to obtain v as a function of m, assuming a
constant time rate of loss of mass. Show, for a rocket starting initially from rest,
with v’ equal to 6800 ft/sec and a mass loss per second equal to 1/60th of the initial
mass, that in order to reach the escape velocity the ratio of the weight of the fuel
to the weight of the empty rocket must be almost 300!

Suppose that, at time %, the rocket has mass m(t) and velocity v(t). The
total external force on the rocket is then F' = gm(t), with g = 32.1 ft/s?, pointed
downwards, so that the total change in momentum between ¢ and ¢ + dt is

Fdt = —gm(t)dt. (1)
At time ¢, the rocket has momentum
p(t) = m(t)v(?). (2)

On the other hand, during the time interval dt the rocket releases a mass
Am of gas at a velocity v’ with respect to the rocket. In so doing, the rocket’s
velocity increases by an amount dv. The total momentum at time ¢t + dt is the
sum of the momenta of the rocket and gas:

p(t+ dt) = py + py = [m(t) — Am][v(t) + dv] + Am[v(t) + '] (3)

Subtracting (2) from (3) and equating the difference with (1), we have (to
first order in differential quantities)

—gm(t)dt = m(t)dv + v' Am

or

@~ VT me) dat
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which we may write as

dv v
2 _g— 4
&= 9w 4)
where
_Aam _ 1
TS @ T e0°

This is a differential equation for the function v(t) giving the velocity of the
rocket as a function of time. We would now like to recast this as a differential
equation for the function v(m) giving the rocket’s velocity as a function of its
mass. To do this, we first observe that since the rocket is releasing the mass
Am every dt seconds, the time derivative of the rocket’s mass is

dm _ _Am _ _
a at
We then have
dv _ dv dm _ dv

dt  dmdt  dm
Substituting into (4), we obtain

dv v
_W’d_ =—9— 7
m m

or

d
dv = Ldm + el
% m

Integrating, with the condition that v(mg) =0,

v(m) = %(m —mg) +¢'In (%) .

Now, v=(1/60)mg s~1, while v’ =-6800 ft/s. Then
— N L n (Mo
v(m) = 1930 ft/s (mo 1> + 6800 ft/s - In ( - )

For mg > m we can neglect the first term in the parentheses of the first term,
giving
v(m) = —1930 ft /s + 6800 ft/s - In (%) .

The escape velocity is v = 6.95 mi/s = 36.7 - 10° ft/s. Plugging this into the
equation above and working backwards, we find that escape velocity is achieved
when mg/m=293.

Thanks to Brian Hart for pointing out an inconsistency in my original choice
of notation for this problem.
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Problem 1.4

Show that for a single particle with constant mass the equation of motion implies
the following differential equation for the kinetic energy:

T Y
dt ’

while if the mass varies with time the corresponding equation is

d(mT)
=F - p.
dt P
We have
F=p (5)
If m is constant,
F=mv
Dotting v into both sides,
. 1 d
F-v=mv.-v= §m$|v|
dr
= — 6
p (6)
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Problem 1.5

Prove that the magnitude R of the position vector for the center of mass from an
arbitrary origin is given by the equation

1
M?R? = MZmirf ~3 Zmimjrfj.
i ij

We have .
K3
o) _
1
R2 = e Z miz? + Z MM ;T;T
| ¢ i#]

and similarly

R = Ve S miy; + > mimgyiy;
g i

1
R2=_—_ m>
T ; ot Zmimjzizj
i#]
Adding,
32 > omir? ) mimy(ri x| (M)
i

2 __
R = Py

On the other hand,

2 _ .2 2
r.—ri—}—rj—Zrl Tj

ij

and, in particular, r% = 0, so

Zmimjr?j = Z[m,-mjrz2 + mim;r; — 2mimy(r; -15)]
2

7]
:2Zmimjr? —2Zmimj(ri -T'j). (8)
] i

Next,

MZmirf = ij (Z mﬂf) = mer? + Zmimﬂ?. (9)
i j i i

i#]
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Figure 1: My conception of the situation of Problem 1.8

Subtracting half of (8) from (9), we have

1 .
MZmirf ~3 Zzgmimﬂ?j = Zm?rf + ijmj(ri -1j)
i

i#J

and comparing this with (7) we see that we are done.

Problem 1.8

Two wheels of radius a are mounted on the ends of a common axle of length b such
that the wheels rotate independently. The whole combination rolls without slipping
on a plane. Show that there are two nonholonomic equations of constraint,

cosfdz +sinfdy =0

sinfdx — cos8dy = a(dg + d¢')

(where 0, ¢, and ¢’ have meanings similar to the problem of a single vertical disc,
and (z,y) are the coordinates of a point on the axle midway between the two wheels)
and one holonomic equation of constraint,

a /
6=C-32(6-9)

where C' is a constant.

My conception of the situation is illustrated in Figure 1. 6 is the angle
between the z axis and the axis of the two wheels. ¢ and ¢' are the rotation
angles of the two wheels, and r and r' are the locations of their centers. The
center of the wheel axis is the point just between r and r':

1
(z,y) = 5(7':0 + T;,T‘y +7‘;).
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If the ¢ wheel rotates through an angle d¢, the vector displacement of its center
will have magnitude ad¢ and direction determined by 6. For example, if § = 0
then the wheel axis is parallel to the z axis, in which case rolling the ¢ wheel
clockwise will cause it to move in the negative y direction. In general, referring
to the Figure, we have

dr = adg[sinfi— cosf ] (10)
dr' = adg'[sinf1 — cosf]] (11)

Adding these componentwise we have!
a "o
x = i[dqﬁ + d¢']sin6
dy = —g[d¢+ d¢'] cosf
Multiplying these by sin§ or — cosf and adding or subtracting, we obtain

sinf dx — cosOdy = a[d¢ + d¢']
cosfdx +sinfdy = 0.
Next, consider the vector ris = r —r' connecting the centers of the two wheels.

The definition of § is such that its tangent must just be the ratio of the y and
x components of this vector:

tanf = Y2
Z12
— sec?6dh = —yﬁ dziy + — dy12
5’712

Subtracting (11) from (10),

1
sec? §df = a[dp — d¢'] ( 912 Ging— — cosH)
12 T12

Again substituting for y12/212 in the first term in parentheses,
sec? 0df = —aldp — d¢’ ] (tan 6sin 6 + cos )
or
—a[dp — d¢’ ] (sm 6 cosé + cos® 6)

—ald$ — d¢l]m_12 cos 6. (12)

IThanks to Javier Garcia for pointing out a factor-of-two error in the original version of
these equations.
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