SOLUTIONS MANUAL

CHAPTER 4

Limits

2.1 Concepts Review

$$4. \quad \lim_{x \to c} f(x) = M$$

Problem Set 2.1

1.
$$\lim_{x \to 3} (x - 5) = -2$$

2.
$$\lim_{t \to -1} (1 - 2t) = 3$$

3.
$$\lim_{x \to -2} (x^2 + 2x - 1) = (-2)^2 + 2(-2) - 1 = -1$$

4.
$$\lim_{x \to -2} (x^2 + 2t - 1) = (-2)^2 + 2t - 1 = 3 + 2t$$

5.
$$\lim_{t \to -1} (t^2 - 1) = ((-1)^2 - 1) = 0$$

6.
$$\lim_{t \to -1} (t^2 - x^2) = ((-1)^2 - x^2) = 1 - x^2$$

7.
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2}$$
$$= \lim_{x \to 2} (x + 2)$$
$$= 2 + 2 = 4$$

8.
$$\lim_{t \to -7} \frac{t^2 + 4t - 21}{t + 7} = \lim_{t \to -7} \frac{(t + 7)(t - 3)}{t + 7}$$
$$= \lim_{t \to -7} (t - 3)$$
$$= -7 - 3$$
$$= -10$$

9.
$$\lim_{x \to -1} \frac{x^3 - 4x^2 + x + 6}{x + 1}$$

$$= \lim_{x \to -1} \frac{(x + 1)(x^2 - 5x + 6)}{x + 1}$$

$$= \lim_{x \to -1} (x^2 - 5x + 6)$$

$$= (-1)^2 - 5(-1) + 6$$

$$= 12$$

10.
$$\lim_{x\to 0} \frac{x^4 + 2x^3 - x^2}{x^2} = \lim_{x\to 0} (x^2 + 2x - 1) = -1$$

11.
$$\lim_{x \to -t} \frac{x^2 - t^2}{x + t} = \lim_{x \to -t} \frac{(x + t)(x - t)}{x + t}$$
$$= \lim_{x \to -t} (x - t)$$
$$= -t - t$$
$$= -2t$$

12.
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)}{x - 3}$$
$$= \lim_{x \to 3} (x + 3)$$
$$= 3 + 3$$
$$= 6$$

13.
$$\lim_{t \to 2} \frac{\sqrt{(t+4)(t-2)^4}}{(3t-6)^2} = \lim_{t \to 2} \frac{(t-2)^2 \sqrt{t+4}}{9(t-2)^2}$$
$$= \lim_{t \to 2} \frac{\sqrt{t+4}}{9}$$
$$= \frac{\sqrt{2+4}}{9}$$
$$= \frac{\sqrt{6}}{9}$$

14.
$$\lim_{t \to 7^{+}} \frac{\sqrt{(t-7)^{3}}}{t-7} = \lim_{t \to 7^{+}} \frac{(t-7)\sqrt{t-7}}{t-7}$$
$$= \lim_{t \to 7^{+}} \sqrt{t-7}$$
$$= \sqrt{7-7}$$
$$= 0$$

15.
$$\lim_{x \to 3} \frac{x^4 - 18x^2 + 81}{(x - 3)^2} = \lim_{x \to 3} \frac{(x^2 - 9)^2}{(x - 3)^2}$$
$$= \lim_{x \to 3} \frac{(x - 3)^2 (x + 3)^2}{(x - 3)^2} = \lim_{x \to 3} (x + 3)^2 = (3 + 3)^2$$
$$= 36$$

16.
$$\lim_{u \to 1} \frac{(3u+4)(2u-2)^3}{(u-1)^2} = \lim_{u \to 1} \frac{8(3u+4)(u-1)^3}{(u-1)^2}$$
$$= \lim_{u \to 1} 8(3u+4)(u-1) = 8[3(1)+4](1-1) = 0$$

17.
$$\lim_{h \to 0} \frac{(2+h)^2 - 4}{h} = \lim_{h \to 0} \frac{4+4h+h^2 - 4}{h}$$
$$= \lim_{h \to 0} \frac{h^2 + 4h}{h} = \lim_{h \to 0} (h+4) = 4$$

18.
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$$
$$= \lim_{h \to 0} \frac{h^2 + 2xh}{h} = \lim_{h \to 0} (h + 2x) = 2x$$

19.
$$x$$
 $\frac{\sin x}{2x}$

1. 0.420735

0.1 0.499167

0.01 0.499992

0.001 0.49999992

-1. 0.420735

-0.1 0.420735

-0.1 0.499167

-0.01 0.4999992

-0.001 0.49999992
 $\lim_{x\to 0} \frac{\sin x}{2x} = 0.5$

20.
$$t \frac{\frac{1-\cos t}{2t}}{1.}$$

$$0.229849$$

$$0.1 0.0249792$$

$$0.01 0.00249998$$

$$0.001 0.00024999998$$

$$-1. -0.229849$$

$$-0.1 -0.0249792$$

$$-0.01 -0.002499998$$

$$-0.001 -0.00024999998$$

$$\lim_{t \to 0} \frac{1-\cos t}{2t} = 0$$

21.
$$x | (x-\sin x)^{2}/x^{2}$$
1.
$$0.0251314$$
0.1
$$2.775\times10^{-6}$$
0.01
$$2.77775\times10^{-10}$$
0.001
$$2.77778\times10^{-14}$$
-1.
$$0.0251314$$
-0.1
$$2.775\times10^{-6}$$
-0.01
$$2.77775\times10^{-10}$$
-0.001
$$2.77775\times10^{-10}$$
-0.001
$$2.77778\times10^{-14}$$

$$\lim_{x\to 0} \frac{(x-\sin x)^{2}}{x^{2}} = 0$$

23.
$$t | (t^{2}-1)/(\sin(t-1))$$
2.
$$3.56519$$
1.1
$$2.1035$$
1.01
$$2.01003$$
1.001
$$2.001$$
0
$$1.1884$$
0.9
$$1.90317$$
0.99
$$1.99003$$
0.999
$$1.999$$

$$\lim_{t \to 1} \frac{t^{2}-1}{\sin(t-1)} = 2$$

24.	X	$\frac{x-\sin(x-3)-3}{x-3}$
	4.	0.158529
	3.1	0.00166583
	3.01	0.0000166666
	3.001	1.66667×10^{-7}
	2.	0.158529
	2.9	0.00166583
	2.99	0.0000166666
	2.999	1.66667×10^{-7}
$\lim_{x \to 3} \frac{x - \sin(x - 3) - 3}{x - 3} = 0$		

25.
$$x = \frac{(1+\sin(x-3\pi/2))/(x-\pi)}{1.+\pi}$$

$$0.4597$$

$$0.1+\pi = 0.0500$$

$$0.001+\pi = 0.0005$$

$$-1.+\pi = -0.4597$$

$$-0.1+\pi = -0.0500$$

$$-0.01+\pi = -0.0050$$

$$-0.001+\pi = -0.0005$$

$$\lim_{x\to\pi} \frac{1+\sin\left(x-\frac{3\pi}{2}\right)}{x-\pi} = 0$$

26.
$$\begin{array}{c|cccc} t & & & & & & & \\ \hline 1. & & & & & & & \\ 0.357907 & & & & \\ 0.1 & & & & & & \\ 0.01 & & & & & & \\ 0.001 & & & & & \\ -0.989967 & & & & \\ 0.001 & & & & & \\ -0.999 & & & & \\ \hline -1. & & & & & \\ -1.64209 & & & \\ -0.1 & & & & & \\ -1.09666 & & & \\ -0.01 & & & & & \\ -0.001 & & & & & \\ \hline -1.00997 & & & \\ \hline -0.001 & & & & \\ \hline -1.001 & & & \\ \hline \lim_{t \to 0} \frac{1-\cot t}{\frac{1}{t}} = -1 \end{array}$$

27.
$$x \qquad (x-\pi/4)^2/(\tan x - 1)^2$$

$$1.+\frac{\pi}{4} \qquad 0.0320244$$

$$0.1+\frac{\pi}{4} \qquad 0.201002$$

$$0.01+\frac{\pi}{4} \qquad 0.245009$$

$$0.001+\frac{\pi}{4} \qquad 0.2495$$

$$-1.+\frac{\pi}{4} \qquad 0.674117$$

$$-0.1+\frac{\pi}{4} \qquad 0.300668$$

$$-0.01+\frac{\pi}{4} \qquad 0.255008$$

$$-0.001+\frac{\pi}{4} \qquad 0.2505$$

$$\lim \frac{\left(x-\frac{\pi}{4}\right)^2}{1} = 0.25$$

28.
$$u \qquad (2-2\sin u)/3u$$

$$1.+\frac{\pi}{2} \qquad 0.11921$$

$$0.1+\frac{\pi}{2} \qquad 0.00199339$$

$$0.01+\frac{\pi}{2} \qquad 0.0000210862$$

$$0.001+\frac{\pi}{2} \qquad 2.12072\times10^{-7}$$

$$-1.+\frac{\pi}{2} \qquad 0.536908$$

$$-0.1+\frac{\pi}{2} \qquad 0.00226446$$

$$-0.01+\frac{\pi}{2} \qquad 0.000213564$$

$$-0.001+\frac{\pi}{2} \qquad 2.12342\times10^{-7}$$

$$\lim_{u\to\frac{\pi}{2}} \frac{2-2\sin u}{3u} = 0$$

29. a.
$$\lim_{x \to -3} f(x) = 2$$

b.
$$f(-3) = 1$$

c. f(-1) does not exist.

d.
$$\lim_{x \to -1} f(x) = \frac{5}{2}$$

e.
$$f(1) = 2$$

f. $\lim_{x \to 1} f(x)$ does not exist.

g.
$$\lim_{x \to 1^{-}} f(x) = 2$$

h.
$$\lim_{x \to 1^+} f(x) = 1$$

i.
$$\lim_{x \to -1^+} f(x) = \frac{5}{2}$$

- **30.** a. $\lim_{x\to -3} f(x)$ does not exist.
 - **b.** f(-3) = 1
 - **c.** f(-1) = 1
 - $\mathbf{d.} \quad \lim_{x \to -1} f(x) = 2$
 - **e.** f(1) = 1
 - **f.** $\lim_{x \to 1} f(x)$ does not exist.
 - $\mathbf{g.} \quad \lim_{x \to 1^{-}} f(x) = 1$
 - **h.** $\lim_{x \to 1^+} f(x)$ does not exist.
 - $\lim_{x \to -1^+} f(x) = 2$
- **31. a.** f(-3) = 2
 - **b.** f(3) is undefined.
 - c. $\lim_{x \to -3^{-}} f(x) = 2$
 - **d.** $\lim_{x \to -3^+} f(x) = 4$
 - e. $\lim_{x \to -3} f(x)$ does not exist.
 - **f.** $\lim_{x \to 3^+} f(x)$ does not exist.
- **32. a.** $\lim_{x \to -1^{-}} f(x) = -2$
 - **b.** $\lim_{x \to -1^+} f(x) = -2$
 - $\mathbf{c.} \quad \lim_{x \to -1} f(x) = -2$
 - **d.** f(-1) = -2
 - $e. \quad \lim_{x \to 1} f(x) = 0$
 - **f.** f(1) = 0

33.

 $\mathbf{a.} \quad \lim_{x \to 0} f(x) = 0$

- **b.** $\lim_{x \to 1} f(x)$ does not exist.
- **c.** f(1) = 2
- **d.** $\lim_{x \to 1^+} f(x) = 2$

34.

- $\mathbf{a.} \quad \lim_{x \to 1} g(x) = 0$
- **b.** g(1) does not exist.
- $\mathbf{c.} \quad \lim_{x \to 2} g(x) = 1$
- **d.** $\lim_{x \to 2^+} g(x) = 1$
- **35.** $f(x) = x \lceil \lceil x \rceil \rceil$

- **a.** f(0) = 0
- **b.** $\lim_{x \to 0} f(x)$ does not exist.
- c. $\lim_{x \to 0^{-}} f(x) = 1$
- **d.** $\lim_{x \to \frac{1}{2}} f(x) = \frac{1}{2}$

- **a.** f(0) does not exist.
- **b.** $\lim_{x\to 0} f(x)$ does not exist.
- **c.** $\lim_{x \to 0^{-}} f(x) = -1$
- **d.** $\lim_{x \to \frac{1}{2}} f(x) = 1$
- 37. $\lim_{x \to 1} \frac{x^2 1}{|x 1|}$ does not exist.

$$\lim_{x \to 1^{-}} \frac{x^2 - 1}{|x - 1|} = -2 \text{ and } \lim_{x \to 1^{+}} \frac{x^2 - 1}{|x - 1|} = 2$$

38.
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$

$$= \lim_{x \to 0} \frac{(\sqrt{x+2} - \sqrt{2})(\sqrt{x+2} + \sqrt{2})}{x(\sqrt{x+2} + \sqrt{2})}$$

$$= \lim_{x \to 0} \frac{x+2-2}{x(\sqrt{x+2} + \sqrt{2})} = \lim_{x \to 0} \frac{x}{x(\sqrt{x+2} + \sqrt{2})}$$

$$= \lim_{x \to 0} \frac{1}{\sqrt{x+2} + \sqrt{2}} = \frac{1}{\sqrt{0+2} + \sqrt{2}} = \frac{1}{2\sqrt{2}} = \frac{\sqrt{2}}{4}$$

- **39.** a. $\lim_{x\to 1} f(x)$ does not exist.
 - **b.** $\lim_{x \to 0} f(x) = 0$

- **41.** $\lim_{x \to a} f(x)$ exists for a = -1, 0, 1.
- **42.** The changed values will not change $\lim_{x\to a} f(x)$ at any a. As x approaches a, the limit is still a^2 .
- **43.** a. $\lim_{x \to 1} \frac{|x-1|}{x-1}$ does not exist. $\lim_{x \to 1^{-}} \frac{|x-1|}{x-1} = -1$ and $\lim_{x \to 1^{+}} \frac{|x-1|}{x-1} = 1$
 - **b.** $\lim_{x \to 1^{-}} \frac{|x-1|}{x-1} = -1$
 - **c.** $\lim_{x \to 1^{-}} \frac{x^2 |x 1| 1}{|x 1|} = -3$
 - **d.** $\lim_{x \to 1^{-}} \left[\frac{1}{x-1} \frac{1}{|x-1|} \right]$ does not exist.
- **44.** a. $\lim_{x \to 1^+} \sqrt{x [x]} = 0$
 - **b.** $\lim_{x\to 0^+} \left[\frac{1}{x}\right]$ does not exist.
 - **c.** $\lim_{x \to 0^+} x(-1)^{[1/x]} = 0$
 - **d.** $\lim_{x \to 0^+} [x] (-1)^{[1/x]} = 0$
- **45.** a) 1
- **b**) 0
- c) -
- **d**) -1
- **46. a**) Does not exist **b**) 0
- - **c**) 1
- **d**) 0.556
- **47.** $\lim_{x\to 0} \sqrt{x}$ does not exist since \sqrt{x} is not defined for x < 0.
- **48.** $\lim_{x \to 0^+} x^x = 1$
- **49.** $\lim_{x\to 0} \sqrt{|x|} = 0$
- **50.** $\lim_{x\to 0} |x|^x = 1$
- **51.** $\lim_{x \to 0} \frac{\sin 2x}{4x} = \frac{1}{2}$

52.
$$\lim_{x \to 0} \frac{\sin 5x}{3x} = \frac{5}{3}$$

53.
$$\lim_{x \to 0} \cos\left(\frac{1}{x}\right)$$
 does not exist.

$$54. \quad \lim_{x \to 0} x \cos\left(\frac{1}{x}\right) = 0$$

55.
$$\lim_{x \to 1} \frac{x^3 - 1}{\sqrt{2x + 2} - 2} = 6$$

56.
$$\lim_{x \to 0} \frac{x \sin 2x}{\sin(x^2)} = 2$$

57.
$$\lim_{x \to 2^{-}} \frac{x^2 - x - 2}{|x - 2|} = -3$$

58.
$$\lim_{x \to 1^+} \frac{2}{1 + 2^{1/(x-1)}} = 0$$

59. $\lim_{x\to 0} \sqrt{x}$; The computer gives a value of 0, but $\lim_{x\to 0^-} \sqrt{x}$ does not exist.

2.2 Concepts Review

1.
$$L-\varepsilon$$
; $L+\varepsilon$

2.
$$0 < |x - a| < \delta; |f(x) - L| < \varepsilon$$

3.
$$\frac{\varepsilon}{3}$$

4.
$$ma + b$$

Problem Set 2.2

1.
$$0 < |t - a| < \delta \Rightarrow |f(t) - M| < \varepsilon$$

2.
$$0 < |u - b| < \delta \Rightarrow |g(u) - L| < \varepsilon$$

3.
$$0 < |z - d| < \delta \Rightarrow |h(z) - P| < \varepsilon$$

4.
$$0 < |y - e| < \delta \Rightarrow |\phi(y) - B| < \varepsilon$$

5.
$$0 < c - x < \delta \Rightarrow |f(x) - L| < \varepsilon$$

6.
$$0 < t - a < \delta \Rightarrow |g(t) - D| < \varepsilon$$

7. If *x* is within 0.001 of 2, then 2*x* is within 0.002 of 4.

8. If *x* is within 0.0005 of 2, then x^2 is within 0.002 of 4.

9. If x is within 0.0019 of 2, then $\sqrt{8x}$ is within 0.002 of 4.

10. If *x* is within 0.001 of 2, then $\frac{8}{x}$ is within 0.002 of 4.

11. $0 < |x - 0| < \delta \Rightarrow |(2x - 1) - (-1)| < \varepsilon$ $|2x - 1 + 1| < \varepsilon \Leftrightarrow |2x| < \varepsilon$ $\Leftrightarrow 2|x| < \varepsilon$ $\Leftrightarrow |x| < \frac{\varepsilon}{2}$

$$\delta = \frac{\varepsilon}{2}; 0 < |x - 0| < \delta$$
$$|(2x - 1) - (-1)| = |2x| = 2|x| < 2\delta = \varepsilon$$

12.
$$0 < |x+21| < \delta \Rightarrow |(3x-1) - (-64)| < \varepsilon$$

 $|3x-1+64| < \varepsilon \Leftrightarrow |3x+63| < \varepsilon$
 $\Leftrightarrow |3(x+21)| < \varepsilon$
 $\Leftrightarrow 3|x+21| < \varepsilon$
 $\Leftrightarrow |x+21| < \frac{\varepsilon}{3}$

$$\delta = \frac{\varepsilon}{3}; 0 < |x + 21| < \delta$$
$$|(3x - 1) - (-64)| = |3x + 63| = 3|x + 21| < 3\delta = \varepsilon$$

13.
$$0 < |x-5| < \delta \Rightarrow \left| \frac{x^2 - 25}{x - 5} - 10 \right| < \varepsilon$$

$$\left| \frac{x^2 - 25}{x - 5} - 10 \right| < \varepsilon \Leftrightarrow \left| \frac{(x - 5)(x + 5)}{x - 5} - 10 \right| < \varepsilon$$

$$\Leftrightarrow |x + 5 - 10| < \varepsilon$$

$$\Leftrightarrow |x - 5| < \varepsilon$$

$$\delta = \varepsilon; 0 < |x - 5| < \delta$$

$$\left| \frac{x^2 - 25}{x - 5} - 10 \right| = \left| \frac{(x - 5)(x + 5)}{x - 5} - 10 \right| = \left| x + 5 - 10 \right|$$

$$= |x - 5| < \delta = \varepsilon$$

14.
$$0 < |x - 0| < \delta \Rightarrow \left| \frac{2x^2 - x}{x} - (-1) \right| < \varepsilon$$

$$\left| \frac{2x^2 - x}{x} + 1 \right| < \varepsilon \Leftrightarrow \left| \frac{x(2x - 1)}{x} + 1 \right| < \varepsilon$$

$$\Leftrightarrow |2x - 1 + 1| < \varepsilon$$

$$\Leftrightarrow |2x| < \varepsilon$$

$$\Leftrightarrow 2|x| < \varepsilon$$

$$\Leftrightarrow |x| < \frac{\varepsilon}{2}$$

$$\delta = \frac{\varepsilon}{2}; 0 < |x - 0| < \delta$$

$$\left| \frac{2x^2 - x}{x} - (-1) \right| = \left| \frac{x(2x - 1)}{x} + 1 \right| = \left| 2x - 1 + 1 \right|$$

$$= |2x| = 2|x| < 2\delta = \varepsilon$$

15.
$$0 < |x-5| < \delta \Rightarrow \left| \frac{2x^2 - 11x + 5}{x - 5} - 9 \right| < \varepsilon$$

$$\left| \frac{2x^2 - 11x + 5}{x - 5} - 9 \right| < \varepsilon \Leftrightarrow \left| \frac{(2x - 1)(x - 5)}{x - 5} - 9 \right| < \varepsilon$$

$$\Leftrightarrow |2x - 1 - 9| < \varepsilon$$

$$\Leftrightarrow |2(x - 5)| < \varepsilon$$

$$\Leftrightarrow |x - 5| < \frac{\varepsilon}{2}$$

$$\delta = \frac{\varepsilon}{2}; 0 < |x - 5| < \delta$$

$$\delta = \frac{\varepsilon}{2}; 0 < |x - 5| < \delta$$

$$\left| \frac{2x^2 - 11x + 5}{x - 5} - 9 \right| = \left| \frac{(2x - 1)(x - 5)}{x - 5} - 9 \right|$$

$$= \left| 2x - 1 - 9 \right| = \left| 2(x - 5) \right| = 2|x - 5| < 2\delta = \varepsilon$$

16.
$$0 < |x-1| < \delta \Rightarrow \left| \sqrt{2x} - \sqrt{2} \right| < \varepsilon$$

$$\left| \sqrt{2x} - \sqrt{2} \right| < \varepsilon$$

$$\Leftrightarrow \left| \frac{(\sqrt{2x} - \sqrt{2})(\sqrt{2x} + \sqrt{2})}{\sqrt{2x} + \sqrt{2}} \right| < \varepsilon$$

$$\Leftrightarrow \left| \frac{2x - 2}{\sqrt{2x} + \sqrt{2}} \right| < \varepsilon$$

$$\Leftrightarrow 2 \left| \frac{x - 1}{\sqrt{2x} + \sqrt{2}} \right| < \varepsilon$$

$$\delta = \frac{\sqrt{2\varepsilon}}{2}; 0 < |x - 1| < \delta$$

$$\left| \sqrt{2x} - \sqrt{2} \right| = \left| \frac{(\sqrt{2x} - \sqrt{2})(\sqrt{2x} + \sqrt{2})}{\sqrt{2x} + \sqrt{2}} \right|$$

$$= \left| \frac{2x - 2}{\sqrt{2x} + \sqrt{2}} \right|$$

$$\frac{2|x - 1|}{\sqrt{2x} + \sqrt{2}} \le \frac{2|x - 1|}{\sqrt{2}} < \frac{2\delta}{\sqrt{2}} = \varepsilon$$

17.
$$0 < |x-4| < \delta \Rightarrow \left| \frac{\sqrt{2x-1}}{\sqrt{x-3}} - \sqrt{7} \right| < \varepsilon$$

$$\left| \frac{\sqrt{2x-1}}{\sqrt{x-3}} - \sqrt{7} \right| < \varepsilon \Leftrightarrow \left| \frac{\sqrt{2x-1} - \sqrt{7(x-3)}}{\sqrt{x-3}} \right| < \varepsilon$$

$$\Leftrightarrow \left| \frac{(\sqrt{2x-1} - \sqrt{7(x-3)})(\sqrt{2x-1} + \sqrt{7(x-3)})}{\sqrt{x-3}(\sqrt{2x-1} + \sqrt{7(x-3)})} \right| < \varepsilon$$

$$\Leftrightarrow \left| \frac{2x-1 - (7x-21)}{\sqrt{x-3}(\sqrt{2x-1} + \sqrt{7(x-3)})} \right| < \varepsilon$$

$$\Leftrightarrow \left| \frac{-5(x-4)}{\sqrt{x-3}(\sqrt{2x-1} + \sqrt{7(x-3)})} \right| < \varepsilon$$

$$\Leftrightarrow |x-4| \cdot \frac{5}{\sqrt{x-3}(\sqrt{2x-1} + \sqrt{7(x-3)})} < \varepsilon$$

To bound
$$\frac{5}{\sqrt{x-3}(\sqrt{2x-1}+\sqrt{7(x-3)})}$$
, agree that

$$\delta \le \frac{1}{2}$$
. If $\delta \le \frac{1}{2}$, then $\frac{7}{2} < x < \frac{9}{2}$, so

$$0.65 < \frac{5}{\sqrt{x-3}(\sqrt{2x-1} + \sqrt{7(x-3)})} < 1.65$$
 and

hence
$$|x-4| \cdot \frac{5}{\sqrt{x-3}(\sqrt{2x-1} + \sqrt{7(x-3)})} < \varepsilon$$

$$\Leftrightarrow |x-4| < \frac{\varepsilon}{1.65}$$

For whatever ε is chosen, let δ be the smaller of

$$\frac{1}{2}$$
 and $\frac{\varepsilon}{1.65}$.

$$\delta = \min \left\{ \frac{1}{2}, \frac{\varepsilon}{1.65} \right\}, \ 0 < |x - 4| < \delta$$

$$\left| \frac{\sqrt{2x-1}}{\sqrt{x-3}} - \sqrt{7} \right| = |x-4| \cdot \frac{5}{\sqrt{x-3}(\sqrt{2x-1} + \sqrt{7(x-3)})}$$

$$<|x-4|(1.65)<1.65\delta \le \varepsilon$$

since
$$\delta = \frac{1}{2}$$
 only when $\frac{1}{2} \le \frac{\varepsilon}{1.65}$ so $1.65 \delta \le \varepsilon$.

18.
$$0 < |x-1| < \delta \Rightarrow \left| \frac{14x^2 - 20x + 6}{x - 1} - 8 \right| < \varepsilon$$

$$\left| \frac{14x^2 - 20x + 6}{x - 1} - 8 \right| < \varepsilon \Leftrightarrow \left| \frac{2(7x - 3)(x - 1)}{x - 1} - 8 \right| < \varepsilon$$

$$\Leftrightarrow |2(7x-3)-8| < \varepsilon$$

$$\Leftrightarrow |14(x-1)| < \varepsilon$$

$$\Leftrightarrow 14|x-1| < \varepsilon$$

$$\Leftrightarrow |x-1| < \frac{\varepsilon}{14}$$

$$\delta = \frac{\varepsilon}{14}$$
; $0 < |x-1| < \delta$

$$\left| \frac{14x^2 - 20x + 6}{x - 1} - 8 \right| = \left| \frac{2(7x - 3)(x - 1)}{x - 1} - 8 \right|$$

$$= |2(7x-3)-8|$$

$$= |14(x-1)| = 14|x-1| < 14\delta = \varepsilon$$

19.
$$0 < |x-1| < \delta \Rightarrow \left| \frac{10x^3 - 26x^2 + 22x - 6}{(x-1)^2} - 4 \right| < \varepsilon$$

$$\left| \frac{10x^3 - 26x^2 + 22x - 6}{(x - 1)^2} - 4 \right| < \varepsilon$$

$$\Leftrightarrow \left| \frac{(10x-6)(x-1)^2}{(x-1)^2} - 4 \right| < \varepsilon$$

$$\Leftrightarrow |10x - 6 - 4| < \varepsilon$$

$$\Leftrightarrow |10(x-1)| < \varepsilon$$

$$\Leftrightarrow 10|x-1| < \varepsilon$$

$$\Leftrightarrow |x-1| < \frac{\varepsilon}{10}$$

$$\delta = \frac{\varepsilon}{10}$$
; $0 < |x - 1| < \delta$

$$\left| \frac{10x^3 - 26x^2 + 22x - 6}{(x - 1)^2} - 4 \right| = \left| \frac{(10x - 6)(x - 1)^2}{(x - 1)^2} - 4 \right|$$

$$= |10x - 6 - 4| = |10(x - 1)|$$

$$=10|x-1|<10\delta=\varepsilon$$

20.
$$0 < |x-1| < \delta \Rightarrow |(2x^2+1)-3| < \varepsilon$$

$$|2x^2 + 1 - 3| = |2x^2 - 2| = 2|x + 1||x - 1|$$

To bound |2x+2|, agree that $\delta \le 1$.

$$|x-1| < \delta$$
 implies

$$|2x+2| = |2x-2+4|$$

$$\leq |2x-2|+|4|$$

$$< 2 + 4 = 6$$

$$\delta \le \frac{\varepsilon}{6}$$
; $\delta = \min \left\{ 1, \frac{\varepsilon}{6} \right\}$; $0 < |x - 1| < \delta$

$$\left| (2x^2 + 1) - 3 \right| = \left| 2x^2 - 2 \right|$$

$$= |2x+2||x-1| < 6 \cdot \left(\frac{\varepsilon}{6}\right) = \varepsilon$$

21.
$$0 < |x+1| < \delta \Rightarrow |(x^2 - 2x - 1) - 2| < \varepsilon$$

 $|x^2 - 2x - 1 - 2| = |x^2 - 2x - 3| = |x+1||x-3|$
To bound $|x-3|$, agree that $\delta \le 1$.
 $|x+1| < \delta$ implies
 $|x-3| = |x+1-4| \le |x+1| + |-4| < 1 + 4 = 5$
 $\delta \le \frac{\varepsilon}{5}; \delta = \min\left\{1, \frac{\varepsilon}{5}\right\}; 0 < |x+1| < \delta$
 $|(x^2 - 2x - 1) - 2| = |x^2 - 2x - 3|$
 $= |x+1||x-3| < 5 \cdot \frac{\varepsilon}{5} = \varepsilon$

22.
$$0 < |x| < \delta \Rightarrow |x^4 - 0| = |x^4| < \varepsilon$$

$$|x^4| = |x||x^3|. \text{ To bound } |x^3|, \text{ agree that}$$

$$\delta \le 1. |x| < \delta \le 1 \text{ implies } |x^3| = |x|^3 \le 1 \text{ so}$$

$$\delta \le \varepsilon.$$

$$\delta = \min\{1, \varepsilon\}; 0 < |x| < \delta \Rightarrow |x^4| = |x||x^3| < \varepsilon \cdot 1$$

$$= \varepsilon$$

23. Choose
$$\varepsilon > 0$$
. Then since $\lim_{x \to c} f(x) = L$, there is some $\delta_1 > 0$ such that $0 < |x - c| < \delta_1 \Rightarrow |f(x) - L| < \varepsilon$. Since $\lim_{x \to c} f(x) = M$, there is some $\delta_2 > 0$ such that $0 < |x - c| < \delta_2 \Rightarrow |f(x) - M| < \varepsilon$. Let $\delta = \min\{\delta_1, \delta_2\}$ and choose x_0 such that $0 < |x_0 - c| < \delta$.

Thus, $|f(x_0) - L| < \varepsilon \Rightarrow -\varepsilon < f(x_0) - L < \varepsilon$ $\Rightarrow -f(x_0) - \varepsilon < -L < -f(x_0) + \varepsilon$ $\Rightarrow f(x_0) - \varepsilon < L < f(x_0) + \varepsilon$. Similarly, $f(x_0) - \varepsilon < M < f(x_0) + \varepsilon$. Thus, $-2\varepsilon < L - M < 2\varepsilon$. As $\varepsilon \Rightarrow 0$, $L - M \Rightarrow 0$, so $L = M$.

24. Since $\lim_{x \to c} G(x) = 0$, then given any $\varepsilon > 0$, we can find $\delta > 0$ such that whenever $|x - c| < \delta, |G(x)| < \varepsilon$.

Take any $\varepsilon > 0$ and the corresponding δ that works for G(x), then $|x - c| < \delta$ implies $|F(x) - 0| = |F(x)| \le |G(x)| < \varepsilon$ since $\lim_{x \to c} G(x) = 0$.

25. For all
$$x \neq 0$$
, $0 \le \sin^2\left(\frac{1}{x}\right) \le 1$ so $x^4 \sin^2\left(\frac{1}{x}\right) \le x^4$ for all $x \neq 0$.

$$\lim_{x \to 0} x^4 = 0, \text{ so,}$$

$$\lim_{x \to 0} x^4 \sin^2\left(\frac{1}{x}\right) = 0.$$

26.
$$0 < x < \delta \Rightarrow \left| \sqrt{x} - 0 \right| = \left| \sqrt{x} \right| = \sqrt{x} < \varepsilon$$

For $x > 0$, $(\sqrt{x})^2 = x$.
 $\sqrt{x} < \varepsilon \Leftrightarrow (\sqrt{x})^2 = x < \varepsilon^2$
 $\delta = \varepsilon^2$; $0 < x < \delta \Rightarrow \sqrt{x} < \sqrt{\delta} = \sqrt{\varepsilon^2} = \varepsilon$

27.
$$\lim_{x \to 0^{+}} |x| : 0 < x < \delta \Rightarrow ||x| - 0| < \varepsilon$$
For $x \ge 0$, $|x| = x$.
$$\delta = \varepsilon; 0 < x < \delta \Rightarrow ||x| - 0| = |x| = x < \delta = \varepsilon$$
Thus,
$$\lim_{x \to 0^{+}} |x| = 0$$
.
$$\lim_{x \to 0^{-}} |x| : 0 < 0 - x < \delta \Rightarrow ||x| - 0| < \varepsilon$$
For $x < 0$, $|x| = -x$; note also that $||x|| = |x|$ since $|x| \ge 0$.
$$\delta = \varepsilon; 0 < -x < \delta \Rightarrow ||x|| = |x| = -x < \delta = \varepsilon$$
Thus,
$$\lim_{x \to 0^{-}} |x| = 0$$
, since
$$\lim_{x \to 0^{+}} |x| = \lim_{x \to 0^{-}} |x| = 0$$
,
$$\lim_{x \to 0^{-}} |x| = \lim_{x \to 0^{-}} |x| = 0$$
,
$$\lim_{x \to 0^{+}} |x| = \lim_{x \to 0^{-}} |x| = 0$$
,
$$\lim_{x \to 0^{-}} |x| = 0$$
.

28. Choose
$$\varepsilon > 0$$
. Since $\lim_{x \to a} g(x) = 0$ there is some $\delta_1 > 0$ such that $0 < |x - a| < \delta_1 \Rightarrow |g(x) - 0| < \frac{\varepsilon}{B}$.

Let $\delta = \min\{1, \delta_1\}$, then $|f(x)| < B$ for $|x - a| < \delta$ or $|x - a| < \delta \Rightarrow |f(x)| < B$. Thus, $|x - a| < \delta \Rightarrow |f(x)g(x) - 0| = |f(x)g(x)|$

$$= |f(x)||g(x)| < B \cdot \frac{\varepsilon}{B} = \varepsilon \text{ so } \lim_{x \to a} f(x)g(x) = 0.$$

29. Choose $\varepsilon > 0$. Since $\lim_{x \to a} f(x) = L$, there is a $\delta > 0$ such that for $0 < |x - a| < \delta$, $|f(x) - L| < \varepsilon$. That is, for $a - \delta < x < a$ or $a < x < a + \delta$, $L - \varepsilon < f(x) < L + \varepsilon$. Let f(a) = A, $M = \max\{|L - \varepsilon|, |L + \varepsilon|, |A|\}$, $c = a - \delta$, $d = a + \delta$. Then for x in (c, d), $|f(x)| \le M$, since either x = a, in which case

 $|f(x)| = |f(a)| = |A| \le M$ or $0 < |x - a| < \delta$ so

 $L - \varepsilon < f(x) < L + \varepsilon$ and |f(x)| < M.

30. Suppose that L > M. Then $L - M = \alpha > 0$. Now take $\varepsilon < \frac{\alpha}{2}$ and $\delta = \min\{\delta_1, \delta_2\}$ where $0 < |x - a| < \delta_1 \Rightarrow |f(x) - L| < \varepsilon$ and $0 < |x - a| < \delta_2 \Rightarrow |g(x) - M| < \varepsilon$. Thus, for $0 < |x - a| < \delta$, $L - \varepsilon < f(x) < L + \varepsilon$ and $M - \varepsilon < g(x) < M + \varepsilon$. Combine the inequalities and use the fact that $f(x) \le g(x)$ to get $L - \varepsilon < f(x) \le g(x) < M + \varepsilon$ which leads to

 $L - \varepsilon < M + \varepsilon$ or $L - M < 2\varepsilon$. However, $L - M = \alpha > 2\varepsilon$ which is a contradiction. Thus $L \le M$.

limit.

31. (b) and (c) are equivalent to the definition of

- **32.** For every $\varepsilon > 0$ and $\delta > 0$ there is some x with $0 < |x c| < \delta$ such that $|f(x) L| > \varepsilon$.
- 33. a. $g(x) = \frac{x^3 x^2 2x 4}{x^4 4x^3 + x^2 + x + 6}$
 - **b.** No, because $\frac{x+6}{x^4-4x^3+x^2+x+6}+1$ has an asymptote at $x \approx 3.49$.
 - c. If $\delta \le \frac{1}{4}$, then 2.75 < x < 3or 3 < x < 3.25 and by graphing $y = |g(x)| = \left| \frac{x^3 - x^2 - 2x - 4}{x^4 - 4x^3 + x^2 + x + 6} \right|$ on the interval [2.75, 3.25], we see that $0 < \left| \frac{x^3 - x^2 - 2x - 4}{x^4 - 4x^3 + x^2 + x + 6} \right| < 3$ so m must be at least three.

2.3 Concepts Review

- **1.** 48
- **2.** 4
- 3. -8; -4+5c
- **4.** 0

Problem Set 2.3

- 1. $\lim_{x \to 1} (2x+1)$ 4 = $\lim_{x \to 1} 2x + \lim_{x \to 1} 1$ 3 = $2 \lim_{x \to 1} x + \lim_{x \to 1} 1$ 2,1 = 2(1) + 1 = 3
- 3. $\lim_{x \to 0} [(2x+1)(x-3)] \qquad 6$ $= \lim_{x \to 0} (2x+1) \cdot \lim_{x \to 0} (x-3) \qquad 4, 5$ $= \left(\lim_{x \to 0} 2x + \lim_{x \to 0} 1\right) \cdot \left(\lim_{x \to 0} x \lim_{x \to 0} 3\right) \qquad 3$ $= \left(2 \lim_{x \to 0} x + \lim_{x \to 0} 1\right) \cdot \left(\lim_{x \to 0} x \lim_{x \to 0} 3\right) \qquad 2, 1$ = [2(0)+1](0-3) = -3
- 4. $\lim_{x \to \sqrt{2}} [(2x^2 + 1)(7x^2 + 13)]$ 6 $= \lim_{x \to \sqrt{2}} (2x^2 + 1) \cdot \lim_{x \to \sqrt{2}} (7x^2 + 13)$ 4, 3 $= \left(2 \lim_{x \to \sqrt{2}} x^2 + \lim_{x \to \sqrt{2}} 1\right) \cdot \left(7 \lim_{x \to \sqrt{2}} x^2 + \lim_{x \to \sqrt{2}} 13\right)$ 8,1 $= \left[2 \left(\lim_{x \to \sqrt{2}} x\right)^2 + 1\right] \left[7 \left(\lim_{x \to \sqrt{2}} x\right)^2 + 13\right]$ 2 $= [2(\sqrt{2})^2 + 1][7(\sqrt{2})^2 + 13] = 135$

5.
$$\lim_{x \to 2} \frac{2x+1}{5-3x}$$

$$= \frac{\lim_{x \to 2} (2x+1)}{\lim_{x \to 2} (5-3x)}$$

$$= \frac{\lim_{x \to 2} 2x + \lim_{x \to 2} 1}{\lim_{x \to 2} 5 - \lim_{x \to 2} 3x}$$

$$= \frac{2 \lim_{x \to 2} x + 1}{1 + \lim_{x \to 2} 5 - 3 \lim_{x \to 2} x}$$
2

$$= \frac{2(2)+1}{5-3(2)} = -5$$
6.
$$\lim_{x \to -3} \frac{4x^3+1}{7-2x^2}$$

$$= \frac{\lim_{x \to -3} (4x^3+1)}{\lim_{x \to -3} (7-2x^2)}$$
4, 5
$$= \frac{\lim_{x \to -3} 4x^3 + \lim_{x \to -3} 1}{\lim_{x \to -3} 7 - \lim_{x \to -3} 2x^2}$$
3, 1
$$= \frac{4 \lim_{x \to -3} x^3 + 1}{7-2 \lim_{x \to -3} x^2}$$
8

$$= \frac{4\left(\lim_{x \to -3} x\right)^3 + 1}{7 - 2\left(\lim_{x \to -3} x\right)^2}$$

$$= \frac{4(-3)^3 + 1}{7 - 2(-3)^2} = \frac{107}{11}$$

8

7.
$$\lim_{x \to 3} \sqrt{3x - 5}$$
 9
$$= \sqrt{\lim_{x \to 3} (3x - 5)}$$
 5, 3
$$= \sqrt{3 \lim_{x \to 3} x - \lim_{x \to 3} 5}$$
 2, 1
$$= \sqrt{3(3) - 5} = 2$$

8.
$$\lim_{x \to -3} \sqrt{5x^2 + 2x}$$

$$= \sqrt{\lim_{x \to -3} (5x^2 + 2x)}$$

$$= \sqrt{5} \lim_{x \to -3} x^2 + 2 \lim_{x \to -3} x$$

$$= \sqrt{5} \left(\lim_{x \to -3} x\right)^2 + 2 \lim_{x \to -3} x$$

$$= \sqrt{5(-3)^2 + 2(-3)} = \sqrt{39}$$

9.
$$\lim_{t \to -2} (2t^{3} + 15)^{13}$$
 8
$$= \left[\lim_{t \to -2} (2t^{3} + 15) \right]^{13}$$
 4, 3
$$= \left[2 \lim_{t \to -2} t^{3} + \lim_{t \to -2} 15 \right]^{13}$$
 8
$$= \left[2 \left(\lim_{t \to -2} t \right)^{3} + \lim_{t \to -2} 15 \right]^{13}$$
 2, 1
$$= \left[2(-2)^{3} + 15 \right]^{13} = -1$$

10.
$$\lim_{w \to -2} \sqrt{-3w^3 + 7w^2}$$
 9
$$= \sqrt{\lim_{w \to -2} (-3w^3 + 7w^2)}$$
 4, 3
$$= \sqrt{-3} \lim_{w \to -2} w^3 + 7 \lim_{w \to -2} w^2$$
 8
$$= \sqrt{-3 \left(\lim_{w \to -2} w\right)^3 + 7 \left(\lim_{w \to -2} w\right)^2}$$
 2
$$= \sqrt{-3(-2)^3 + 7(-2)^2} = 2\sqrt{13}$$

11.
$$\lim_{y \to 2} \left(\frac{4y^3 + 8y}{y + 4} \right)^{1/3}$$

$$= \left(\lim_{y \to 2} \frac{4y^3 + 8y}{y + 4} \right)^{1/3}$$

$$= \left[\frac{\lim_{y \to 2} (4y^3 + 8y)}{\lim_{y \to 2} (y + 4)} \right]^{1/3}$$

$$= \left(\frac{4 \lim_{y \to 2} y^3 + 8 \lim_{y \to 2} y}{\lim_{y \to 2} y + \lim_{y \to 2} 4} \right)^{1/3}$$

$$= 8, 1$$

$$= \left[\frac{4 \left(\lim_{y \to 2} y \right)^3 + 8 \lim_{y \to 2} y}{\lim_{y \to 2} y + 4} \right]^{1/3}$$

$$= \left[\frac{4(2)^3 + 8(2)}{2 + 4} \right]^{1/3} = 2$$

12.
$$\lim_{w \to 5} (2w^4 - 9w^3 + 19)^{-1/2}$$

$$= \lim_{w \to 5} \frac{1}{\sqrt{2w^4 - 9w^3 + 19}}$$

$$= \frac{\lim_{w \to 5} 1}{\lim_{w \to 5} \sqrt{2w^4 - 9w^3 + 19}}$$
1, 9

$$= \frac{1}{\sqrt{\lim_{w \to 5} (2w^4 - 9w^3 + 19)}}$$
 4,5

$$= \frac{1}{\sqrt{\lim_{w \to 5} 2w^4 - \lim_{w \to 5} 9w^3 + \lim_{w \to 5} 19}}$$
 1,3

$$= \frac{1}{\sqrt{2 \lim_{w \to 5} w^4 - 9 \lim_{w \to 5} w^3 + 19}}$$

$$= \frac{1}{\sqrt{2\left(\lim_{w \to 5} w\right)^4 - 9\left(\lim_{w \to 5} w\right)^3 + 19}}$$

$$= \frac{1}{\sqrt{2(5)^4 - 9(5)^3 + 19}}$$

$$= \frac{1}{\sqrt{144}} = \frac{1}{12}$$

13.
$$\lim_{x \to 2} \frac{x^2 - 4}{x^2 + 4} = \frac{\lim_{x \to 2} (x^2 - 4)}{\lim_{x \to 2} (x^2 + 4)} = \frac{4 - 4}{4 + 4} = 0$$

14.
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x - 2} = \lim_{x \to 2} \frac{(x - 3)(x - 2)}{(x - 2)}$$
$$= \lim_{x \to 2} (x - 3) = -1$$

15.
$$\lim_{x \to -1} \frac{x^2 - 2x - 3}{x + 1} = \lim_{x \to -1} \frac{(x - 3)(x + 1)}{(x + 1)}$$
$$= \lim_{x \to -1} (x - 3) = -4$$

16.
$$\lim_{x \to -1} \frac{x^2 + x}{x^2 + 1} = \frac{\lim_{x \to -1} \left(x^2 + x\right)}{\lim_{x \to -1} \left(x^2 + 1\right)} = \frac{0}{2} = 0$$

17.
$$\lim_{x \to -1} \frac{(x-1)(x-2)(x-3)}{(x-1)(x-2)(x+7)} = \lim_{x \to -1} \frac{x-3}{x+7}$$
$$= \frac{-1-3}{-1+7} = -\frac{2}{3}$$

18.
$$\lim_{x \to 2} \frac{x^2 + 7x + 10}{x + 2} = \lim_{x \to 2} \frac{(x + 2)(x + 5)}{x + 2}$$
$$= \lim_{x \to 2} (x + 5) = 7$$

19.
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 1} = \lim_{x \to 1} \frac{(x+2)(x-1)}{(x+1)(x-1)}$$
$$= \lim_{x \to 1} \frac{x+2}{x+1} = \frac{1+2}{1+1} = \frac{3}{2}$$

20.
$$\lim_{x \to -3} \frac{x^2 - 14x - 51}{x^2 - 4x - 21} = \lim_{x \to -3} \frac{(x+3)(x-17)}{(x+3)(x-7)}$$
$$= \lim_{x \to -3} \frac{x - 17}{x - 7} = \frac{-3 - 17}{-3 - 7} = 2$$

21.
$$\lim_{u \to -2} \frac{u^2 - ux + 2u - 2x}{u^2 - u - 6} = \lim_{u \to -2} \frac{(u+2)(u-x)}{(u+2)(u-3)}$$
$$= \lim_{u \to -2} \frac{u - x}{u - 3} = \frac{x+2}{5}$$

22.
$$\lim_{x \to 1} \frac{x^2 + ux - x - u}{x^2 + 2x - 3} = \lim_{x \to 1} \frac{(x - 1)(x + u)}{(x - 1)(x + 3)}$$
$$= \lim_{x \to 1} \frac{x + u}{x + 3} = \frac{1 + u}{1 + 3} = \frac{u + 1}{4}$$

23.
$$\lim_{x \to \pi} \frac{2x^2 - 6x\pi + 4\pi^2}{x^2 - \pi^2} = \lim_{x \to \pi} \frac{2(x - \pi)(x - 2\pi)}{(x - \pi)(x + \pi)}$$
$$= \lim_{x \to \pi} \frac{2(x - 2\pi)}{x + \pi} = \frac{2(\pi - 2\pi)}{\pi + \pi} = -1$$

24.
$$\lim_{w \to -2} \frac{(w+2)(w^2 - w - 6)}{w^2 + 4w + 4}$$
$$= \lim_{w \to -2} \frac{(w+2)^2(w-3)}{(w+2)^2} = \lim_{w \to -2} (w-3)$$
$$= -2 - 3 = -5$$

25.
$$\lim_{x \to a} \sqrt{f^2(x) + g^2(x)}$$

$$= \sqrt{\lim_{x \to a} f^2(x) + \lim_{x \to a} g^2(x)}$$

$$= \sqrt{\left(\lim_{x \to a} f(x)\right)^2 + \left(\lim_{x \to a} g(x)\right)^2}$$

$$= \sqrt{(3)^2 + (-1)^2} = \sqrt{10}$$

26.
$$\lim_{x \to a} \frac{2f(x) - 3g(x)}{f(x) + g(x)} = \frac{\lim_{x \to a} [2f(x) - 3g(x)]}{\lim_{x \to a} [f(x) + g(x)]}$$
$$= \frac{2\lim_{x \to a} f(x) - 3\lim_{x \to a} g(x)}{\lim_{x \to a} f(x) + \lim_{x \to a} g(x)} = \frac{2(3) - 3(-1)}{3 + (-1)} = \frac{9}{2}$$

27.
$$\lim_{x \to a} \sqrt[3]{g(x)} [f(x) + 3] = \lim_{x \to a} \sqrt[3]{g(x)} \cdot \lim_{x \to a} [f(x) + 3]$$
$$= \sqrt[3]{\lim_{x \to a} g(x)} \cdot \left[\lim_{x \to a} f(x) + \lim_{x \to a} 3 \right] = \sqrt[3]{-1} \cdot (3 + 3)$$
$$= -6$$

28.
$$\lim_{x \to a} [f(x) - 3]^4 = \left[\lim_{x \to a} (f(x) - 3) \right]^4$$
$$= \left[\lim_{x \to a} f(x) - \lim_{x \to a} 3 \right]^4 = (3 - 3)^4 = 0$$

29.
$$\lim_{t \to a} \left[|f(t)| + |3g(t)| \right] = \lim_{t \to a} |f(t)| + 3 \lim_{t \to a} |g(t)|$$
$$= \left| \lim_{t \to a} f(t) \right| + 3 \left| \lim_{t \to a} g(t) \right|$$
$$= |3| + 3| - 1| = 6$$

30.
$$\lim_{u \to a} [f(u) + 3g(u)]^3 = \left(\lim_{u \to a} [f(u) + 3g(u)]\right)^3$$
$$= \left[\lim_{u \to a} f(u) + 3\lim_{u \to a} g(u)\right]^3 = [3 + 3(-1)]^3 = 0$$

31.
$$\lim_{\substack{x \to 2 \\ = 3 \text{ lim } (x+2) = 3(2+2) = 12}} \frac{3(x-2)(x+2)}{x-2} = \lim_{\substack{x \to 2 \\ = 3 \text{ lim } (x+2) = 3(2+2) = 12}} \frac{3(x-2)(x+2)}{x-2}$$

32.
$$\lim_{x \to 2} \frac{(3x^2 + 2x + 1) - 17}{x - 2} = \lim_{x \to 2} \frac{3x^2 + 2x - 16}{x - 2}$$
$$= \lim_{x \to 2} \frac{(3x + 8)(x - 2)}{x - 2} = \lim_{x \to 2} (3x + 8)$$
$$= 3 \lim_{x \to 2} x + 8 = 3(2) + 8 = 14$$

33.
$$\lim_{x \to 2} \frac{\frac{1}{x} - \frac{1}{2}}{x - 2} = \lim_{x \to 2} \frac{\frac{2 - x}{2x}}{x - 2} = \lim_{x \to 2} \frac{-\frac{x - 2}{2x}}{x - 2}$$
$$= \lim_{x \to 2} -\frac{1}{2x} = \frac{-1}{2 \lim_{x \to 2} x} = \frac{-1}{2(2)} = -\frac{1}{4}$$

34.
$$\lim_{x \to 2} \frac{\frac{3}{x^2} - \frac{3}{4}}{x - 2} = \lim_{x \to 2} \frac{\frac{3(4 - x^2)}{4x^2}}{x - 2} = \lim_{x \to 2} \frac{\frac{-3(x + 2)(x - 2)}{4x^2}}{x - 2}$$
$$= \lim_{x \to 2} \frac{-3(x + 2)}{4x^2} = \frac{-3\left(\lim_{x \to 2} x + 2\right)}{4\left(\lim_{x \to 2} x\right)^2} = \frac{-3(2 + 2)}{4(2)^2}$$
$$= -\frac{3}{4}$$

35. Suppose
$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$. $|f(x)g(x) - LM| \le |g(x)||f(x) - L| + |L||g(x) - M|$ as shown in the text. Choose $\varepsilon_1 = 1$. Since $\lim_{x \to c} g(x) = M$, there is some $\delta_1 > 0$ such that if $0 < |x - c| < \delta_1$, $|g(x) - M| < \varepsilon_1 = 1$ or $M - 1 < g(x) < M + 1$ $|M - 1| \le |M| + 1$ and $|M + 1| \le |M| + 1$ so for $0 < |x - c| < \delta_1$, $|g(x)| < |M| + 1$. Choose $\varepsilon > 0$. Since $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$, there exist δ_2 and δ_3 such that $0 < |x - c| < \delta_2 \Rightarrow |f(x) - L| < \frac{\varepsilon}{|L| + |M| + 1}$ and $0 < |x - c| < \delta_3 \Rightarrow |f(x) - L| < \frac{\varepsilon}{|L| + |M| + 1}$ and $0 < |x - c| < \delta_3 \Rightarrow |f(x) - L| < \frac{\varepsilon}{|L| + |M| + 1}$ and $0 < |x - c| < \delta_3 \Rightarrow |f(x) - L| < \frac{\varepsilon}{|L| + |M| + 1}$

$$\begin{aligned} &\left|g(x) - M\right| < \frac{\varepsilon}{\left|L\right| + \left|M\right| + 1}. \text{ Let} \\ &\delta = \min\{\delta_1, \delta_2, \delta_3\}, \text{ then } 0 < \left|x - c\right| < \delta \Rightarrow \\ &\left|f(x)g(x) - LM\right| \le \left|g(x)\right| \left|f(x) - L\right| + \left|L\right| \left|g(x) - M\right| \\ &< \left(\left|M\right| + 1\right) \frac{\varepsilon}{\left|L\right| + \left|M\right| + 1} + \left|L\right| \frac{\varepsilon}{\left|L\right| + \left|M\right| + 1} = \varepsilon \end{aligned}$$

$$\lim_{x \to c} f(x)g(x) = LM = \left(\lim_{x \to c} f(x)\right) \left(\lim_{x \to c} g(x)\right)$$

36. Say $\lim_{x \to 0} g(x) = M$, $M \neq 0$, and choose

$$\varepsilon_{1} = \frac{1}{2}|M|$$
There is some $\delta_{1} > 0$ such that
$$0 < |x - c| < \delta_{1} \Rightarrow |g(x) - M| < \varepsilon_{1} = \frac{1}{2}|M| \text{ or}$$

$$M - \frac{1}{2}|M| < g(x) < M + \frac{1}{2}|M|.$$

$$|M - \frac{1}{2}|M| \ge \left|\frac{1}{2}|M| \text{ and } \left|M + \frac{1}{2}|M|\right| \ge \left|\frac{1}{2}|M|$$
so $|g(x)| > \frac{1}{2}|M| \text{ and } \frac{1}{|g(x)|} < \frac{2}{|M|}$
Choose $\varepsilon > 0$.

Since
$$\lim_{x \to c} g(x) = M$$
 there is $\delta_2 > 0$ such that $0 < |x - c| < \delta_2 \Rightarrow |g(x) - M| < \frac{1}{2}M^2$.
Let $\delta = \min\{\delta_1, \delta_2\}$, then $0 < |x - c| < \delta \Rightarrow \left| \frac{1}{g(x)} - \frac{1}{M} \right| = \left| \frac{M - g(x)}{g(x)M} \right|$

$$= \frac{1}{|M||g(x)|} |g(x) - M| < \frac{2}{M^2} |g(x) - M| = \frac{2}{M^2} \cdot \frac{1}{2} M^2 \varepsilon$$

Thus,
$$\lim_{x \to c} \frac{1}{g(x)} = \frac{1}{M} = \frac{1}{\lim_{x \to c} g(x)}$$
.

Using statement 6 and the above result,

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} f(x) \cdot \lim_{x \to c} \frac{1}{g(x)}$$
$$= \lim_{x \to c} f(x) \cdot \frac{1}{\lim_{x \to c} g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}.$$

37.
$$\lim_{x \to c} f(x) = L \Leftrightarrow \lim_{x \to c} f(x) = \lim_{x \to c} L$$
$$\Leftrightarrow \lim_{x \to c} f(x) - \lim_{x \to c} L = 0$$
$$\Leftrightarrow \lim_{x \to c} [f(x) - L] = 0$$

38.
$$\lim_{x \to c} f(x) = 0 \Leftrightarrow \left[\lim_{x \to c} f(x) \right]^2 = 0$$

$$\Leftrightarrow \lim_{x \to c} f^2(x) = 0$$

$$\Leftrightarrow \sqrt{\lim_{x \to c} f^2(x)} = 0$$

$$\Leftrightarrow \lim_{x \to c} \sqrt{f^2(x)} = 0$$

$$\Leftrightarrow \lim_{x \to c} |f(x)| = 0$$

39.
$$\lim_{x \to c} |x| = \sqrt{\left(\lim_{x \to c} |x|\right)^2} = \sqrt{\lim_{x \to c} |x|^2} = \sqrt{\lim_{x \to c} x^2}$$

$$= \sqrt{\left(\lim_{x \to c} x\right)^2} = \sqrt{c^2} = |c|$$

40. a. If
$$f(x) = \frac{x+1}{x-2}$$
, $g(x) = \frac{x-5}{x-2}$ and $c = 2$, then $\lim_{x \to c} [f(x) + g(x)]$ exists, but neither $\lim_{x \to c} f(x)$ nor $\lim_{x \to c} g(x)$ exists.

b. If
$$f(x) = \frac{2}{x}$$
, $g(x) = x$, and $c = 0$, then $\lim_{x \to c} [f(x) \cdot g(x)]$ exists, but $\lim_{x \to c} f(x)$ does not exist.

41.
$$\lim_{x \to -3^+} \frac{\sqrt{3+x}}{x} = \frac{\sqrt{3-3}}{-3} = 0$$

42.
$$\lim_{x \to -\pi^+} \frac{\sqrt{\pi^3 + x^3}}{x} = \frac{\sqrt{\pi^3 + (-\pi)^3}}{-\pi} = 0$$

43.
$$\lim_{x \to 3^{+}} \frac{x-3}{\sqrt{x^{2}-9}} = \lim_{x \to 3^{+}} \frac{(x-3)\sqrt{x^{2}-9}}{x^{2}-9}$$
$$= \lim_{x \to 3^{+}} \frac{(x-3)\sqrt{x^{2}-9}}{(x-3)(x+3)} = \lim_{x \to 3^{+}} \frac{\sqrt{x^{2}-9}}{x+3}$$
$$= \frac{\sqrt{3^{2}-9}}{3+3} = 0$$

44.
$$\lim_{x \to 1^{-}} \frac{\sqrt{1+x}}{4+4x} = \frac{\sqrt{1+1}}{4+4(1)} = \frac{\sqrt{2}}{8}$$

45.
$$\lim_{x \to 2^{+}} \frac{(x^2 + 1)[x]}{(3x - 1)^2} = \frac{(2^2 + 1)[2]}{(3 \cdot 2 - 1)^2} = \frac{5 \cdot 2}{5^2} = \frac{2}{5}$$

46.
$$\lim_{x \to 3^{-}} (x - [x]) = \lim_{x \to 3^{-}} x - \lim_{x \to 3^{-}} [x] = 3 - 2 = 1$$

47.
$$\lim_{x \to 0^{-}} \frac{x}{|x|} = -1$$

48.
$$\lim_{x \to 3^+} \left[x^2 + 2x \right] = \left[3^2 + 2 \cdot 3 \right] = 15$$

49.
$$f(x)g(x) = 1; g(x) = \frac{1}{f(x)}$$

$$\lim_{x \to a} g(x) = 0 \Leftrightarrow \lim_{x \to a} \frac{1}{f(x)} = 0$$

$$\Leftrightarrow \frac{1}{\lim_{x \to a} f(x)} = 0$$

No value satisfies this equation, so $\lim_{x \to a} f(x)$ must not exist.

50. *R* has the vertices
$$\left(\pm \frac{x}{2}, \pm \frac{1}{2}\right)$$
Each side of *Q* has length $\sqrt{x^2 + 1}$ so the perimeter of *Q* is $4\sqrt{x^2 + 1}$. *R* has two sides of length 1 and two sides of length $\sqrt{x^2}$ so the perimeter of *R* is $2 + 2\sqrt{x^2}$.

$$\lim_{x \to 0^{+}} \frac{\text{perimeter of } R}{\text{perimeter of } Q} = \lim_{x \to 0^{+}} \frac{2\sqrt{x^{2} + 2}}{4\sqrt{x^{2} + 1}}$$
$$= \frac{2\sqrt{0^{2} + 2}}{4\sqrt{0^{2} + 1}} = \frac{2}{4} = \frac{1}{2}$$

51. a.
$$NO = \sqrt{(0-0)^2 + (1-0)^2} = 1$$

 $OP = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}$
 $= \sqrt{x^2 + x}$
 $NP = \sqrt{(x-0)^2 + (y-1)^2} = \sqrt{x^2 + y^2 - 2y + 1}$
 $= \sqrt{x^2 + x - 2\sqrt{x} + 1}$
 $MO = \sqrt{(1-0)^2 + (0-0)^2} = 1$
 $MP = \sqrt{(x-1)^2 + (y-0)^2} = \sqrt{y^2 + x^2 - 2x + 1}$
 $= \sqrt{x^2 - x + 1}$
 $\lim_{x \to 0^+} \frac{\text{perimeter of } \Delta NOP}{\text{perimeter of } \Delta MOP}$
 $= \lim_{x \to 0^+} \frac{1 + \sqrt{x^2 + x} + \sqrt{x^2 + x - 2\sqrt{x} + 1}}{1 + \sqrt{x^2 + x} + \sqrt{x^2 - x + 1}}$
 $= \frac{1 + \sqrt{1}}{1 + \sqrt{1}} = 1$

b. Area of
$$\triangle NOP = \frac{1}{2}(1)(x) = \frac{x}{2}$$

Area of $\triangle MOP = \frac{1}{2}(1)(y) = \frac{\sqrt{x}}{2}$

$$\lim_{x \to 0^{+}} \frac{\text{area of } \triangle NOP}{\text{area of } \triangle MOP} = \lim_{x \to 0^{+}} \frac{\frac{x}{2}}{\frac{\sqrt{x}}{2}} = \lim_{x \to 0^{+}} \frac{x}{\sqrt{x}}$$

$$= \lim_{x \to 0^{+}} \sqrt{x} = 0$$

2.4 Concepts Review

- **1.** *x* increases without bound; *f*(*x*) gets close to *L* as *x* increases without bound
- **2.** f(x) increases without bound as x approaches c from the right; f(x) decreases without bound as x approaches c from the left
- 3. y = 6; horizontal
- **4.** x = 6; vertical

Problem Set 2.4

1.
$$\lim_{x \to \infty} \frac{x}{x - 5} = \lim_{x \to \infty} \frac{1}{1 - \frac{5}{x}} = 1$$

2.
$$\lim_{x \to \infty} \frac{x^2}{5 - x^3} = \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{5}{x^3} - 1} = 0$$

3.
$$\lim_{t \to -\infty} \frac{t^2}{7 - t^2} = \lim_{t \to -\infty} \frac{1}{\frac{7}{t^2} - 1} = -1$$

4.
$$\lim_{t \to -\infty} \frac{t}{t-5} = \lim_{t \to -\infty} \frac{1}{1-\frac{5}{t}} = 1$$

5.
$$\lim_{x \to \infty} \frac{x^2}{(x-5)(3-x)} = \lim_{x \to \infty} \frac{x^2}{-x^2 + 8x - 15}$$
$$= \lim_{x \to \infty} \frac{1}{-1 + \frac{8}{x} - \frac{15}{x^2}} = -1$$

6.
$$\lim_{x \to \infty} \frac{x^2}{x^2 - 8x + 15} = \lim_{x \to \infty} \frac{1}{1 - \frac{8}{x} + \frac{15}{x^2}} = 1$$

7.
$$\lim_{x \to \infty} \frac{x^3}{2x^3 - 100x^2} = \lim_{x \to \infty} \frac{1}{2 - \frac{100}{x}} = \frac{1}{2}$$

8.
$$\lim_{\theta \to -\infty} \frac{\pi \theta^5}{\theta^5 - 5\theta^4} = \lim_{\theta \to -\infty} \frac{\pi}{1 - \frac{5}{\theta}} = \pi$$

9.
$$\lim_{x \to \infty} \frac{3x^3 - x^2}{\pi x^3 - 5x^2} = \lim_{x \to \infty} \frac{3 - \frac{1}{x}}{\pi - \frac{5}{x}} = \frac{3}{\pi}$$

10.
$$\lim_{\theta \to \infty} \frac{\sin^2 \theta}{\theta^2 - 5}; 0 \le \sin^2 \theta \le 1 \text{ for all } \theta \text{ and}$$

$$\lim_{\theta \to \infty} \frac{1}{\theta^2 - 5} = \lim_{\theta \to \infty} \frac{\frac{1}{\theta^2}}{1 - \frac{5}{\theta^2}} = 0 \text{ so } \lim_{\theta \to \infty} \frac{\sin^2 \theta}{\theta^2 - 5} = 0$$

11.
$$\lim_{x \to \infty} \frac{3\sqrt{x^3} + 3x}{\sqrt{2x^3}} = \lim_{x \to \infty} \frac{3x^{3/2} + 3x}{\sqrt{2}x^{3/2}}$$
$$= \lim_{x \to \infty} \frac{3 + \frac{3}{\sqrt{x}}}{\sqrt{2}} = \frac{3}{\sqrt{2}}$$

12.
$$\lim_{x \to \infty} \sqrt[3]{\frac{\pi x^3 + 3x}{\sqrt{2}x^3 + 7x}} = \sqrt[3]{\lim_{x \to \infty} \frac{\pi x^3 + 3x}{\sqrt{2}x^3 + 7x}}$$
$$= \sqrt[3]{\lim_{x \to \infty} \frac{\pi + \frac{3}{x^2}}{\sqrt{2} + \frac{7}{x^2}}} = \sqrt[3]{\frac{\pi}{\sqrt{2}}}$$

13.
$$\lim_{x \to \infty} \sqrt[3]{\frac{1+8x^2}{x^2+4}} = \sqrt[3]{\lim_{x \to \infty} \frac{1+8x^2}{x^2+4}}$$
$$= \sqrt[3]{\lim_{x \to \infty} \frac{\frac{1}{x^2}+8}{1+\frac{4}{x^2}}} = \sqrt[3]{8} = 2$$

14.
$$\lim_{x \to \infty} \sqrt{\frac{x^2 + x + 3}{(x - 1)(x + 1)}} = \sqrt{\lim_{x \to \infty} \frac{x^2 + x + 3}{x^2 - 1}}$$
$$= \sqrt{\lim_{x \to \infty} \frac{1 + \frac{1}{x} + \frac{3}{x^2}}{1 - \frac{1}{x^2}}} = \sqrt{1} = 1$$

15.
$$\lim_{n \to \infty} \frac{n}{2n+1} = \lim_{n \to \infty} \frac{1}{2 + \frac{1}{n}} = \frac{1}{2}$$

16.
$$\lim_{n \to \infty} \frac{n^2}{n^2 + 1} = \lim_{n \to \infty} \frac{1}{1 + \frac{1}{n^2}} = \frac{1}{1 + 0} = 1$$

17.
$$\lim_{n \to \infty} \frac{n^2}{n+1} = \lim_{n \to \infty} \frac{n}{1+\frac{1}{n}} = \frac{\lim_{n \to \infty} n}{\lim_{n \to \infty} \left(1+\frac{1}{n}\right)} = \frac{\infty}{1+0} = \infty$$

18.
$$\lim_{n \to \infty} \frac{n}{n^2 + 1} = \lim_{n \to \infty} \frac{\frac{1}{n}}{1 + \frac{1}{n^2}} = \frac{0}{1 + 0} = 0$$

19. For
$$x > 0$$
, $x = \sqrt{x^2}$.

$$\lim_{x \to \infty} \frac{2x+1}{\sqrt{x^2+3}} = \lim_{x \to \infty} \frac{2+\frac{1}{x}}{\frac{\sqrt{x^2+3}}{\sqrt{x^2}}} = \lim_{x \to \infty} \frac{2+\frac{1}{x}}{\sqrt{1+\frac{3}{x^2}}}$$

$$= \frac{2}{\sqrt{1}} = 2$$

20.
$$\lim_{x \to \infty} \frac{\sqrt{2x+1}}{x+4} = \lim_{x \to \infty} \frac{\frac{\sqrt{2x+1}}{\sqrt{x^2}}}{1+\frac{4}{x}} = \lim_{x \to \infty} \frac{\sqrt{\frac{2}{x} + \frac{1}{x^2}}}{1+\frac{4}{x}} = 0$$

21.
$$\lim_{x \to \infty} \left(\sqrt{2x^2 + 3} - \sqrt{2x^2 - 5} \right)$$

$$= \lim_{x \to \infty} \frac{\left(\sqrt{2x^2 + 3} - \sqrt{2x^2 - 5} \right) \left(\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5} \right)}{\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}}$$

$$= \lim_{x \to \infty} \frac{2x^2 + 3 - (2x^2 - 5)}{\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}}$$

$$= \lim_{x \to \infty} \frac{8}{\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}} = \lim_{x \to \infty} \frac{\frac{8}{x}}{\sqrt{2x^2 + 3} + \sqrt{2x^2 - 5}}$$

$$= \lim_{x \to \infty} \frac{\frac{8}{x}}{\sqrt{2 + \frac{3}{x^2}} + \sqrt{2 - \frac{5}{x^2}}} = 0$$

22.
$$\lim_{x \to \infty} \left(\sqrt{x^2 + 2x} - x \right)$$

$$= \lim_{x \to \infty} \frac{\left(\sqrt{x^2 + 2x} - x \right) \left(\sqrt{x^2 + 2x} + x \right)}{\sqrt{x^2 + 2x} + x}$$

$$= \lim_{x \to \infty} \frac{x^2 + 2x - x^2}{\sqrt{x^2 + 2x} + x} = \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + 2x} + x}$$

$$= \lim_{x \to \infty} \frac{2}{\sqrt{1 + \frac{2}{x} + 1}} = \frac{2}{2} = 1$$

23.
$$\lim_{y \to -\infty} \frac{9y^3 + 1}{y^2 - 2y + 2} = \lim_{y \to -\infty} \frac{9y + \frac{1}{y^2}}{1 - \frac{2}{y} + \frac{2}{y^2}} = -\infty$$

24.
$$\lim_{x \to \infty} \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^n + b_1 x^{n-1} + \dots + b_{n-1} x + b_n}$$

$$= \lim_{x \to \infty} \frac{a_0 + \frac{a_1}{x} + \dots + \frac{a_{n-1}}{x^{n-1}} + \frac{a_n}{x^n}}{b_0 + \frac{b_1}{x} + \dots + \frac{b_{n-1}}{x^{n-1}} + \frac{b_n}{x^n}} = \frac{a_0}{b_0}$$

25.
$$\lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 1}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + \frac{1}{n^2}}} = \frac{1}{\sqrt{1 + 0}} = 1$$

26.
$$\lim_{n \to \infty} \frac{n^2}{\sqrt{n^3 + 2n + 1}} = \lim_{n \to \infty} \frac{\frac{n^2}{n^{3/2}}}{\sqrt{1 + \frac{2}{n^2} + \frac{1}{n^3}}} = \frac{\infty}{1} = \infty$$

27. As
$$x \to 4^+, x \to 4$$
 while $x - 4 \to 0^+$.

$$\lim_{x \to 4^+} \frac{x}{x - 4} = \infty$$

28.
$$\lim_{t \to -3^{+}} \frac{t^{2} - 9}{t + 3} = \lim_{t \to -3^{+}} \frac{(t + 3)(t - 3)}{t + 3}$$
$$= \lim_{t \to -3^{+}} (t - 3) = -6$$

29. As
$$t \to 3^-, t^2 \to 9$$
 while $9 - t^2 \to 0^+$.
$$\lim_{t \to 3^-} \frac{t^2}{9 - t^2} = \infty$$

30. As
$$x \to \sqrt[3]{5}^+$$
, $x^2 \to 5^{2/3}$ while $5 - x^3 \to 0^-$.

$$\lim_{x \to \sqrt[3]{5}^+} \frac{x^2}{5 - x^3} = -\infty$$

31. As
$$x \to 5^-$$
, $x^2 \to 25$, $x - 5 \to 0^-$, and $3 - x \to -2$.
$$\lim_{x \to 5^-} \frac{x^2}{(x - 5)(3 - x)} = \infty$$

32. As
$$\theta \to \pi^+$$
, $\theta^2 \to \pi^2$ while $\sin \theta \to 0^-$.
$$\lim_{\theta \to \pi^+} \frac{\theta^2}{\sin \theta} = -\infty$$

33. As
$$x \to 3^-, x^3 \to 27$$
, while $x - 3 \to 0^-$.

$$\lim_{x \to 3^-} \frac{x^3}{x - 3} = -\infty$$

34. As
$$\theta \to \frac{\pi^+}{2}$$
, $\pi \theta \to \frac{\pi^2}{2}$ while $\cos \theta \to 0^-$.
$$\lim_{\theta \to \frac{\pi^+}{2}} \frac{\pi \theta}{\cos \theta} = -\infty$$

35.
$$\lim_{x \to 3^{-}} \frac{x^2 - x - 6}{x - 3} = \lim_{x \to 3^{-}} \frac{(x + 2)(x - 3)}{x - 3}$$
$$= \lim_{x \to 3^{-}} (x + 2) = 5$$

36.
$$\lim_{x \to 2^{+}} \frac{x^{2} + 2x - 8}{x^{2} - 4} = \lim_{x \to 2^{+}} \frac{(x+4)(x-2)}{(x+2)(x-2)}$$
$$= \lim_{x \to 2^{+}} \frac{x+4}{x+2} = \frac{6}{4} = \frac{3}{2}$$

37. For
$$0 \le x < 1$$
, $[x] = 0$, so for $0 < x < 1$, $\frac{[x]}{x} = 0$ thus $\lim_{x \to 0^{+}} \frac{[x]}{x} = 0$

38. For
$$-1 \le x < 0$$
, $[x] = -1$, so for $-1 < x < 0$,
$$\frac{[x]}{x} = -\frac{1}{x} \text{ thus } \lim_{x \to 0^{-}} \frac{[x]}{x} = \infty.$$
 (Since $x < 0, -\frac{1}{x} > 0$.)

39. For
$$x < 0$$
, $|x| = -x$, thus
$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$$

40. For
$$x > 0$$
, $|x| = x$, thus $\lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = 1$

41. As
$$x \to 0^-$$
, $1 + \cos x \to 2$ while $\sin x \to 0^-$.

$$\lim_{x \to 0^-} \frac{1 + \cos x}{\sin x} = -\infty$$

42.
$$-1 \le \sin x \le 1$$
 for all x , and $\lim_{x \to \infty} \frac{1}{x} = 0$, so $\lim_{x \to \infty} \frac{\sin x}{x} = 0$.

44.
$$\lim_{x \to \infty} \frac{3}{(x+1)^2} = 0$$
, $\lim_{x \to -\infty} \frac{3}{(x+1)^2} = 0$;

Horizontal asymptote y = 0

$$\lim_{x \to -1^{+}} \frac{3}{(x+1)^{2}} = \infty, \lim_{x \to -1^{-}} \frac{3}{(x+1)^{2}} = \infty;$$

45.
$$\lim_{x \to \infty} \frac{2x}{x - 3} = \lim_{x \to \infty} \frac{2}{1 - \frac{3}{x}} = 2,$$

$$\lim_{x \to -\infty} \frac{2x}{x - 3} = \lim_{x \to -\infty} \frac{2}{1 - \frac{3}{x}} = 2,$$

$$\lim_{x \to 3^{+}} \frac{2x}{x - 3} = \infty, \lim_{x \to 3^{-}} \frac{2x}{x - 3} = -\infty;$$

46.
$$\lim_{x \to \infty} \frac{3}{9 - x^2} = 0$$
, $\lim_{x \to -\infty} \frac{3}{9 - x^2} = 0$;

$$\lim_{x \to 3^{+}} \frac{3}{9 - x^{2}} = -\infty, \lim_{x \to 3^{-}} \frac{3}{9 - x^{2}} = \infty,$$

$$\lim_{x \to -3^{+}} \frac{3}{9 - x^{2}} = \infty, \lim_{x \to -3^{-}} \frac{3}{9 - x^{2}} = -\infty;$$
Vertical asymptotes $x = -3, x = 3$

47.
$$\lim_{x \to \infty} \frac{14}{2x^2 + 7} = 0$$
, $\lim_{x \to -\infty} \frac{14}{2x^2 + 7} = 0$;

Horizontal asymptote y = 0

Since $2x^2 + 7 > 0$ for all x, g(x) has no vertical asymptotes.

48.
$$\lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + 5}} = \lim_{x \to \infty} \frac{2}{\sqrt{1 + \frac{5}{x^2}}} = \frac{2}{\sqrt{1}} = 2,$$

$$\lim_{x \to -\infty} \frac{2x}{\sqrt{x^2 + 5}} = \lim_{x \to -\infty} \frac{2}{-\sqrt{1 + \frac{5}{x^2}}} = \frac{2}{-\sqrt{1}} = -2$$

Since $\sqrt{x^2 + 5} > 0$ for all x, g(x) has no vertical asymptotes.

49.
$$f(x) = 2x + 3 - \frac{1}{x^3 - 1}$$
, thus

$$\lim_{x \to \infty} [f(x) - (2x+3)] = \lim_{x \to \infty} \left[-\frac{1}{x^3 - 1} \right] = 0$$

The oblique asymptote is y = 2x + 3

50.
$$f(x) = 3x + 4 - \frac{4x + 3}{x^2 + 1}$$
, thus

$$\lim_{x \to \infty} [f(x) - (3x+4)] = \lim_{x \to \infty} \left[-\frac{4x+3}{x^2+1} \right]$$

$$= \lim_{x \to \infty} \left| -\frac{\frac{4}{x} + \frac{3}{x^2}}{1 + \frac{1}{x^2}} \right| = 0.$$

The oblique asymptote is y = 3x + 4.

- **51. a.** We say that $\lim_{x \to c^+} f(x) = -\infty$ if to each negative number M there corresponds a $\delta > 0$ such that $0 < x c < \delta \Rightarrow f(x) < M$.
 - **b.** We say that $\lim_{x \to c^{-}} f(x) = \infty$ if to each positive number M there corresponds a $\delta > 0$ such that $0 < c x < \delta \Rightarrow f(x) > M$.
- **52. a.** We say that $\lim_{x \to \infty} f(x) = \infty$ if to each positive number M there corresponds an N > 0 such that $N < x \Rightarrow f(x) > M$.
 - **b.** We say that $\lim_{x \to -\infty} f(x) = \infty$ if to each positive number M there corresponds an N < 0 such that $x < N \Rightarrow f(x) > M$.
- **53.** Let $\varepsilon > 0$ be given. Since $\lim_{x \to \infty} f(x) = A$, there is a corresponding number M_1 such that $x > M_1 \Rightarrow \left| f(x) A \right| < \frac{\varepsilon}{2}$. Similarly, there is a number M_2 such that $x > M_2 \Rightarrow \left| g(x) B \right| < \frac{\varepsilon}{2}$. Let $M = \max\{M_1, M_2\}$, then $x > M \Rightarrow \left| f(x) + g(x) (A + B) \right| = \left| f(x) A + g(x) B \right| \le \left| f(x) A \right| + \left| g(x) B \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$ Thus, $\lim_{x \to \infty} [f(x) + g(x)] = A + B$
- **54.** Written response
- **55.** a. $\lim_{x\to\infty} \sin x$ does not exist as $\sin x$ oscillates between -1 and 1 as x increases.
 - **b.** Let $u = \frac{1}{x}$, then as $x \to \infty$, $u \to 0^+$. $\lim_{x \to \infty} \sin \frac{1}{x} = \lim_{u \to 0^+} \sin u = 0$
 - c. Let $u = \frac{1}{x}$, then as $x \to \infty, u \to 0^+$. $\lim_{x \to \infty} x \sin \frac{1}{x} = \lim_{u \to 0^+} \frac{1}{u} \sin u = \lim_{u \to 0^+} \frac{\sin u}{u} = 1$
 - **d.** Let $u = \frac{1}{x}$, then $\lim_{x \to \infty} x^{3/2} \sin \frac{1}{x} = \lim_{u \to 0^+} \left(\frac{1}{u}\right)^{3/2} \sin u$ $= \lim_{u \to 0^+} \left[\left(\frac{1}{\sqrt{u}}\right) \left(\frac{\sin u}{u}\right) \right] = \infty$

- e. As $x \to \infty$, $\sin x$ oscillates between -1 and 1, while $x^{-1/2} = \frac{1}{\sqrt{x}} \to 0$. $\lim_{x \to \infty} x^{-1/2} \sin x = 0$
- **f.** Let $u = \frac{1}{x}$, then $\lim_{x \to \infty} \sin\left(\frac{\pi}{6} + \frac{1}{x}\right) = \lim_{u \to 0^{+}} \sin\left(\frac{\pi}{6} + u\right)$ $= \sin\frac{\pi}{6} = \frac{1}{2}$
- **g.** As $x \to \infty$, $x + \frac{1}{x} \to \infty$, so $\lim_{x \to \infty} \sin\left(x + \frac{1}{x}\right)$ does not exist. (See part a.)
- **h.** $\sin\left(x + \frac{1}{x}\right) = \sin x \cos \frac{1}{x} + \cos x \sin \frac{1}{x}$ $\lim_{x \to \infty} \left[\sin\left(x + \frac{1}{x}\right) \sin x\right]$ $= \lim_{x \to \infty} \left[\sin x \left(\cos \frac{1}{x} 1\right) + \cos x \sin \frac{1}{x}\right]$ As $x \to \infty$, $\cos \frac{1}{x} \to 1$ so $\cos \frac{1}{x} 1 \to 0$.

 From part **b**., $\lim_{x \to \infty} \sin \frac{1}{x} = 0$.

 As $x \to \infty$ both $\sin x$ and $\cos x$ oscillate between -1 and 1. $\lim_{x \to \infty} \left[\sin\left(x + \frac{1}{x}\right) \sin x\right] = 0.$
- **56.** $\lim_{v \to c^{-}} m(v) = \lim_{v \to c^{-}} \frac{m_0}{\sqrt{1 v^2/c^2}} = \infty$
- $57. \quad \lim_{x \to \infty} \frac{3x^2 + x + 1}{2x^2 1} = \frac{3}{2}$
- **58.** $\lim_{x \to -\infty} \sqrt{\frac{2x^2 3x}{5x^2 + 1}} = \sqrt{\frac{2}{5}}$
- **59.** $\lim_{x \to -\infty} \left(\sqrt{2x^2 + 3x} \sqrt{2x^2 5} \right) = -\frac{3}{2\sqrt{2}}$
- **60.** $\lim_{x \to \infty} \frac{2x+1}{\sqrt{3x^2+1}} = \frac{2}{\sqrt{3}}$
- **61.** $\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{10} = 1$

62.
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e \approx 2.718$$

$$63. \quad \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^{x^2} = \infty$$

64.
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^{\sin x} = 1$$

65.
$$\lim_{x \to 3^{-}} \frac{\sin|x-3|}{x-3} = -1$$

66.
$$\lim_{x \to 3^{-}} \frac{\sin|x-3|}{\tan(x-3)} = -1$$

67.
$$\lim_{x \to 3^{-}} \frac{\cos(x-3)}{x-3} = -\infty$$

68.
$$\lim_{x \to \frac{\pi}{2}^+} \frac{\cos x}{x - \frac{\pi}{2}} = -1$$

69.
$$\lim_{x \to 0^+} (1 + \sqrt{x})^{\frac{1}{\sqrt{x}}} = e \approx 2.718$$

70.
$$\lim_{x \to 0^+} (1 + \sqrt{x})^{1/x} = \infty$$

71.
$$\lim_{x \to 0^+} (1 + \sqrt{x})^x = 1$$

2.5 Concepts Review

- **1.** 0
- **2.** 1
- **3.** the denominator is 0 when t = 0.
- **4.** 1

Problem Set 2.5

1.
$$\lim_{x\to 0} \frac{\cos x}{x+1} = \frac{1}{1} = 1$$

$$2. \quad \lim_{\theta \to \pi/2} \theta \cos \theta = \frac{\pi}{2} \cdot 0 = 0$$

3.
$$\lim_{t \to 0} \frac{\cos^2 t}{1 + \sin t} = \frac{\cos^2 0}{1 + \sin 0} = \frac{1}{1 + 0} = 1$$

4.
$$\lim_{x \to 0} \frac{3x \tan x}{\sin x} = \lim_{x \to 0} \frac{3x (\sin x / \cos x)}{\sin x} = \lim_{x \to 0} \frac{3x}{\cos x}$$
$$= \frac{0}{1} = 0$$

5.
$$\lim_{x \to 0} \frac{\sin x}{2x} = \frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} = \frac{1}{2} \cdot 1 = \frac{1}{2}$$

6.
$$\lim_{\theta \to 0} \frac{\sin 3\theta}{2\theta} = \lim_{\theta \to 0} \frac{3}{2} \cdot \frac{\sin 3\theta}{3\theta} = \frac{3}{2} \lim_{\theta \to 0} \frac{\sin 3\theta}{3\theta}$$
$$= \frac{3}{2} \cdot 1 = \frac{3}{2}$$

7.
$$\lim_{\theta \to 0} \frac{\sin 3\theta}{\tan \theta} = \lim_{\theta \to 0} \frac{\sin 3\theta}{\frac{\sin \theta}{\cos \theta}} = \lim_{\theta \to 0} \frac{\cos \theta \sin 3\theta}{\sin \theta}$$
$$= \lim_{\theta \to 0} \left[\cos \theta \cdot 3 \cdot \frac{\sin 3\theta}{3\theta} \cdot \frac{1}{\frac{\sin \theta}{\theta}} \right]$$
$$= 3 \lim_{\theta \to 0} \left[\cos \theta \cdot \frac{\sin 3\theta}{3\theta} \cdot \frac{1}{\frac{\sin \theta}{\theta}} \right] = 3 \cdot 1 \cdot 1 \cdot 1 = 3$$

8.
$$\lim_{\theta \to 0} \frac{\tan 5\theta}{\sin 2\theta} = \lim_{\theta \to 0} \frac{\frac{\sin 5\theta}{\cos 5\theta}}{\sin 2\theta} = \lim_{\theta \to 0} \frac{\sin 5\theta}{\cos 5\theta \sin 2\theta}$$
$$= \lim_{\theta \to 0} \left[\frac{1}{\cos 5\theta} \cdot 5 \cdot \frac{\sin 5\theta}{5\theta} \cdot \frac{1}{2} \cdot \frac{2\theta}{\sin 2\theta} \right]$$
$$= \frac{5}{2} \lim_{\theta \to 0} \left[\frac{1}{\cos 5\theta} \cdot \frac{\sin 5\theta}{5\theta} \cdot \frac{2\theta}{\sin 2\theta} \right]$$
$$= \frac{5}{2} \cdot 1 \cdot 1 \cdot 1 = \frac{5}{2}$$

9.
$$\lim_{\theta \to 0} \frac{\cot \pi \theta \sin \theta}{2 \sec \theta} = \lim_{\theta \to 0} \frac{\frac{\cos \pi \theta}{\sin \pi \theta} \sin \theta}{\frac{2}{\cos \theta}}$$
$$= \lim_{\theta \to 0} \frac{\cos \pi \theta \sin \theta \cos \theta}{2 \sin \pi \theta}$$
$$= \lim_{\theta \to 0} \left[\frac{\cos \pi \theta \cos \theta}{2} \cdot \frac{\sin \theta}{\theta} \cdot \frac{1}{\pi} \cdot \frac{\pi \theta}{\sin \pi \theta} \right]$$
$$= \frac{1}{2\pi} \lim_{\theta \to 0} \left[\cos \pi \theta \cos \theta \cdot \frac{\sin \theta}{\theta} \cdot \frac{\pi \theta}{\sin \pi \theta} \right]$$
$$= \frac{1}{2\pi} \cdot 1 \cdot 1 \cdot 1 \cdot 1 = \frac{1}{2\pi}$$

10.
$$\lim_{t \to 0} \frac{\sin^2 3t}{2t} = \lim_{t \to 0} \frac{9t}{2} \cdot \frac{\sin 3t}{3t} \cdot \frac{\sin 3t}{3t} = 0 \cdot 1 \cdot 1 = 0$$

11.
$$\lim_{t \to 0} \frac{\tan^2 3t}{2t} = \lim_{t \to 0} \frac{\sin^2 3t}{(2t)(\cos^2 3t)}$$
$$= \lim_{t \to 0} \frac{3(\sin 3t)}{2\cos^2 3t} \cdot \frac{\sin 3t}{3t} = 0.1 = 0$$

12.
$$\lim_{t\to 0} \frac{\tan 2t}{\sin 2t - 1} = \frac{0}{-1} = 0$$

13.
$$\lim_{t \to 0} \frac{\sin(3t) + 4t}{t \sec t} = \lim_{t \to 0} \left(\frac{\sin 3t}{t \sec t} + \frac{4t}{t \sec t} \right)$$
$$= \lim_{t \to 0} \frac{\sin 3t}{t \sec t} + \lim_{t \to 0} \frac{4t}{t \sec t}$$
$$= \lim_{t \to 0} 3 \cos t \cdot \frac{\sin 3t}{3t} + \lim_{t \to 0} 4 \cos t$$
$$= 3 \cdot 1 + 4 = 7$$

14.
$$\lim_{\theta \to 0} \frac{\sin^2 \theta}{\theta^2} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \frac{\sin \theta}{\theta}$$
$$= \lim_{\theta \to 0} \frac{\sin \theta}{\theta} \times \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \times 1 = 1$$

15.
$$\lim_{x \to 0} x \sin(1/x) = 0$$

16.
$$\lim_{x \to 0} x \sin(1/x^2) = 0$$

17.
$$\lim_{x\to 0} (1-\cos^2 x)/x = 0$$

18.
$$\lim_{x \to 0} \cos^2 x = 1$$

19.
$$\lim_{x \to 0} 1 + \frac{\sin x}{x} = 2$$

20. The result that $\lim_{t\to 0} \cos t = 1$ was established in

$$\lim_{t \to c} \cos t = \lim_{h \to 0} \cos(c + h)$$

$$= \lim_{h \to 0} (\cos c \cos h - \sin c \sin h)$$

$$= \lim_{h \to 0} \cos c \lim_{h \to 0} \cos h - \sin c \lim_{h \to 0} \sin h$$

$$= \cos c$$

21.
$$\lim_{t \to c} \tan t = \lim_{t \to c} \frac{\sin t}{\cos t} = \frac{\limsup_{t \to c} t}{\lim_{t \to c} \cos t} = \frac{\sin c}{\cos c} = \tan c$$

$$\lim_{t \to c} \cot t = \lim_{t \to c} \frac{\cos t}{\sin t} = \frac{\lim_{t \to c} \cos t}{\lim_{t \to c} \sin t} = \frac{\cos c}{\sin c} = \cot c$$

22.
$$\lim_{t \to c} \sec t = \lim_{t \to c} \frac{1}{\cos t} = \frac{1}{\cos c} = \sec c$$

$$\lim_{t \to c} \csc t = \lim_{t \to c} \frac{1}{\sin t} = \frac{1}{\sin c} = \csc c$$

23.
$$\overline{BP} = \sin t, \overline{OB} = \cos t$$

 $\operatorname{area}(\Delta OBP) \le \operatorname{area}(\operatorname{sector} OAP)$
 $\le \operatorname{area}(\Delta OBP) + \operatorname{area}(ABPQ)$
 $\frac{1}{2}\overline{OB} \cdot \overline{BP} \le \frac{1}{2}t(1)^2 \le \frac{1}{2}\overline{OB} \cdot \overline{BP} + (1-\overline{OB})\overline{BP}$
 $\frac{1}{2}\sin t \cos t \le \frac{1}{2}t \le \frac{1}{2}\sin t \cos t + (1-\cos t)\sin t$

$$\begin{aligned} \cos t &\leq \frac{t}{\sin t} \leq 2 - \cos t \\ \frac{1}{2 - \cos t} &\leq \frac{\sin t}{t} \leq \frac{1}{\cos t} \quad \text{for } -\frac{\pi}{2} < t < \frac{\pi}{2}. \\ \lim_{t \to 0} \frac{1}{2 - \cos t} &\leq \lim_{t \to 0} \frac{\sin t}{t} \leq \lim_{t \to 0} \frac{1}{\cos t} \\ 1 &\leq \lim_{t \to 0} \frac{\sin t}{t} \leq 1 \end{aligned}$$
Thus,
$$\lim_{t \to 0} \frac{\sin t}{t} = 1.$$

24. a. Written response

b.
$$D = \frac{1}{2} \overline{AB} \cdot \overline{BP} = \frac{1}{2} (1 - \cos t) \sin t$$
$$= \frac{\sin t (1 - \cos t)}{2}$$
$$E = \frac{1}{2} t (1)^2 - \frac{1}{2} \overline{OB} \cdot \overline{BP} = \frac{t}{2} - \frac{\sin t \cos t}{2}$$
$$\frac{D}{E} = \frac{\sin t (1 - \cos t)}{t - \sin t \cos t}$$

 $\mathbf{c.} \qquad \lim_{t \to 0^+} \left(\frac{D}{E} \right) = 0.75$

2.6 Concepts Review

- 1. $\lim_{n\to\infty} a^{r_n}$
- 2. natural logarithm; $\ln x$
- 3. $1000e^{(0.06)3} = 1197.22
- 4. even; odd

Problem Set 2.6

1.
$$10^{2\log_{10} 5} = 10^{\log_{10} 5^2} = 5^2 = 25$$

2.
$$2^{2\log_2 x} = 2^{\log_2 x^2} = x^2$$

$$3. \quad e^{3\ln x} = e^{\ln x^3} = x^3$$

4.
$$e^{-2\ln x} = e^{\ln x^{-2}} = x^{-2} = \frac{1}{x^2}$$

$$5. \quad \ln e^{\cos x} = \cos x$$

6.
$$\ln e^{-2x-3} = -2x-3$$

7.
$$\ln(x^3 e^{-3x}) = \ln x^3 + \ln e^{-3x} = 3 \ln x - 3x$$

8.
$$e^{x-\ln x} = \frac{e^x}{e^{\ln x}} = \frac{e^x}{x}$$

9.
$$e^{\ln 3 + 2 \ln x} = e^{\ln 3} \cdot e^{2 \ln x} = 3 \cdot e^{\ln x^2} = 3x^2$$

10.
$$e^{\ln x^2 - y \ln x} = \frac{e^{\ln x^2}}{e^{y \ln x}} = \frac{x^2}{e^{\ln x^y}} = \frac{x^2}{x^y} = x^{2-y}$$

- **11. a.** Graph D; the graph of $f(x) = e^{x-1}$ will be the graph of $y = e^x$, but shifted 1 unit to the right.
 - **b.** Graph B
 - **c.** Graph C; the graph of $y = e^x$ is strictly increasing and passes through the point (0,1).
 - **d.** Graph A; the graph of $f(x) = e^{-x/4}$ will be the graph of $y = e^x$ reflected about the *y*-axis and stretched horizontally by a factor of 4. The graph will be strictly decreasing.
- **12. a.** Graph A; The graph of $f(x) = \ln x$ will be strictly increasing, will rise slowly, and will have a vertical asymptote at x = 0.
 - **b.** Graph D; The graph of $f(x) = \ln(x-1)$ will be the graph of $y = \ln x$, but shifted 1 unit to the right.
 - **c.** Graph C; The graph of $f(x) = \ln \frac{1}{x} = \ln x^{-1} = -\ln x$ will be the graph of $y = \ln x$, but reflected about the x-axis. The graph will be strictly decreasing.
 - **d.** Graph B; The graph of $f(x) = \ln x^4 = 4 \ln x \quad (x > 0)$ will be the graph of $y = \ln x$, but stretched vertically by a factor of 4. The graph will be strictly increasing, but will rise at a faster rate than $y = \ln x$.

 $y = \ln x$ is reflected across the y-axis.

14.

The y-values of $y = \ln x$ are multiplied by $\frac{1}{2}$, since $\ln \sqrt{x} = \frac{1}{2} \ln x$.

15.

 $y = \ln x$ is reflected across the x-axis since $\ln \left(\frac{1}{x}\right) = -\ln x$.

16.

 $y = \ln x$ is shifted two units to the right.

17.

 $y = \ln \cos x + \ln \sec x$

$$= \ln \cos x + \ln \frac{1}{\cos x}$$

$$= \ln \cos x - \ln \cos x = 0 \text{ on } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

18. a.
$$\lim_{x \to 0} (1+x)^{1000} = 1^{1000} = 1$$

b.
$$\lim_{x \to 0} 1^{1/x} = \lim_{x \to 0} 1 = 1$$

c.
$$\lim_{x \to 0^+} (1+\varepsilon)^{1/x} = \lim_{n \to \infty} (1+\varepsilon)^n = \infty$$

d.
$$\lim_{x \to 0^{-}} (1 + \varepsilon)^{1/x} = \lim_{n \to \infty} \frac{1}{(1 + \varepsilon)^{n}} = 0$$

19. a.
$$\lim_{x \to 0} (1-x)^{1/x} = \lim_{x \to 0} \frac{1}{[1+(-x)]^{1/(-x)}} = \frac{1}{e}$$

b.
$$\lim_{x \to 0} (1+3x)^{1/x} = \lim_{x \to 0} \left[(1+3x)^{\frac{1}{3x}} \right]^3 = e^3$$

c.
$$\lim_{n \to \infty} \left(\frac{n+2}{n} \right)^n = \lim_{n \to \infty} \left(1 + \frac{2}{n} \right)^n$$
$$= \lim_{x \to 0^+} (1 + 2x)^{1/x}$$
$$= \lim_{x \to 0^+} \left[(1 + 2x)^{\frac{1}{2x}} \right]^2 = e^2$$

d.
$$\lim_{n \to \infty} \left(\frac{n-1}{n} \right)^{2n} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^{2n}$$
$$= \lim_{x \to 0^{+}} (1 - x)^{2/x}$$
$$= \lim_{x \to 0^{+}} \left[(1 - x)^{\frac{1}{-x}} \right]^{-2} = \frac{1}{e^{2}}$$

20. a.
$$\lim_{n\to 0} \left(1+\frac{2}{n}\right)^{100} = \infty$$
 (note that the exponent, while large, is still fixed)

b.
$$\lim_{n\to 0} (1.001)^n = 1.001^0 = 1$$

c.
$$\lim_{n \to \infty} \left(\frac{n+3}{n} \right)^{n+1} = \lim_{n \to \infty} \left(\left(1 + \frac{3}{n} \right)^{\frac{n+1}{3}} \right)^3 = e^3$$

d.
$$\lim_{x \to 0} (1+x)^{1/x} = e$$

21. a.
$$\ln 6 = \ln (2 \cdot 3) = \ln 2 + \ln 3$$

= 0.693 + 1.099 = 1.792

b.
$$\ln 1.5 = \ln \left(\frac{3}{2}\right) = \ln 3 - \ln 2 = 1.099 - 0.693$$

= 0.406

c.
$$\ln 81 = \ln 3^4 = 4 \ln 3 = 4(1.099) = 4.396$$

d.
$$\ln \sqrt{2} = \ln 2^{1/2} = \frac{1}{2} \ln 2 = \frac{1}{2} (0.693) = 0.3465$$

e.
$$\ln\left(\frac{1}{36}\right) = -\ln 36 = -\ln(2^2 \cdot 3^2)$$

= $-2\ln 2 - 2\ln 3 = -2(0.693) - 2(1.099)$
= -3.584

f.
$$\ln 48 = \ln(2^4 \cdot 3) = 4 \ln 2 + \ln 3$$

= $4(0.693) + 1.099 = 3.871$

23.
$$2\ln(x+1) - \ln x = \ln(x+1)^2 - \ln x = \ln\frac{(x+1)^2}{x}$$

24.
$$\frac{1}{2}\ln(x-9) + \frac{1}{2}\ln x = \ln\sqrt{x-9} - \ln\sqrt{x}$$

= $\ln\frac{\sqrt{x-9}}{\sqrt{x}} = \ln\sqrt{\frac{x-9}{x}}$

25.
$$\ln(x-2) - \ln(x+2) + 2 \ln x$$

= $\ln(x-2) - \ln(x+2) + \ln x^2$
= $\ln \frac{x^2(x-2)}{x+2}$

26.
$$\ln(x^2 - 9) - 2\ln(x - 3) - \ln(x + 3)$$

= $\ln(x^2 - 9) - \ln(x - 3)^2 - \ln(x + 3)$
= $\ln\frac{x^2 - 9}{(x - 3)^2(x + 3)} = \ln\frac{1}{x - 3}$

27. a.
$$(\$375)(1.035)^2 \approx \$401.71$$

b.
$$(\$375) \left(1 + \frac{0.035}{12}\right)^{24} \approx \$402.15$$

c.
$$(\$375) \left(1 + \frac{0.035}{365} \right)^{730} \approx \$402.19$$

d.
$$(\$375)e^{0.035\cdot 2} \approx \$402.19$$

28. a.
$$(\$375)(1.046)^2 = \$410.29$$

b.
$$(\$375) \left(1 + \frac{0.046}{12}\right)^{24} \approx \$411.06$$

c.
$$(\$375) \left(1 + \frac{0.046}{365} \right)^{730} \approx \$411.13$$

d.
$$(\$375)e^{0.046\cdot 2} \approx \$411.14$$

29. a.
$$\left(1 + \frac{0.06}{12}\right)^{12t} = 2$$

 $1.005^{12t} = 2$
 $12t = \frac{\ln 2}{\ln 1.005}$ so $t = \frac{\ln 2}{12 \ln 1.005} \approx 11.58$
It will take about 11.58 years or 11 years, 6 months, 29 days.

b.
$$e^{0.06t} = 2 \Rightarrow t = \frac{\ln 2}{0.06} \approx 11.55$$

It will take about 11.55 years or 11 years, 6 months, and 18 days.

30.
$$\$20,000(1.025)^5 \approx \$22,628.16$$

31. 1626 to 2000 is 374 years.

$$y = 24e^{0.06 \cdot 374} \approx $133.6$$
 billion

32.
$$$100(1.04)^{969} \approx $3.201 \times 10^{18}$$

33.
$$\log_5 12 = \frac{\ln 12}{\ln 5} \approx 1.544$$

34.
$$\log_7 0.11 = \frac{\ln 0.11}{\ln 7} \approx -1.1343$$

35.
$$\log_{11}(8.12)^{1/5} = \frac{1}{5} \frac{\ln 8.12}{\ln 11} \approx 0.1747$$

36.
$$\log_{10}(8.57)^7 = 7 \frac{\ln 8.57}{\ln 10} \approx 6.5309$$

37.
$$x \ln 2 = \ln 17$$

 $x = \frac{\ln 17}{\ln 2} \approx 4.08746$

38.
$$x \ln 5 = \ln 13$$

 $x = \frac{\ln 13}{\ln 5} \approx 1.5937$

39.
$$(2s-3) \ln 5 = \ln 4$$

 $2s-3 = \frac{\ln 4}{\ln 5}$
 $s = \frac{1}{2} \left(3 + \frac{\ln 4}{\ln 5} \right) \approx 1.9307$

40.
$$\frac{1}{\theta - 1} \ln 12 = \ln 4$$

 $\frac{\ln 12}{\ln 4} = \theta - 1$
 $\theta = 1 + \frac{\ln 12}{\ln 4} \approx 2.7925$

41.
$$\cosh x + \sinh x = \frac{e^x + e^{-x}}{2} + \frac{e^x - e^{-x}}{2}$$
$$= \frac{2e^x}{2} = e^x$$

42.
$$\cosh 2x + \sinh 2x = \frac{e^{2x} + e^{-2x}}{2} + \frac{e^{2x} - e^{-2x}}{2}$$
$$= \frac{2e^{2x}}{2} = e^{2x}$$

43.
$$\cosh x - \sinh x = \frac{e^x + e^{-x}}{2} - \frac{e^x - e^{-x}}{2}$$

$$= \frac{2e^{-x}}{2} = e^{-x}$$

44.
$$\cosh 2x - \sinh 2x = \frac{e^{2x} + e^{-2x}}{2} - \frac{e^{2x} - e^{-2x}}{2}$$
$$= \frac{2e^{-2x}}{2} = e^{-2x}$$

45.
$$\sinh x \cosh y + \cosh x \sinh y = \frac{e^x - e^{-x}}{2} \cdot \frac{e^y + e^{-y}}{2} + \frac{e^x + e^{-x}}{2} \cdot \frac{e^y - e^{-y}}{2}$$

$$= \frac{e^{x+y} + e^{x-y} - e^{-x+y} - e^{-x-y}}{4} + \frac{e^{x+y} - e^{x-y} + e^{-x+y} - e^{-x-y}}{4}$$

$$= \frac{2e^{x+y} - 2e^{-(x+y)}}{4} = \frac{e^{x+y} - e^{-(x+y)}}{2} = \sinh(x+y)$$

46.
$$\sinh x \cosh y - \cosh x \sinh y = \frac{e^x - e^{-x}}{2} \cdot \frac{e^y + e^{-y}}{2} - \frac{e^x + e^{-x}}{2} \cdot \frac{e^y - e^{-y}}{2}$$

$$= \frac{e^{x+y} + e^{x-y} - e^{-x+y} - e^{-x-y}}{4} - \frac{e^{x+y} - e^{x-y} + e^{-x+y} - e^{-x-y}}{4}$$

$$= \frac{2e^{x-y} - 2e^{-x+y}}{4} = \frac{e^{x-y} - e^{-(x-y)}}{2} = \sinh(x-y)$$

47.
$$\cosh x \cosh y + \sinh x \sinh y = \frac{e^x + e^{-x}}{2} \cdot \frac{e^y + e^{-y}}{2} + \frac{e^x - e^{-x}}{2} \cdot \frac{e^y - e^{-y}}{2}$$

$$= \frac{e^{x+y} + e^{x-y} + e^{-x+y} + e^{-x-y}}{4} + \frac{e^{x+y} - e^{x-y} - e^{-x+y} + e^{-x-y}}{4}$$

$$= \frac{2e^{x+y} + 2e^{-x-y}}{4} = \frac{e^{x+y} + e^{-(x+y)}}{2} = \cosh(x+y)$$

48.
$$\cosh x \cosh y - \sinh x \sinh y = \frac{e^x + e^{-x}}{2} \cdot \frac{e^y + e^{-y}}{2} - \frac{e^x - e^{-x}}{2} \cdot \frac{e^y - e^{-y}}{2}$$

$$= \frac{e^{x+y} + e^{x-y} + e^{-x+y} + e^{-x-y}}{4} - \frac{e^{x+y} - e^{x-y} - e^{-x+y} + e^{-x-y}}{4}$$

$$= \frac{2e^{x-y} + 2e^{-x+y}}{4} = \frac{e^{x-y} + e^{-(x-y)}}{2} = \cosh(x-y)$$

49.
$$\frac{\tanh x + \tanh y}{1 + \tanh x \tanh y} = \frac{\frac{\sinh x}{\cosh x} + \frac{\sinh y}{\cosh y}}{1 + \frac{\sinh x}{\cosh x} \cdot \frac{\sinh y}{\cosh y}}$$
$$= \frac{\sinh x \cosh y + \cosh x \sinh y}{\cosh x \cosh y + \sinh x \sinh y} = \frac{\sinh(x+y)}{\cosh(x+y)}$$
$$= \tanh (x+y)$$

50.
$$\frac{\tanh x - \tanh y}{1 - \tanh x \tanh y} = \frac{\frac{\sinh x}{\cosh x} - \frac{\sinh y}{\cosh y}}{1 - \frac{\sinh x}{\cosh x} \cdot \frac{\sinh y}{\cosh y}}$$
$$= \frac{\sinh x \cosh y - \cosh x \sinh y}{\cosh x \cosh y - \sinh x \sinh y} = \frac{\sinh(x - y)}{\cosh(x - y)}$$
$$= \tanh(x - y)$$

- 51. $2 \sinh x \cosh x = \sinh x \cosh x + \cosh x \sinh x$ = $\sinh (x + x) = \sinh 2x$
- 52. $\cosh^2 x + \sinh^2 x = \cosh x \cosh x + \sinh x \sinh x$ = $\cosh(x+x) = \cosh 2x$
- **53.** (1) Let x be irrational and let y be any number. Further, let $\{r_n\}$ and $\{s_n\}$ be sequences of rational numbers such that $\lim_{n\to\infty} r_n = x$ and $\lim_{n\to\infty} s_n = y$.
 - (2) Since $\lim_{n \to \infty} (r_n s_n) = \lim_{n \to \infty} r_n \lim_{n \to \infty} s_n = x y$ we have $\frac{a^x}{a^y} = \frac{\lim_{n \to \infty} a^{r_n}}{\lim_{n \to \infty} a^{s_n}} = \lim_{n \to \infty} \left(\frac{a^{r_n}}{a^{s_n}}\right)$ $= \lim_{n \to \infty} a^{(r_n s_n)} = a^{x y}$
 - (3) (a) We first prove: if $\{u_n\}$ is *any* sequence of numbers (need not be rational) such that $\lim_{n\to\infty} u_n = z$, then $\lim_{n\to\infty} a^{u_n} = a^z$.

<u>Proof:</u> Let p_n be the truncation of the decimal expansion of u_n at the nth decimal place and let $q_n = p_n + \frac{1}{n}$; then $0 \le u_n - p_n < \frac{1}{n}$ and $0 \le q_n - u_n < \frac{1}{n}$ so that $u_n - \frac{1}{n} < p_n < q_n < u_n + \frac{1}{n}$. Thus $\lim_{n \to \infty} \left(u_n - \frac{1}{n}\right) \le \lim_{n \to \infty} p_n \le \lim_{n \to \infty} q_n \le \lim_{n \to \infty} \left(u_n + \frac{1}{n}\right)$ or $z \le \lim_{n \to \infty} p_n \le \lim_{n \to \infty} q_n \le z$, and we conclude that $\lim_{n \to \infty} p_n = \lim_{n \to \infty} q_n = x$. Since $p_n \le u_n < q_n$, it follows that a^{u_n} will be

between a^{p_n} and a^{q_n} (the order will depend on whether a < 1 or a > 1). Hence, because $\lim_{n \to \infty} a^{p_n} = \lim_{n \to \infty} a^{q_n} = a^x$, $\lim_{n \to \infty} a^{u_n} = a^x$ by the Squeeze Theorem.

(b) Now choose any s_k ; then, since $\lim_{n\to\infty} r_n s_k = s_k \lim_{n\to\infty} r_n = s_k x$,

$$(a^{x})^{s_{k}} = \left[\lim_{n \to \infty} a^{r_{n}}\right]^{s_{k}} = \lim_{n \to \infty} \left[\left(a^{r_{n}}\right)^{s_{k}}\right]$$
$$= \lim_{n \to \infty} \left[a^{r_{n}} s_{k}\right] = a^{x s_{k}}$$

Define $u_n = xs_n$; then $\lim_{n \to \infty} u_n = x \lim_{n \to \infty} s_n = xy$. Hence, from part (a), $(a^x)^y = \lim_{n \to \infty} (a^x)^{s_n} = \lim_{n \to \infty} (a^{xs_n}) = a^{xy}.$

- (4) Follows from (2) by letting x = 0.
- (5) $(ab)^{x} = \lim_{n \to \infty} (ab)^{r_{n}} = \lim_{n \to \infty} (a^{r_{n}}b^{r_{n}})$ = $\lim_{n \to \infty} a^{r_{n}} \cdot \lim_{n \to \infty} b^{r_{n}} = a^{x}b^{x}$

(6)
$$\left(\frac{a}{b}\right)^x = \left(a \cdot \frac{1}{b}\right)^x \stackrel{(5)}{=} a^x \left(\frac{1}{b}\right)^x \stackrel{(4)}{=} a^x \cdot \frac{1}{b^x} = \frac{a^x}{b^x}$$

- 54. (1) $\lim_{t \to c} \sin^{-1}(t) = \sin^{-1}(c)$ $\lim_{t \to c} \cos^{-1}(t) = \cos^{-1}(c)$ $\lim_{t \to c} \tan^{-1}(t) = \tan^{-1}(c)$ $\lim_{t \to c} \cot^{-1}(t) = \cot^{-1}(c)$ $\lim_{t \to c} \sec^{-1}(t) = \sec^{-1}(c)$ $\lim_{t \to c} \csc^{-1}(t) = \csc^{-1}(c)$
 - (2) the validity of these statements follows directly from Theorem 2.5A and Theorem 2.6C. For example, let c be in the domain of $\sin^{-1}(t)$ and let a be such that $\sin(a) = c$. By Theorem 2.5A, $\limsup_{x \to a} \sin(x) = \sin(a) = c$; so by Theorem 2.6C, $\limsup_{x \to a} \sin^{-1}(t) = \sin^{-1}(c)$.

55. A. (Hyperbolic)

(1) Statement:

$$\lim_{x \to a} \sinh(x) = \sinh(a)$$

$$\lim \cosh(x) = \cosh(a)$$

$$\lim \tanh(x) = \tanh(a)$$

$$\lim \coth(x) = \coth(a)$$

$$\lim \operatorname{sec} h(x) = \operatorname{sec} h(a)$$

$$\lim \operatorname{csc} h(x) = \operatorname{csc} h(a)$$

(2) Proof

(a) By Theorem 2.3A and Theorem 2.6B(1),

$$\lim_{x \to a} \sinh(x) = \lim_{x \to a} \left(\frac{e^x - e^{-x}}{2} \right)$$

$$= \left(\frac{\lim_{x \to a} (e^x - e^{-x})}{\lim_{x \to a} 2} \right)$$

$$= \left(\frac{(\lim_{x \to a} e^x) - (\lim_{x \to a} e^{-x})}{2} \right)$$

$$= \left(\frac{e^a - e^{-a}}{2} \right) = \sinh(a)$$

- (b) The proof for cosh(x) is the same with "-" replaced by "+".
- (c) The remaining proofs follow from Theorem 2.3A(7).
- B. (Inverse Hyperbolic)
- (1) Statement:

$$\lim_{t \to c} \sinh^{-1}(t) = \sinh^{-1}(c)$$

$$\lim_{t \to \infty} \cosh^{-1}(t) = \cosh^{-1}(c)$$

$$\lim_{t\to c} \tanh^{-1}(t) = \tanh^{-1}(c)$$

$$t \to c \qquad \qquad t = 1 \ (t) \qquad \qquad t = 1 \ (t)$$

$$\lim_{t\to c} \coth^{-1}(t) = \coth^{-1}(c)$$

$$\lim_{t\to c} \operatorname{sec} h^{-1}(t) = \operatorname{sec} h^{-1}(c)$$

$$\lim_{t\to c} \operatorname{csc} h^{-1}(t) = \operatorname{csc} h^{-1}(c)$$

- (2) <u>Proof</u> Follows directly from part A. and Theorem 2.6C.
- **56.** Suppose the result is <u>not</u> true. Then there is an $\varepsilon_0 > 0$ such that: for every $\delta > 0$ there exists a value x_δ where $0 < |x_\delta c| < \delta$ but $|a^{x_\delta} a^c| > \varepsilon_0$. In particular, for every positive integer m there is an x_m such that

$$0 < |x_m - c| < \frac{1}{m}$$
 but $|a^{x_m} - a^c| > \varepsilon_0$. For each m , let $r_{m,1}, r_{m,2}, \ldots$ be a sequence of rational numbers that converges to x_m . This means $\lim_{n \to \infty} r_{m,n} = x_m$ and, by definition, $a^{x_m} = \lim_{n \to \infty} a^{r_{m,n}}$. Thus it is possible (by going far enough out in the sequence

$$r_{m,1}, r_{m,2},...$$
) to find a rational number t_m such that both $0 < |t_m - c| < \frac{1}{m}$ and $|a^{t_m} - a^c| > \varepsilon_0$

This yields
$$c - \frac{1}{m} < t_m < c + \frac{1}{m}$$
 and

$$a^{t_m} \notin (a^c - \varepsilon_0, a^c + \varepsilon_0)$$
 which means $\lim_{m \to \infty} t_m = c$

but
$$\lim_{m\to\infty} a^{t_m} \neq a^c$$
.

This contradicts the definition of a^c and so our original assumption is wrong, and, in fact, $\lim a^x = a^c$.

57.
$$\cosh(-x) = \frac{e^{(-x)} + e^{-(-x)}}{2} = \frac{e^{-x} + e^{x}}{2}$$
$$= \frac{e^{x} + e^{-x}}{2} = \cosh(x)$$

so $\cosh(x)$ is an even function.

58.
$$\left(1 - \frac{1}{n}\right)^{-n} = \left(\frac{1}{\left(1 - \frac{1}{n}\right)}\right)^{n} = \left(\frac{n}{n - 1}\right)^{n}$$

$$= \left(\frac{(n - 1) + 1}{n - 1}\right)^{n} = \left(1 + \frac{1}{n - 1}\right)^{n}$$

$$= \left(1 + \frac{1}{n - 1}\right)^{n - 1} \left(1 + \frac{1}{n - 1}\right).$$

Thus:

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^{-n}$$

$$= \lim_{n \to \infty} \left[\left(1 + \frac{1}{n-1} \right)^{n-1} \left(1 + \frac{1}{n-1} \right) \right]_{m=n-1}$$

$$= \lim_{m \to \infty} \left[\left(1 + \frac{1}{m} \right)^m \left(1 + \frac{1}{m} \right) \right]$$

$$= \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)^m \cdot \lim_{m \to \infty} \left(1 + \frac{1}{m} \right)$$

$$= e \cdot (1+0) = e$$

- **59.** (1) We first note that if 0 < a < 1 and 0 < y < x then $a^{x-y} < 1$ so that $\frac{a^x}{a^y} < 1$ or $a^x < a^y$.

 Hence, taking reciprocals, $a^{-y} < a^{-x}$.

 Also: if 0 < a < b and x > 0 then $1 < \frac{b}{a}$ so
 - that $1 < \left(\frac{b}{a}\right)^x = \left(\frac{b^x}{a^x}\right)$. Hence $a^x < b^x$.
 - (2) For any $-\frac{1}{2} < h < 0$ there is an integer m_h such that $m_h < -\frac{1}{h} < m_h + 1$. Thus $-(m_h + 1) < \frac{1}{h} < -m_h$ and $1 \frac{1}{m_h} < 1 + h < 1 \frac{1}{m_h + 1}$.

Since
$$0 < 1 - \frac{1}{m_h}$$
, $1 + h$, $1 - \frac{1}{m_h + 1} < 1$ it

follows from (1) that

$$\left(1 - \frac{1}{m_h}\right)^{-m_h} < \left(1 + h\right)^{\frac{1}{h}} < \left(1 - \frac{1}{m_h + 1}\right)^{-(m_h + 1)}.$$

Using the fact that m_h , $(m_h + 1) \rightarrow \infty$ as $h \rightarrow 0^-$, and the result from Problem 58, we have

$$\lim_{h \to 0^{-}} \left(1 - \frac{1}{m_h} \right)^{-m_h} = \lim_{m_h \to \infty} \left(1 - \frac{1}{m_h} \right)^{-m_h} = e$$

and

$$\lim_{h \to 0^{-}} \left(1 - \frac{1}{m_h + 1} \right)^{-(m_h + 1)}$$

$$= \lim_{m_h + 1 \to \infty} \left(1 - \frac{1}{m_h + 1} \right)^{-(m_h + 1)} = e$$

Thus, by the Squeeze Theorem,

$$\lim_{h \to 0^{-}} (1+h)^{\frac{1}{h}} = e.$$

2.7 Concepts Review

- $\mathbf{1.} \quad \lim_{x \to c} f(x)$
- 2. every integer
- 3. $\lim_{x \to a^{+}} f(x) = f(a)$; $\lim_{x \to b^{-}} f(x) = f(b)$
- **4.** a; b; f(c) = W

Problem Set 2.7

- 1. $\lim_{x\to 3} [(x-3)(x-4)] = 0 = f(3)$; continuous
- 2. $\lim_{x \to 3} (x^2 9) = 0 = g(3)$; continuous
- 3. $\lim_{x \to 3} \frac{3}{x-3}$ and h(3) do not exist, so h(x) is not continuous at 3.
- **4.** $\lim_{t \to 3} \sqrt{t-4}$ and g(3) do not exist, so g(t) is not continuous at 3.
- 5. $\lim_{t \to 3} \frac{|t-3|}{t-3}$ and h(3) do not exist, so h(t) is not continuous at 3.
- **6.** h(3) does not exist, so h(t) is not continuous at 3.
- 7. $\lim_{t \to 3} |t| = 3 = f(3)$; continuous
- 8. $\lim_{t \to 3} |t 2| = 1 = g(3)$; continuous
- **9.** h(3) does not exist, so h(t) is not continuous at 3.
- **10.** f(3) does not exist, so f(x) is not continuous at 3.
- 11. $\lim_{t \to 3} \frac{t^3 27}{t 3} = \lim_{t \to 3} \frac{(t 3)(t^2 + 3t + 9)}{t 3}$ $= \lim_{t \to 3} (t^2 + 3t + 9) = (3)^2 + 3(3) + 9 = 27 = r(3)$ continuous
- 12. From Problem 11, $\lim_{t \to 3} r(t) = 27$, so r(t) is not continuous at 3 because $\lim_{t \to 3} r(t) \neq r(3)$.
- 13. $\lim_{t \to 3^{+}} f(t) = \lim_{t \to 3^{+}} (3 t) = 0$ $\lim_{t \to 3^{-}} f(t) = \lim_{t \to 3^{-}} (t 3) = 0$ $\lim_{t \to 3} f(t) = f(3); \text{ continuous}$
- 14. $\lim_{t \to 3^{+}} f(t) = \lim_{t \to 3^{+}} (3 t)^{2} = 0$ $\lim_{t \to 3^{-}} f(t) = \lim_{t \to 3^{-}} (t^{2} 9) = 0$ $\lim_{t \to 3} f(t) = f(3); \text{ continuous}$
- **15.** $\lim_{t \to 3} f(x) = -2 = f(3)$; continuous

- **16.** g is discontinuous at x = -3, 4, 6, 8; g is left continuous at x = 4, 8; g is right continuous at x = -3, 6
- **17.** *h* is continuous on the intervals $(-\infty, -5)$, [-5, 4], (4, 6), [6, 8], $(8, \infty)$
- **18.** $\lim_{x \to 7} \frac{x^2 49}{x 7} = \lim_{x \to 7} \frac{(x 7)(x + 7)}{x 7} = \lim_{x \to 7} (x + 7)$ = 7 + 7 = 14Define f(7) = 14.
- 19. $\lim_{x \to 3} \frac{2x^2 18}{3 x} = \lim_{x \to 3} \frac{2(x + 3)(x 3)}{3 x}$ $= \lim_{x \to 3} [-2(x + 3)] = -2(3 + 3) = -12$ Define f(3) = -12.
- **20.** $\lim_{\theta \to 0} \frac{\sin(\theta)}{\theta} = 1$
Define g(0) = 1
- 21. $\lim_{t \to 1} \frac{\sqrt{t} 1}{t 1} = \lim_{t \to 1} \frac{(\sqrt{t} 1)(\sqrt{t} + 1)}{(t 1)(\sqrt{t} + 1)}$ $= \lim_{t \to 1} \frac{t 1}{(t 1)(\sqrt{t} + 1)} = \lim_{t \to 1} \frac{1}{\sqrt{t} + 1} = \frac{1}{2}$
Define $H(1) = \frac{1}{2}$.
- 22. $\lim_{x \to -1} \frac{x^4 + 2x^2 3}{x + 1} = \lim_{x \to -1} \frac{(x^2 1)(x^2 + 3)}{x + 1}$ $= \lim_{x \to -1} \frac{(x + 1)(x 1)(x^2 + 3)}{x + 1}$ $= \lim_{x \to -1} [(x 1)(x^2 + 3)]$ $= (-1 1)[(-1)^2 + 3] = -8$ Define $\phi(-1) = -8$.
- 23. $\lim_{x \to -1} \sin \left(\frac{x^2 1}{x + 1} \right) = \lim_{x \to -1} \sin \left(\frac{(x 1)(x + 1)}{x + 1} \right)$ $= \lim_{x \to -1} \sin(x 1) = \sin(-1 1) = \sin(-2) = -\sin 2$ Define $F(-1) = -\sin 2$.
- **24.** Discontinuous at $x = \pi,30$
- 25. $f(x) = \frac{33 x^2}{(\pi x)(x 3)}$ Discontinuous at $x = 3, \pi$
- **26.** Continuous at all points

- **27.** Discontinuous at all $\theta = n\pi + \frac{\pi}{2}$ where *n* is any integer.
- **28.** Discontinuous at all $u \le -5$
- **29.** Discontinuous at u = -1
- **30.** Continuous at all points
- **31.** $G(x) = \frac{1}{\sqrt{(2-x)(2+x)}}$

Discontinuous on $(-\infty, -2] \cup [2, \infty)$

- 32. Continuous at all points since $\lim_{x\to 0} f(x) = 0 = f(0)$ and $\lim_{x\to 1} f(x) = 1 = f(1)$.
- 33. $\lim_{x \to 0} g(x) = 0 = g(0)$ $\lim_{x \to 1^{+}} g(x) = 1, \lim_{x \to 1^{-}} g(x) = -1$ $\lim_{x \to 1} g(x) \text{ does not exist, so } g(x) \text{ is discontinuous}$ $\lim_{x \to 1} at x = 1.$
- 34. Discontinuous at every integer
- **35.** Discontinuous at $t = n + \frac{1}{2}$ where *n* is any integer

38.

39.

40.

Discontinuous at all points except x = 0, because $\lim_{x \to c} f(x) \neq f(c)$ for $c \neq 0$. $\lim_{x \to c} f(x)$ exists only at c = 0 and $\lim_{x \to 0} f(x) = 0 = f(0)$.

41. Continuous.

42. Discontinuous: removable, define f(10) = 20

43. Discontinuous: removable, define f(0) = 1

44. Discontinuous: nonremovable.

45. Discontinuous, removable, redefine g(0) = 1

46. Discontinuous: removable, define F(0) = 0

47. Discontinuous: nonremovable.

48. Discontinuous: removable, define f(4) = 4

In problems 49-54 we will show that the function is continuous on its entire domain, which therefore is the largest interval.

49. $f(x) = \sqrt{25 - x^2}$

Let $g(x) = 25 - x^2$; then $f(x) = \sqrt{g(x)}$. To find the domain of f(x) we require

$$0 \le 25 - x^2$$
 or $-5 \le x \le 5$.

Now g(x) is continuous on [-5,5] by Thm. 2.7A; hence f(x) is continuous on [-5,5] by Thm 2.7C.

50.
$$f(x) = \frac{1}{\sqrt{25 - x^2}}$$

Refer to problem 49. Let $g(x) = 25 - x^2$ and

$$h(x) = 1$$
; then $f(x) = \frac{h(x)}{\sqrt{g(x)}}$. The domain of

f(x) is (-5,5); g(x) is continuous on (-5,5) by prob. 49 and h(x) by Thm. 2.7A.

Thus f(x) is continuous on (-5,5) by Thm 2.7C.

51.
$$f(x) = \sin^{-1}(x)$$

The domain of $\sin^{-1}(x)$ is [-1,1], so by Thm

2.7D, $\sin^{-1}(x)$ is continuous on (-1,1). Now

since (2.7D again)
$$\lim_{t \to -\frac{\pi^{+}}{2}} \sin(t) = \sin(-\frac{\pi}{2}) = -1$$

and $\lim_{t \to \frac{\pi^{-}}{2}} \sin(t) = \sin(\frac{\pi}{2}) = 1$, we have (Thm. 2.6C)

$$\lim_{x \to -1^{+}} \sin^{-1}(x) = \sin^{-1}(-1) \text{ and}$$

$$\lim_{x \to 1^{-}} \sin^{-1}(x) = \sin^{-1}(1) .$$

Thus $\sin^{-1}(x)$ is continuous on [-1,1].

52.
$$f(x) = \text{sec h}(x)$$

Since $\cosh(x)$ is positive for all x, the domain of $\operatorname{sec} h(x)$ is $(-\infty, \infty)$. Now $\cosh(x)$ is continuous on $(-\infty, \infty)$ (Thm. 2.7D) as is g(x) = 1 (Thm.

2.7A). Therefore $\operatorname{sech}(x) = \frac{1}{\cosh(x)}$ is

continuous on $(-\infty, \infty)$ by Thm 2.7C.

53.
$$f(x) = \sec^{-1}(x), x \ge 0$$

The domain of this function is $[1, \infty)$ and by Thm.

2.7D, $\sec^{-1}(x)$ is continuous on $(1, \infty)$. Further, since $\lim_{t\to 0^+} \sec(t) = \sec(0) = 1$ (Thm. 2.7D), we

have (Thm.. 2.6C) $\lim_{x \to 1^{+}} \sec^{-1}(x) = \sec^{-1}(1)$

Thus $\sec^{-1}(x)$ is continuous on $[1, \infty)$.

54. $f(x) = \operatorname{sec} h^{-1}(x)$

The domain of $\operatorname{sech}^{-1}(x)$ is (0,1] and by Thm.

2.7D, $\operatorname{sech}^{-1}(x)$ is continuous on (0,1).

Further, since $\lim_{t\to 0^{-}} \operatorname{sec} h(t) = \operatorname{sec} h(0) = 1$ (Thm.

2.7D), we have (Thm. 2.6C)

 $\lim_{x \to 1^{-}} \sec h^{-1}(x) = \sec h^{-1}(1) .$

Thus $\sec^{-1}(x)$ is continuous on (0,1].

55. The function is continuous on the intervals (0,1],(1,2],(2,3],...

56. The function is continuous on the intervals [0,200], (200,300], (300,400], ...

57. The function is continuous on the intervals (0,0.25], (0.25,0.375], (0.375,0.5], ...

- **58.** Let $f(x) = x^3 + 3x 2$. f is continuous on [0, 1]. f(0) = -2 < 0 and f(1) = 2 > 0. Thus, there is at least one number c between 0 and 1 such that $x^3 + 3x 2 = 0$.
- **59.** Because the function is continuous on $[0,2\pi]$ and $(\cos 0)0^3 + 6\sin^5 0 3 = -3 < 0$, $(\cos 2\pi)(2\pi)^3 + 6\sin^5(2\pi) 3 = 8\pi^3 3 > 0$, there is at least one number c between 0 and 2π such that $(\cos t)t^3 + 6\sin^5 t 3 = 0$.
- **60.** Let $f(x) = x^3 7x^2 + 14x 8$. f(x) is continuous at all values of x. f(0) = -8, f(5) = 12

Because 0 is between -8 and 12, there is at least one number c between 0 and 5 such that

$$f(x) = x^3 - 7x^2 + 14x - 8 = 0$$
.

This equation has three solutions (x = 1,2,4)

61. Let $f(x) = \sqrt{x} - \cos x$. f(x) is continuous at all values of $x \ge 0$. f(0) = -1, $f(\pi/2) = \sqrt{\pi/2}$ Because 0 is between -1 and $\sqrt{\pi/2}$, there is at least one number c between 0 and $\pi/2$ such that $f(x) = \sqrt{x} - \cos x = 0$.

The interval [0.6,0.7] contains the solution.

62. Let $f(x) = x^5 + 4x^3 - 7x + 14$ f(x) is continuous at all values of x. f(-2) = -36, f(0) = 14Because 0 is between -36 and 14, there is at least one number c between -2 and 0 such that

 $f(x) = x^5 + 4x^3 - 7x + 14 = 0.$

- **63.** Suppose that f is continuous at c, so $\lim_{x \to c} f(x) = f(c)$. Let x = c + t, so t = x - c, then as $x \to c$, $t \to 0$ and the statement $\lim f(x) = f(c)$ becomes $\lim f(t+c) = f(c)$. Suppose that $\lim_{x \to c} f(t+c) = f(c)$ and $\lim_{x \to c} f(t+c) = f(c)$ c, so t = x - c. Since c is fixed, $t \to 0$ means that $x \rightarrow c$ and the statement $\lim_{t \rightarrow c} f(t+c) = f(c)$ becomes $\lim f(x) = f(c)$, so f is continuous at c.
- **64.** Since f(x) is continuous at c, $\lim f(x) = f(c) > 0$. Choose $\varepsilon = f(c)$, then there exists a $\delta > 0$ such that $0 < |x-c| < \delta \Rightarrow |f(x)-f(c)| < \varepsilon$. Thus, $f(x) - f(c) > -\varepsilon = -f(c)$, or f(x) > 0. Since also f(c) > 0, f(x) > 0 for all x in $(c-\delta,c+\delta)$.
- **65.** Let g(x) = x f(x). Then, $g(0) = 0 - f(0) = -f(0) \le 0$ and $g(1) = 1 - f(1) \ge 0$ since $0 \le f(x) \le 1$ on [0, 1]. If g(0) = 0, then f(0) = 0 and c = 0 is a fixed point of f. If g(1) = 0, then f(1) = 1 and c = 1 is a fixed point of f. If neither g(0) = 0 nor g(1) = 0, then g(0) < 0 and g(1) > 0 so there is some c in [0, 1] such that g(c) = 0. If g(c) = 0 then c - f(c) = 0 or f(c) = c and c is a fixed point of f.
- **66.** For f(x) to be continuous everywhere, f(1) = a(1) + b = 2 and f(2) = 6 = a(2) + ba + b = 22a + b = 6-a = -4a = 4, b = -2
- **67.** For x in [0, 1], let f(x) indicate where the string originally at x ends up. Thus f(0) = a, f(1) = b. f(x) is continuous since the string is unbroken. Since $0 \le a$, $b \le 1$, f(x) satisfies the conditions of Problem 65, so there is some c in [0, 1] with f(c) = c, i.e., the point of string originally at c ends up at c.
- **68.** The Intermediate Value Theorem does not imply the existence of a number c between -2 and 2such that f(c) = 0. The reason is that the function f(x) is not continuous on [-2,2].

- **69.** Let f(x) be the difference in times on the hiker's watch where x is a point on the path, and suppose x = 0 at the bottom and x = 1 at the top of the mountain. So f(x) = (time on watch on the way up) - (timeon watch on the way down). f(0) = 4 - 11 = -7, f(1) = 12 - 5 = 7. Since time is continuous, f(x) is continuous, hence there is some c between 0 and 1 where f(c) = 0. This c is the point where the hiker's watch showed the same time on both days.
- **70.** Let f be the function on $\left[0, \frac{\pi}{2}\right]$ such that $f(\theta)$ is the length of the side of the rectangle which makes angle θ with the x-axis minus the length of the sides perpendicular to it. f is continuous on $0, \frac{\pi}{2}$. If f(0) = 0 then the region is circumscribed by a square. If $f(0) \neq 0$, then observe that $f(0) = -f\left(\frac{\pi}{2}\right)$. Thus, by the Intermediate Value Theorem, there is an angle θ_0 between 0 and $\frac{\pi}{2}$ such that $f(\theta_0) = 0$. Hence, D can be circumscribed by a square.
- **71.** Yes, g is continuous at R. $\lim_{r \to R^{-}} g(r) = \frac{GMm}{R^{2}} = \lim_{r \to R^{+}} g(r)$
- **72.** No. By the Intermediate Value Theorem, if f were to change signs on [a,b], then f must be 0 at some c in [a,b]. Therefore, f cannot change sign.
- **73.** a. f(x) = f(x+0) = f(x) + f(0), so f(0) = 0. We want to prove that $\lim_{x \to c} f(x) = f(c)$, or, equivalently, $\lim [f(x) - f(c)] = 0$. But f(x) - f(c) = f(x - c), so $\lim [f(x)-f(c)] = \lim f(x-c)$. Let h = x - c then as $x \to c$, $h \to 0$ and $\lim f(x-c) = \lim f(h) = f(0) = 0$. Hence $\lim f(x) = f(c)$ and f is continuous at c. Thus, f is continuous everywhere, since c was arbitrary.
 - **b.** By Problem 43 of Section 1.5, f(t) = mt for all t in Q. Since g(t) = mt is a polynomial function, it is continuous for all real numbers. f(t) = g(t) for all t in \mathbb{Q} , thus f(t) = g(t) for all t in R, i.e. f(t) = mt.

- 74. If f(x) is continuous on an interval then $\lim_{x \to c} f(x) = f(c) \text{ for all points in the interval:}$ $\lim_{x \to c} f(x) = f(c) \Rightarrow \lim_{x \to c} |f(x)|$ $= \lim_{x \to c} \sqrt{f^2(x)} = \sqrt{\left(\lim_{x \to c} f(x)\right)^2}$ $= \sqrt{(f(c))^2} = |f(c)|$
- 75. Suppose $f(x) = \begin{cases} 1 \text{ if } x \ge 0 \\ -1 \text{ if } x < 0 \end{cases}$. f(x) is discontinuous at x = 0, but g(x) = |f(x)| = 1 is continuous everywhere.

- **b.** If r is any rational number, then any deleted interval about r contains an irrational number. Thus, if $f(r) = \frac{1}{q}$, any deleted interval about r contains at least one point c such that $|f(r) f(c)| = \left|\frac{1}{q} 0\right| = \frac{1}{q}$. Hence, $\lim_{x \to r} f(x)$ does not exist.

 If c is any irrational number in (0, 1), then as $x = \frac{p}{q} \to c$ (where $\frac{p}{q}$ is the reduced form of the rational number) $q \to \infty$, so $f(x) \to 0$ as $x \to c$. Thus, $\lim_{x \to c} f(x) = 0 = f(c)$ for any irrational number c.
- 77. **a.** Suppose the block rotates to the left. Using geometry, $f(x) = -\frac{3}{4}$. Suppose the block rotates to the right. Using geometry, $f(x) = \frac{3}{4}$. If x = 0, the block does not rotate, so f(x) = 0.

Domain:
$$\left[-\frac{3}{4}, \frac{3}{4}\right]$$
;
Range: $\left\{-\frac{3}{4}, 0, \frac{3}{4}\right\}$

b. At
$$x = 0$$

c. If
$$x = 0$$
, $f(x) = 0$, if $x = -\frac{3}{4}$, $f(x) = -\frac{3}{4}$ and

if
$$x = \frac{3}{4}$$
, $f(x) = \frac{3}{4}$, so $x = -\frac{3}{4}$, $0, \frac{3}{4}$ are fixed points of f .

2.8 Chapter Review

Concepts Test

- **1.** False. Consider f(x) = [x] at x = 2.
- 2. False: c may not be in the domain of f(x), or it may be defined separately.
- 3. False: c may not be in the domain of f(x), or it may be defined separately.
- **4.** True. By definition, where c = 0, L = 0.
- 5. False: If f(c) is not defined, $\lim_{x \to c} f(x)$ might exist; e.g., $f(x) = \frac{x^2 4}{x + 2}$.

$$f(-2)$$
 does not exist, but $\lim_{x \to -2} \frac{x^2 - 4}{x + 2} = -4$.

- 6. True: $\lim_{x \to 5} \frac{x^2 25}{x 5} = \lim_{x \to 5} \frac{(x 5)(x + 5)}{x 5}$ $= \lim_{x \to 5} (x + 5) = 5 + 5 = 10$
- **7.** True: Substitution Theorem
- 8. False: $\lim_{x \to 0} \frac{\sin x}{x} = 1$
- **9.** False: The tangent function is not defined for all values of c.
- 10. True: If x is in the domain of $\tan x = \frac{\sin x}{\cos x}$ then $\cos x \neq 0$, and Theorem A.7 applies.

- 11. True: Since both $\sin x$ and $\cosh x$ are continuous for all real numbers, by Theorem C we can conclude that $f(x) = 2 \sinh^2 x \cosh x$ is also continuous for all real numbers.
- **12.** True. By definition, $\lim_{x \to c} f(x) = f(c)$.
- 13. False: $\lim_{x\to 0^-}$ may not exist
- **14.** True: See Example 8 of section 2.7.
- **15.** True: By Theorem C of section 2.6.
- **16.** True: By definition, if r_n is a sequence of rational numbers that converges to the irrational number π , then π^{π} is defined to be $\pi^{\pi} = \lim_{n \to \infty} \pi^{r_n}$.
- **17.** False: Consider $f(x) = \sin x$.
- **18.** True. By the definition of continuity on an interval.
- **19.** False: By Theorem C of section 2.6 and the subsequent discussion.
- **20.** False. It could be the case where $\lim_{x \to -\infty} f(x) = 2$
- **21.** False: The graph has many vertical asymptotes; e.g., $x = \pm \pi/2$, $\pm 3\pi/2$, $\pm 5\pi/2$, ...
- **22.** True: x = 2 : x = -2
- 23. True: As $x \to 1^+$ both the numerator and denominator are positive. Since the numerator approaches a constant and the denominator approaches zero, the limit goes to $+\infty$.
- **24.** False: $\lim_{x \to c} f(x)$ must equal f(c) for f to be continuous at x = c.
- **25.** True: $\lim_{x \to c} f(x) = f\left(\lim_{x \to c} x\right) = f(c), \text{ so } f \text{ is continuous at } x = c.$
- **26.** True: $\lim_{x \to 2.3} \left[\frac{x}{2} \right] = 1 = f(2.3)$

27. True: Choose $\varepsilon = 0.001f(2)$ then since $\lim_{x \to 2} f(x) = f(2)$, there is some δ such that $0 < |x - 2| < \delta \Rightarrow$ |f(x) - f(2)| < 0.001f(2), or -0.001f(2) < f(x) - f(2) < 0.001f(2) Thus 0.999f(2) < f(x) < 1.001f(2) an

Thus, 0.999f(2) < f(x) < 1.001f(2) and f(x) < 1.001f(2) for $0 < |x - 2| < \delta$. Since f(2) < 1.001f(2), as f(2) > 0, f(x) < 1.001f(2) on $(2 - \delta, 2 + \delta)$.

28. False: That $\lim_{x \to c} [f(x) + g(x)]$ exists does not imply that $\lim_{x \to c} f(x)$ and

 $\lim_{x \to c} g(x) \text{ exist; e.g., } f(x) = \frac{x-3}{x+2} \text{ and}$ $g(x) = \frac{x+7}{x+2} \text{ for } c = -2.$

- **29.** True: Squeeze Theorem
- **30.** True: A function has only one limit at a point, so if $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} f(x) = M$, L = M
- That $f(x) \neq g(x)$ for all x does not imply that $\lim_{x \to c} f(x) \neq \lim_{x \to c} g(x)$. For example, if $f(x) = \frac{x^2 + x 6}{x 2}$ and $g(x) = \frac{5}{2}x$, then $f(x) \neq g(x)$ for all x, but $\lim_{x \to 2} f(x) = \lim_{x \to 2} g(x) = 5$.
- 32. False: If f(x) < 10, $\lim_{x \to 2} f(x)$ could equal 10 if there is a discontinuity point (2, 10). For example, $f(x) = \frac{-x^3 + 6x^2 2x 12}{x 2} < 10 \text{ for all } x, \text{ but } \lim_{x \to 2} f(x) = 10.$
- 33. True: $\lim_{x \to a} |f(x)| = \lim_{x \to a} \sqrt{f^2(x)}$ $= \sqrt{\left[\lim_{x \to a} f(x)\right]^2} = \sqrt{(b)^2} = |b|$
- 34. True: If f is continuous and positive on [a, b], the reciprocal is also continuous, so it will assume all values between $\frac{1}{f(a)}$ and $\frac{1}{f(b)}$.

Sample Test Problems

1.
$$\lim_{x \to 2} \frac{x-2}{x+2} = \frac{2-2}{2+2} = \frac{0}{4} = 0$$

2.
$$\lim_{u \to 1} \frac{u^2 - 1}{u + 1} = \frac{1^2 - 1}{1 + 1} = 0$$

3.
$$\lim_{u \to 1} \frac{u^2 - 1}{u - 1} = \lim_{u \to 1} \frac{(u - 1)(u + 1)}{u - 1} = \lim_{u \to 1} (u + 1)$$
$$= 1 + 1 = 2$$

4.
$$\lim_{u \to 1} \frac{u+1}{u^2 - 1} = \lim_{u \to 1} \frac{u+1}{(u+1)(u-1)} = \lim_{u \to 1} \frac{1}{u-1};$$

does not exist

5.
$$\lim_{x \to 2} \frac{1 - \frac{2}{x}}{x^2 - 4} = \lim_{x \to 2} \frac{\frac{x - 2}{x}}{(x - 2)(x + 2)} = \lim_{x \to 2} \frac{1}{x(x + 2)}$$
$$= \frac{1}{2(2 + 2)} = \frac{1}{8}$$

6.
$$\lim_{z \to 2} \frac{z^2 - 4}{z^2 + z - 6} = \lim_{z \to 2} \frac{(z + 2)(z - 2)}{(z + 3)(z - 2)}$$
$$= \lim_{z \to 2} \frac{z + 2}{z + 3} = \frac{2 + 2}{2 + 3} = \frac{4}{5}$$

7.
$$\lim_{x \to 0} \frac{\tan x}{\sin 2x} = \lim_{x \to 0} \frac{\frac{\sin x}{\cos x}}{2 \sin x \cos x} = \lim_{x \to 0} \frac{1}{2 \cos^2 x}$$
$$= \frac{1}{2 \cos^2 0} = \frac{1}{2}$$

8.
$$\lim_{y \to 1} \frac{y^3 - 1}{y^2 - 1} = \lim_{y \to 1} \frac{(y - 1)(y^2 + y + 1)}{(y - 1)(y + 1)}$$
$$= \lim_{y \to 1} \frac{y^2 + y + 1}{y + 1} = \frac{1^2 + 1 + 1}{1 + 1} = \frac{3}{2}$$

9.
$$\lim_{x \to 4} \frac{x-4}{\sqrt{x}-2} = \lim_{x \to 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}$$
$$= \lim_{x \to 4} (\sqrt{x}+2) = \sqrt{4}+2 = 4$$

10.
$$\lim_{x\to 0} \frac{\cos x}{x}$$
 does not exist.

11.
$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = \lim_{x \to 0^{-}} (-1) = -1$$

12.
$$\lim_{x \to (1/2)^+} [4x] = 2$$

13.
$$\lim_{t \to 2^{-}} ([\![t]\!] - t) = \lim_{t \to 2^{-}} [\![t]\!] - \lim_{t \to 2^{-}} t = 1 - 2 = -1$$

14.
$$\lim_{x \to 1^{-}} \frac{|x-1|}{x-1} = \lim_{x \to 1^{-}} \frac{1-x}{x-1} = -1 \text{ since } x-1 < 0 \text{ as}$$

 $x \to 1^{-}$

15.
$$\lim_{x \to 0} \frac{\sin 5x}{3x} = \lim_{x \to 0} \frac{5}{3} \frac{\sin 5x}{5x}$$
$$= \frac{5}{3} \lim_{x \to 0} \frac{\sin 5x}{5x} = \frac{5}{3} \times 1 = \frac{5}{3}$$

16.
$$\lim_{x \to 0} \frac{1 - \cos 2x}{3x} = \lim_{x \to 0} \frac{2}{3} \frac{1 - \cos 2x}{2x}$$
$$= \frac{2}{3} \lim_{x \to 0} \frac{1 - \cos 2x}{2x} = \frac{2}{3} \times 0 = 0$$

17.
$$\lim_{x \to \infty} \frac{x-1}{x+2} = \lim_{x \to \infty} \frac{1 - \frac{1}{x}}{1 + \frac{2}{x}} = \frac{1+0}{1+0} = 1$$

18. Since
$$-1 \le \sin t \le 1$$
 for all t and $\lim_{t \to \infty} \frac{1}{t} = 0$, we get $\lim_{t \to \infty} \frac{\sin t}{t} = 0$.

$$19. \quad \lim_{x \to \infty} e^{x^2} = \infty$$

20.
$$\lim_{x\to 0^+} \frac{\cos x}{x} = \infty$$
, because as $x\to 0^+$, $\cos x\to 1$ while the denominator goes to 0 from the right.

21.
$$\lim_{x \to \pi/4^{-}} \tan 2x = \infty \text{ because as } x \to (\pi/4)^{-},$$
$$2x \to (\pi/2)^{-}, \text{ so } \tan 2x \to \infty.$$

22.
$$\lim_{x\to 0^+} \ln x^2 = -\infty$$
, because as $x\to 0^+$, $x^2\to 0^+$, and $\ln x^2$ decreases without bound.

23. Preliminary analysis: Let
$$\varepsilon > 0$$
. We need to find a $\delta > 0$ such that $0 < |x-3| < \delta \Rightarrow |(2x+1)-7| < \varepsilon$. $|2x-6| < \varepsilon \Leftrightarrow 2 |x-3| < \varepsilon$ $\Leftrightarrow |x-3| < \frac{\varepsilon}{2}$. Choose $\delta = \frac{\varepsilon}{2}$.

Let
$$\varepsilon > 0$$
. Choose $\delta = \varepsilon/2$. Thus,

$$|(2x+1)-7| = |2x-6| = 2|x-3| < 2(\varepsilon/2) = \varepsilon.$$

24. a.
$$f(1) = 0$$

b.
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (1 - x) = 0$$

c.
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x = 1$$

d.
$$\lim_{x \to -1} f(x) = -1$$
 because
 $\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} x^{3} = -1$ and

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} x = -1$$

25. a.
$$f$$
 is discontinuous at $x = 1$ because $f(1) = 0$, but $\lim_{x \to 1} f(x)$ does not exist. f is discontinuous at $x = -1$ because $f(-1)$ does not exist.

b. Define
$$f(-1) = -1$$

26. a.
$$0 < |u-a| < \delta \Rightarrow |g(u)-M| < \varepsilon$$

b.
$$0 < a - x < \delta \Rightarrow |f(x) - L| < \varepsilon$$

27. a.
$$\lim_{x \to 3} [2f(x) - 4g(x)]$$
$$= 2 \lim_{x \to 3} f(x) - 4 \lim_{x \to 3} g(x)$$
$$= 2(3) - 4(-2) = 14$$

b.
$$\lim_{x \to 3} g(x) \frac{x^2 - 9}{x - 3} = \lim_{x \to 3} g(x)(x + 3)$$
$$= \lim_{x \to 3} g(x) \cdot \lim_{x \to 3} (x + 3) = -2 \cdot (3 + 3) = -12$$

c.
$$g(3) = -2$$

d.
$$\lim_{x \to 3} g(f(x)) = g\left(\lim_{x \to 3} f(x)\right) = g(3) = -2$$

e.
$$\lim_{x \to 3} \sqrt{f^2(x) - 8g(x)}$$

$$= \sqrt{\left[\lim_{x \to 3} f(x)\right]^2 - 8\lim_{x \to 3} g(x)}$$

$$= \sqrt{(3)^2 - 8(-2)} = 5$$

f.
$$\lim_{x \to 3} \frac{|g(x) - g(3)|}{f(x)} = \frac{|-2 - g(3)|}{3} = \frac{|-2 - (-2)|}{3}$$
$$= 0$$

29.
$$a(0) + b = -1$$
 and $a(1) + b = 1$
 $b = -1$; $a + b = 1$
 $a - 1 = 1$
 $a = 2$

30. Let
$$f(x) = x^5 - 4x^3 - 3x + 1$$

 $f(2) = -5$, $f(3) = 127$
Because $f(x)$ is continuous on [2, 3] and $f(2) < 0 < f(3)$, there exists some number c between 2 and 3 such that $f(c) = 0$.

31. Vertical: None, denominator is never 0.

Horizontal:
$$\lim_{x \to \infty} \frac{x}{x^2 + 1} = \lim_{x \to -\infty} \frac{x}{x^2 + 1} = 0$$
, so $y = 0$ is a horizontal asymptote.

32. Vertical: None, denominator is never 0.

Horizontal:
$$\lim_{x\to\infty} \frac{x^2}{x^2+1} = \lim_{x\to-\infty} \frac{x^2}{x^2+1} = 1$$
, so $y = 1$ is a horizontal asymptote.

33. Vertical:
$$x = 1, x = -1$$
 because $\lim_{x \to 1^+} \frac{x^2}{x^2 - 1} = \infty$

and
$$\lim_{x \to -1^{-}} \frac{x^2}{x^2 - 1} = \infty$$

Horizontal:
$$\lim_{x \to \infty} \frac{x^2}{x^2 - 1} = \lim_{x \to -\infty} \frac{x^2}{x^2 - 1} = 1$$
, so $y = 1$ is a horizontal asymptote.

34. Vertical: x = 2, x = -2 because

$$\lim_{x \to 2^{+}} \frac{x^{3}}{x^{2} - 4} = \infty \text{ and } \lim_{x \to -2^{-}} \frac{x^{3}}{x^{2} - 4} = \infty$$

Horizontal:
$$\lim_{x \to \infty} \frac{x^3}{x^2 - 4} = \infty$$
 and

$$\lim_{x \to -\infty} \frac{x^3}{x^2 - 4} = -\infty$$
, so there are no horizontal asymptotes.

35. Vertical: $x = \pm \pi/4, \pm 3\pi/4, \pm 5\pi/4,...$ because $\lim_{x \to \pi/4^-} \tan 2x = \infty$ and similarly for other odd multiples of $\pi/4$.

Horizontal: None, because $\lim_{x\to\infty} \tan 2x$ and $\lim_{x\to-\infty} \tan 2x$ do not exist.

36. Vertical:

None since the domain of $\tan^{-1} x$ is all real numbers.

Horizontal:

$$y = \pi$$
 because $\lim_{x \to \infty} 2 \tan^{-1} x = 2 \lim_{x \to \infty} \tan^{-1} x$.
$$= 2 \cdot \frac{\pi}{2} = \pi$$

 $y = -\pi$ because $\lim_{x \to -\infty} 2 \tan^{-1} x = 2 \lim_{x \to -\infty} \tan^{-1} x$ $= 2 \cdot \left(-\frac{\pi}{2} \right) = -\pi$

37. $f(x) = \cos^{-1}\left(\frac{x}{2}\right)$

The domain of $\cos^{-1}(x)$ is [-1,1], so by Thm 2.7D, $\cos^{-1}(x)$ is continuous on (-1,1). Now since (2.7D again) $\lim_{t\to 0^+} \cos(t) = \cos(0) = 1$ and

 $\lim_{t \to \pi^{-}} \cos(t) = \cos(\pi) = -1 \quad \text{we have (Thm. 2.6C)}$

$$\lim_{x \to -1^+} \cos^{-1}(x) = \cos^{-1}(-1)$$
 and

$$\lim_{x \to 1^{-}} \cos^{-1}(x) = \cos^{-1}(1) .$$

Thus $\cos^{-1}(x)$ is continuous on [-1,1].

Let $g(x) = \frac{x}{2}$, $\frac{x}{2} \in [-1,1]$; then $x \in [-2,2]$ and

by Thm. 2.7A, g(x) is continuous on [-2,2].

Therefore $x \in [-2,2] \Rightarrow \frac{x}{2} \in [-1,1] \Rightarrow \cos^{-1}\left(\frac{x}{2}\right)$ is continuous at x by Thm. 2.7E. Thus the largest interval is [-2,2].

38. $f(x) = \ln(25 - x^2)$

The domain of f(x) is $\{x \mid 25 - x^2 > 0\} = (-5,5)$. Now $25 - x^2$ is continuous on (-5,5) by Thm. 2.7A and $\ln(x)$ is continuous on $(0,\infty)$ by Thm. 2.7D; thus f(x) is continuous on (-5,5) by Thm. 2.7E. This is the largest interval.

Review and Preview Problems

1. a.
$$f(2) = 2^2 = 4$$

b.
$$f(2.1) = 2.1^2 = 4.41$$

c.
$$f(2.1) - f(2) = 4.41 - 4 = 0.41$$

d.
$$\frac{f(2.1)-f(2)}{2.1-2} = \frac{0.41}{0.1} = 4.1$$

e.
$$f(a+h) = (a+h)^2 = a^2 + 2ah + h^2$$

f.
$$f(a+h)-f(a) = a^2 + 2ah + h^2 - a^2$$

= $2ah + h^2$

g.
$$\frac{f(a+h)-f(a)}{(a+h)-a} = \frac{2ah+h^2}{h} = 2a+h$$

h.
$$\lim_{h \to 0} \frac{f(a+h)-f(a)}{(a+h)-a} = \lim_{h \to 0} (2a+h) = 2a$$

2. a.
$$f(2) = 1/2$$

b.
$$f(2.1) = 1/2.1 \approx 0.476$$

c.
$$f(2.1) - f(2) = 0.476 - 0.5 = -0.024$$

d.
$$\frac{f(2.1)-f(2)}{2.1-2} = \frac{-0.024}{0.1} = -0.24$$

$$e. f(a+h) = 1/(a+h)$$

f.
$$f(a+h)-f(a) = 1/(a+h)-1/a$$
$$= \frac{-h}{a(a+h)}$$

g.
$$\frac{f(a+h)-f(a)}{(a+h)-a} = \frac{\frac{-h}{a(a+h)}}{h} = \frac{-1}{a(a+h)}$$

h.
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{-1}{a^2}$$

3. a.
$$f(2) = \sqrt{2} \approx 1.414$$

b.
$$f(2.1) = \sqrt{2.1} \approx 1.449$$

c.
$$f(2.1) - f(2) = 1.449 - 1.414 = 0.035$$

d.
$$\frac{f(2.1) - f(2)}{2.1 - 2} = \frac{0.035}{0.1} = 0.35$$

$$e. f(a+h) = \sqrt{a+h}$$

f.
$$f(a+h)-f(a) = \sqrt{a+h}-\sqrt{a}$$

g.
$$\frac{f(a+h)-f(a)}{(a+h)-a} = \frac{\sqrt{a+h}-\sqrt{a}}{h}$$

$$\mathbf{h.} \quad \lim_{h \to 0} \frac{f\left(a+h\right) - f\left(a\right)}{\left(a+h\right) - a} = \lim_{h \to 0} \frac{\sqrt{a+h} - \sqrt{a}}{h}$$

$$= \lim_{h \to 0} \frac{\left(\sqrt{a+h} - \sqrt{a}\right)\left(\sqrt{a+h} + \sqrt{a}\right)}{h\left(\sqrt{a+h} + \sqrt{a}\right)}$$

$$= \lim_{h \to 0} \frac{a+h-a}{h\left(\sqrt{a+h} + \sqrt{a}\right)}$$

$$= \lim_{h \to 0} \frac{h}{h\left(\sqrt{a+h} + \sqrt{a}\right)}$$

$$= \lim_{h \to 0} \frac{1}{\sqrt{a+h} + \sqrt{a}} = \frac{1}{2\sqrt{a}} = \frac{\sqrt{a}}{2a}$$

4. a.
$$f(2) = (2)^3 + 1 = 8 + 1 = 9$$

b.
$$f(2.1) = (2.1)^3 + 1 = 9.261 + 1 = 10.261$$

c.
$$f(2.1) - f(2) = 10.261 - 9 = 1.261$$

d.
$$\frac{f(2.1)-f(2)}{2.1-2} = \frac{1.261}{0.1} = 12.61$$

e.
$$f(a+h) = (a+h)^3 + 1$$

= $a^3 + 3a^2h + 3ah^2 + h^3 + 1$

f.
$$f(a+h)-f(a) = [(a+h)^3+1]-[a^3+1]$$

= $(a^3+3a^2h+3ah^2+h^3+1)-(a^3+1)$
= $3a^2h+3ah^2+h^3$

g.
$$\frac{f(a+h)-f(a)}{(a+h)-a} = \frac{3a^2h + 3ah^2 + h^3}{h}$$
$$= 3a^2 + 3ah + h^2$$

h.
$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{(a+h) - a} = \lim_{h \to 0} 3a^2 + 3ah + h^2$$
$$= 3a^2$$

5. a.
$$(a+b)^3 = a^3 + 3a^2b + \cdots$$

b.
$$(a+b)^4 = a^4 + 4a^3b + \cdots$$

c.
$$(a+b)^5 = a^5 + 5a^4b + \cdots$$

6.
$$(a+b)^n = a^n + na^{n-1}b + \cdots$$

7.
$$\sin(x+h) = \sin x \cos h + \cos x \sin h$$

8.
$$\cos(x+h) = \cos x \cos h - \sin x \sin h$$

- **9. a.** The point will be at position (10,0) in all three cases (t = 1,2,3) because it will have made 4, 8, and 12 revolutions respectively.
 - **b.** Since the point is rotating at a rate of 4 revolutions per second, it will complete 1 revolution after $\frac{1}{4}$ second. Therefore, the point will first return to its starting position at time $t = \frac{1}{4}$.

10.
$$V_0 = \frac{4}{3}\pi (2)^3 = \frac{32\pi}{3} \text{cm}^3$$

 $V_1 = \frac{4}{3}\pi (2.5)^3 = \frac{62.5\pi}{3} = \frac{125\pi}{6} \text{cm}^3$
 $\Delta V = V_1 - V_0 = \frac{125\pi}{6} \text{cm}^3 - \frac{32\pi}{3} \text{cm}^3$
 $= \frac{61}{6}\pi \text{cm}^3 \approx 31.940 \text{cm}^3$

11. a. North plane has traveled 600miles. East plane has traveled 400 miles.

b.
$$d = \sqrt{600^2 + 400^2}$$

= 721 miles

c.
$$d = \sqrt{675^2 + 500^2}$$

= 840 miles

12.
$$\ln x + 2 \ln (x^2 + 4) - 3 \ln (x + 1)$$

 $= \ln x + \ln (x^2 + 4)^2 - \ln (x + 1)^3$
 $= \ln \left[x(x^2 + 4)^2 \right] - \ln (x + 1)^3$
 $= \ln \left[\frac{x(x^2 + 4)^2}{(x + 1)^3} \right]$

- 13. From section 2.6 we have $\lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^n = e^r$.

 Therefore, $\lim_{n \to \infty} \left(1 \frac{2}{n} \right)^n \lim_{n \to \infty} \left(1 + \frac{-2}{n} \right)^n = e^{-2}$.
- **14.** Let $x = \frac{2}{h}$. $\lim_{h \to 0} \left(1 + \frac{h}{2} \right)^{2/h} = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$
- 15. Let $x = \frac{3}{h}$. $\lim_{h \to 0} \left(1 + \frac{h}{3} \right)^{1/h} = \lim_{h \to 0} \left[\left(1 + \frac{h}{3} \right)^{3/h} \right]^{1/3}$ $= \left[\lim_{h \to 0} \left(1 + \frac{h}{3} \right)^{3/h} \right]^{1/3}$ $= \left[\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x \right]^{1/3} = e^{1/3}$
- **16.** Let $n = \frac{x}{h}$.

$$\lim_{h \to 0} \left(1 + \frac{h}{x} \right)^{1/h} = \lim_{h \to 0} \left[\left(1 + \frac{h}{x} \right)^{x/h} \right]^{1/x}$$

$$= \left[\lim_{h \to 0} \left(1 + \frac{h}{x} \right)^{x/h} \right]^{1/x}$$

$$= \left[\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \right]^{1/x} = e^{1/x}$$