


C H A P T E R

2
Differentiation

2.1 TANGENT LINES AND
VELOCITY

1.
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2. The tangent line is vertical and coincides with
the y-axis:
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3. The tangent line is vertical and coincides with
the y-axis:

x

2.5

1.5

105-5

1

0.5

2

0-10
0

4. The tangent line overlays the line:
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5. At x = 1 the slope of the tangent line appears
to be about −1.

6. The slope at x = 1 is approximately −3.
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7. C, B, A, D. At the point labeled C, the slope is
very steep and negative. At point B, the slope
is zero and at point A, the slope is just more
than zero. The slope of the line tangent to point
D is large and positive.

8. In order of increasing slope: D (large nega-
tive), C (small negative), B (small positive),
and A (large positive).

9. (a) Points (1, 0) and (2, 6). Slope is 6−0
1 = 6.

(b) Points (2, 6) and (3, 24). Slope is 24−6
1 =

18.

(c) Points (1.5, 1.875) and (2, 6). Slope is
6−1.875

0.5 = 8.25.

(d) Points (2, 6) and (2.5, 13.125). Slope is
13.125−6

0.5 = 14.25.

(e) Points (1.9, 4.959) and (2, 6). Slope is
6−4.959

0.1 = 10.41.

(f) Points (2, 6) and (2.1, 7.161). Slope is
7.161−6

0.1 = 11.61.

(g) Slope seems to be approximately 11.

10. (a) Points (1,
√

2) and (2,
√

5). Slope is√
5−√

2
2−1 ≈ 0.5040.

(b) Points (2,
√

5) and (3,
√

10). Slope is√
10−√

3
3−2 ≈ 0.9262.

(c) Points (1.5, 1.8028) and (2, 2.2361).
Slope is 2.2361−1.8028

2−1.5 ≈ 0.8666.

(d) Points (2, 2.2361) and (2.5, 2.2693).
Slope is 2.2693−2.2361

2.5−2 ≈ 0.9130.

(e) Points (1.9, 2.1471) and (2, 2.2361).
Slope is 2.2361−2.1471

2−1.9 ≈ 0.8898.

(f) Points (2, 2.2361) and (2.1, 2.3259).
Slope is 2.3259−2.2361

2.1−2 ≈ 0.8987.

(g) Slope seems to be approximately 0.89.

11. (a) Points (1, 0.54) and (2, −0.65). Slope is
−0.65−0.54

1 = −1.19.

(b) Points (2, −0.65) and (3, −0.91). Slope
is −0.91−(−0.65)

1 = −0.26.

(c) Points (1.5, −0.628) and (2, −0.654).
Slope is −0.654−(−0.628)

0.5 = −0.05.

(d) Points (2, −0.65) and (2.5, 1.00). Slope
is 1.00−(−0.65)

0.5 = 3.3.

(e) Points (1.9, −0.89) and (2, −0.65). Slope
is −0.65−(−0.89)

0.1 = 2.4.

(f) Points (2, −0.654) and (2.1, −0.298).
Slope is −0.298−(−0.654)

0.1 = 3.56.

(g) Slope seems to be approximately 3.

12. (a) Points (1, −2.1850) and (2, 1.1578).
Slope is 1.1578−(−2.1850)

2−1 ≈ 3.3429.

(b) Points (2, 1.1578) and (3, −0.2910).
Slope is −0.2910−1.1578

3−2 ≈ −1.4488.

(c) Points (1.5, −0.1425) and (2, 1.1578).
Slope is 1.1578−(−0.1425)

2−1.5 ≈ −2.6007.

(d) Points (2, 1.1578) and (2.5, −3.3805).
Slope is −3.3805−1.1578

2.5−2 ≈ −9.0767.

(e) Points (1.9, 0.7736) and (2, 1.1578).
Slope is 1.1578−0.7736

2−1.9 ≈ 3.8427.

(f) Points (2, 1.1578) and (2.1, 1.7778).
Slope is 1.7778−1.1578

2.1−2 ≈ 6.1996.

(g) Slope seems to be approximately 4.68.

13.
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14. All the lines are very close to the tangent line:
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15. The sequence of graphs should look like:
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5

The third secant line is indistinguishable from
the tangent line.

16. The sequence of graphs should look like:
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x

60

4

40

20

3
0

210

The third secant line is indistinguishable from
the tangent line.

17. Slope is

lim
h→0

f (1 + h) − f (1)

h

= lim
h→0

(1 + h)2 − 2 − (−1)

h

= lim
h→0

h2 + 2h

h
= lim

h→0
(h + 2) = 2.

Tangent line is y = 2(x − 1) − 1 or y = 2x −
3.

4

-4

0
2

-8

-2 30

x

-1 1-3

18. Slope is

lim
h→0

f (0 + h) − f (0)

h

= lim
h→0

h2

h
= 0.

Tangent line is y = −2.

2

x

1

0
2

-1

-2

10-1-2

19. Slope is

lim
h→0

f (−2 + h) − f (−2)

h

= lim
h→0

(−2 + h)2 − 3(−2 + h) − (10)

h

= lim
h→0

4 − 4h + h2 + 6 − 3h − 10

h

= lim
h→0

−7h + h2

h
= lim

h→0
(−7 + h) = −7.

Tangent line is y = −7(x + 2) + 10 or y =
−7x − 4.

100

0

50

5

x

0

-50

-5 10-10

20. Slope is lim
h→0

f (1 + h) − f (1)

h

= lim
h→0

(1 + 3h + 3h2 + h3) + (1 + h) − 2

h

= lim
h→0

4h + 3h2 + h3

h

= lim
h→0

4 + 3h + h2 = 4.

Tangent line is y = 4(x − 1) + 2.
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x

30

20

15

3

10

-5

2
0

10-1

25

5

21. Slope is lim
h→0

f (1 + h) − f (1)

h

= lim
h→0

2
(1+h)+1 − 2

1+1

h

= lim
h→0

2
2+h

− 1

h

= lim
h→0

(
2−(2+h)

2+h

)
h

= lim
h→0

(
−h

2+h

)
h

= lim
h→0

−1

2 + h
= −1

2
Tangent line is y = − 1

2 (x − 1) + 1 or y =
−x

2 + 3
2 .

y

4

2

0

-2

-4

x

420-2-4

22. Slope is lim
h→0

f (0 + h) − f (0)

h

= lim
h→0

h
h−1 − 0

h

= lim
h→0

1

h − 1
= −1.

Tangent line is y = −x.

y

4

2

0

-2

-4

x

210-1-2

23. Slope is lim
h→0

f (−2 + h) − f (−2)

h

= lim
h→0

√
(−2 + h) + 3 − 1

h

= lim
h→0

√
h + 1 − 1

h

= lim
h→0

√
h + 1 − 1

h
.

√
h + 1 + 1√
h + 1 + 1

= lim
h→0

(h + 1) − 1

h(
√

h + 1 + 1)

= lim
h→0

1√
h + 1 + 1

= 1

2
Tangent line is y = 1

2 (x + 2) + 1 or y =
1
2x + 2.

3

1

2

-2

x

-4
0

20
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24. Slope is lim
h→0

f (1 + h) − f (1)

h

= lim
h→0

√
(1 + 2h + h2) + 1 − √

2

h

We then multiply by

(
√

2 + 2h + h2 + √
2)

(
√

2 + 2h + h2 + √
2)

to get

lim
h→0

(2 + 2h + h2) − 2

h(
√

2 + 2h + h2 + √
2)

= lim
h→0

h(2 + h)

h(
√

2 + 2h + h2 + √
2)

= lim
h→0

2 + h

(
√

2 + 2h + h2 + √
2)

= 2

2
√

2
=

√
2

2
.

Tangent line is y =
√

2
2 (x − 1) + √

2.

y

4

2

0

-2

-4

x

3210-1

25. Numerical evidence suggests that

lim
h→0+

f (1 + h) − f (1)

h
= 1

while

lim
h→0−

f (1 + h) − f (1)

h
= −1.

Since these are not equal, there is no tangent
line. A graph makes it apparent that this func-
tion has a “corner” at x = 1.

26. Tangent line does not exist at x = 1 because
the function is not defined there.

27. Numerical evidence suggests that

lim
h→0+

f (0 + h) − f (0)

h

= lim
h→0−

f (0 + h) − f (0)

h= 0

Since the slope of the tangent line from the
left equals that from the right and the function
appears to be continuous in the graph, we
conjecture that the tangent line exists and has
slope 0.

28. Tangent line does not exist at x = 1 because
the function has a sharp corner there, causing
the limit of slopes to fail to exist.

29. Looking at the graph, we see that there is a
jump discontinuity at a = 0. Thus there cannot
be a tangent line, as the tangent line from the
left would be different from the tangent line
from the right.

30. Tangent line does not exist at x = 0 because
the function is not defined there. Tangent line
would exist with slope −2 if the function were
defined to be 0 at x = 0.

31. (a) Points (0, 10) and (2, 74). Average veloc-
ity is 74−10

2 = 32.

(b) Second point (1, 26). Average velocity is
74−26

1 = 48.

(c) Second point (1.9, 67.76). Average veloc-
ity is 74−67.76

0.1 = 62.4.

(d) Second point (1.99, 73.3616). Average
velocity is 74−73.3616

0.01 = 63.84.

(e) The instantaneous velocity seems to be
64.

32. (a) Points (0, 0) and (2, 26). Average velocity
is 26−0

2−0 = 13.

(b) Second point (1, 4). Average velocity is
26−4
2−1 = 22.

(c) Second point (1.9, 22.477). Average ve-
locity is 26−22.477

2−1.9 = 35.23.

(d) Second point (1.99, 25.6318). Average
velocity is 26−25.6318

2−1.99 = 36.8203.
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(e) The instantaneous velocity seems to be
approaching 37.

33. (a) Points (0, 0) and (2,
√

20). Average ve-

locity is
√

20−0
2−0 = 2.236068.

(b) Second point (1, 3). Average velocity is√
20−3
2−1 = 1.472136.

(c) Second point (1.9,
√

18.81). Average ve-

locity is
√

20−√
18.81

2−1.9 = 1.3508627.

(d) Second point (1.99,
√

19.8801). Average

velocity is
√

20−√
19.8801

2−1.99 = 1.3425375.

(e) One might conjecture that these numbers
are approaching 1.34. The exact limit is

6√
20

≈ 1.341641.

34. (a) Points (0, 0) and (2, 47.9426). Average
velocity is 47.9426−0

2−0 = 23.9713.

(b) Second point (1, 24.7404). Average ve-
locity is 47.9426−24.7404

2−1 = 23.2022.

(c) Second point (1.9, 45.7338). Average ve-
locity is 47.9426−45.7338

2−1.9 = 22.0871.

(d) Second point (1.99, 47.7230). Average
velocity is 47.9426−47.7230

2−1.99 = 21.9545.

(e) The instantaneous velocity seems to be
decreasing to slightly less than 22.

35. (a) Velocity at time t = 1 is

lim
h→0

f (1 + h) − f (1)

h

= lim
h→0

−16(1 + h)2 + 5 − (−11)

h

= lim
h→0

−16 − 32h − 16h2 + 5 + 11

h

= lim
h→0

−32h − 16h2

h= lim
h→0

(−32 − 16h) = −32.

(b) Velocity at time t = 2 is

lim
h→0

f (2 + h) − f (2)

h

= lim
h→0

−16(4 + 4h + h2) + 5 + 59

h

= lim
h→0

−64 − 64h − 16h2 + 64

h= lim
h→0

(−64 − 16h) = −64.

36. (a) Velocity at time t = 0 is

lim
h→0

f (0 + h) − f (0)

h

= lim
h→0

√
h + 16 − 4

h
.

√
h + 16 + 4√
h + 16 + 4

= lim
h→0

(h + 16) − 16

h(
√

h + 16 + 4)

= lim
h→0

1√
h + 16 + 4

= 1/8.

(b) Velocity at time t = 2 is

lim
h→0

f (2 + h) − f (2)

h
Multiplying by√

h + 18 + √
18√

h + 18 + √
18

gives

= lim
h→0

(h + 18) − 18

h(
√

h + 18 + √
18)

= lim
h→0

1√
h + 18 + √

18
= 1

2
√

18
.

37. The slope of the tangent line at p = 1 is
approximately

−20 − 0

2 − 0
= −10

which means that at p = 1, the freezing tem-
perature of water decreases by 10 degrees
Celsius per 1 atm increase in pressure. The
slope of the tangent line at p = 3 is approxi-
mately

−11 − (−20)

4 − 2
= 4.5

which means that at p = 3, the freezing tem-
perature of water increases by 4.5 degrees
Celsius per 1 atm increase in pressure.

38. The slope of the tangent line at v = 50 is
approximately

47 − 28

60 − 40
= .95.
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This means that at an initial speed of 50 mph,
the range of the soccer kick increases by .95
yards per 1 mph increase in initial speed.

39. The hiker reached the top at the highest point
on the graph (about 1.75 hours). The hiker
was going the fastest on the way up at about
1.5 hours. The hiker was going the fastest on
the way down at the point where the tangent
line has the least (i.e., most negative) slope, at
about 4 hours, at the end of the hike. Where
the graph is level, the hiker was either resting,
or walking on flat ground.

40. The tank is the fullest at the first spike (at
around 8 a.m.). The tank is the emptiest just
before this at the lowest dip (around 7 a.m.).
The tank is filling up the fastest where the
graph has the steepest positive slope (in be-
tween 7 and 8 a.m.). The tank is emptying the
fastest just after 8 a.m. where the graph has
the steepest negative slope. The level portions
most likely represent night, when water usage
is at a minimum.

41. A possible graph of the temperature with
respect to time:

y

100

80

60

40

20

0

x

20151050

Graph of the rate of change of the temperature:

y

0
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-8

-12

x

20151050

42. Possible graph of bungee-jumper’s height:

x

350

300

250

20

150

15

100

50

1050

200

A graph of the bungee-jumper’s velocity:

50

0

-50

-100

-150

x

20151050

43. (a) To say that



SECTION 2.1 . . Tangent Lines and Velocity 91

f (4) − f (2)

2
= 21,034

per year is to say that the average rate of
change in the bank balance between Jan.
1, 2002 and Jan. 1, 2004 was 21,034 ($
per year).

(b) To say that

2[f (4) − f (3.5)] = 25,036

(note that 2[f (4) − f (3.5)]= f (4)−f (3.5)
1/2 )

per year is to say that the average rate of
change between July 1, 2003 and Jan. 1,
2004 was 25,036 ($ per year).

(c) To say that

lim
h→0

f (4 + h) − f (4)

h
= $30,000

is to say that the instantaneous rate of
change in the balance on Jan. 1, 2004 was
30,000 ($ per year).

44. (a) f (40)−f (38)
2 = −2103 represents the aver-

age rate of depreciation between 38 and
40 thousand miles.

(b) f (40)−f (39)
2 = −2040 represents the aver-

age rate of depreciation between 39 and
40 thousand miles.

(c) lim
h→0

f (40+h)−f (40)
h

= −2000 represents

the instantaneous rate of depreciation
in the value of the car when it has 40
thousand miles.

45. We are given θ(t) = 0.4t2. We are advised that
θ is measured in radians, and that t is time. Let
us assume that t is measured in seconds.

Three rotations corresponds to θ = 6π . Pro-
ceeding, if θ(t) = 6π then 0.4t2 = 6π and
solving for t yields t = √

15π ≈ 6.865 (sec-
onds).

At that exact moment of time (call it a) , the
exact angular velocity is

lim
h→0

θ(a + h) − θ(a)

h

= lim
h→0

0.4(
√

15π + h)2 − 6π

h

= lim
h→0

0.4(15π + 2h
√

15π + h2) − 6π)

h

= lim
h→0

0.8h
√

15π + 0.4h2

h

= lim
h→0

(0.8
√

15π + 0.4h) = 0.8
√

15π

= √
9.6π ≈ 5.492

and the units would be radians per second.

46. First find the time corresponding to two ro-
tations: 4π = 0.4t2 ⇒ t ≈ 5.6050. Now the
angular velocity is

lim
h→0

θ(5.6 + h) − θ(5.6)

h

= lim
h→0

0.4(5.6 + h)2 − 0.4(5.6)2

h

= lim
h→0

4.48h + 0.4h2

h
= 4.48.

The third rotation is helpful because the angu-
lar velocity increases.

47. vavg = f (s) − f (r)

s − r

= as2 + bs + c − (ar2 + br + c)

s − r

= a(s2 − r2) + b(s − r)

s − r

= a(s + r)(s − r) + b(s − r)

s − r
nl = a(s +

r) + b

Let v(r) be the velocity at t = r . We have

v(r) = lim
h→0

f (r + h) − f (r)

h= lim
h→0

a(r + h)2 + b(r + h) + c − (ar2 + bh + c)

h

= lim
h→0

a(r2 + 2rh + h2) + bh − ar2

h

= lim
h→0

h(2ar + ah + b)

h= lim
h→0

(2ar + ah + b) = 2ar + b.

So v(r) = 2ar + b. The same argument shows
that v(s) = 2as + b.
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Finally,
v(r) + v(s)

2

= (2ar + b) + (2as + b)

2

2a(s + r) + 2b

2= a(s + r) + b = vavg.

48. f (t) = t3 − t works with r = 0, s = 2. The
average velocity between r and s is 6−0

2−0 = 3.
The instantaneous velocity at r is

lim
h→0

(0 + h)3 − (0 + h) − 0

h
= 0,

and the instantaneous velocity at s is

lim
h→0

(2 + h)3 − (2 + h) − 6

h

= lim
h→0

8 + 12h + 6h2 + h3 − 2 − h − 6

h

= lim
h→0

11 + 6h + h2 = 11,

so the average between the instantaneous
velocities is 5.5.

49. Let x = h + a. Then h = x − a, and clearly

f (a + h) − f (a)

h
= f (x) − f (a)

x − a
.

It is also clear that x → a if and only if h → 0.
Therefore if one of the two limits exists, then
so does the other and

lim
h→0

f (a + h) − f (a)

h
= lim

x→a

f (x) − f (a)

x − a
.

50. For exercise 17,

lim
x→1

f (x) − f (1)

x − 1

= lim
x→1

(x2 − 2) − (−1)

x − 1

= lim
x→1

(x − 1)(x + 1)

x − 1
= 2.

For exercise 19,

lim
x→−2

f (x) − f (−2)

x + 2
lim

x→−2

(x2 − 3x) − 10

x + 2

= lim
x→−2

(x − 5)(x + 2)

x + 2
= −7.

51. First, compute the slope of the tangent line.
Using the result of #49, it is convenient to
assume x is near but not exactly 1/2, and write

lim
x→1/2

f (x) − f (1/2)

x − (1/2)
= x2 − (1/4)

x − (1/2)

= lim
x→1/2

(x − (1/2))(x + (1/2))

x − (1/2)
= lim

x→1/2
[x + (1/2)] = 1.

Next, we quickly write the equation of the
tangent line in point-slope form:

y = 1(x − (1/2)) + (1/4) or y = x − (1/4).

The location of the tree is the point (x, y) =
(1, 3/4) and this point is indeed on the tangent
line. The tree will be hit if the car gets that
far (that being something we have no way of
knowing).

52. It is clear from the graph that no other tangent
line will pass through the point (1, 3

4). No other
lines through this point will be tangent to the
curve y = x2.

10-1-2

6

8

2

0

x
-2

2

4

3

2.2 THE DERIVATIVE

1. Using (2.1):

f ′(1) = lim
h→0

f (1 + h) − f (1)

h

= lim
h→0

3(1 + h) + 1 − (4)

h

= lim
h→0

3h

h
= lim

h→0
3 = 3

Using (2.2):
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lim
b→1

f (b) − f (1)

b − 1

= lim
b→1

3b + 1 − (3 + 1)

b − 1

= lim
b→1

3b − 3

b − 1

= lim
b→1

3(b − 1)

b − 1
= lim

b→1
3 = 3

2. Using (2.1):

f ′(1) = lim
h→0

f (1 + h) − f (1)

h

= lim
h→0

3(1 + h)2 + 1 − 4

h

= lim
h→0

6h + 3h2

h

= lim
h→0

6 + 3h = 6.

Using (2.2):

f ′(1) = lim
x→1

f (x) − f (1)

x − 1

= lim
x→1

(3x2 + 1) − 4

x − 1

= lim
x→1

3(x − 1)(x + 1)

x − 1

= lim
x→1

3(x + 1) = 6.

3. Using (2.1): Since

f (1 + h) − f (1)

h
=

√
3(1 + h) + 1 − 2

h

=
√

4 + 3h − 2

h
.

√
4 + 3h + 2√
4 + 3h + 2

= 4 + 3h − 4

h(
√

4 + 3h + 2)
= 3h

h(
√

4 + 3h + 2)

= 3√
4 + 3h + 2

, we have

f ′(1) = lim
h→0

f (1 + h) − f (1)

h

= lim
h→0

3√
4 + 3h + 2

= 3√
4 + 3(0) + 2

= 3

4
.

Using (2.2): Since

f (b) − f (1)

b − 1

=
√

3b + 1 − 2

b − 1

= (
√

3b + 1 − 2)(
√

3b + 1 + 2)

(b − 1)(
√

3b + 1 + 2)

= (3b + 1) − 4

(b − 1)
√

3b + 1 + 2

= 3(b − 1)

(b − 1)
√

3b + 1 + 2

= 3√
3b + 1 + 2

, we have

f ′(1) = lim
b→1

f (b) − f (1)

b − 1

= lim
b→1

3√
3b + 1 + 2

= 3√
4 + 2

= 3

4
.

4. Using (2.1)

f ′(2) = lim
h→0

f (2 + h) − f (2)

h

= lim
h→0

3
(2+h)+1 − 1

h

= lim
h→0

3
3+h

− 3+h
3+h

h

= lim
h→0

−h
3+h

h

= lim
h→0

−1

3 + h
= −1

3
.

Using (2.2):
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f ′(2) = lim
x→2

f (x) − f (2)

x − 2

= lim
x→2

3
x+1 − 1

x − 2

= lim
x→2

3
x+1 − x+1

x+1

x − 2

= lim
x→2

−(x−2)
x+1

x − 2

= lim
x→2

−1

x + 1
= −1

3
.

5. lim
h→0

f (x + h) − f (x)

h

= lim
h→0

3(x + h)2 + 1 − (3(x)2 + 1)

h

= lim
h→0

3x2 + 6xh + 3h2 + 1 − (3x2 + 1)

h

= lim
h→0

6xh + 3h2

h
= lim

h→0
(6x + 3h) = 6x

6.
f ′(x) = lim

h→0

f (x + h) − f (x)

h

= lim
h→0

(x + h)2 − 2(x + h) + 1 − f (x)

h

= lim
h→0

2xh + h2 − 2h

h

= lim
h→0

h(2x + h − 2)

h
= 2x − 2.

7. lim
b→x

f (b) − f (x)

b − x

= lim
b→x

3
b+1 − 3

x+1

b − x

= lim
b→x

3(x+1)−3(b+1)
(b+1)(x+1)

b − x

= lim
b→x

−3(b − x)

(b + 1)(x + 1)(b − x)

= lim
b→x

−3

(b + 1)(x + 1)
= −3

(x + 1)2

8.
f ′(x) = lim

h→0

f (x + h) − f (x)

h

= lim
h→0

2
2(x+h)−1 − 2

2x−1

h

= lim
h→0

2(2x−1)−2(2x+2h−1)
(2x+2h−1)(2x−1)

h

= lim
h→0

−4h
(2x+2h−1)(2x−1)

h

= lim
h→0

−4

(2x + 2h − 1)(2x − 1)

= −4

(2x − 1)2

9. lim
b→x

f (b) − f (x)

b − x

= lim
b→x

√
3b + 1 − √

3x + 1

b − x

Multiplying by√
3b + 1 + √

3x + 1√
3b + 1 + √

3x + 1
gives

lim
b→x

(3b + 1) − (3x + 1)

(b − x)(
√

3b + 1 + √
3x + 1)

= lim
b→x

3(b − x)

(b − x)(
√

3b + 1 + √
3x + 1)

= lim
b→x

3

(
√

3b + 1 + √
3x + 1)

= 3

2
√

3x + 1

10. f ′(x) = lim
h→0

f (x + h) − f (x)

h

= lim
h→0

2(x + h) + 3 − (2x + 3)

h

= lim
h→0

2h

h
= 2.
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11. lim
b→x

f (b) − f (x)

b − x

= lim
b→x

b3 + 2b − 1 − (x3 + 2x − 1)

b − x

= lim
b→x

b3 − x3 + 2b − 2x

b − x

= lim
b→x

(b − x)(b2 + bx + x2) + 2(b − x)

b − x

= lim
b→x

(b − x)(b2 + bx + x2 + 2)

b − x

= lim
b→x

(b2 + bx + x2 + 2)

= 3x2 + 2

12.
f ′(x) = lim

h→0

f (x + h) − f (x)

h

= lim
h→0

(x + h)4 − 2(x + h)2 + 1 − f (x)

h

= lim
h→0

4x3 + 6x2h + 4xh2 + h3 − 4x − 2h

= 4x3 − 4x.

13. The function has negative slope for x < 0,
positive slope for x > 0, and zero slope at
x = 0. Its slope function (derivative) can only
be (c).

14. (e). The graph (e) is zero in two places and
negative in between. The graph of exercise 18
is flat in two places, and decreasing between.

15. Here, moving from left to right, the slope
goes from negative to positive to negative to
positive. Its slope function (derivative) can
only be (a).

16. (d). Graph is decreasing everywhere so the
derivative will be negative everywhere.

17. The graph is increasing to the left of the jump
and decreasing to the right. The derivative of
this function must be (b) which is postive to
the left of the jump and negative to the right.

18. (f ). The graph (f ) is zero in two places and
positive in between. The graph of exercise 22
is flat in two places, and increasing between.

19. The derivative should look like:

 

10

5

-5

-10

 

321-1-2

20. The derivative should look like:

x

32

y

1

4

0

2

0
-1

-2

-4

-2-3

21. The derivative should look like:
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22. The derivative should look like:

321-1-2-3-4-5
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4
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-4

-5

 

54

23. One possible graph of f (x):

y

1
x

0 1

24. One possible graph of f (x):
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4

3

2

1

-1

-2

-3

-4

-5

 

54321-1-2-3-4-5

25. f (x) is not differentiable at x = 0 or x = 2.
The graph looks like:

4–2

–2

4
y

x

26. f (x) is not differentiable at x = 0 or x = ±1.

2–2

–2

2
y

x

27. lim
h→0

(0 + h)p − 0p

h
= lim

h→0

hp

h
= lim

h→0
hp−1

The last limit does not exist when p < 1, equals
1 when p = 1, and is 0 when p > 1. Thus, f ′(0)

exists when p ≥ 1.

28. Let u = ch so h = u
c
. Then we have
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lim
h→0

f (a + ch) − f (a)

h

= lim
u
c
→0

f (a + u) − f (a)
u
c

= lim
u→0

f (a + u) − f (a)
u
c

= lim
u→0

c

(
f (a + u) − f (a)

u

)

= c lim
u→0

f (a + u) − f (a)

u
= cf ′(a)

29. lim
x→a

[f (x)]2 − [f (a)]2

x2 − a2

= lim
x→a

[f (x) − f (a)][f (x) + f (a)]

(x − a)(x + a)

=
[

lim
x→a

f (x) − f (a)

(x − a)

] [
lim
x→a

f (x) + f (a)

(x + a)

]

= f ′(a) . 2f (a)

2a

= f (a)f ′(a)

a

30. We know that the limit

f ′(0) = lim
x→0

f (x) − f (0)

x − 0
= lim

x→0

f (x)

x
ex-

ists. Since f (x) < 0 for all x we know that
f (x)

x
> 0 for all x < 0 and

f (x)

x
< 0 for all

x > 0. The only way for this to be true and for

lim
x→0

f (x)

x
to exist is if f ′(0) = lim

x→0

f (x)

x
= 0.

31. We estimate the derivative at x = 60 as fol-
lows:

3.9 − 2.4

80 − 40
= 1.5

40
= 0.0375

For every increase of 1 revolution per second
of topspin, there is an increase of 0.0375◦ in
margin of error.

32. We estimate the derivative at x = 8.5 as fol-
lows:

1.04 − .58

9 − 8
= 0.46

For every increase of 1foot in height of serving
point, there is an increase of 0.46◦ in margin
of error.

33. Compute average velocities:

Time Interval Average Velocity

(1.7, 2.0) 9.0
(1.8, 2.0) 9.5
(1.9, 2.0) 10.0
(2.0, 2.1) 10.0
(2.0, 2.2) 9.5
(2.0, 2.3) 9.0

Our best estimate of the velocity at t = 2 is 10.

34. Compute average velocities:

Time Interval Average Velocity

(1.7, 2) 7.0−4.6
2−1.7 = 8

(1.8, 2) 8.5
(1.9, 2) 9
(2, 2.1) 8
(2, 2.2) 8
(2, 2.3) 7.67

A velocity of between 8 and 9 seems to be a
good guess.

35. We compile the rate of change in ton-MPG
over each of the four two-year intervals for
which data is given:

Intervals Rate of Change

(1992,1994) 45.7−44.9
2 = 0.4

(1994,1996) 0.4
(1996,1998) 0.4
(1998,2000) 0.2

These rates of change are measured in ton-
MPG per year. Either the first or second (they
happen to agree) could be used as an estimate
for the one-year interval “1994” while only the
last is a promising estimate for the one-year
interval “2000.” The mere fact that all these
numbers are positive suggests that efficiency
is improving, but the last number being smaller
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seems to suggest that the rate of improvement
is slipping.

36. The average rate of change from 1992 to 1994
is 0.05, and from 1994 to 1996 is 0.1, so a
good estimate of the rate of change in 1994 is
0.75. The average rate of change from 1998 to
2000 is -0.2, and this is a good estimate for the
rate of change in 2000. Comparing to exercise
35, we see that the MPG per ton increased, but
the actual MPG for vehicles decreased. The
weight of vehicles must have increased, and if
the weight remained constant then the actual
MPG would have increased.

37. The left-hand derivative is

D−f (0) = lim
h→0−

f (h) − f (0)

h

= lim
h→0−

2h + 1 − 1

h
= 2

The right-hand derivative is

D+f (0) = lim
h→0+

f (h) − f (0)

h

= lim
h→0+

3h + 1 − 1

h
= 3

38. The left-hand derivative is

D−f (0) = lim
h→0−

f (h) − f (0)

h

= lim
h→0−

h2 − 0

h
= 0

The right-hand derivative is

D+f (0) = lim
h→0+

f (h) − f (0)

h

= lim
h→0+

h3 − 0

h
= 0

39.
D+f (0) = lim

h→0+
f (h) − f (0)

h

= lim
h→0

k(h) − k(0)

h
= k′(0).

D−f (0) = lim
h→0−

f (h) − f (0)

h

= lim
h→0−

g(h) − k(0)

h

= lim
h→0

g(h) − g(0)

h
= g′(0)

g(0) is defined since g is differentiable at 0,
and g(0) = k(0) since f is continuous at 0.
If f (x) has a jump discontinuity at x = 0, it
would be because its left limit at x = 0, namely,
g(0), is not the same as the value which is k(0).
In that case there could be no left derivative (by
Theorem 2.1) and one would have to reject the
statement D−f (0) = g′(0).

40. The derivative f ′(0) exists if and only if the
limit lim

h→0

f (h)−f (0)
h

exists, and this limit exists

if and only if the one-sided limits exist and are
equal. But the one-sided limits are the left- and
right-hand derivatives.

41. If f ′(x) > 0 for all x, then the tangent lines all
have positive slope, so the function is always
sloping up.

42. If f ′(x) < 0 for all x, then the tangent lines all
have negative slope, so the function is always
sloping down to the right.
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43.

4

2

3

1

-10
0

x

100-5 5

From the graph, we see that f (x) appears
to be continuous at x = 0, where it has both
limit and value zero. However, when we try
to compute its derivative at x = 0, we come to
the difference quotient

f (0 + h) − f (0)

h
= f (h)

h
= h2/3

h
= 1

h1/3

Clearly this expression has no finite limit as
h approaches zero. The numbers get large
without bound. We do sometimes say that the
vertical line x = 0 is the tangent line, but as a
line it has no slope (just as the function has no
derivative).

44. lim
x→0− f (x) = lim

x→0− 0 = 0, and lim
x→0+ f (x) =

lim
x→0+ 2x = 0, so lim

x→0
f (x) = 0.

This equals f (0), so the function is
continuous.

lim
h→0−

f (0 + h) − f (0)

h
= lim

h→0−
0

h
= 0,

lim
h→0+

f (0 + h) − f (0)

h
= lim

h→0−
2h

h
= 2.

These one sided derivatives are not equal, so
the function is not differentiable at x = 0.

Graphically, we can see that the function is
continuous, but has a sharp corner at x = 0 so
is not differentiable there.

6

x

5

4

3

3

2

2

1

0
10-1-2-3

45. Let f (x) = −1 − x2; then for all x, we have
f (x) ≤ x. But at x = −1, we find f (−1) = −2
and

f ′(−1) = lim
h→0

f (−1 + h) − f (−1)

h

= lim
h→0

−1 − (−1 + h)2 − (−2)

h

= lim
h→0

1 − (1 − 2h + h2)

h

= lim
h→0

2h − h2

h
= lim

h→0
(2 − h) = 2

So, f ′(x) is not always less than 1.

46. This is not always true. For example, the func-
tion f (x) = −x2 + x satisfies the hypotheses,
but f ′(x) > 1 for all x < 0, as the following
graph shows.

2

0

-2

-8

-6

-10

x

20-2

-4

-12

31-1-3
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47. (a) meters per second

(b) items per dollar

48. (a) c′(t) will represent the rate of change in
amount of chemical, and will be measured
in grams per minute.

(b) p′(x) will represent the rate of change
of mass, and will be measured in kg per
meter.

49. If f ′(t) < 0, the function f (t) is negatively
sloped and decreasing, meaning the stock is
losing value with the passing of time. This may
be the basis for selling the stock if the current
trend is expected to be a long term one.

50. You should buy the stock with value g(t). It
is cheaper because f (t) > g(t), and growing
faster because f ′(t) < g′(t) (or possibly de-
clining more slowly).

51. The following sketches are consistent with the
hypotheses of infection rate rising, peaking,
and returning to zero. We started with the
derivative I ′(t) (infection rate) and had to
think backwards to construct the function I (t).
One can see in I (t) the slope increasing up
to the time of peak infection rate, thereafter
the slope decreasing but not the values. They
merely level off.

0.50

 

1

0.5

 

1

 

2

1.5

1

0.5

 

10.50

52. One possible graph of the population P(t):

x

14121086420

4000

3000

2000

1000

Graph of P ′(t):

x

1412108

800

6

600

2

-200

400

4

200

0
0
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53. Because the curve appears to be bending
upward, the slopes of the secant lines (based at
x = 1 and with upper endpoint beyond 1) will
increase with the upper endpoint. This has also
the effect that any one of these slopes is greater
than the actual derivative. Therefore

f ′(1) <
f (1.5) − f (1)

0.5
<

f (2) − f (1)

1

As to where f (1) fits in this list, it seems
necessary to read the graph and come up with
estimates of f (1) about 4, and f (2) about 7.
That would put the third number in the above
list at about 3, comfortably less than f (1).

54. Note that f (0) − f (−1) is the slope of the
secant line from x = −1 to x = 0 (about −1),
and that f (0)−f (−0.5)

0.5 is the slope of the secant
line from x = −0.5 to x = 0 (about −0.5).
f (0) = 3 and f ′(0) = 0.

In increasing order, we have f (0) − f (−1),
f (0)−f (−0.5)

0.5 , f ′(0), and f (0).

55. This is a tricky one. It happens that for the
function f (x) = x2 − x, the value at x = 1 is
zero (f (1) = 0)! Because of this fact,

(1 + h)2 − (1 + h)

h
= f (1 + h) − f (1)

h

and the answer should be:
f (x) = x2 − x and a = 1.

56. lim
h→0

√
4 + h − 2

h
is the derivative of the func-

tion f (x) = √
x at x = 4.

57. lim
h→0

(
1

2+h

)
−
(

1
2

)
h

would be f ′(a) for f (x) =
1

x
and a = 2.

58. lim
h→0

(h − 1)2 − 1

h
is the derivative of the func-

tion f (x) = x2 at x = −1.

59. One possible such graph:
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60. One possible such graph:

0
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-1
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x
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0
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61. We have:

f (t) =
⎧⎨
⎩

100 0 < t ≤ 20
100 + 10(t − 20) 20 < t ≤ 80
700 + 8(t − 80) t > 80

This is another example of a piecewise linear
function (this one is continuous), and although
not differentiable at the transition times t = 20
or t = 80, elsewhere we have

f ′(t) =
{ 0 0 < t < 20

10 20 < t < 80
8 t > 80

62. We estimate f ′(1) as follows:

f ′(1) ≈ 9 − 13

2 − 0
= −2

For every increase of one month (which cor-
responds to being one month younger than
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your comrades), the number of players in the
English Premier League decreases by 2. This
suggests that it if being an English Premier
League soccer player is your goal, that you
have a better chance at it if you are older.

2.3 COMPUTATION OF
DERIVATIVES:
POWER RULE

1.
f ′(x) = d

dx
(x3) − d

dx
(2x) + d

dx
(1)

= 3x2 − 2
d

dx
(x) + 0

= 3x2 − 2(1)

= 3x2 − 2

2. f ′(x) = 9x8 − 15x4 + 8x − 4

3.
f ′(t) = d

dt
(3t3) − d

dt

(
2
√

t
)

= 3
d

dt
(t3) − 2

d

dt

(
t1/2

)

= 3(3t2) − 2

(
1

2
t−1/2

)

= 9t2 − 1√
t

4. f (s) = 5s1/2 − 4s2 + 3, so

f ′(s) = 5

2
s−1/2 − 8s

= 5

2
√

s
− 8s

5.
f ′(x) = d

dx

(
3

x

)
− d

dx
(8x) + d

dx
(1)

= 3
d

dx
(x−1) − 8

d

dx
(x) + 0

= 3(−x−2) − 8(1)

= − 3

x2
− 8

6. f (x) = 2x−4 − x3 + 2, so

f ′(x) = −8x−5 − 3x2

= − 8

x5
− 3x2

7.
h′(x) = d

dx

(
10√
x

)
− d

dx
(2x)

= 10
d

dx

(
x−1/2

)
− 2

d

dx
(x)

= 10

(
− 1

2
x−3/2

)
− 2(1)

= −5x−3/2 − 2

= −5

x
√

x
− 2

8. h(x) = 12x − x2 − 3x−1/2, so

h′(x) = 12 − 2x + 3

2
x−3/2

= 12 − 2x + 3

2
√

x3

9.
f ′(s) = d

ds

(
2s

3/2
)

− d

ds

(
3s−1/3

)

= 2
d

ds

(
s3/2

)
− 3

d

ds

(
s−1/3

)

= 2

(
3

2
s1/2

)
− 3

(
−1

3
s−4/3

)

= 3s1/2 + s−4/3

= 3
√

s + 1
3
√

s4

10. f ′(t) = 3πtπ−1 − 2.6t0.3

11.
f ′(x) = d

dx

(
2 3
√

x
)+ d

dx
(3)

= 2
d

dx

(
x1/3

)
+ 0

= 2

(
1

3
x−2/3

)
= 2

3
x−2/3

= 2

3
3
√

x2
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12. f (x) = 4x − 3x2/3, so

f ′(x) = 4 − 2x−1/3 = 4 − 2
3
√

x

13. f (x) = x(3x2 − √
x) = 3x3 − x3/2 so

f ′(x) = 3
d

dx
(x3) − d

dx

(
x3/2

)

= 3(3x2) −
(

3

2
x1/2

)

= 9x2 − 3

2

√
x

14. f (x) = 3x3 + 3x2 − 4x − 4, so
f ′(x) = 9x2 + 6x − 4

15.
f (x) = 3x2 − 3x + 1

2x

= 3x2

2x
− 3x

2x
+ 1

2x

= 3

2
x − 3

2
+ 1

2
x−1 so

f ′(x) = d

dx

(
3

2
x

)
− d

dx

(
3

2

)

+ d

dx

(
1

2
x−1

)

= 3

2

d

dx
(x) − 0 + 1

2

d

dx
(x−1)

= 3

2
(1) + 1

2
(−1x−2)

= 3

2
− 1

2x2

16. f (x) = 4x3/2 − x1/2 + 3x−1/2, so

f ′(x) = 6x1/2 − 1

2
x−1/2 − 3

2
x−3/2

17. f ′(x) = d

dx
(x4 + 3x2 − 2) = 4x3 + 6x

f ′′(x) = d

dx
(4x3 + 6x) = 12x2 + 6

18. f (x) = x6 − √
x = x6 − x1/2 so

df

dx
= d

dx

(
x6 − x1/2

)
= 6x5 − 1

2
x−1/2

d2f

dx2
= d

dx

(
6x5 − 1

2
x−1/2

)

= 30x4 − 1

2

(
− 1

2
x−3/2

)

= 30x4 + 1

4
x−3/2

= 30x4 + 1

4x
√

x

19. f (x) = 2x4 − 3x−1/2 so

df

dx
= 8x3 + 3

2
x−3/2

d2f

dx2
= 24x2 − 9

4
x−5/2

20. f (t) = 4t2 − 12 + 4

t2
= 4t2 − 12 + 4t−2

so f ′(t) = d

dt
(4t2 − 12 + 4t−2)

= 8t2 − 0 + 4(−2t−3)

= 8t2 − 8t−3

f ′′(t) = d

dt
(8t − 8t−3)

= 8 − 8(−3t−4)

= 8 + 24t−4

f ′′′(t) = d

dt
(8 + 24t−4) = 0 + 24(−4t−5)

= −96t−5 = −96

t5

21. f ′(x) = 4x3 + 6x

f ′′(x) = 12x2 + 6
f ′′′(x) = 24x

f (4)(x) = 24

22. f ′(x) = 10x9 − 12x3 + 2
f ′′(x) = 90x8 − 36x2

f ′′′(x) = 720x7 − 72x
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f (4)(x) = 5040x6 − 72
f (5)(x) = 30240x5

23.
f (x) = x2 − x + 1√

x

= x3/2 − x1/2 + x−1/2 so

f ′(x) = d

dx

(
x3/2 − x1/2 + x−1/2

)

= 3

2
x1/2 − 1

2
x−1/2 − 1

2
x−3/2

f ′′(x) = d

dx

(
3

2
x1/2 − 1

2
x−1/2 − 1

2
x−3/2

)

= 3

4
x−1/2 + 1

4
x−3/2 + 3

4
x−5/2

f ′′′(x) = d

dx

(
3

4
x−1/2 + 1

4
x−3/2 + 3

4
x−5/2

)

= −3

8
x−3/2 − 3

8
x−5/2 − 15

8
x−7/2

24. f (t) = t3 + t5/2 − t − t1/2

f ′(t) = 3t2 + 5

2
t3/2 − 1 − 1

2
t−1/2

f ′′(t) = 6t + 15

4
t1/2 + 1

4
t−3/2

f ′′′(t) = 6 + 15

8
t−1/2 − 3

8
t−5/2

f (4)(t) = −15

16
t−3/2 + 15

16
t−7/2

25. s(t) = −16t2 + 40t + 10
v(t) = s′(t) = −32t + 40
a(t) = v′(t) = s′′(t) = −32

26. s(t) = 12t3 − 6t − 1
v(t) = s′(t) = 36t2 − 6
a(t) = s′′(t) = 72t

27. s(t) = √
t + 2t2 = t1/2 + 2t2

v(t) = s′(t) = 1

2
t−1/2 + 4t

a(t) = v′(t) = s′′(t) = − 1

4
t−3/2 + 4

28. s(t) = 10 − 10t−1

v(t) = s′(t) = 10t−2

a(t) = s′′(t) = −20t−3

29. v(t) = −32t + 40, v(1) = 8, going up.
a(t) = −32, a(1) = −32, speed decreasing.

30. v(t) = −32t + 40, v(2) = −24, going down.
a(t) = −32, a(2) = −32, speed increasing.

31. v(t) = 20t − 24, v(2) = 16, going up.
a(t) = 20, a(1) = 20, speed increasing.

32. v(t) = 20t − 24, v(1) = −4, going down.
a(t) = 20, a(1) = 20, speed decreasing.

33. f (x) = 4
√

x − 2x, a = 4

f (4) = 4
√

4 − 2(4) = 0

f ′(x) = d

dx

(
4x1/2 − 2x

)

= 2x−1/2 − 2 = 2√
x

− 2

f ′(4) = 1 − 2 = −1

The equation of the tangent line is
y = −1(x − 4) + 0 or y = −x + 4.

34. f (2) = 1.
f ′(x) = 2x − 2,
f ′(2) = 2.
Line through (2, 1) with slope 2 is
y = 2(x − 2) + 1.

35. f (x) = x2 − 2, a = 2, f (2) = 2
f ′(x) = 2x

f ′(2) = 4
The equation of the tangent line is
y = 4(x − 2) + 2 or y = 4x − 6.

36. Tangent line to a line is always the same line,
y = 3x + 4.

37. f (x) = x3 − 3x + 1
f ′(x) = 3x2 − 3
The tangent line to y = f (x) is horizontal
when f ′(x) = 0: 3x2 − 3 = 0
⇐⇒ 3(x2 − 1) = 0
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⇐⇒ 3(x + 1)(x − 1) = 0
⇐⇒ x = −1 or x = 1.

y

10

5

0

-5

-10

x

3210-1-2-3

The graph shows that the first is a relative
maximum, the second is a relative minimum.

38. Tangent line is horizontal where
f ′(x) = 0.
f ′(x) = 4x3 − 4x = 4x(x − 1)(x + 1) = 0
when x = ±1 or 0.

0.50-1

1.2

-1.5

2

1.6

x

1.51-0.5

2.4

The graph shows that the first and last are
relative minimums, while the middle (x = 0)
is a relative maximum.

39. f (x) = x2/3

f ′(x) = 2

3
x−1/3 = 2

3 3
√

x
The slope of the tangent line to y = f (x) does
not exist where the derivative is undefined,
which is only when x = 0.

y

4

3

2

1

0

-1

-2

x

3210-1-2-3

In this case, because the function is contin-
uous, we might say that the tangent line is
the vertical line x = 0. The feature at x = 0 is
sometimes known as a cusp.

40. f ′(x) = 1
3x

−2/3 = 1

3
3√
x2

is undefined at x = 0.

x

1.510.50

1

-0.5

0.5

-1

-0.5

0

-1

-1.5

The graphical significance of this point is that
there is a vertical tangent here.

41. As regards the (a) function, its derivative
would be negative for all negative x and posi-
tive for all positive x. Since no such function
appears among the pictures, this (a) function
has to be the one whose derivative is absent
from the list. There being no f ′′′ in the list, (a)
has to be f ′′.
This same (a) function is negative for a certain
interval of the form (−a, a), and the (c) func-
tion is decreasing on a similar type of interval.
Thus the (a) function (f ′′) is apparently the
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derivative of the (c) function. It follows that
(c) must be f ′.
This leaves (b) for f itself, and our identifica-
tions are consistent in every respect.

42. Curve (b) is the function f (x), curve (a) is the
derivative f ′(x), and curve (c) is the second
derivative f ′′(x).

43. f (x) = √
x = x1/2

f ′(x) = 1

2
x−1/2

f ′′(x) = 1

2

(
− 1

2

)
x−3/2

f ′′′(x) =
(

1

2

) (−1

2

) (−3

2

)
x−5/2

f (n)(x) = (−1)n−1�n

2n
x−(2n−1)/2

in which �n is the product of the first n − 1
odd integers (starting from 1 and ending at
2n − 3).

44. f ′(x) = −2x−3

f ′′(x) = 6x−4

f ′′′(x) = −24x−5. The pattern is
f (n)(x) = (−1)n(n + 1)!x−n−2.

45. f (x) = ax2 + bx + c ⇒ f (0) = c

f ′(x) = 2ax + b ⇒ f ′(0) = b

f ′′(x) = 2a ⇒ f ′′(0) = 2a

Given f ′′(0) = 3, we learn 2a = 3, or a = 3/2.
Given f ′(0) = 2 we learn 2 = b, and given
f (0) = −2, we learn c = −2. In the end
f (x) = ax2 + bx + c = 3

2x2 + 2x − 2.

46. f (x) = ax2 + bx + c. f (0) = 0 ⇒ c = 0.
f ′(x) = 2ax + b. f ′(0) = 5 ⇒ b = 5.
f ′′(x) = 2a. f ′′(0) = 1 ⇒ a = 1

2 .

So f (x) = 1
2x2 + 5x.

47. For y = 1
x

, we have y′ = − 1
x2 . Thus, the slope

of the tangent line at x = a is − 1
a2 .

When a = 1, the slope of the tangent line at
(1, 1) is −1, and the equation of the tangent
line is y = −x + 2. The tangent line intersects
the axes at (0, 2) and (2, 0). Thus, the area of
the triangle is 1

2 (2)(2) = 2.

When a = 2, the slope of the tangent line at
(2, 1

2 ) is − 1
4 , and the equation of the tangent

line is y = − 1
4x + 1. The tangent line inter-

sects the axes at (0, 1) and (4, 0). Thus, the
area of the triangle is 1

2 (4)(1) = 2.

In general, the equation of the tangent line is

y = −
(

1
a2

)
x + 2

a
. The tangent line intersects

the axes at (0, 2
a
) and (2a, 0). Thus, the area

of the triangle is

1

2
(2a)

(
2

a

)
= 2

48. For y = 1
x2 = x−2, we have f ′(x) = −2x−3 =

−2/x3. Thus, the slope of the tangent line at
x = a is −2/x3.

When a = 1, the slope of the tangent line at
(1, 1) is −2, and the equation of the tangent
line is y = −2x + 3. The tangent line inter-
sects the axes at (0, 3) and ( 3

2 , 0). Thus the

area of the triangle is 1
2 (3)( 3

2 ) = 9
4 .

When a = 2, the slope of the tangent line at
(2, 1

4) is − 1
4 , and the equation of the tangent

line is y = − 1
4x + 3

4 . The tangent line inter-

sects the axes at (0, 3
4) and (3, 0). Thus the

area of the triangle is 1
2 ( 3

4)(3) = 9
8 .

Since 9
4 	= 9

8 , we see that the result for exercise
47 does not hold here.

49. (a) g′(x) = lim
h→0

g(x + h) − g(x)

h

= lim
h→0

1

h

[
max

a≤t≤x+h
f (t) − max

a≤t≤x
f (t)

]

= lim
h→0

1

h

[
f (x + h) − f (x)

]
= f ′(x)

(b) g′(x) = lim
h→0

g(x + h) − g(x)

h

= lim
h→0

1

h

[
max

a≤t≤x+h
f (t) − max

a≤t≤x
f (t)

]

= lim
h→0

1

h

[
f (a) − f (a)

]
= 0
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50. (a) g′(x) = lim
h→0

g(x + h) − g(x)

h

= lim
h→0

1

h

[
min

a≤t≤x+h
f (t) − min

a≤t≤x
f (t)

]

= lim
h→0

1

h

[
f (a) − f (a)

]
= 0

(b) g′(x) = lim
h→0

g(x + h) − g(x)

h

= lim
h→0

1

h

[
min

a≤t≤x+h
f (t) − min

a≤t≤x
f (t)

]

= lim
h→0

1

h

[
f (x + h) − f (x)

]
= f ′(x)

51. If d(t) represents the national debt, then d ′(t)
represents the rate of change of the national
debt. The debt itself, by implication, is in-
creasing and therefore d ′(t) > 0.

Since the rate of increase has been reduced,
this implies d ′′(t) is being reduced. We cannot
conclude anything about the size of d(t).

52. m′(t) = 6t kg per meter. m′(t) represents the
rate the mass is increasing as t increases. This
is the linear density of the rod.

53. w(b) = cb3/2nlw′(b) = 3c

2
b1/2 = 3c

√
b

2
w′(b) > 1 when
3c

√
b

2
> 1,

√
b >

2

3c
b >

4

9c2
.

Since c is constant, when b is large enough,
b will be greater than 4

9c2 . After this point,
when b increases by 1 unit, the leg width w

is increasing by more than 1 unit, so that leg
width is increasing faster than body length.

This puts a limitation on the size of land
animals since, eventually, the body will not
be long enough to accomodate the width of
the legs.

54. World Record Times—Men’s Track

Dist. Time Ave f (d)

400 43.18 9.26 9.25
800 101.11 7.91 8.17

1000 131.96 7.58 7.86
1500 206.00 7.28 7.32
2000 284.79 7.02 6.95

Here, distance is in meters, time is in seconds
and hence average in meters per second.

The function f (d) is quite close to predicting
the average speed of world record pace.

v′(d) represents the rate of change in average
speed over d meters per meter. v′(d) tells us
how much v(d) would change if d changed to
d + 1.

55. We can approximate f ′(2000) ≈ 9039.5−8690.7
2001−1999= 174.4. This is the rate of change of the GDP

in billions of dollars per year.

To approximate f ′′(2000), we first esti-
mate f ′(1999) ≈ 9016.8−8347.3

2000−1998 = 334.75 and

f ′(1998) ≈ 8690.7−8004.5
1999−1997 = 343.1.

Since these values are decreasing, f ′′(2000) is
negative. We estimate f ′′(2000) ≈ 174.4−334.75

2000−1999= −160.35. This represents the rate of change
of the rate of change of the GDP over time. In
2000, the GDP is increasing by a rate of 174.4
billion dollars per year, but this increase is
decreasing by a rate of 160.35 billion dollars-
per-year per year.

56. f ′(2000) can be approximated by the average
rate of change from 1995 to 2000. f ′(2000) ≈
4619−4353
2000−1995 = 53.2. This is the rate of change of
weight of SUVs over time. In 2000 the weight
of SUVs is increasing by 53.2 pounds per year.

Similarly approximate f ′(1995) ≈ 32.8 and
f ′(1990) ≈ 26.8.

The second derivative is definitely positive.
We can approximate f ′′(2000) ≈ 53.2−32.8

2000−1995 =
4.08. This is the rate of change in the rate of
change of the weight of SUVs. Not only are
SUVs getting heavier at a rate of 53.2 pounds
per year, this rate is itself increasing at a rate
of about 4 pounds-per-year per year.
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57. Newton’s Law states that force equals mass
times acceleration. That is, if F(t) is the driv-
ing force at time t , then m . f ′′(t) = m . a(t) =
F(t) in which m is the mass, appropriately
unitized. The third derivative of the distance
function is then f ′′′(t) = a′(t) = 1

m
F ′(t). It

is both the derivative of the acceleration and
directly proportional to the rate of change in
force. Thus an abrupt change in acceleration
or “jerk” is the direct consequence of an abrupt
change in force.

58. Q′(x) = 500L1/3x−1/2, and Q′(40) = 500L1/3√
40

.

This is the rate of change in the daily output
as capital investment changes. As capital in-
vestment increases, the daily output increases,
and Q′(40) tells us how fast the daily output
is increasing when the capital investment is
$40,000.

59–62 Commentary: At this stage, finding a
function whose derivative is given, is a matter
of thinking backward, or of anticipation. When
the derivative is a power, one anticipates that
it could have arisen from differentiating a
function which was also a power, but whose
exponent was one higher. That is, to get to
xp, try cxp+1 where c is some constant. After
that, it is a matter of testing and adjusting the
constant c. The answer is never unique (why?),
but anything offered can always be checked by
differentiation.

59. Try f (x) = cx4 for some constant c. Then
f ′(x) = 4cx3 so c must be 1. One possible
answer is f (x) = x4.

60. Try f (x) = cx5 for some constant c. Then
f ′(x) = 5cx4 so c must be 1. One possible
answer is x5.

61. f ′(x) = √
x = x1/2

f (x) = 2

3
x3/2 is one possible function.

62. If f ′(x) = x−2, then f (x) = −x−1 is one
possible function.

63. lim
h→0

f (a + h) − 2f (a) + f (a − h)

h2

= lim
h→0

[
f (a + h) − f (a)

h2

−
[
f (a) − f (a − h)

]
h2

]

= lim
h→0

1

h

[
f (a + h) − f (a)

h

−f (a) − f (a − h)

h

]

= lim
h→0

1

h

[
lim
h→0

f (a + h) − f (a)

h

− lim
h→0

f (a) − f (a − h)

h

]

= lim
h→0

1

h

[
f ′(a) − f ′(a − h)

]
Now let k = −h in the previous equation, to
get

lim
h→0

f (a + h) − 2f (a) + f (a − h)

h2

= lim
k→0

1

−k

[
f ′(a) − f ′(a + k)

]
= lim

k→0

1

k

[
f ′(a + k) − f ′(a)

]
= f ′′(a)

64. We have that

f (x) =
{−x2 x < 0

x2 x ≥ 0
.

Thus

lim
h→0

f (h) − 2f (0) + f (−h)

h2

= lim
h→0

f (h) + f (−h)

h2

= lim
h→0

h2 + (−h2)

h2
= 0

and therefore exists.

On the other hand, we have
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f ′(x) =
{−2x x < 0

2x x ≥ 0

and

f ′′(x) =
{−2 x < 0

2 x > 0

but f ′′(0) does not exist, since the limit from
the left is −2 but the limit from the right is 2.

2.4 THE PRODUCT AND
QUOTIENT RULES

1. f (x) = (x2 + 3)(x3 − 3x + 1)

f ′(x) = d

dx
(x2 + 3) . (x3 − 3x + 1)

+ (x2 + 3) . d

dx
(x3 − 3x + 1)

= (2x)(x3 − 3x + 1)

+ (x2 + 3)(3x2 − 3)

2. f (x) = (x3 − 2x2 + 5)(x4 − 3x2 + 2)

f ′(x) = d

dx
(x3 − 2x2 + 5)(x4 − 3x2 + 2)

+ (x3 − 2x2 + 5)
d

dx
(x4 − 3x2 + 2)

= (3x2 − 4x)(x4 − 3x2 + 2)

+ (x3 − 2x2 + 5)(4x3 − 6x)

3.
f (x) = (

√
x + 3x)

(
5x2 − 3

x

)

= (x1/2 + 3x)(5x2 − 3x−1)

f ′(x) =
(

1

2
x−1/2 + 3

)
(5x2 − 3x−1)

+ (x1/2 + 3x)(10x + 3x−2)

4. f (x) = (x3/2 − 4x)(x4 − 3x−2 + 2)

f ′(x) = d

dx
(x3/2 − 4x)(x4 − 3x−2 + 2)

+ (x3/2 − 4x)
d

dx
(x4 − 3x−2 + 2)

= (
3

2
x1/2 − 4)(x4 − 3x−2 + 2)

+ (x3/2 − 4x)(4x3 + 6x−3)

5. f (x) = 3x−2
5x+1

f ′(x) =
(
(5x+1) d

dx
(3x−2)−(3x−2) d

dx
(5x+1)

)
(5x+1)2

= 3(5x+1)−(3x−2)5
(5x+1)2

= 15x+3−15x+10
(5x+1)2 = 13

(5x+1)2

6. f ′(x) =
(x2−5x+1) d

dx
(x2+2x+5)−(x2+2x+5) d

dx
(x2−5x+1)

(x2−5x+1)2

= (x2−5x+1)(2x+2)−(x2+2x+5)(2x−5)
(x2−5x+1)2

7. f (x) = 3x−6
√

x

5x2−2
= 3(x−2x1/2)

5x2−2
f ′(x) =
3

(
(5x2−2) d

dx
(x−2x1/2)−(x−2x1/2) d

dx
(5x2−2)

)
(5x2−2)2

= 3

(
(5x2−2)(1−x−1/2)−(x−2x1/2)(10x)

)
(5x2−2)2

8. f (x) = 6x−2x−1

x2+x1/2 f ′(x) =
(x2+x1/2) d

dx
(6x−2x−1)−(6x−2x−1) d

dx
(x2+x1/2)

(x2+x1/2)2

= (x2+x1/2)(6+2x−2)−(6x−2x−1)(2x+ 1
2 x−1/2)

(x2+x1/2)2

9. f (x) = (x+1)(x−2)

x2−5x+1
= x2−x−2

x2−5x+1
f ′(x) =(

(x2−5x+1) d
dx

(x2−x−2)−(x2−x−2) d
dx

(x2−5x+1)
)

(x2−5x+1)2

=
(
(x2−5x+1)(2x−1)−(x2−x−2)(2x−5)

)
(x2−5x+1)2

10. f (x) = x2−2x

x2+5x

f ′(x) = (x2+5x) d
dx

(x2−2x)−(x2−2x) d
dx

(x2+5x)

(x2+5x)2

= (x2+5x)(2x−2)−(x2−2x)(2x+5)
(x2+5x)2
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11. We do not recommend treating this one as a
quotient, but advise preliminary simplifica-
tion.

f (x) = x2 + 3x − 2√
x

= x2

√
x

+ 3x√
x

− 2√
x

= x3/2 + 3x1/2 − 2x−1/2

f ′(x) = 3

2
x1/2 + 3

2
x−1/2 + x−3/2

12.
f (x) = 2x

x2 + 1

f ′(x) = (x2 + 1) d
dx

(2x) − (2x) d
dx

(x2 + 1)

(x2 + 1)2

= (x2 + 1)(2) − (2x)(2x)

(x2 + 1)2
= 2 − 2x2

(x2 + 1)2

13. We simplify instead of using the product rule.
f (x) = x

(
3
√

x + 3
)= x4/3 + 3x

f ′(x) = 4

3
x1/3 + 3

14. We simplify instead of using the product rule.

f (x) = 1

3
x2 + 5x−2

f ′(x) = 2

3
x − 10x−3

15. f (x) = (x2 − 1)x3+3x2

x2+2
f ′(x) =
d
dx

(x2 − 1) . ( x3+3x2

x2+2
)

+ (x2 − 1) . d
dx

(x3+3x2

x2+2
)

We have

d
dx

(x3+3x2

x2+2
) =

(x2+2) d
dx

(x3+3x2)−(x3+3x2) d
dx

(x2+2)

(x2+2)2

= (x2+2).(3x2+6x)−(x3+3x2).(2x)

(x2+2)2

= 3x4+6x2+6x3+12x−(2x4+6x3)

(x2+2)2

= x4+6x2+12x

(x2+2)2

so f ′(x) =
(2x) . (x3+3x2

x2+2
) + (x2 − 1) . x4+6x2+12x

(x2+2)2

16.
f (x) = (x + 2)(x − 1)(x + 1)

x(x + 1)
= x2 + x − 2

x

= x + 1 − 2x−1

So f ′(x) = 1 + 2x−2.

17. d

dx

[
f (x)g(x)h(x)

]
= d

dx

[
(f (x)g(x)) h(x)

]
= (f (x)g(x)) h′(x) + h(x)

d

dx
(f (x)g(x))

= (f (x)g(x)) h′(x)

+ h(x)
(
f (x)g′(x) + g(x)f ′(x)

)
= f ′(x)g(x)h(x)

+ f (x)g′(x)h(x) + f (x)g(x)h′(x)

In the general case of a product of n functions,
the derivative will have n terms to be added,
each term a product of all but one of the
functions multiplied by the derivative of the
remaining function.

18. The derivative of g(x)−1 = 1
g(x)

is

g(x) d
dx

(1)−(1) d
dx

g(x)

g(x)2 = − g′(x)

g(x)2

= −g′(x)(g(x))−2

as claimed.

The derivative of f (x)(g(x))−1 is then
f ′(x)(g(x))−1 + f (x)(−g′(x)(g(x))−2).
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19. f ′(x) =
[

d
dx

(x2/3)
]

(x2 − 2)(x3 − x + 1)

+ x2/3
[

d
dx

(x2 − 2)
]

(x3 − x + 1)

+ x2/3(x2 − 2) d
dx

(x3 − x + 1)

= 2
3x−1/3(x2 − 2)(x3 − x + 1)

+ x2/3(2x)(x3 − x + 1)

+ x2/3(x2 − 2)(3x2 − 1)

20. f ′(x) = 1(x3 − 2x + 1)(3 − 2/x)

+ (x + 4)(3x2 − 2)(3 − 2/x)

+ (x + 4)(x3 − 2x + 1)(2/x2).

21. h(x) = f (x)g(x)

h′(x) = f ′(x)g(x) + f (x)g′(x)

(a) h(1) = f (1)g(1) = (−2)(1) = −2

h′(1) = f ′(1)g(1) + f (1)g′(1)
= (3)(1) + (−2)(−2) = 7

So the equation of the tangent line is
y = 7(x − 1) − 2 or y = 7x + 9.

(b) h(0) = f (0)g(0) = (−1)(3) = −3

h′(0) = f ′(0)g(0) + f (0)g′(0)

= (−1)(3) + (−1)(−1)

= −2

So the equation of the tangent line is
y = −2x − 3.

22.
h(x) = f (x)

g(x)

h′(x) = f ′(x)g(x) − f (x)g′(x)

(g(x))2

(a)
h(1) = f (1)

g(1)
= −2

1
= −2

h′(1) = f ′(1)g(1) − f (1)g′(1)
(g(1))2

= (3)(1) − (−2)(−2)

(1)2

= −1

So the equation of the tangent line is
y = −1(x − 1) − 2.

(b)
h(0) = f (0)

g(0)
= −1

3

h′(0) = f ′(0)g(0) − f (0)g′(0)

(g(0))2

= (−1)(3) − (−1)(−1)

(−1)2

= −4

So the equation of the tangent line is
y = −4x − 1

3.

23. h(x) = x2f (x)

h′(x) = 2xf (x) + x2f ′(x)

(a) h(1) = 12f (1) = −2

h′(1) = 2(1)f (1) + 12f ′(1)
= (2)(−2) + 3 = −1

So the equation of the tangent line is
y = −(x − 1) − 2 or y = −x − 1.

(b) h(0) = 02f (0) = 0
h′(0) = 2(0)f (0) + 02f ′(0) = 0
So the equation of the tangent line is
y = 0.

24.
h(x) = x2

g(x)

h′(x) = 2xg(x) − x2g′(x)

(g(x))2

(a)
h(1) = 12

g(1)
= 1

1
= 1

h′(1) = 2(1)g(1) − 12g′(1)
(g(1))2

= (2)(1) − (−2)

(1)2
= 4

So the equation of the tangent line is
y = 4(x − 1) + 1.
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(b)
h(0) = 02

g(0)
= 0

3
= 0

h′(0) = 2(0)g(0) − 02g′(0)

(g(0))2

= 0

(3)2
= 0

So the equation of the tangent line is
y = 0.

25. The rate at which the quantity Q changes is
Q′. Since the amount is said to be “decreasing
at a rate of 4%” we have to ask “4% of what?”
The answer in this type of context is usually
4% of itself. In other words, Q′ = −0.04Q. As
for P , the 3% rate of increase would translate
as P ′ = 0.03P . By the product rule, with
R = PQ, we have:

R′ = (PQ)′ = P ′Q + PQ′

= (0.03P)Q + P(−0.04Q)

= −(0.01)PQ = (−0.01)R.

In other words, revenue is decreasing at a rate
of 1%.

26. Revenue will be constant when the derivative
is 0. Substituting Q′ = −0.04Q and P ′ = aP

into the expression for R′ gives
R′ = −0.04QP + aQP

= (−0.04 + a)QP

This is zero when a = 0.04, so price must
increase by 4%.

27. R′ = Q′P + QP ′
At a certain moment of time (call it t0) we are
given P(t0) = 20 ($/item)

Q(t0) = 20,000 (items)
P ′(t0) = 1.25 ($/item/year)
Q′(t0) = 2,000 (items/year)
⇒ R′(t0) = 2,000(20) + (20,000)1.25

= 65,000 $/year
So revenue is increasing by $65,000/year at
the time t0.

28. We are given P = $14, Q = 12, 000 and Q′ =
1, 200. We want R′ = $20,000. Substituting
these values into the expression for R′ (see

exercise 25) yields:
20,000 = 1200 . 14 + 12,000 . P ′
Solve to get P ′ = 0.27 dollars per year.

29. If u(m) = 82.5m − 6.75

m + 0.15
then using the quo-

tient rule,

du

dm
= (m + 0.15)(82.5) − (82.5m − 6.75)1

(m + 0.15)2

= 19.125

(m + 0.15)2

which is clearly positive. It seems to be saying
that initial ball speed is an increasing function
of the mass of the bat. Meanwhile,

u′(1) = 19.125

1.152
≈ 14.46

u′(1.2) = 19.125

1.352
≈ 10.49,

which suggests that the rate at which this speed
is increasing is decreasing.

30.
u′(M) = (M + 1.05) d

dM
(86.625 − 45M)

(M + 1.05)2

−
d

dM
(M + 1.05)(86.625 − 45M)

(M + 1.05)2

= (−45M − 47.25) − (86.625 − 45M)

(M + 1.05)2

= −133.875

(M + 1.05)2

This quantity is negative. In baseball terms, as
the mass of the baseball increases, the initial
velocity decreases.

31. If u(m) = 14.11

m + 0.05
= 282.2

20m + 1
, then

du

dm
= (20m + 1) . 0 − 282.2(20)

(20m + 1)2

= −5644

(20m + 1)2

This is clearly negative, which means that im-
pact speed of the ball is a decreasing function
of the weight of the club. It appears that the
explanation may have to do with the stated
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fact that the speed of the club is inversely pro-
portional to its mass. Although the lesson of
Example 4.6 was that a heavier club makes for
greater ball velocity, that was assuming a fixed
club speed, quite a different assumption from
this problem.

32. u′(v) = 0.2822

0.217
≈ 1.3. The initial speed of the

ball increases 1.3 times more than the increase
in club speed.

33.
f ′(x) = lim

h→0

f (x + h) − f (x)

h

f ′(0) = lim
h→0

f (h) − f (0)

h

= lim
h→0

hg(h) − 0

h

= lim
h→0

hg(h)

h

= lim
h→0

g(h)

= g(0)

since g is continuous at x = 0.

When g(x) = |x|, g(x) is continuous but
not differentiable at x = 0. We have f (x) =
x|x| =

{−x2 x < 0
x2 x ≥ 0.

This is differentiable

at x = 0.

34. This does not work. For example, suppose
a = 2 and let g(x) = |x − 2|. Then f (x) =
x|x − 2| =

{−x2 + 2x x < 2
x2 − 2x x ≥ 2

so

f ′(x) =
{−2x + 2 x < 2

2x − 2 x > 2.

The left hand limit as x approaches 2 is −2
while the right hand limit is 2. Since these are
not equal, f (x) is not differentiable at x = 2.

35. Answers depend on CAS.

36. Answers depend on CAS.

37. For any constant k, the derivative of sin kx is
k cos kx.

Graph of
d

dx
sin x:

1

0

0.5

6

-0.5

-1

-2 2

x

-4 0 4-6

Graph of
d

dx
sin 2x:

2

0

1

6

-1

-2

-2 2

x

-4 0 4-6

Graph of
d

dx
sin 3x:

3

1

-3

2

0

-2

0-4 2-6 4-2

x
-1

6

38. The derivative of sin kx2 is 2kx cos kx2.
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Graph of
d

dx
sin x2:

10

0

5

-5

-10

42-6 6-2 0

x

-4

Graph of
d

dx
sin 2x2:

20

0

10

-10

-20

0-2-4 42 6

x

-6

Graph of
d

dx
sin 3x2:

30

10

-30

20

0

-20

0-6 42 6-4 -2

x
-10

39. CAS answers may vary.

40. The function f (x) simplifies to f (x) = 2x,
so f ′(x) = 2. CAS answers vary, but should
simplify to 2.

41. If F(x) = f (x)g(x) then

F ′(x) = f ′(x)g(x) + f (x)g′(x) and

F ′′(x) = f ′′(x)g(x) + f ′(x)g′(x)

+ f ′(x)g′(x) + f (x)g′′(x)

= f ′′(x)g(x) + 2f ′(x)g′(x)

+ f (x)g′′(x)

F ′′′(x) = f ′′′(x)g(x) + f ′′(x)g′(x)

+ 2f ′′(x)g′(x) + 2f ′(x)g′′(x)

+ f ′(x)g′′(x) + f (x)g′′′(x)

= f ′′′(x)g(x) + 3f ′′(x)g′(x)

+ 3f ′(x)g′′(x) + f (x)g′′′(x)

One can see obvious parallels to the binomial
coefficients as they come from Pascal’s
Triangle:
(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3.

On this basis, one could correctly predict the
pattern of the fourth or any higher derivative.

42. F (4)(x) =
f (4)g + 4f ′′′g′ + 6f ′′g′′ + 4f ′g′′′ + fg(4).

43. If g(x) = [f (x)]2 = f (x)f (x), then g′(x) =
f ′(x)f (x) + f (x)f ′(x)

= 2f (x)f ′(x).

44. g(x) = f (x)[f (x)]2, so
g′(x) = f ′(x)[f (x)]2 + f (x)(2f (x)f ′(x))

= 3[f (x)]2f ′(x).

The derivative of [f (x)]n is
n[f (x)]n−1f ′(x).
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45.
(

P + n2a

V 2

)
(V − nb) = nRT

P + n2a

V 2
= nRT

V − nb

P = nRT

V − nb
− n2a

V 2

P ′(V ) = −nRT

(V − nb)2
+ 2n2a

V 3

P ′′(V ) = 2nRT

(V − nb)3
+ 6n2a

V 4
.

Obviously, if P ′(V ) = 0, then

2na

V 3
= RT

(V − nb)2
(= X)

in which X is a temporary name. If P ′′(V ) is
also zero, then

0 = P ′′(V ) = 2nX

(V − nb)
− 3nX

V

= nX

[
2

V − nb
− 3

V

]
= nX(3nb − V )

V (V − nb)
,

⇒ V = 3nb, so V − nb = 2nb, and

X = 2na

V 3
= 2a

27n2b3
.

RT = (V − nb)2X = 4n2b2X = 8a

27b
,

so T = 8a

27bR
, and since

P = nRT

V − nb
− n2a

V 2
, we have

P = 8an

27b(2nb)
− n2a

9n2b2
= a

27b2
.

In summary,

(Tc, Pc, Vc) =
(

8a

27bR
,

a

27b2
, 3nb

)
Substitute in the given numbers; in particular
Tc = 647◦ (Kelvin).

46. lim
x→0

f (x) = 0 and lim
x→∞ f (x) = 1. Without

any activator there is no enzyme. With unlim-

ited amount of activator, the amount of enzyme
approaches 1.

47.
f (x) = x2.7

1 + x2.7

f ′(x) =
(
1 + x2.7

)
. 2.7x1.7 − 2.7x1.7 .

(
x2.7

)
(
1 + x2.7

)2
= 2.7x1.7(

1 + x2.7
)2

The fact that f ′(x) > 0 when x > 0 suggest to
us that the amount of the enzyme continues
to increase as the amount of the activator
increases.

48. lim
x→0

f (x) = 1 and lim
x→∞ f (x) = 0. Without

any inhibitor the amount of enzyme ap-
proaches 1. With unlimited amount of in-
hibitor, the amount of enzyme approaches
0.

f ′(x) = − 2.7x1.7

(1 + x2.7)2

For positive x, f ′ is negative. Increase in the
amount of inhibitor leads to a decrease in the
amount of enzyme.

49. d
dx

[
x3f (x)

]= 3x2 . f (x) + x3f ′(x)

50. Quotient rule gives
x2f ′(x) − 2xf (x)

x4
.

51. Utilizing d
dx

(
√

x) = 1
2
√

x
(which is a special

case of the power rule), we find

d

dx

( √
x

f (x)

)
=

f (x) 1
2
√

x
− √

xf ′(x)

[f (x)]2

= f (x) − 2xf ′(x)

2
√

x[f (x)]2
.

52. Product rule gives

1

2
√

x
f (x) + √

xf ′(x).
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2.5 THE CHAIN RULE

1. f (x) = (x3 − 1)2

Using the chain rule:
f ′(x) = 2(x3 − 1)(3x2) = 6x2(x3 − 1)
Using the product rule:

f (x) = (x3 − 1)(x3 − 1)

f ′(x) = (3x2)(x3 − 1) + (x3 − 1)(3x2)

= 2(3x2)(x3 − 1)

= 6x2(x3 − 1)

Using preliminary multiplication:

f (x) = x6 + 2x3 + 1

f ′(x) = 6x5 + 6x2

= 6x2(x3 − 1)

2. f (x) = (x2 + 2x + 1)(x2 + 2x + 1)
Using the product rule
f ′(x) = (2x + 2)(x2 + 2x + 1)
+(x2 + 2x + 1)(2x + 2)

Using the chain rule:
f ′(x) = 2(x2 + 2x + 1)(2x + 2)

3. f (x) = (x2 + 1)3

Chain rule:
f ′(x) = 3(x2 + 1)2 . 2x = 6x(x2 + 1)2

Using preliminary multiplication:
f (x) = x6 + 3x4 + 3x2 + 1
f ′(x) = 6x5 + 12x3 + 6x

4. f (x) = 16x4 + 32x3 + 24x2 + 8x + 1,
so f ′(x) = 64x3 + 96x2 + 48x + 8
Using the chain rule:
f ′(x) = 4(2x + 1)3(2)

5. f (x) =
√

x2 + 4 = (x2 + 4)1/2

f ′(x) = 1

2
(x2 + 4)−1/2 . 2x

= 1

2
√

x2 + 4
. 2x

= x√
x2 + 4

6. f (x) = (x3 + x − 1)3

f ′(x) = 3(x3 + x − 1)2(3x2 + 1)

7. f (x) = x5
√

x3 + 2

f ′(x) = x5 1

2
√

x3 + 2
3x2 + 5x4

√
x3 + 2

= 3x7 + 10x4(x3 + 2)

2
√

x3 + 2

= 13x7 + 20x4

2
√

x3 + 2

8. f (x) = (x3 + 2)x5/2 f ′(x) = 3x2 . x5/2 +
(x3 + 2) 5

2x3/2

9.
f (x) = x3

(x2 + 4)2

f ′(x) = 3x2(x2 + 4)2 − 2(x2 + 4)(2x)x3

(x2 + 4)4

= 3x4 + 12x2 − 4x4

(x2 + 4)3

= x2(12 − x2)

(x2 + 4)3

10.
f (x) = x2 + 4

x6

f ′(x) = x6 . 2x − (x2 + 4)6x5

x12

11.
f (x) = 6√

x2 + 4
= 6(x2 + 4)−1/2

f ′(x) = −3(x2 + 4)−3/2 . 2x

= −6x

(x2 + 4)3/2

12. f (x) = (1/8)(x3 + 4)5

f ′(x) = (5/8)(x3 + 4)4(3x2)

13. f (x) = (
√

x + 3)4/3

f ′(x) = 4(
√

x + 3)1/3

3
. 1

2
√

x

= 2(
√

x + 3)1/3

3
√

x
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14. f ′(x) = 1

2
√

x
(x4/3 + 3) + √

x

(
4

3

)
x1/3

15.
f (x) =

(√
x3 + 2 + 2x

)−2

f ′(x) =

− 2
(√

x3 + 2 + 2x
)−3

[
3x2

2
√

x3 + 2
+ 2

]

= − 3x2 + 4
√

x3 + 2

(
√

x3 + 2 + 2x)3 .
√

x3 + 2

16. f (x) = (64 − 12x2 + x4)1/2

f ′(x) =
1

2
(64 − 12x2 + x4)−1/2(−24x + 4x3)

17. f (x) = x√
x2 + 1

f ′(x) =
√

x2 + 1 − x

(
1

2
√

x2+1

)
2x

x2 + 1

= 1

(x2 + 1)
√

x2 + 1

18. f ′(x) = (x2+1)2(x2−1)2x−(x2−1)22x

(x2+1)2

19.
f (x) =

√
x

x2 + 1

f ′(x) = 1

2
√

x

x2+1

. (x2 + 1) − 2x2

(x2 + 1)2

= 1 − x2

2
√

x(x2 + 1)3/2

20. f ′(x) =
(

1

2
√

(x2+1)(
√

x+1)3

)
.(

2x(
√

x + 1)3 + (x2 + 1)3(
√

x + 1)2 1
2
√

x

)

21.

f (x) = 3

√√√√
x

√
x4 + 2x 4

√
8

x + 2

f (x) =
⎛
⎝x

[
x4 + 2x

(
8

x + 2

)1/4
]1/2

⎞
⎠

1/3

f ′(x) = 1

3

⎛
⎝x

[
x4 + 2x

(
8

x + 2

)1/4
]1/2

⎞
⎠

−2/3

.

⎛
⎝[x4 + 2x

(
8

x + 2

)1/4
]1/2

+

+ x

(
1

2

) [
x4 + 2x

(
8

x + 2

)1/4
]−1/2

.

[
4x3 + 2

(
8

x + 2

)1/4

+ 2x

(
1

4

) (
8

x + 2

)−3/4 ( −8

(x + 2)2

)])

22.
f (x) = 3x2+2

√
x3+4/x4

(x3−4)
√

x2+2

f ′(x) = d
dx

(3x2+2
√

x3+4/x4)[(x3−4)
√

x2+2]

(x3−4)2(x2+2)

− (3x2+2
√

x3+4/x4) d
dx

((x3−4)
√

x2+2)

(x3−4)2(x2+2)

=

(
6x+
(

1√
x3+4/x4

)
(3x2−16x−5)

)
(x3−4)

√
x2+2

(x3−4)2(x2+2)

−
(3x2+2

√
x3+4/x4)

[
3x2

√
x2+2+(x3−4)

1

2
√

x2+2(2x)

]
(x3−4)2(x2+2)

23. f (x) =
√

x2 + 16, a = 3, f (3) = 5

f ′(x) = 1

2
√

x2 + 16
(2x) = x√

x2 + 16

f ′(3) = 3√
32 + 16

= 3

5
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So the tangent line is y = 3

5
(x − 3) + 5

or y = 3

5
x + 16

5
.

24. f (−2) = 3
4

f ′(x) = −12x

(x2 + 4)2

f ′(−2) = 24

64
= 3

8
The equation of the tangent line is

y = 3

8
(x + 2) + 3

4
.

25. s(t) =
√

t2 + 8

v(t) = s′(t) = 2t

2
√

t2 + 8
= t√

t2 + 8
m/s

v(2) = 2√
12

= 1√
3

=
√

3

3
m/s

26. s(t) = 60t√
t2 + 1

v(t) =
√

t2 + 1(60) − 60t 1

2
√

t2+1
2t

t2 + 1
m/s

v(2) =
60

√
5 − 240√

5

5
= 12

√
5

5
m/s

27. For higher derivatives, fractional exponents
will be required.

f (x) = √
2x + 1 = (2x + 1)1/2

f ′(x) = 1

2
(2x + 1)−1/2 . 2 = (2x + 1)−1/2

f ′′(x) = − 1

2
(2x + 1)−3/2(2)

= −(2x + 1)−3/2

f ′′′(x) = −
(

−3

2

)
(2x + 1)−5/2 . 2

= 3(2x + 1)−5/2

f (4)(x) = 3

(
−5

2

)
(2x + 1)−7/2 . 2

= −15(2x + 1)−7/2

f (n)(x) =
(−1)n+11 . 3 . . . (2n − 3)(2x + 1)−(2n−1)/2

28. f (x) = 2

x + 1

f ′(x) = −2

(x + 1)2

f ′′(x) = 4

(x + 1)3

f ′′′(x) = −12

(x + 1)4

f (4)(x) = 48

(x + 1)5

f (n)(x) = (−1)n2(n!)

(x + 1)n+1

29. h′(1) = f ′(g(1))g′(1)
g(1) = 4, so h′(1) = f ′(4)g′(1).
From the table, we have:

f ′(4) ≈ 2 − (−2)

5 − 3
= 2, and

g′(1) ≈ 6 − 2

2 − 0
= 2 so

h′(1) ≈ 4.

30. k′(1) = g′(f (1))f ′(1)
f (1) = −2, so k′(1) = g′(−2)f ′(1).
From the table, we have:

f ′(1) ≈ −3 − (−1)

2 − 0
= −1, and

g′(−2) ≈ 2 − 6

−1 − (−3)
= −2 so

k′(1) ≈ 2.

31. k′(3) = g′(f (3))f ′(3)
f (3) = −2, so k′(3) = g′(−2)f ′(3).
From the table, we have:

f ′(3) ≈ 0 − (−3)

4 − 2
= 3

2
, and

g′(−2) ≈ 2 − 6

−1 − (−3)
= −2 so

k′(1) ≈ −3.

32. h′(3) = f ′(g(3))g′(3)
g(3) = 4, so h′(3) = f ′(4)g′(3).
From the table, we have:
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f ′(4) ≈ 2 − (−2)

5 − 3
= 2, and

g′(3) ≈ 6 − 2

2 − 4)
= −2 so

h′(1) ≈ −4.

33. h′(x) = f ′(g(x))g′(x)

h′(1) = f ′(g(1))g′(1)
= f ′(2) . (−2) = −6

34. h′(x) = f ′(g(x))g′(x) h′(2) = f ′(g(2))g′(2)

= f ′(3) . (4) = −12

35. f (x) = (x2 + 3)2 . 2x. Recognizing the “2x”
as the derivative of x2 + 3, we guess g(x) =
c(x2 + 3)3 where c is some constant. g′(x) =
3c(x2 + 3)2 . 2x, which will be f (x) only if

3c = 1, so c = 1/3, and g(x) = (x2 + 3)3

3
.

36. A good initial guess is (x3 + 4)5/3, then adjust
the constant to get

g(x) = 1

5
(x3 + 4)5/3.

37. f (x) = x√
x2 + 1

.

Recognizing the “x” as half the derivative
of x2 + 1, and knowing that differentiation
throws the square root into the denominator,
we guess g(x) = c

√
x2 + 1 where c is some

constant and find that

g′(x) = c

2
√

x2 + 1
(2x)

will match f (x) if c = 1, so

g(x) =
√

x2 + 1.

38. A good initial guess is (x2 + 1)−1, then adjust
the constant to get

g(x) = − 1

2
(x2 + 1)−1.

39. As a temporary device given any f , set g(x) =
f (−x). Then by the chain rule,

g′(x) = f ′(−x)(−1) = −f ′(−x).

In the even case (g = f ) this reads f ′(−x) =
−f ′(x) and shows f ′ is odd. In the odd case
(g = −f and therefore g′ = −f ′), this reads
−f ′(x) = −f ′(−x) or f ′(x) = f ′(−x) and
shows f ′ is even.

40. Chain rule gives 2xf ′(x2).

41. d

dx
f (

√
x) = f ′(

√
x) . d

dx

√
x

= f ′(
√

x) . 1

2
√

x

42. Chain rule gives
1

2
√

4f (x) + 1
. 4f ′(x).

43.
d

dx

⎛
⎝ 1

1 + [
f (x)

]2
⎞
⎠

= −
(

1

1 + [f (x)]2

)2
. d

dx

(
1 + [f (x)]2

)

= − 1(
1 + [f (x)]2

)2 . 2f (x) . f ′(x)

44. To say that f (x) is symmetric about the line
x = a is the same as saying that f (a + x) =
f (a − x). Taking derivatives (using the chain
rule), we have

d

dx
f (a + x) = f ′(a + x)

d

dx
f (a − x) = f ′(a − x)(−1)

= −f ′(a − x).

Thus f ′(a + x) = −f ′(a − x) and the graph
of f ′(x) is symmetric through the point (a, 0).

45. f ′(x) = b′(a(x))a′(x).
a(2) = 0, b′(0) = −3, a′(2) = 2, so
f ′(2) = −3 . 2 = −6.

46. f ′(x) = a′(b(x))b′(x).
b(0) = 1, a′(1) = 1, and b′(0) = −3,
so f ′(0) = −3.
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47. f ′(x) = c′(a(x))a′(x).
a(−1) = 0, c′(0) = −3, a′(−1) = −2,
so f ′(−1) = −3 . −2 = 6.

48. f ′(x) = b′(c(x))c′(x).
c(1) = −1, b′(−1) = −3, and c′(1) = 0, so
f ′(1) = 0.

49. f (x) = (
x3 − 3x2 + 2x

)1/3

f ′(x) =
1
3

(
x3 − 3x2 + 2x

)−2/3 .
(
3x2 − 6x + 2

)
The derivative of f does not exist at values of
x for which

0 = x3 − 3x2 + 2x

= x
(
x2 − 3x + 2

)
= x (x − 1) (x − 2)

Thus, the derivative of f does not exist for
x = 0, 1, 2. The derivative fails to exist at these
points because the tangent lines at these points
are vertical.

50. We can write f (x) as f (x)

=

⎧⎪⎪⎨
⎪⎪⎩

−2x − (x − 4) − (x + 4) x ≤ −4
−2x − (x − 4) + (x + 4) −4 < x < 0
2x − (x − 4) + (x + 4) 0 ≤ x < 4
2x + (x − 4) − (x + 4) 4 ≤ x

so

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

−4x x ≤ −4
−2x + 8 −4 < x < 0
2x + 8 0 ≤ x < 4
4x 4 ≤ x

and therefore

f ′(x) =

⎧⎪⎨
⎪⎩

−4 x < −4
−2 −4 < x < 0
2 0 < x < 4
4 4 < x

but f ′(x) is not defined at x = ±4 or x = 0.
The function f (x) is piecewise linear and
these points correspond graphically to the
places where f (x) switches from one linear
function to another.

2.6 DERIVATIVES OF
TRIGONOMETRIC
FUNCTIONS

1. The peaks and valleys of cos(x) (e.g., 0,
π , 2π , etc.) are matched with the zeros of
sin(x), and the decreasing intervals for cos(x)

(e.g., [0, π ]) correspond to the intervals where
sin(x) is positive, hence where − sin(x) is
negative. These features lend credibility to the
notion that − sin(x) might be the derivative of
cos(x).

2. We use the assumption that x is in radians
in Lemma 6.3. The derivative of sin x◦ =
sin( π

180◦x) is π
180◦ cos(x◦). The factor of π

180◦
comes from applying the chain rule.

3. f (x) = 4 sin x − x

f ′(x) = 4 cos x − 1

4. f (x) = x2 + 2 cos2 x

f ′(x) = 2x + 2 cos x(− sin x)

= 2x − 2 cos x sin x

5. f (x) = tan3 x − csc4 x

f ′(x) = 3 tan2 x sec2 x

+ 4 csc3 x csc x cot x

= 3 tan2 x sec2 x + 4 csc4 x cot x

6. f (x) = 4 sec x2 − 3 cot x

f ′(x) = 4(sec x2 tan x2)(2x)

− 3(− csc2 x)

= 8x sec x2 tan x2 + 3 csc2 x

7. f (x) = x cos 5x2

f ′(x) = (1) cos 5x2 + x(− sin 5x2) . 10x

= cos 5x2 − 10x2 sin 5x2

8. f (x) = 4x2 − 3 tan x

f ′(x) = 8x − 3 sec2 x

9. f (x) = sin(tan(x2))

f ′(x) = cos(tan(x2)) . sec2(x2) . 2x
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10. f (x) =
√

sin2 x + 2

f ′(x) = 1

2
(sin2 x + 2)−1/2(2 sin x cos x)

11.
f (x) = sin(x2)

x2

f ′(x) = x2 cos(x2) . 2x − sin(x2) . 2x

x4

= 2x[x2 cos(x2) − sin(x2)]

x4

= 2[x2 cos(x2) − sin(x2)]

x3

12.
f (x) = x2

csc4 x

f ′(x) = 2x csc4 x − 4x2 csc4 x cot x

csc8 x

= 2x − 4x2 cot x

csc4 x

13. f (t) = sin t sec t = tan t

f ′(t) = sec2 t

14. f (t) =
√

cos t . 1

cos t
= 1

f ′(t) = 0

15.
f (x) = 1

sin(4x)
= csc(4x)

f ′(x) = − csc(4x) cot(4x) . (4)

= −4 csc(4x) cot(4x)

= −4 cos(4x)

sin2(4x)

16. f (x) = x2 sec2 3x

f ′(x) = 2x sec2 3x

+ x22(sec 3x)(sec 3x tan 3x)(3)

17. f (x) = 2 sin x cos x

f ′(x) = 2 cos x . cos x + 2 sin x(− sin x)

= 2 cos2 x − 2 sin2 x

18. f (x) = 4 sin2 x + 4 cos2 x

= 4(sin2 x + cos2 x) ≡ 4

f ′(x) ≡ 0

19. f (x) = tan
√

x2 + 1

f ′(x) = (sec2
√

x2 + 1).(
1

2

)
(x2 + 1)−1/2(2x)

= x√
x2 + 1

sec2
√

x2 + 1

20. f (x) = 4x2 sin x sec 3x

f ′(x) = 4(2x) sin x sec 3x

+ 4x2 d

dx
(sin x sec 3x)

= 8x sin x sec 3x

+ 4x2(cos x sec 3x + sin x sec 3x tan 3x(3))

21. Answers depend on CAS.

22. Answers depend on CAS.

23. Answers depend on CAS.

24. Answers depend on CAS.

25. f (x) = sin 4x, a = π

8
,

f

(
π

8

)
= sin

π

2
= 1

f ′(x) = 4 cos 4x

f ′
(

π

8

)
= 4 cos

π

2
= 0

So the equation of the tangent line is

y = 0

(
x − π

8

)
+ 1 or y = 1.

26. f (0) = 0. f ′(x) = 3 sec2 3x, so f ′(0) = 3. The
equation of the tangent line is y = 3x.
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27. f (x) = cos x, a = π

2
,

f

(
π

2

)
= cos

π

2
= 0

f ′(x) = − sin x

f ′
(

π

2

)
= − sin

π

2
= −1

So the equation of the tangent line is

y = −1

(
x − π

2

)
+ 0 or y = −x + π/2.

28. f

(
π

2

)
= π

2

f ′(x) = sin x + x cos x, so f ′
(

π

2

)
= 1.

The equation of the tangent line is y = x.

29. s(t) = t2 − sin(2t), t0 = 0
v(t) = s′(t) = 2t − 2 cos(2t)

v(0) = 0 − 2 cos(0) = 0 − 2 = −2 ft/s

30. s(t) = t cos(t2 + π), t0 = 0
v(t) = s′(t) = cos(t2 + π) − 2t2 sin(t2 + π)

v(0) = cos π − 0 = −1 ft/s

31. s(t) = cos t

t
, t0 = π

v(t) = s′(t)

= −1

t2
cos t + 1

t
(− sin t)

v(π) = −cos π

π2
− sin π

π

= 1

π2
− 1

π
(0) = 1

π2
ft/s

32. s(t) = 4 + 3 sin t, t0 = π

v(t) = s′(t) = 3 cos t

v(π) = −3 ft/s

33. f (t) = 4 sin 3t
f ′(t) = 12 cos 3t
The maximum speed of 12 occurs when the
vertical position is zero.

34. The velocity is 0 when the spring changes
directions at the top and bottom. The velocity
is f ′(t) = 12 cos 3t , which is 0 whenever
3t = k π

2 or t = k π
6 for any odd integer k.

The location of the spring at these times is
given (for any odd integer k) by f

(
k π

6

) =
4 sin

(
3k π

6

)= 4 sin
(
k π

2

)= ±4.

35. Q(t) = 3 sin 2t + t + 4
I (t) = dQ

dt
= 6 cos 2t + 1 At time t = 0,

I (0) = 7 amps. At time t = 1, I (1) = 6 cos 2 +
1 ≈ −1.497 amps.

36. The current is given by I (t) = Q′(t) = −16
sin 4t − 3. At t = 0, the current is −3 amps.
At t = 1, the current is I (1) ≈ 9.1088 amps.

37. f (x) = sin x

f ′(x) = cos x

f ′′(x) = − sin x

f ′′′(x) = − cos x

f (4)(x) = sin x = f (x)

⇒ f (75)(x) = (f (72))(3)(x)

= (f (18.4))(3)(x)

= f ′′′(x) = − cos x

f (150)(x) = (f (148))(2)(x)

= (f (37.4))(2)(x)

= f ′′(x) = − sin x

38. If f (x) = cos(x), then f (4)(x) = f (x)

f (77)(x) = f (19.4+1)(x)

= f ′(x) = − sin x

f (120)(x) = f (30.4)(x) = f (x) = cos x

39. Since 0 ≤ sin θ ≤ θ , we have
−θ ≤ − sin θ ≤ 0 which implies
−θ ≤ sin(−θ) ≤ 0
so for −π

2 ≤ θ ≤ 0 we have
θ ≤ sin θ ≤ 0.
We also know that
lim

θ→0− θ = 0 = lim
θ→0− 0,nl so the Squeeze Theo-
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rem implies that
lim

θ→0− sin θ = 0.

40. Since cos2 θ + sin2 θ = 1, we have

cos θ =
√

1 − sin2 θ . Then

lim
θ→0

cos θ = lim
θ→0

√
1 − sin2 θ = ±1.

Since cos θ is a continuous function and
cos 0 = 1, we conclude that lim

θ→0
cos θ = 1.

41. If f (x) = cos(x), then
f (x + h) − f (x)

h

= cos(x+h)−cos(x)
h

= cos x cos h−sin x sin h−cos x
h

= (cos x)
(cos h−1)

h
− (sin x)

(
sin h

h

)
.

Taking the limit

f ′(x) = lim
h→0

f (x + h) − f (x)

h

= (cos x) . lim
h→0

cos h − 1

h

− (sin x) . lim
h→0

sin h

h

= cos x . 0 − sin x . 1

= − sin x.

42.
d

dx
cot x = d

dx

(
cos x

sin x

)

= sin x(− sin x) − cos x cos x

sin2 x

= − 1

sin2 x
= − csc2 x.

d

dx
sec x = d

dx

(
1

cos x

)

= cos x . 0 − 1(− sin x)

cos2 x

= sin x

cos x

(
1

cos x

)
= sec x tan x.

d

dx
csc x = d

dx

(
1

sin x

)

= sin x . 0 − 1 cos x

sin2 x

= − 1

sin x

(
cos x

sin x

)
= − csc x cot x.

43. (a)
lim
x→0

sin 3x

x
= lim

x→0

3 sin 3x

3x

= 3 . lim
x→0

sin(3x)

(3x)

= 3 . 1 = 3

(b)
lim
t→0

sin t

4t
= 1

4
lim
t→0

sin t

t

= 1

4
. 1 = 1

4

(c) lim
x→0

cos x − 1

5x

= 1

5
lim
x→0

cos x − 1

x
= 0

(d) Let u = x2: then u → 0 as x → 0, and

lim
x→0

sin x2

x2
= lim

u→0

sin u

u
= 1

44. (a) lim
t→0

2t

sin t
= lim

t→0

2
sin t

t

= 2

(b) Let u = x2: then u → 0 as x → 0, and

lim
x→0

cos x2 − 1

x2

= lim
u→0

cos u − 1

u
= 0

(c) lim
x→0

sin 6x

sin 5x
= lim

x→0

6 sin 6x
6x

5 sin 5x
5x

= 6

5

(d) lim
x→0

tan 2x

x
= lim

x→0

sin 2x
cos 2x

x

= lim
x→0

2 sin 2x

2x

1

cos 2x
= 2

45. The function defined by y = sin x

x
is continu-

ous and differentiable on its entire domain.
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We need only check that f has these properties
at x = 0.

In Example 2.4 of Chapter 1, we showed

numerically that lim
x→0

sin x

x
= 1. Therefore,

since lim
x→0

f (x) = f (0), f is continuous at 0.

Using a table of values, we can show that

lim
h→0

f (0 + h) − f (0)

h

= lim
h→0

sin(0+h)
0+h

− 1

h

= lim
h→0

1

h

[
sin h

h
− 1

]
= 0.

Since the limit exists, f is differentiable at
x = 0.

46. The function defined by y′ = x cos x − sin x

x2

is continuous on its entire domain. We need
only check for continuity of f ′ at x = 0.

Using a table of values, we can show that

lim
h→0

x cos x − sin x

x2
= 0. The limit in the

solution of exercise 45 shows that f ′(0) = 0.
Since lim

x→0
f ′(x) = f ′(0), f ′ is continuous

at 0.

47. The function defined by y′ = x cos x − sin x

x2

is differentiable on its entire domain. We need
only check for differentiability of f ′ at x = 0.

Using a table of values, we can show that

lim
h→0

f ′(0 + h) − f ′(0)

h

= lim
h→0

h cos h−sin h

h2 − 0

h

= lim
h→0

h cos h − sin h

h3
= −1

3
.

Since the limit exists, f ′ is differentiable at
x = 0. Thus, f ′′ exists for all x.

The function defined by

y′′ = 2 sin x − 2x cos x − x2 sin x

x3
is contin-

uous on its entire domain. We need only check
for continuity of f ′′ at x = 0.

Using a table of values, we can show that

lim
x→0

2 sin x − 2x cos x − x2 sin x

x3
= −1

3
. The

limit above shows that f ′′(0) = − 1
3. Since

lim
x→0

f ′′(x) = f ′′(0), f ′′ is continuous at 0.

48. We first show that f (x) is continuous; the only
place we need to check is x = 0, so we consider
lim
x→0

x3 sin( 1
x
). We know that, for x 	= 0,

−1 ≤ sin(1/x) ≤ 1.

So, for x < 0, we have

−x3 ≥ x3 sin(1/x) ≥ x3,

where the inequalities have changed direction
because x3 < 0 when x < 0. Likewise, for
x > 0, we have

−x3 ≤ x3 sin(1/x) ≤ x3.

Since lim
x→0

x3 = 0 = lim
x→0

−x3, the Squeeze

Theorem implies that lim
x→0

x3 sin( 1
x
) = 0 and

since this equals f (0), we see that f (x) is
continuous for all x.

We now need to show that f (x) is differen-
tiable for all x. Again, we only need to check
for x = 0. For x 	= 0,

f ′(x) = 3x2 sin(1/x) − x cos(1/x).

We need to see that f ′(0) exists. We have

f ′(0) = lim
x→0

f (x) − f (0)

x − 0

= lim
x→0

x3 sin(1/x) − 0

x

= lim
x→0

x2 sin(1/x)

Using the fact that, for all x 	= 0,

−x2 ≤ x2 sin(1/x) ≤ x2

and the Squeeze Theorem, we see that f ′(0)

exists and equals 0. Thus f (x) is differentiable
for all x.
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Finally, we need to show that f ′(x) is con-
tinuous for all x. For this, we need to show
that lim

x→0
f ′(x) = f ′(0), i.e., lim

x→0
f ′(x) = 0.

We have lim
x→0

f ′(x) =
lim
x→0

(3x2 sin(1/x) − x cos(1/x))

= lim
x→0

3x2 sin(1/x) − lim
x→0

x cos(1/x).

Using the Squeeze Theorem on each piece as
before shows that lim

x→0
f ′(0) = 0 as desired

and so f ′(x) is continuous for all x, i.e., f (x)

is C1.

49. The sketch: y = x and y = sin(x)

y

2

1

0

-1

-2

x

3210-1-2-3

It is not possible visually to either detect or
rule out intersections near x = 0 (other than
zero itself ).

We have that f ′(x) = cos x, which is less than
1 for 0 < x < 1. If sin x ≥ x for some x in the
interval (0, 1), then there would be a point on
the graph of y = sin x which lies above the line
y = x, but then (since sin x is continuous) the
slope of the tangent line of sin x would have
to be greater than or equal to 1 at some point
in that interval, contradicting f ′(x) < 1. Since
sin x < x for 0 < x < 1, we have − sin x > −x

for 0 < x < 1. Then − sin x = sin(−x) so
sin(−x) > −x for 0 < x < 1, which is the
same as saying sin x > x for −1 < x < 0.

Since −1 ≤ sin x ≤ 1, the only interval on
which y = sin x might intersect y = x is
[−1, 1]. We know they intersect at x = 0 and
we just showed that they do not intersect on the

intervals (−1, 0) and (0, 1). So the only other
points they might intersect are x = ±1, but
we know that sin(±1) 	= ±1, so these graphs
intersect only at x = 0.

50. 0 < k ≤ 1 produces one intersection. For 1 <

k < 7.8 (roughly) there are exactly three inter-
sections. For k ≈ 7.8 there are 5 intersections.
For k > 7.8 there are 7 or more intersections.

51. As seen from the graphs, changing the scale on
the x-axis increases the number of oscillations
or periods on the display. As the number of
periods on the display increase, the graph
looks more and more like a bunch of line
segments. Its inflection points and concavity
are no longer detectable.

2.7 IMPLICIT
DIFFERENTIATION

1. Explicitly:
4y2 = 8 − x2

y2 = 8−x2

4

y = ±
√

8−x2

2 (choose plus to fit (2,1))

For y =
√

8 − x2

2
,

y′ = 1

2

(−2x)

2
√

8 − x2
= −x

2
√

8 − x2
,

y′(2) = −1/2.

Implicitly:
d

dx
(x2 + 4y2) = d

dx
(8)

2x + 8y . y′ = 0

y′ = −2x

8y
= −x

4y

at (2, 1) : y′ = −2
4.1 = − 1

2

2. Explicitly: y = 4
√

x

x3 − x2

y′ =
(x3 − x2) 2√

x
− 4

√
x(3x2 − 2x)

(x3 − x2)2
.
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Implicitly differentiating:

3x2y + x3y′ − 2√
x

= 2xy + x2y′,

and we solve for y′ to get

y′ =
2xy + 2√

x
− 3x2y

x3 − x2
.

Substitute x = 2 into the first expression, and
(x, y) = (2,

√
2) into the second to get

y′ = −7
√

2

4

3. Explicitly: y(1 − 3x2) = cos x

y = cos x

1 − 3x2

y′(x) = (1 − 3x2)(− sin x) − cos x(−6x)

(1 − 3x2)2

= − sin x + 3x2 sin x + 6x cos x

(1 − 3x2)2

y′(0) = 0

Implicitly:
d

dx
(y − 3x2y) = d

dx
(cos x)

y′ − (6xy + 3x2y′) = − sin x

y′(1 − 3x2) = 6xy − sin x

y′ = 6xy − sin x

1 − 3x2

at (0, 1) : y′ = 0 (again).

4. Explicitly:

y = −x ±
√

x2 − 4. At the point (−2, 2), the
sign is irrelevant, so we choose y = −x +√

x2 − 4.

y′ = −1 + 1

2
√

x2 − 4
2x

= −1 + x√
x2 − 4

.

Implicitly differentiating: 2yy′ + 2y + 2xy′ =
0,
and we solve for y′:
y′ = −2y

2x + 2y

Substitute x = −2 into the first expression, and
(x, y) = (−2, 2) into the second expression to
see that y′ is undefined. There is a vertical
tangent at this point.

5.
d

dx
(x2y2 + 3y) = d

dx
(4x)

2xy2 + x22y . y′ + 3y′ = 4
y′(2x2y + 3) = 4 − 2xy2

y′ = 4 − 2xy2

2x2y + 3

6. 3y3 + 3x(3y2)y′ − 4 = 20yy′

y′ = 3y3 − 4

20y − 9xy2

7. d

dx
(
√

xy − 4y2) = d

dx
(12)

1

2
√

xy
. d

dx
(xy) − 8y . y′ = 0

1

2
√

xy
. (xy′ + y) − 8y . y′ = 0

(xy′ + y) − 16y . y′√xy = 0

y′ (x − 16y
√

xy
)= −y

y′ = −y(
x − 16y

√
xy
) = y

16y
√

xy − x

8. cos(xy)(y + xy′) = 2x

y′ = 2x − y cos(xy)

x cos(xy)

9. x + 3 = 4xy + y3

1 = d

dx

(
4xy + y3

)
= 4(xy′ + y) + 3y2y′

1 − 4y = y′(3y2 + 4x)

y′ = 1 − 4y

3y2 + 4x

10. 3 + 3y2y′ − 4y′ = 20x

y′ = 20x − 3

3y2 − 4



SECTION 2.7 . . Implicit Differentiation 127

11. d

dx
[cos(x2y) − sin y] = d

dx
(x)

− sin(x2y)
d

dx
(x2y) − (cos y)y′ = 1

− sin(x2y)[2xy + x2y′] − (cos y)y′ = 1

y′[−x2 sin(x2y) − cos y] = 1 + 2xy sin(x2y)

y′ = − 1 + 2xy sin(x2y)

x2 sin(x2y) + cos y

12. d

dx
[x sec y − 3y sin x] = d

dx
(1)

sec y + (x sec y tan y)y′ − 3(y′ sin x + y cos x) = 0

y′(x sec y tan y − 3 sin x) = 3y cos x − sec y

y′ = − 3y cos x − sec y

x sec y tan y − 3 sin x

13. d

dx

(√
x + y − 4x2

)
= d

dx
(y)

1

2
√

x + y
. (1 + y′) − 8x = y′

y′
(

1

2
√

x + y
− 1

)
= −1

2
√

x + y
+ 8x

y′
(

1 − 2
√

x + y

2
√

x + y

)
= 16x

√
x + y − 1

2
√

x + y

y′ = 16x
√

x + y − 1

1 − 2
√

x + y

14. (sin y)y′ − 2yy′ = 0 y′ = 0

15. d

dx
[tan 4y − xy2] = d

dx
(2x)

sec2 4y(4y′) − (y2 + 2xyy′) = 2

y′(4 sec2 4y − 2xy) = 2 + y2

y′ = 2 + y2

4 sec2 4y − 2xy

16. d

dx
[y cos x2 − 3y] = d

dx
(x2 + 1)

y′ cos x2 − 2xy sin x2 − 3y′ = 2x

y′(cos x2 − 3) = 2x + 2xy sin x2

y′ = 2x + 2xy sin x2

cos x2 − 3

17. Rewrite: x2 = 4y3

Differentiate by x: 2x = 12y2 . y′
y′ = 2x

12y2 = x

6y2

at (2, 1) : y′ = 2
6.12 = 1

3
The equation of the tangent line is

y = 1

3
(x − 2) + 1 or y = 1

3
(x + 1).

y

1.2

1.6

0.8

x

3

0.4

0 1 2
0

4

18. 2xy2 + x22yy′ = 4, so y′ = 4 − 2xy2

2x2y
.

y′ at (1, 2) is −1, and the equation of the line
is y = −1(x − 1) + 2.

-4

3

y

x

-2

2 4
0

10

4

2
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19. This one has y = 0 as part of the curve(s), but
our point of reference is not on that part, so we
can assume y is not zero, cancel it, and come
to x2y = 4
d
dx

(x2y) = d
dx

(4)

2xy + x2 . y′ = 0
y′ = −2y

x

at (2, 1) : y′ = −2/2 = −1.
The equation of the tangent line is y =
(−1)(x − 2) + 1 or y = −x + 3.

y

2.5

0.5

3

2

0

x

4310

1

1.5

2

20. 3x2y2 + x32yy′ = −3y − 3xy′, so

y′ = −3y − 3x2y2

2x3y + 3x
.

y′ at (−1, −3) is −6, and the equation of the
line is y = −6(x + 1) − 3

-2-4

y

0

4

-4

4

-2

x

0

2

2

21. 4y2 = 4x2 − x4

8yy′ = 8x − 4x3

y′ = x(2 − x2)

2y
The slope of the tangent line at
(1,

√
3/2) is

m = (1)(2 − 12)

2
(√

3
2

)

= 1√
3

=
√

3

3
.

The equation of the tangent line is

y =
√

3

3
(x − 1) +

√
3

2

y =
√

3

3
x +

√
3

2
−

√
3

3

y =
√

3

3
x +

√
3

6
.

y

1.5

-0.5

2

1

x

31.5
0

0.5

210

-1

2.50.5

22. x4 − 8x2 = −8y2

4x3 − 16x = −16yy′

y′ = 4x3−16x
−16y

= x3−4x
−4y

The slope of the tangent line at (2, −√
2) is

m = 23 − 4(2)

−4(−√
2)

= 0.

The equation of the tangent line is y = −√
2.
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y

0.5

1

0

-1

x

2.5

-0.5

31.50 20.5 1

23.
d

dx
(x2 + y3 − 3y) = d

dx
(4)

2x + 3y2y′ − 3y′ = 0
y′(3y2 − 3) = −2x

y′ = 2x

3−3y2

Horizontal tangents: From the formula, y′ =
0 only when x = 0. When x = 0, we have
02 + y3 − 3y = 4. Using a CAS to solve this,
we find that y ≈ 2.1958 is a horizontal tangent
line, tangent to the curve at the (approximate)
point (0, 2.1958).

Vertical tangents: the denominator in y′ must
be zero. 3 − 3y2 = 0
y2 = 1 or y = ±1.
When y = 1 we have
x2 + (1)3 − 3(1) = 4
x2 = 6 or x = ±√

6 ≈ ±2.4.
Also, when y = −1, we have
x2 + (−1)3 − 3(−1) = 4
x2 = 2
x = ±√

2 ≈ ±1.4.
Thus, we find 4 vertical tangent lines: x =
−√

6, x = −√
2, x = √

2, x = √
6,

tangent to the curve (respectively) at the points(
−√

6, 1
)

,
(
−√

2, −1
)

,
(√

2, −1
)

, and(√
6, 1

)
.

24.
d

dx
(xy2 − 2y) = d

dx
(2)

y2 + 2xyy′ − 2y′ = 0

y′ = y2

2 − 2xy

The curve has horizontal tangents where y′ =
0. There are no points on the curve where this
is true because y = 0 has no solutions on the
original curve xy2 − 2y = 2. The curve can
have vertical tangents where y′ is undefined.
The only such point on the curve is (− 1

2 , −2).

25.
d

dx
(x2y2 + 3x − 4y) = d

dx
(5)

x22yy′ + 2xy2 + 3 − 4y′ = 0
Differentiate both sides of this with respect to
x:

d

dx
(x22yy′ + 2xy2 + 3 − 4y′) = d

dx
(0)

2(2xyy′ + x2(y′)2 + x2yy′′)

+ 2(2xyy′ + y2) − 4y′′ = 0

2xyy′ + x2(y′)2 + x2yy′′

+ 2xyy′ + y2 − 2y′′ = 0

4xyy′ + x2(y′)2 + y2 = y′′(2 − x2y)

y′′ = 4xyy′ + x2(y′)2 + y2

2 − x2y

26.
d

dx
(x2/3 + y2/3) = d

dx
(4)

2

3
x−1/3 + 2

3
y−1/3y′ = 0,

multiply by 3
2 and implicitly differentiate

again:

−1

3
x−4/3 + −1

3
y−4/3y′y′ + y−1/3y′′ = 0,

so

y′′ = x−4/3 + y−4/3(y′)2

3y−1/3

27.
d

dx
(y2) = d

dx
(x3 − 6x + 4 cos y)

2yy′ = 3x2 − 6 − 4 sin y . y′
Differentiating again with respect to x:
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2[yy′′ + (y′)2]

= 6x − 4[sin y . y′′ + cos y . (y′)2],

yy′′ + (y′)2

= 3x − 2 sin y . y′′ − 2 cos y . (y′)2,

y′′(y + 2 sin y) = 3x − [2 cos y + 1](y′)2

y′′ = 3x − [2 cos y + 1](y′)2

y + 2 sin y

28. d

dx
(3xy + 2y − 3x) = d

dx
(sin y)

3y + xy′ + 2y′ − 3 = cos y . y′

y′(3x + 2 − cos y) = 3 − 3y

d

dx

[
y′(3x + 2 − cos y)

] = d

dx
(3 − 3y)

y′′(3x + 2) − cos y

+y′(3 + sin y . y′) = −3y′

y′′(3x + 2 − cos y) = −6y′ − sin y(y′)2

y′′ = −6y′ − sin y(y′)2

3x + 2 − cos y

y′′ = 6y′ + sin y(y′)2

cos y − 3x − 2

29. x2 + y3 − 2y = 3

y′ = −2x

3y2 − 2
If x = 1.9, solving for y requires solving
the equation y3 − 2y + 0.61 = 0. Using the
equation of the tangent line found in Example
7.1, y = −4x + 9, y(1.9) ≈ 1.4.

If x = 2.1, solving for y requires solving
the equation y3 − 2y + 1.41 = 0. Using the
equation of the tangent line found in Example
8.1, y = −4x + 9, y(2.1) ≈ 0.6.

30. Using the tangent line
y = 7

6(x − 2) − 2,
we find approximate points (1.9, −2.1167)
and (2.1, −1.8833).

31. Both of the points (−3, 0) and (0, 3) are on
the curve:
02 = (−3)3 − 6(−3) + 9 = −27 + 18 + 9

32 = (0)3 − 6(0) + 9 = 9 The equation of the
line through these points has slope
0 − 3

−3 − 0
= −3

−3
= 1 and y-intercept 3, so y =

x + 3. This line intersects the curve at: y2 =
x3 − 6x + 9
(x + 3)2 = x3 − 6x + 9
x2 + 6x + 9 = x3 − 6x + 9
x3 − 12x − x2 = 0
x(x2 − x − 12) = 0
Therefore, x = 0, −3 or 4 and so the third point
is (4, 7).

y

5

10

x

2 40

-10

0

-5

-2

32. 32 = (−1)3 − 6(−1) + 4 is true.

2yy′ = 3x2 − 6, so y′ = 3x2−6
2y

, and at (−1, 3)

the slope is − 1
2 . The line is y = − 1

2 (x + 1) +
3.

To find the other point of intersection, substi-
tute the equation of the line into the equation
for the elliptic curve and simplify: (− 1

2x +
5
2 )2 = x3 − 6x + 4 x2 − 10x + 25 = 4x3 −
24x + 16 4x3 − x2 − 14x − 9 = 0. We know
already that x = −1 is a solution (actually a
double solution), so we can factor out (x + 1).
Long division yields (x + 1)2(4x − 9). The
second point has x-coordinate 9/4, which can
be substituted into the equation for the line to
get y = 11/8.

33.
d

dx
(x2y − 2y) = d

dx
(4)

2xy + x2y′ − 2y′ = 0
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y′(x2 − 2) = −2xy

y′ = −2xy

x2−2

The derivative is undefined at x = ±√
2, sug-

gesting that there might be vertical tangent
lines at these points. Similarly, y′ = 0 at y = 0,
suggesting that there might be a horizontal tan-
gent line at this point.

However, plugging x = ±√
2 into the original

equation gives 0 = 4, a contradiction which
shows that there are no points on this curve
with x value ±√

2. Likewise, plugging y = 0
into the original equation gives 0 = 4. Again,
this is a contradiction which shows that there
are no points on the graph with y value of 4.

Sketching the graph, we see that there is a
horizontal asymptote at y = 0 and vertical
asymptotes at x = ±√

2.

y
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5

0

-5

-10

x

420-2-4

34. For the first type of curve, y + xy′ = 0, and
y′ = −y/x.

For the second type of curve, 2x − 2yy′ = 0,
and y′ = x/y.

At any point of intersection, the tangent line to
the first curve is perpendicular to the tangent
line to the second.

35. If y1 = c/x, then y′
1 = −c/x2 = −y1/x. If y2

2 =
x2 + k, then 2y2(y

′
2) = 2x and y′

2 = x/y2. If
we are at a particular point (x0, y0) on both
graphs, this means y1(x0) = y0 = y2(x0) and

y′
1
. y′

2 =
(−y0

x0

)
.

(
x0

y0

)
= −1

This means that the slopes are negative recip-
rocals and the curves are orthogonal.

36. For the first type of curve, 2x + 2yy′ = c, and

y′ = c − 2x

2y
.

For the second type of curve, 2x + 2yy′ = ky′,
and y′ = 2x

k − 2y
.

Multiply the first y′ by x/x and the second

by y/y. This gives y′ = cx − 2x2

2xy
= y2 − x2

2xy
,

and

y′ = 2xy

ky − 2y2
= 2xy

x2 − y2
. These are negative

reciprocals of each other, so the families of
curves are orthogonal.

37. For the first type of curve, y′ = 3cx2.

For the second type of curve, 2x + 6yy′ = 0,
and

y′ = −2x

6y
= −x

3y

= −x

3cx3
= −1

3cx2
.

These are negative reciprocals of each other,
so the families of curves are orthogonal.

38. For the first type of curve, y′ = 4cx3.

For the second type of curve, 2x + 8yy′ = 0,
and

y′ = −2x

8y
= −x

4y

= −x

4cx4
= −1

4cx3
.

These are negative reciprocals of each other,
so the families of curves are orthogonal.

39. Conjecture: The family of functions{
y1 = cxn

}
is orthogonal to the family of

functions
{
x2 + ny2

2 = k
}

whenever n 	= 0.
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If y1 = cxn, then y′
1 = cnxn−1 = ny1/x. If

ny2
2 = −x2 + k, then 2ny2(y

′
2) = −2x and

y′
2 = −x/ny2. If we are at a particular point

(x0, y0) on both graphs, this means y1(x0) =
y0 = y2(x0) and

y′
1
. y′

2 =
(

ny0

x0

)
.

(
− x0

ny0

)
= −1.

This means that the slopes are negative recip-
rocals and the curves are orthogonal.

40. The equation for the circle is
x2 + (y − c)2 = r2.
Differentiating implicitly gives
2x + 2(y − c) . y′ = 0 so

y′ = −x

y − c
.

At the point of tangency the derivatives must
be the same. Since the derivative of y = x2 is
2x, we must solve the equation

2x = −x

y − c
.

This gives y = c − 1/2, as desired. Since y =
x2, plugging y = c − 1/2 into the equation for
the circle gives c − 1/2 + (c − 1/2 − c)2 = r2

c − 1/2 + 1/4 = r2

c = r2 + 1/4.

2.8 THE MEAN VALUE
THEOREM

1. f (x) = x2 + 1, [−2, 2]
f (−2) = 5 = f (2)

As a polynomial, f (x) is continuous on
[−2, 2], differentiable on (−2, 2), and the
conditions of Rolle’s Theorem hold. There
exists c ∈ (−2, 2) such that f ′(c) = 0. But
f ′(c) = 2c, ⇒ c = 0.
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2. f (x) = x2 + 1, [0, 2]
f (x) is continuous on [0, 2] and differentiable
on (0, 2), so the conditions of the Mean Value
Theorem hold. We need to find c so that

f ′(c) = f (2) − f (0)

2 − 0
= 5 − 1

2 − 0
= 2.

f ′(x) = 2x = 2 when x = 1, so c = 1.

5

4

3

2

1

0

x

21.510.50

3. f (x) = x3 + x2, on [0, 1], with f (0) = 0,
f (1) = 2. As a polynomial f (x) is continuous
on [0, 1] and differentiable on (0, 1). Since the
conditions of the Mean Value Theorem hold
there exists a number c ∈ (0, 1) such that

f ′(c) = f (1) − f (0)

1 − 0
= 2 − 0

1 − 0
= 2.

But f ′(c) = 3c2 + 2c.
⇒ 3c2 + 2c = 2,

3c2 + 2c − 2 = 0.

By the quadratic formula
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c = −2 ±√
22 − 4(3)(−2)

2(3)

= −2 ± √
28

6

= −2 ± 2
√

7

6
= −1 ± √

7

3
⇒ c ≈ −1.22 or c ≈ 0.55

But since −1.22 	∈ (0, 1) we accept only the
other alternative:

c = −1 + √
7

3
≈ 0.55

2

1
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-0.5

0.4 0.8 10.6

x

0
0

0.2

4. f (x) = x3 + x2, [−1, 1]
f (x) is continuous on [−1, 1] and differen-
tiable on (−1, 1) so the conditions of the Mean
Value Theorem hold. We need to find c so that

f ′(c) = f (1) − f (−1)

1 − (−1)
= 2 − 0

2
= 1.

f ′(x) = 3x2 + 2x = 1 when x = −1 and x =
1
3, so c = 1

3.

x

1.5

1

1

-1

0.5

0.5

0-0.5-1

-0.5

2

0

5. f (x) = sin x,
[
0, π/2

]
,

f (0) = 0, f (π/2) = 1.
As a trig function, f (x) is continuous on[
0, π/2

]
and differentiable on (0, π/2). The

conditions of the Mean Value Theorem hold,
and there exists c ∈ (0, π/2) such that

f ′(c) = f
(

π
2

)− f (0)

π
2 − 0

= 1 − 0
π
2 − 0

= 2

π
.

But f ′(c) = cos(c) and c is to be in the first
quadrant. From a graphing calculator, we find

that cos c = 2

π
when c ≈ 0.881

1.2

0.8

0

1

0.6

0.8 10.2 1.20.6 1.4

x

0.4

0

0.2

0.4

6. f (x) = sin x, [−π, 0]
f (x) is continuous on [−π, 0] and differ-
entiable on (−π, 0). Also, sin(−π) = 0 =
sin(0) so the conditions of Rolle’s Theorem
hold. We need to find c so that f ′(c) = 0.
f ′(x) = cos x = 0 on (−π, 0) when x = −π

2 ,
so c = −π

2 .
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7. If f ′(x) > 0 for all x then for each (a, b) with
a < b we know there exists a c ∈ (a, b) such
that

f (b) − f (a)

b − a
= f ′(c) > 0.

a < b makes the denominator positive, and
so we must have the numerator also positive,
which implies f (a) < f (b).

8. Let a < b. f is differentiable on (a, b) and
continuous on [a, b], since it is differentiable
for all x. This means that

f (b) − f (a)

b − a
= f ′(c)

for some c ∈ (a, b). Therefore f (b) − f (a) =
f ′(c)(b − a) is negative, and f (a) > f (b).

9. f ′(x) = 3x2 + 5. This is positive for all x, so
f (x) is increasing.

10. f ′(x) = 5x4 + 9x2 ≥ 0 for all x. f ′ = 0 only
at x = 0, so f (x) is increasing.

11. f ′(x) = −3x2 − 3. This is negative for all x,
so f (x) is decreasing.

12. f ′(x) = 4x3 + 4x is negative for negative
x, and positive for positive x, so f (x) is
neither an increasing function nor a decreasing
function.

13. f (−1) = −1, f (1) = 1, f (2) = 1
2−1 < 1 and f (−1) < f (1), so f (x) is not a

decreasing function. 1 < 2 and f (1) > f (2),
so f (x) is not an increasing function. f (x) is
neither an increasing nor a decreasing func-
tion.

14. f (−2) = 2, f (0) = 0, f (1) = 1
2−2 < 0 and f (−2) > f (0), so f (x) is not

an increasing function. 0 < 1 and f (0) <

f (1), so f (x) is not a decreasing function.
f (x) is neither an increasing nor a decreasing
function.

15. f ′(x) = 1
2
√

x+1

This is positive for all x in the domain of the
function, so f (x) is an increasing function for
x ≥ −1.

16. f ′(x) = 1
(x2+1)3/2 . This is positive for all x, so

f (x) is an increasing function.

17. Let f (x) = x3 + 5x + 1. As a polynomial,
f (x) is continuous and differentiable for all
x, with f ′(x) = 3x2 + 5, which is positive for
all x so f (x) is strictly increasing for all x.
Therefore the equation can have at most one
solution.

Since f (x) is negative at x = −1 and positive
at x = 1, and f (x) is continuous, there must
be a solution to f (x) = 0.

18. The derivative is 3x2 + 4 > 0 for all x. There-
fore the function is strictly increasing, and so
the equation can have at most one solution.
Because the function is negative at x = 0 and
positive at x = 1, and continuous, we know the
equation has exactly one solution.

19. Let f (x) = x4 + 3x2 − 2. The derivative is
f ′(x) = 4x3 + 6x. Since f ′(x) = 0 has only
one solution, by Theorem 8.2 f (x) can have
at most two zeros. Since f (0) = −2 and
f (−1) = 2 = f (1), therefore f (x) = 0 has ex-
actly one solution between x = −1 and x = 0,
exactly one solution between x = 0 and x = 1,
and no other solutions.
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20. Let f (x) = x4 + 6x2 − 1. The derivative is
4x3 + 12x. This is negative for negative x, and
positive for positive x so f (x) is strictly de-
creasing on (−∞, 0) and strictly increasing on
(0, ∞). Since f (0) = −1 	= 0, f (x) can have
at most one zero for x < 0 and one zero for
x > 0. The function is continuous everywhere
and f (−1) = 6 = f (1), therefore f (x) = 0
has exactly one solution between x = −1 and
x = 0, exactly one solution between x = 0 and
x = 1, and no other solutions.

21. f (x) = x3 + ax + b, a > 0. Any cubic (ac-
tually any odd degree) polynomial heads in
opposite directions (±∞) as x goes to the
oppositely signed infinities, and therefore by
the Intermediate Value Theorem has at least
one root. For the uniqueness, we look at the
derivative, in this case 3x2 + a. Because a > 0
by assumption, this expression is strictly posi-
tive. The function is strictly increasing and can
have at most one root.

22. The derivative is 4x3 + 2ax. This is negative
for negative x, and positive for positive x

so f (x) is strictly decreasing on (−∞, 0)

and strictly increasing on (0, ∞), and so can
have at most one zero for x < 0 and one
zero for x > 0. The function is continuous
everywhere, f (0) = −b, and lim

x→±∞ f (x) =
∞, therefore f (x) has exactly one solution
for x < 0, exactly one solution for x > 0, and
no other solutions.

23. f (x) = x5 + ax3 + bx + c, a > 0, b > 0

Here is another odd degree polynomial (see
#21) with at least one root.

f ′(x) = 5x4 + 3ax2 + b is evidently strictly
positive because of our assumptions about
a, b. Exactly as in #21, there can be at most
one root.

24. A third degree polynomial p(x) has at least
one zero because lim

x→−∞ p(x) = − lim
x→∞ p(x)

= ±∞, and it is continuous. Say this zero
is at x = c. Then we know p(x) factors into

p(x) = (x − c)q(x), where q(x) is a quadratic
polynomial. Quadratic polynomials have at
most two zeros, so p(x) has at most three
zeros.

25. The average velocity on [a, b] is
s(b) − s(a)

b − a
.

By the Mean Value Theorem, there exists a

c ∈ (a, b) such that s′(c) = s(b) − s(a)

b − a
. Thus,

the instantaneous velocity at t = c is equal to
the average velocity between times t = a and
t = b.

26. Let f (t) be the distance the first runner has
gone after time t and let g(t) be the distance
the second runner has gone after time t . The
functions f (t) and g(t) will be continuous and
differentiable. Let h(t) = f (t) − g(t).

At t = 0, f (0) = 0 and g(0) = 0 so h(0) = 0.
At t = a, f (a) > g(a) so h(a) > 0. Similarly,
at t = b, f (b) < g(b) so h(b) < 0. Thus, by
the Intermediate Value Theorem, there is a
time t = t0 for t0 ∈ (a, b) where h(t0) = 0.
Rolle’s Theorem then says that there is a time
t = c where c ∈ (0, t0) such that h′(c) = 0.
But h′(t) = f ′(t) − g′(t), so h′(c) = f ′(c) −
g′(c) = 0 implies that f ′(c) = g′(c), i.e., at
time t = c the runners are going exactly the
same speed.

27. Define h(x) = f (x) − g(x). Then h is dif-
ferentiable because f and g are, and h(a) =
h(b) = 0. Apply Rolle’s theorem to h on [a, b]
to conclude that there exists c ∈ (a, b) such
that h′(c) = 0. Thus, f ′(c) = g′(c), and so f

and g have parallel tangent lines at x = c.

28. As in #27, let h(x) = f (x) − g(x). Again, h

is continuous and differentiable on the appro-
priate intervals because f and g are. Since
f (a) − f (b) = g(a) − g(b) (by assumption),
we have f (a) = g(a) − g(b) + f (b). Then

h(a) = f (a) − g(a)

= g(a) − g(b) + f (b) − g(a)

= f (b) − g(b) = h(b).
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Rolle’s Theorem then tells us that there exists
c ∈ (a, b) such that h′(c) = 0 or f ′(c) = g′(c)
so that f and g have parallel tangent lines at
x = c.

29. f (x) = x2

One candidate: g0(x) = kx3

Because we require x2 = g′
0(x) = 3kx2, we

must have 3k = 1, k = 1/3.

Most general solution:
g(x) = g0(x) + c = x3/3 + c

where c is an arbitrary constant.

30. If g′(x) = 9x4, then g(x) = 9
5x5 + c for any

constant c.

31. Although the obvious first candidate is g0(x) =
−1/x, due to the disconnection of the domain
by the discontinuity at x = 0, we could add dif-
ferent constants, one for negative x, another
for positive x. Thus the most general solution
is:

g(x) =
{−1/x + a for x > 0

−1/x + b for x < 0.

32. If g′(x) = √
x, then g(x) = 2

3x3/2 + c for any
constant c.

33. If g′(x) = sin x, then g(x) = − cos x + c for
any constant c.

34. If g′(x) = cos x, then g(x) = sin x + c for any
constant c.

35. f (x) = 1/x on [−1, 1]. We easily see that
f (1) = 1, f (−1) = −1, and f ′(x) = −1/x2.
If we try to find the c in the interval (−1, 1)
for which

f ′(c) = f (1) − f (−1)

1 − (−1)
= 1 − (−1)

1 − (−1)
= 1,

the equation would be −1/c2 = 1 or c2 =
−1. There is of course no such c, and the
explanation is that the function is not defined
for x = 0 ∈ (−1, 1) and so the function is not
continuous.

The hypotheses for the Mean Value Theorem
are not fulfilled.

36. f (x) is not continuous on [−1, 2], and not
differentiable on (−1, 2). Can we find c ∈
(−1, 2) with

f ′(c) = f (2) − f (−1)

2 − (−1)

=
1
4 − 1

3
= − 1

4
?

f ′(x) = − 2

x3
= − 1

4
when x = 2.

This is not in (−1, 2), so no c makes the
conclusion of the Mean Value Theorem true.

37. f (x) = tan x on [0, π ], f ′(x) = sec2(x). We
know the tangent has a massive discontinuity
at x = π/2, so as in #35, we should not be
surprised if the Mean Value Theorem does not
apply. As applied to the interval [0, π ] it would
say

sec2(c) = f ′(c) = f (π) − f (0)

π − 0

= tan π − tan 0

π − 0
= 0.

But secant = 1/cosine is never 0 in the interval
(−1, 1), so no such c exists.

38. f (x) is not differentiable on (−1, 1).
Can we find c with

f ′(c) = f (1) − f (−1)

1 − (−1)

= 1 − (−1)

2
= 1?

f ′(x) = 1

3
x−2/3 = 1 when x = ±( 1

3)
3/2.

These are both in (−1, 1), so we can use either
of these as c to make the conclusion of the
Mean Value Theorem true.

39. If a derivative g′ is positive at a single point
x = b, then g(x) is an increasing function for x

sufficiently near b, i.e., g(x) > g(b) for x > b

but sufficiently near b. In this problem, we will
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apply that remark to f ′ at x = 0, and conclude
from f ′′(0) > 0 that f ′(x) > f ′(0) = 0 for
x > 0 but sufficiently small. This being true
about the derivative f ′, it tells us that f

itself is increasing on some interval (0, a)

and in particular that f (x) > f (0) = 0 for
0 < x < a. On the other side (the negative
side) f ′ is negative, f is decreasing (to zero)
and therefore likewise positive. In summary,
x = 0 is a genuine relative minimum.

40. The function cos x is continuous and dif-
ferentiable everywhere, so for any u and v

we can apply the Mean Value Theorem to
get cos u−cos v

u−v
= sin c for some c between u

and v. We know −1 ≤ sin x ≤ 1, so taking
absolute values, we get | cos u−cos v

u−v
| ≤ 1, or

| cos u − cos v| ≤ |u − v|.
41. Consider the function g(x) = x − sin(x), ob-

viously with g(0) = 0 and g′(x) = 1− cos(x).
If there was ever a point a > 0 with sin(a) ≥ a,
(g(a) ≤ 0), then by the MVT applied to g

on the interval [0, a], there would be a point

c (0 < c < a) with g′(c) = g(a) − g(0)

a − 0
=

g(a)

a
≤ 0.

This would read 1 − cos(c) = g′(c) ≤ 0 or
cos(c) ≥ 1. The latter condition is possible
only if cos(c) = 1 and sin(c) = 0, in which
case c (being positive) would be at minimum
π . But even in this unlikely case we still would
have sin(a) ≤ 1 < π ≤ c < a.

Since sin a < a for all a > 0, we have − sin a >

−a for all a > 0, but − sin a = sin(−a) so we
have sin(−a) > −a for all a > 0. This is the
same as saying sin a > a for all a < 0 so in
absolute value we have | sin a| < |a| for all
a 	= 0.

Thus the only possible solution to the equation
sin x = x is x = 0, which we know to be true.

42. The function tan x is continuous and differ-
entiable for |x| < π/2, so for any a 	= 0 in
(−π/2, π/2) we can apply the Mean Value
Theorem to get tan a−tan 0

a−0 = sec2 c for some c

between 0 and a. Taking absolute values, we
get | tan a

a
| = | sec2 c| > 1, so | tan a| > |a| for

a 	= 0. Of course tan 0 = 0, so | tan a| ≥ |a|
for all |a| < π/2.

43. f (x) =
{

2x x ≤ 0
2x − 4 x > 0

f (x) = 2x − 4 is

continuous and differentiable on (0, 2). Also,
f (0) = 0 = f (2). But f ′(x) = 2 on (0, 2),
so there is no c such that f ′(c) = 0. Rolle’s
Theorem requires that f (x) be continuous
on the closed interval, but we have a jump
discontinuity at x = 0, which is enough to
preclude the applicability of Rolle’s.

44. f (x) = x2 is a counterexample. The flaw in
the proof is that we do not have f ′(c) = 0.

Chapter 2 Review Exercises

1.
3.4 − 2.6

1.5 − 0.5
= 0.8

1
= 0.8

2. C (large negative), B (small negative), A

(small positive), and D (large positive)

3.
f ′(2) = f (2 + h) − f (2)

h

= lim
h→0

(2 + h)2 − 2(2 + h) − (0)

h

= lim
h→0

4 + 4h + h2 − 4 − 2h

h

= lim
h→0

2h + h2

h

= lim
h→0

(2 + h) = 2

4.
f ′(1) = lim

x→1

f (x) − f (1)

x − 1

= lim
x→1

1 + 1
x

− 2

x − 1

= lim
x→1

−(x−1)
x

x − 1

= lim
x→1

−1

x
= −1
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5.
f ′(1) = lim

h→0

f (1 + h) − f (1)

h

= lim
h→0

√
1 + h − 1

h

= lim
h→0

√
1 + h − 1

h
.

√
1 + h + 1√
1 + h + 1

= lim
h→0

1 + h − 1

h(
√

1 + h + 1)

= lim
h→0

1√
1 + h + 1

= 1

2

6.
f ′(0) = lim

x→0

f (x) − f (0)

x − 0

= lim
x→0

x3 − 2x

x

= lim
x→0

x2 − 2 = −2

7.
f ′(x) = lim

h→0

f (x + h) − f (x)

h

= lim
h→0

(x + h)3 + (x + h) − (x3 + x)

h

= lim
h→0

3x2h + 3xh2 + h3 + h

h

= lim
h→0

(3x2 + 3xh + h2 + 1)

= 3x2 + 1

8.
f ′(x) = lim

h→0

f (x + h) − f (x)

h

= lim
h→0

3
x+h

− 3
x

h

= lim
h→0

3x−3(x+h)
x(x+h)

h

= lim
h→0

−3h
x(x+h)

h

= lim
h→0

−3

x(x + h)
= −3

x2

9. The point is (1, 0). y′ = 4x3 − 2 so the slope
at x = 1 is 2, and the equation of the tangent
line is y = 2(x − 1) + 0 or y = 2x − 2.

10. The point is (0, 0). y′ = 2 cos 2x, so the slope
at x = 0 is 2, and the equation of the tangent
line is y = 2x.

11. The point is (0, 0). y′ = 6 cos 2x, so the slope
at x = 0 is 6, and the equation of the tangent
line is y = 6(x − 0) + 0 or y = 6x.

12. The point is (0, 1). y′ = 2x

2
√

x2 + 1
, so the

slope at x = 0 is 0, and the equation of the
tangent line is y = 1.

13. Find the slope to y − x2y2 = x − 1 at (1, 1).

d

dx
(y − x2y2) = d

dx
(x − 1)

y′ − 2xy2 − x22y . y′ = 1

y′(1 − x22y) = 1 + 2xy2

y′ = 1 + 2xy2

1 − 2x2y

At (1, 1):

y′ = 1 + 2(1)(1)2

1 − 2(1)2(1)
= 3

−1
= −3

The equation of the tangent line is y = −3(x −
1) + 1 or y = −3x + 4.

14. Implicitly differentiating:
2yy′ + cos y − x sin y . y′ = −1, and

y′ = −1 − cos y

2y − x sin y
. At (2, 0) the slope is un-

defined, and the equation of the tangent line is
x = 2.

15. s(t) = −16t2 + 40t + 10

v(t) = s′(t) = −32t + 40

a(t) = v′(t) = −32

16. s(t) = −9.8t2 − 22t + 6
v(t) = s′(t) = −19.6t − 22
a(t) = s′′(t) = −19.6
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17. s(t) = 10 sin 4t

v(t) = s′(t)
= 40 cos 4t

a(t) = v′(t)
= −160 sin 4t

18. s(t) = √
4t + 16 − 4

v(t) = s′(t) = 4

2
√

4t + 16

= 2√
4t + 16

a(t) = s′′(t)

= −2 . 4

2(4t + 16)3/2
= −4

(4t + 16)3/2

19. v(t) = s′(t) = −32t + 40
v(1) = −32(1) + 40 = 8 ft/s
The ball is rising.
v(2) = −32(2) + 40 = −24 ft/s
The ball is falling.

20. v(t) = s′(t) = 40 cos 4t

v(0) = 40 and v(π) = 40. The spring is mov-
ing in the same direction, at the same speed.

21. (a)
msec = f (2) − f (1)

2 − 1

=
√

3 − √
2

1
≈ 0.318

(b)
msec = f (1.5) − f (1)

1.5 − 1

=
√

2.5 − √
2

0.5
≈ 0.334

(c)
msec = f (1.1) − f (1)

1.1 − 1

=
√

2.1 − √
2

0.1
≈ 0.349

Best estimate for the slope of the tangent line:
(c) (approximately 0.349).

22. (a)
msec = f (2) − f (1)

2 − 1

= cos 1
3 − cos 1

6

1
≈ −0.0412

(b)
msec = f (1.5) − f (1)

1.5 − 1

= cos 1
4 − cos 1

6

0.5
≈ −0.0345

(c)
msec = f (1.1) − f (1)

1.1 − 1

= cos 11
60 − cos 1

6

0.1
≈ −0.0290

Best estimate for the slope of the tangent line:
(c) (approximately −0.0290).

23. f ′(x) = 4x3 − 9x2 + 2

24. f ′(x) = 2

3
x−1/3 − 8x

25.
f ′(x) = −3

2
x−3/2 − 10x−3

= −3

2x
√

x
− 10

x3

26.
f ′(x) =

√
x(−3 + 2x)

x

−
(2 − 3x + x2) 1

2
√

x

x

27. f ′(t) = 2t (t + 2)3 + t2 . 3(t + 2)2 . 1

= 2t (t + 2)3 + 3t2(t + 2)2

= t (t + 2)2(5t + 4)

28. f ′(t) = 2t (t3 − 3t + 2) + (t2 + 1)(3t2 − 3)



140 CHAPTER 2 . . Differentiation

29.
g′(x) = (3x2 − 1) . 1 − x(6x)

(3x2 − 1)2

= 3x2 − 1 − 6x2

(3x2 − 1)2

= − 3x2 + 1

(3x2 − 1)2

30. g(x) = 3x − 1

x
g′(x) = 3 + 1

x2

31. f ′(x) = 2x sin x + x2 cos x

32. f ′(x) = 2x cos x2

33. f ′(x) = sec2 √
x . 1

2
√

x

34. f ′(x) = 1

2
√

tan x
sec2 x

35. f ′(t) = csc t . 1 + t . (− csc t . cot t)

= csc t − t csc t cot t

36. f ′(t) = 3 cos 3t cos 4t − 4 sin 3t sin 4t

37.
u(x) = 2√

x2 + 2
= 2(x2 + 2)−1/2

u′(x) = 2

[
− 1

2
(x2 + 2)−3/2(2x)

]

= − 2x√
(x2 + 2)3

38.
u(x) =

(√
x5
)3 = x15/2

u′(x) = 15

2
x13/2 = 15

2

√
x13

39. f (x) = 3 cos
√

4 − x2 = 3 cos(4 − x2)1/2

f ′(x) = −3 sin(4 − x2)1/2
[

1

2
(4 − x2)−1/2(−2x)

]

= 3x sin
√

4 − x2
√

4 − x2

40. f ′(x) = 2 sec x(sec x tan x) = 2 sec2 x tan x

41. f ′(x) = 1

2
√

sin 4x
. cos 4x . 4 = 2 cos 4x√

sin 4x

42. f ′(x) = 2 cos 3x(−3 sin 3x)

43.
f ′(x) = 2

(
x + 1

x − 1

)
d

dx

(
x + 1

x − 1

)

= 2

(
x + 1

x − 1

)
(x − 1) − (x + 1)

(x − 1)2

= 2

(
x + 1

x − 1

) −2

(x − 1)2

= −4(x + 1)

(x − 1)3

44.
f ′(x) = 6(x − 1)2 − 6x[2(x − 1)(1)]

(x − 1)4

= (x − 1)[6(x − 1) − 12x]

(x − 1)4

= −6x − 6

(x − 1)3
or − 6x + 6

(x − 1)3

45. u′(x)

= 4
[
2 sin

(
4 − √

x
)

cos
(
4 − √

x
)

(
− 1

2
x−1/2

)]

= −4 sin
(
4 − √

x
)

cos
(
4 − √

x
)

√
x

46. f ′(x)

=
(sin 2x+2x cos 2x)

√
x2+1−

x sin 2x
[

1
2 (x2+1)−1/2(2x)

]
x2 + 1

=
(x2+1)−1/2

[(sin 2x+2x cos 2x)(x2+1)−x2 sin 2x]
x2 + 1

= sin 2x + 2x3 cos 2x + 2x cos 2x

(x2 + 1)3/2

47. The derivative should look roughly like:
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48. The derivative should look roughly like:
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49. f (x) = x4 − 3x3 + 2x2 − x − 1
f ′(x) = 4x3 − 9x2 + 4x − 1
f ′′(x) = 12x2 − 18x + 4

50. f (x) = (x + 1)1/2

f ′(x) = 1

2
(x + 1)−1/2

f ′′(x) = −1

4
(x + 1)−3/2

f ′′′(x) = 3

8
(x + 1)−5/2

51. f ′(x) = cos 2x − 2x sin 2x

f ′′(x) = −2 sin 2x − 2(sin 2x + 2x cos 2x) =
−4 sin 2x − 4x cos 2x

f ′′′(x) = −8 cos 2x − 4(cos 2x − 2x sin 2x)

= −12 cos 2x + 8x sin 2x

52. f (x) = 4(x + 1)−1

f ′(x) = −4(x + 1)−2

f ′′(x) = 8(x + 1)−3

53. f (x) = tan x

f ′(x) = sec2 x

f ′′(x) = 2 sec x . sec x tan x

= 2 sec2 x tan x

54. f (x) = x6 − 3x4 + 2x3 − 7x + 1
f ′(x) = 6x5 − 12x3 + 6x2 − 7
f ′′(x) = 30x4 − 36x2 + 12x
f ′′′(x) = 120x3 − 72x + 12
f (4)(x) = 360x2 − 72

55. f (x) = sin 3x
f ′(x) = cos 3x . 3 = 3 cos 3x
f ′′(x) = 3(− sin 3x . 3) = −9 sin 3x
f ′′′(x) = −9 cos 3x . 3 = −27 cos 3x
f (26)(x) = −326 sin 3x

56. f ′(x) = −1x−2

f ′′(x) = 2x−3

f ′′′(x) = −6x−4

f (n)(x) = (−1)nn!x−(n+1)

f 31(x) = (−1)3131!x−(31+1) = −31!x−32

57. f (t) = 4 cos 2t

v(t) = f ′(t) = 4(− sin 2t) . 2

= −8 sin 2t

(a) The velocity is zero when
v(t) = −8 sin 2t = 0, i.e., when
2t = 0, π, 2π, . . . so when
t = 0, π/2, π, 3π/2, . . .

f (t) = 4 for t = 0, π, 2π, . . .

f (t) = 4 cos 2t = −4 for
t = π/2, 3π/2, . . .

The position of the spring when the ve-
locity is zero is 4 or −4.

(b) The velocity is a maximum when
v(t) = −8 sin 2t = 8, i.e., when
2t = 3π/2, 7π/2, . . . so
t = 3π/4, 7π/4, . . .

f (t) = 4 cos 2t = 0 for
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t = 3π/4, 7π/4, . . .

The position of the spring when the ve-
locity is at a maximum is zero.

(c) Velocity is at a minimum when
v(t) = −8 sin 2t = −8, i.e., when
2t = π/2, 5π/2, . . . so
t = π/4, 5π/4, . . .

f (t) = 4 cos 2t = 0 for
t = π/4, 5π/4, . . .

The position of the spring when the ve-
locity is at a minimum is also zero.

58. The velocity is given by
f ′(t) = −7 sin 7t sin 3t + 3 cos 7t cos 3t .

59. d

dx
(x2y − 3y3) = d

dx
(x2 + 1)

2xy + x2y′ − 3 . 3y2 . y′ = 2x

y′(x2 − 9y2) = 2x − 2xy

y′ = 2x(1 − y)

x2 − 9y2

60.
d

dx
(sin(xy) + x2) = d

dx
(x − y)

cos(xy)(y + xy′) + 2x = 1 − y′

y′ = 1 − 2x − y cos(xy)

x cos(xy) + 1
.

61. d

dx

(
y

x + 1
− 3y

)
= d

dx
tan x

(x + 1)y′ − y . (1)

(x + 1)2
− 3y′ = sec2 x

(x + 1)y′ − y − 3(x + 1)2y′ = (x + 1)2 sec2 x[
(x + 1) − 3(x + 1)2

]
y′ = y + (x + 1)2 sec2 x

y′ = y + (x + 1)2 sec2 x

(x + 1) − 3(x + 1)2

62. d

dx
(x − 2y2) = d

dx

(
3 cos

(
x

y

))

1 − 2yy′ = −3 sin

(
x

y

)
. y − xy′

y2

1 − 2yy′ =
−3 sin

(
x
y

)
y

+
3 sin

(
x
y

)
xy′

y2

y′ =
3x sin(x/y)

y
+ 1

3 sin(x/y)

y2 + 2y

63. When x = 0, −3y3 = 1, y = −1
3√3

(call this a).

From our formula (#59), we find y′ = 0 at this
point. To find y′′, implicitly differentiate the
first derivative (second line in #59):

2(xy′ + y) + (2xy′ + x2y′′)
− 9

[
2y(y′)2 + y2y′′]= 2

At (0, a) with y′ = 0, we find

2a − 9a2y′′ = 2,

y′′ = −2 3
√

3

9

(
3
√

3 + 1
)

Below is a sketch of the graph of x2y − 3y3 =
x2 + 1.

y

2

-6

4

0

x

-5-10

-4

-2

50 10

64. Plugging in x = 0 gives −2y = 0 so y = 0.
Plugging (0, 0) into the formula for y′ gives
a slope of −1/2. Implicitly differentiating the
third line of the solution to #37 gives

y′′(x + 1) + y′ − y′
= 2(x + 1)(3y′ + sec2 x)

(x + 1)2(3y′′ + 2 sec x . sec x tan x)
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Plugging in x = 0, y = 0 and y′ = −1/2 gives

y′′ = 2(−3/2 + sec2(0))

+(1)2(3y′′ + 2 sec2(0) tan(0))

y′′ = 1 + 3y′′. So at x = 0, y′′ = −1/2.

The graph is:

0-2-4

y

3

2

1

0

-1
x

-2

-3

42

65. y′ = 3x2 − 12x = 3x(x − 4)

(a) y′ = 0 for x = 0 (y = 1), and x = 4 (y =
−31) so there are horizontal tangent lines
at (0, 1) and (4, −31).

(b) y′ is defined for all x, so there are no
vertical tangent lines.

66. y′ = 2

3
x−1/3

(a) The derivative is never 0, so the tangent
line is never horizontal.

(b) The derivative is undefined at x = 0 and
the tangent is vertical there.

67. d

dx
(x2y − 4y) = d

dx
x2

2xy + x2y′ − 4y′ = 2x

y′(x2 − 4) = 2x − 2xy

y′ = 2x − 2xy

x2 − 4
= 2x(1 − y)

x2 − 4

(a) y′ = 0 when x = 0 or y = 1. At y = 1,
x2 . 1 − 4 . 1 = x2

x2 − 4 = x2

This is impossible, so there is no x for

which y = 1. At x = 0, 02 . y − 4y = 02,
so y = 0. Therefore, there is a horizontal
tangent line at (0, 0).

(b) y′ is not defined when x2 − 4 = 0, or
x = ±2. At x = ±2, 4y − 4y = 4 so the
function is not defined at x = ±2. There
are no vertical tangent lines.

68. y′ = 4x3 − 2x = 2x(2x2 − 1).

(a) The derivative is 0 at x = 0 and x = ±
√

1
2 ,

and the tangent line is horizontal at those
points.

(b) The tangent line is never vertical.

69. f (x) is continuous and differentiable for all x,
and f ′(x) = 3x2 + 7, which is positive for all
x. By Theorem 8.2, if the equation f (x) = 0
has two solutions, then f ′(x) = 0 would have
at least one solution, but it has none. Every
odd degree polynomial has at least one root,
so in this case there is exactly one root.

70. The derivative is 4x3 + 4x. This is negative for
negative x, and positive for positive x. f (x)

is decreasing on (−∞, 0) and increasing on
(0, ∞), so can have at most one zero for x < 0
and one zero for x > 0. Since f (−1) = 0,
f (1) = 0 and f (0) = −3, f (x) has exactly
one solution for x < 0, exactly one solution
for x > 0, and no other solutions.

71. Let a > 0. We know that f (x) = cos x − 1 is
continuous and differentiable on the interval
(0, a). Also f ′(x) = sin x ≤ 1 for all x. The
Mean Value Theorem implies that there exists
some c in the interval (0, a) such that

f ′(c) = cos a − 1 − (cos 0 − 1)

a − 0

= cos a − 1

a
.

Since this is equal to sin c and sin c ≤ 1 for
any c, we get that

cos a − 1 ≤ a
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as desired. This works for all positive a, but
since cos x − 1 is symmetric about the y axis,
we get

| cos x − 1| ≤ |x|.
They are actually equal at x = 0.

72. This is an example of a Taylor polynomial.
Later, Taylor’s theorem will be used to prove
such inequalities. For now, one can use mul-
tiple derivatives and argue that the rate of the
rate of the rate of change (etc.) increases as one
moves left to right through the inequalities.

73. To show that g(x) is continuous at x = a, we
need to show that the limit as x approaches a

of g(x) exists and is equal to g(a). But

lim
x→a

g(x) = lim
x→a

f (x) − f (a)

x − a
,

which is the definition of the derivative of f (x)

at x = a. Since f (x) is differentiable at x = a,
we know this limit exists and is equal to f ′(a),
which, in turn, is equal to g(a). Thus g(x) is
continuous at x = a.

74. We have

f (x) − T (x)

= f (x) − f (a) − f ′(a)(x − a)

=
(

f (x) − f (a)

x − a
− f ′(a)

)
(x − a)

Letting e(x) = f (x) − f (a)

x − a
− f ′(a), we ob-

tain the desired form. Since f (x) is differen-
tiable at x = a, we know that

lim
x→a

f (x) − f (a)

x − a
= f ′(a)

so

lim
x→a

e(x) = lim
x→a

f (x) − f (a)

x − a
− f ′(a)

= 0.

75. f (x) = x2 − 2x on [0, 2]
f (2) = 0 = f (0)

If f ′(c) = f (2) − f (0)

2 − 0
= 0 − 0

2
= 0 then

2c − 2 = f ′(c) = 0 so c = 1.

76. f (x) is continuous on [0, 2] and differen-
tiable on (0, 2), so the Mean Value Theorem
applies. We need to find c so that f ′(c) =
f (2) − f (0)

2 − 0
= 6 − 0

2 − 0
= 3. f ′(x) = 3x2 −

1 = 3 when x = √
4/3, so c = 2

√
3/3.

77. f (x) = 3x2 − cos x One trial: go(x) = kx3 −
sin x g′

o
(x) = 3kx2 − cos x Need 3k = 3, k =

1, and the general solution is g(x) = go(x) +
c = x3 − sin x + c for c an arbitrary constant.

78. If g′(x) = x3 − sin 2x, then g(x) must be
1

4
x4 + 1

2
cos 2x + c,

for any constant c.

79. x = 1 is to be double root of

f (x) = (x3 + 1) − [m(x − 1) + 2]

= (x3 + 1 − 2) − m(x − 1)

= (x3 − 1) − m(x − 1)

= (x − 1)
[
x2 + x + 1 − m

]
Let g(x) = x2 + x + 1 − m. Then x = 1 is a
double root of f only if (x − 1) is a factor
of g, in which case g(1) = 0. Therefore we
require 0 = g(1) = 3 − m or m = 3. Now
g(x) = x2 + x − 2 = (x − 1)(x + 2),

f (x) = (x − 1)g(x) = (x − 1)2(x + 2) and
x = 1 is a double root.

The line tangent to the curve y = x3 + 1 at the
point (1, 2) has slope y′ = 3x2 = 3(1) = 3(=
m). The equation of the tangent line is y − 2 =
3(x − 1) or y = 3x − 1(= m(x − 1) + 2).

80. We are asked to find m so that x3 + 2x −
[m(x − 2) + 12] = x3 + (2 − m)x + (2m −
12) has a double root. A cubic with a dou-
ble root factors as (x − a)2(x − b) = x3 −
(2a + b)x2 + (2ab + a2)x − a2b. Equating
like coefficients gives a system of equations
2a + b = 0, 2ab + a2 = 2 − m, and −a2b =
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2m − 12. The first equation gives b = −2a.
Substituting this into the second equation gives
m = 2 + 3a2. Substituting these results into
the third equation gives a cubic polynomial in
a with zeros a = −1 and a = 2. This gives two
solutions: m = 5 and m = 14.

f ′(x) = 3x2 + 2, so f ′(2) = 14. The tangent
line at (2, 12) is y = 14(x − 2) + 12.

The second solution corresponds to the tangent
line to f (x) at x = −1, which happens to pass
through the point (2, 12).




