SOLUTIONS MANUAL

Chapter 2: Functions, Limits, and Continuity

Section 2.1: Functions

1. function, Image $=\{0,1,4,9,16,25,36, \ldots\}$.
2. function, Image $=$ The grades of the students.
3. not a function; for $x=1$ there are two values of $y \in[-2,2]$ such that $x^{2}+y^{2}=4$.
4. function, Image $=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$.
5. a. $\left[0, \frac{5 \sqrt{10}}{2}\right]$
b. $h(0)=1000, h(1)=984, h(3)=856, h(t+1)=-16(t+1)^{2}+1000$.
c. $h(t+1)-h(t)$ represents the distance covered by the falling object between t and $t+1$ seconds.
d. False. Corresponds to $h(t+1)=h(t)-h(1)$, while $h(t+1)=$ $h(t)-32 t-16 \neq h(t)-h(1)$.

6. A. Graphing a race.

1. a. B, about 2 hours 48 minutes;
b. A, the line has the greatest slope;
c. had a break;
d. about 25 km , all the riders slowed down;
e. 3 hours 30 minutes.

There are three functions, f_{A}, f_{B}, f_{C}, the distances travelled by the riders A, B, C, respectively.
f_{A} : Domain $=[0,3]$, Image $=[0,50]$,
$f_{B}:$ Domain $=[0,3]$, Image $=[0,50]$,
$f_{C}:$ Domain $=[0,3]$, Image $=[0,32.5]$.

B. Filling in temperatures.

1. The function is the height of the river in centimeters
Day 1 Day 2 Day $3 \quad$ Day

Time	Height	Time	Height	Time	Height	Time	Height
4 a.m.	510 cm	4 a.m.	585 cm	4 a.m.	580 cm	4 a.m.	635 cm
8 a.m.	510 cm	8 a.m.	585 cm	8 a.m.	605 cm	8 a.m.	635 cm
12 p.m.	510 cm	12 p.m.	580 cm	12 p.m.	620 cm	12 p.m.	625 cm
4 p.m.	510 cm	4 p.m.	575 cm	4 p.m.	620 cm	4 p.m.	600 cm
8 p.m.	550 cm	8 p.m.	573 cm	8 p.m.	630 cm	8 p.m.	580 cm
12 a.m.	575 cm	12 a.m.	570 cm	12 a.m.	635 cm	12 a.m.	580 cm

Domain=The 4 days time period. Image $=[510,635]$.
2.a.

b.

C. Graphs over a large time period.

1.a. 18 pounds;
b. April;
2. The function is Tameeka's weight in pounds. Domain=The 5 years time period (1987, Jan - 1991, Dec). Image $=[8,41]$.

3.a. Tameeka's weight began to change slower and more uniform;
b. no;
c. the first year.

D. Graphs depicting speed.

1.

The function is the speed of the train in mph.
Domain=The time period from 7 a.m. to $12: 21$ a.m.
Image $=[0,35]$.
2.

The function is the speed of the plain in mph.
Domain $=$ The time period from 1 p.m. to 5 p.m.
Image $=[0,500]$.
3. The part of the graph corresponding to time after $5: 25$ p.m. can be different depending on the assumptions made.

The function is the speed of the car in mph.
Domain=The time period from $5 \mathrm{p} . \mathrm{m}$. to $5: 25 \mathrm{p} . \mathrm{m}$.
Image $=[0,55]$.

E. Graphs of tides.

1. The best times are 6 a.m. and 6 p.m.;
the worst times are $12 \mathrm{a} . \mathrm{m}$. and $12 \mathrm{p} . \mathrm{m}$.
2. 6 a.m. and 6 p.m.
3. from 7 a.m. to 11 p.m. and from 7 p.m. to 11 a.m.
4. $11: 30 \mathrm{a} . \mathrm{m}$. and $11: 30 \mathrm{p} . \mathrm{m}$.

The function is the depth of the harbor in meters.
Domain=The one-day time period.
Image $=[2,4]$.
7. $y=4 x-2$ is a function of x.
8. $y=2+x^{2}$ is a function of x.
9. $y= \pm \sqrt{x^{2}+1}$ is not a function of x.
10. $y= \pm \sqrt{4 x-1}$ is not a function of x.
11. $y=\sqrt[5]{\frac{100+2 x}{3}}$ is a function of x.
12. $y=\sqrt[3]{2+x}$ is a function of x.
13. $y=-3$ is a function of x.
14. $y= \pm \frac{1}{2} \sqrt{1-3 x^{2}}$ is not a function of x.
15. Image $=(-\infty, 1] \cup(5, \infty)$.

16. $f(x)= \begin{cases}1-2 x & \text { if } x \leq-1 \\ 2 x+1 & \text { if } x>-1\end{cases}$ Image $=(-1, \infty)$.

17. $\mathbb{R},[0, \infty)$.
18. $\mathbb{R},[1, \infty)$.
19. $f(x)=\frac{1}{\sqrt[3]{x}}$, so $x \neq 0$;

Domain $=\mathbb{R} \backslash\{0\}$, Image $=\mathbb{R} \backslash\{0\}$.
20. $f(x)=\frac{1}{\sqrt[5]{x-1}}$, so $x-1 \neq 0$;

Domain $=\mathbb{R} \backslash\{1\}$, Image $=\mathbb{R} \backslash\{0\}$.
21. $\mathbb{R},(0,3]$.
22. $\mathbb{R},(0,4]$.
23. $\mathbb{R} \backslash\{-1\}, \mathbb{R} \backslash\{0\}$.
24. $\mathbb{R} \backslash\{2\}, \mathbb{R}$.
25. $\mathbb{R},[0, \infty)$.
26. $\mathbb{R},[1, \infty)$.
27. $[1, \infty),[0, \infty)$.
28. $x^{2}+2 x \geq 0, x(x+2) \geq 0$, so Domain $=(-\infty,-2] \cup[0, \infty)$, Image $=[0, \infty)$.
29. \mathbb{R}, \mathbb{R}.
30. \mathbb{R}, \mathbb{R}.
31. $x+2>0$, so Domain $=(-2, \infty)$, Image $=(0, \infty)$.
32. $x-4>0$, so Domain $=(4, \infty)$, Image $=(0, \infty)$.
33. $(f \circ g)(x)=3+2(-2 x+1)=5-4 x$, Domain $=\mathbb{R}$.
34. $(f \circ g)(x)=(x-4)^{2}+2(x-4)=x^{2}-8 x+16+2 x-8=x^{2}-6 x+8$, Domain $=\mathbb{R}$.
35. $(f \circ g)(x)=|-x|=|x|$, Domain $=\mathbb{R}$.
36. $(f \circ g)(x)=\left|x^{3}+2+1\right|=\left|x^{3}+3\right|$, Domain $=\mathbb{R}$.
37. $(g \circ f)(x)=\frac{1}{x+3}$, Domain $=\mathbb{R} \backslash\{-3\}$.
38. $(g \circ f)(x)=\sqrt{\frac{x}{x^{2}+1}}$, Domain $=[0, \infty)$.
39. $(g \circ f)(x)=\left(x^{4}+1\right)^{\frac{1}{3}}$, Domain $=\mathbb{R}$.
40. $(g \circ f)(x)=(2 x+5)^{\frac{1}{4}}$, Domain $=\left[-\frac{5}{2}, \infty\right)$.
41. $f(g(-1))=f(1)=2$
42. $(f \circ g)(0)=f(-1)=3$.
43. $g(f(1))=g(2)=5$
44. $(g \circ f)(3)=g(0)=-1$.
45. $f(f(-1))=f(3)=0$
46. $(g \circ g)(0)=g(-1)=1$.
47. $f(x) \geq 0$ for all $x \in \operatorname{Domain}(f)$.
48. $f(x) \geq 2$ for all $x \in \operatorname{Domain}(f)$.
49. The domain of f contains $[0, \infty)$.
50. The domain of f contains $[-2, \infty)$.
51. $f(x)>-1$ for all $x \in \operatorname{Domain}(f)$.
52. $f(x)<1$ for all $x \in \operatorname{Domain}(f)$.
53. Let $y=x-1$. Then, $x=y+1$ so $f(y)=(y+1)^{2}$. This implies $f(x+1)=(x+1+1)^{2}=(x+2)^{2}$.
54. Let $y=2 x+1$. Then, $x=\frac{1}{2}(y-1)$ so $f(y)=\frac{1}{8}(y-1)^{3}-1$. This implies $f(x+2)=\frac{1}{8}(x+1)^{3}-1$.
55. Suppose such functions exist. If we set $x=0$ we obtain $f(0)+g(y)=0$ for all $y \in \mathbb{R}$ and if we set $y=0$ we obtain $f(x)+g(0)=0$ for all $x \in \mathbb{R}$. Hence,

$$
f(x)=-g(0)=-(-f(0))=f(0) \quad \text { for all } x \in \mathbb{R}
$$

while

$$
g(y)=-f(0)=-(-g(0))=g(0) \quad \text { for all } y \in \mathbb{R}
$$

So far we have obtained that f and g are constant functions. On the other hand, this information combined with the identity $f(x)+g(y)=x y$ gives for $y=1$

$$
f(x)=x-g(1)=x-g(0) \quad \text { for all } x \in \mathbb{R}
$$

which contradicts the fact that f was found to be constant. Therefore, there do not exist functions f and g satisfying $f(x)+g(y)=x y$ for all $x, y \in \mathbb{R}$.
56. Suppose such functions exist. If we set $x=0$, we obtain $f(0) g(y)=y$ for all $y \in \mathbb{R}$ and if we set $y=0$, we obtain $f(x) g(0)=x$ for all $x \in \mathbb{R}$. If we set $x=y=0$, then we obtain $f(0) g(0)=0$ and hence either $f(0)=0$ or $g(0)=0$. On the other hand $g(0) \neq 0$ since $f(x) g(0)=x$ for all $x \in \mathbb{R}$, and $f(0) \neq 0$ since $f(0) g(y)=y$ for all $y \in \mathbb{R}$. Therefore, there do not exist functions f and g satisfying $f(x) g(y)=x+y$ for all $x, y \in \mathbb{R}$.
57. The condition $f \circ g_{1}=h$ implies $2 g_{1}(x)-3=x+6$ for all $x \in \mathbb{R}$. Hence, $g_{1}(x)=\frac{1}{2} x+\frac{9}{2}$ for all $x \in \mathbb{R}$. From $g_{2} \circ f=h$, it follows that $g_{2}(2 x-3)=x+6$ for all $x \in \mathbb{R}$, thus $g_{2}(x)=\frac{x+3}{2}+6=\frac{1}{2} x+\frac{15}{2}$ for all $x \in \mathbb{R}$.

Section 2.2: Limits of Functions

1. $0,1.5, \lim _{x \rightarrow 2} f(x)$ does not exist.
2. $0.5,0.5,0.5$.
3. $2,2,2$.
4. $0,0,0$.
5. $0,0,0,0$.
6. $\frac{1}{6}, \frac{1}{6}, \frac{1}{3}, \lim _{x \rightarrow 4} f(x)$ does not exist.
7. $2,+\infty, 2$, does not exist.
8. $\frac{1}{3}, 1,-\infty, \lim _{x \rightarrow 2} f(x)$ does not exist.
9. $0,0,0,0$.
10. $-\frac{2}{3},-\frac{2}{3},-\frac{2}{3},-\frac{2}{3}$.
11. $1-6-4=-9$.
12. $3(-1)^{4}+5(-1)^{3}+2(-1)-1=-5$.
13. $\sqrt{0+3}=\sqrt{3}$.
14. $\sqrt{4^{2}-3}=\sqrt{13}$.
15. $\frac{2 \cdot(-1)+1}{-1-3}=\frac{1}{4}$.
16. $\frac{0-6}{3 \cdot 0+1}=-6$.
17. $4-2 \cdot 2=0$.
18. $5-3^{2}=-4$.
19. $\frac{-1}{0+0+1}=-1$.
20. $\frac{0+1}{0-0-1}=-1$.
21. $\sqrt[3]{1-5+1}=\sqrt[3]{-3}$.
22. $\sqrt[3]{2(-2)^{3}-(-2)^{2}+3(-2)-4}=\sqrt[3]{2}$.
23. $\frac{1}{2}-\frac{1}{2}=0$.
24. $\frac{2}{4+1}=\frac{2}{5}$.
25. $\sqrt[4]{6^{2}-4 \cdot 6+4}=2$.
26. $\sqrt[4]{2^{3}+2-1}=\sqrt{3}$.
27. $\frac{(-2)^{3}-2 \cdot(-2)-3}{-2+3}=-7$.
28. $\frac{0-1}{0-1}=0$.
29. a. $\mathbb{R} \backslash\{1\}$. We can not compute $\lim _{x \rightarrow 1} f(x)$ using $\mathbf{P} 4$ since the denominator of $f(x)$ is zero at $x=1$.
b. $1, x, \ldots, x^{n}$ are terms of a geometric sequence with $a=1, r=x$.
$S=x^{n}+x^{n-1}+\ldots+x+1$
$x S+1=x^{n+1}+x^{n}+\ldots+x^{2}+x+1$
$x S+1=x^{n+1}+S$
$S=\frac{x^{n+1}-1}{x-1}$
c. $\lim _{x \rightarrow 1} \frac{x^{n+1}-1}{x-1}=\lim _{x \rightarrow 1}\left(x^{n}+x^{n-1}+\ldots+x+1\right)=n+1$
30. Let $f(x)=x^{3}+2$. Fix an open interval I centered at 3 . We want to find an open interval J containing 1 , with $J \backslash\{1\}$ contained in the domain of f, such that for every $x \in J \backslash\{1\}$ we have $f(x) \in I$.
Let $2 l$ be the length of the interval I, that is, $I=(3-l, 3+l)$. The condition $f(x) \in I$ is equivalent to $|f(x)-3|<l$, which is in turn equivalent to $3-l<x^{3}+2<3+l, 1-l<x^{3}<1+l$. This suggests that a good candidate for the interval J is $J=(\sqrt[3]{1-l}, \sqrt[3]{1+l})$. Indeed, $1 \in J, J \backslash\{1\}$ is contained in the domain of f, and

$$
\begin{gathered}
x \in J \backslash\{1\} \Rightarrow \sqrt[3]{1-l}<x<\sqrt[3]{1+l} \Rightarrow 1-l<x^{3}<1+l \\
\Rightarrow-l<x^{3}-1<l \Rightarrow|f(x)-3|<l \Rightarrow f(x) \in I
\end{gathered}
$$

31. Let $f(x)=3 x^{3}-1$. Fix an open interval I centered at 2 . We want to find an open interval J containing 1 , with $J \backslash\{1\}$ contained in the domain of f, such that for every $x \in J \backslash\{1\}$ we have $f(x) \in I$.
Let $2 l$ be the length of the interval I, that is, $I=(2-l, 2+l)$. The condition $f(x) \in I$ is equivalent to $|f(x)-2|<l$, which is in turn equivalent to $1-\frac{l}{3}<x^{3}<1+\frac{l}{3}$. This suggests that a good candidate for the interval J is $J=\left(\sqrt[3]{1-\frac{l}{3}}, \sqrt[3]{1+\frac{l}{3}}\right)$. Indeed, $1 \in J, J \backslash\{1\}$ is contained in the domain of f, and

$$
\begin{gathered}
x \in J \backslash\{1\} \Rightarrow \sqrt[3]{1-\frac{l}{3}}<x<\sqrt[3]{1+\frac{l}{3}} \Rightarrow-\frac{l}{3}<x^{3}-1<\frac{l}{3} \\
\Rightarrow-l<3 x^{3}-3<l \Rightarrow|f(x)-2|<l \Rightarrow f(x) \in I
\end{gathered}
$$

Section 2.3: Continuity

1. Continuous on $\mathbb{R} \backslash\{-1\}$, discontinuous at $x=1$.
2. Continuous on $\mathbb{R} \backslash\{2\}$, discontinuous at $x=2$.
3. Continuous on \mathbb{R}.
4. Continuous on \mathbb{R}.
5. $2 \cdot 1^{2}-3=3 \cdot 1-a, a=4$.
6. $a=-1$.
7. $a=2$.
8. $-2-a^{2}=1-4 a, a^{2}-4 a+3=0, a=1$ or $a=3$.
9. $f(x)=x^{2}-x$.
10. $f(x)=x^{3}+x^{2}$.
11. $f(x)= \begin{cases}1 & \text { if } x \neq 4 \\ 0 & \text { if } x=4\end{cases}$
12. $f(x)= \begin{cases}x & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}$
13. $f(x)= \begin{cases}0 & \text { if } x<4 \\ 1 & \text { if } x \geq 4\end{cases}$
14. $f(x)= \begin{cases}x & \text { if } x \leq 2 \\ x+1 & \text { if } x>2\end{cases}$
15. Solving for $f(x)$ we obtain that for each $x \in \mathbb{R}, f(x)$ is either x or $-x$. Hence the graph of f is contained in the lines $y=x$ and $y=-x$. Since f is continuous, we have four possibilities: $f_{1}(x)=x, f_{2}(x)=-x, f_{3}(x)=|x|$, and $f_{4}(x)=-|x|$.

Chapter 2 Review

1. $y= \pm \sqrt{x^{3}-2}$ is not a function of x.
2. $y=\sqrt[3]{2+x^{2}}$ is a function of x.
3. $y=\frac{5}{2} x+\frac{1}{2}$ is a function of x.
4. $y=-\frac{2}{x}$ is a function of x.
5. $f(x)=\left\{\begin{array}{ll}x^{2}+x & \text { if } x \leq 0 \\ x^{2}-x & \text { if } x>0\end{array}, \quad\right.$ Image $(f)=\left[-\frac{1}{4}, \infty\right)$.

6. $f(x)=\left\{\begin{array}{ll}2+x-x^{2} & \text { if } x \leq 1 \\ 2 x+4 & \text { if } x>1\end{array}, \quad\right.$ Image $(f)=\left(-\infty, \frac{9}{4}\right] \cup(6, \infty)$.

7. Domain $(f)=\mathbb{R}$, Image $(f)=\left[\frac{7}{4}, \infty\right)$.
8. Domain $(f)=\mathbb{R}$, Image $(f)=(-\infty, 4]$.
9. Domain $(f)=[0, \infty)$, Image $(f)=[0, \infty)$.
10. $x^{2}-2 x-3=(x+1)(x-3) \geq 0$.

Domain $(f)=(-\infty,-1] \cup[3, \infty)$, Image $(f)=[0, \infty)$.
11. Domain $(f)=\mathbb{R}$, Image $(f)=\mathbb{R}$.
12. Domain $(f)=\mathbb{R}$, Image $(f)=\mathbb{R}$.
13. Domain $(f)=\mathbb{R} \backslash\{-2\}$, Image $(f)=\{-1,1\}$.
14. $x-1 \geq 0$, so Domain $(f)=[1, \infty)$, Image $(f)=\{1\}$.
15. Domain $(f)=\mathbb{R} \backslash\{-3,3\}$, Image $(f)=\mathbb{R} \backslash\left\{0,-\frac{1}{6}\right\}$.
16. $x-2 \neq 0$, so Domain $(f)=\mathbb{R} \backslash\{2\}$, Image $(f)=\mathbb{R}$.
17. $f(g(x))=\frac{x^{2}+2 x}{x^{2}+2 x-3}$, Domain $(f \circ g)=\mathbb{R} \backslash\{-3,1\}$.
18. $f(g(x))=\frac{\sqrt{x^{2}-4 x}}{x^{2}-4 x-1}, x^{2}-4 x=x(x-4) \geq 0$ and $x^{2}-4 x-1=(x-2+$ $\sqrt{5})(x-2-\sqrt{5}) \neq 0$, so Domain $(f \circ g)=(-\infty, 2-\sqrt{5}) \cup(2-\sqrt{5}, 0] \cup$ $[4,2+\sqrt{5}) \cup(2+\sqrt{5}, \infty)$.
19. $g(f(x))=\sqrt{x-3}$, Domain $(g \circ f)=[3, \infty)$.
20. $g(f(x))=\sqrt{x^{2}+x}, x^{2}+x=x(x+1) \geq 0$, so Domain $(g \circ f)=(-\infty,-1] \cup$ $[0, \infty)$.
21. $f(g(x))=\left\{\begin{array}{ll}2 x+5 & \text { if } x<-1 \\ x^{2}+2 x+4 & \text { if } x \geq-1\end{array}, \quad g(f(x))=\left\{\begin{array}{ll}2 x+4 & \text { if } x<0 \\ x^{2}+4 & \text { if } x \geq 0\end{array}\right.\right.$.
22. $f(g(x))= \begin{cases}-8 & \text { if } x \leq-2 \\ 3 x-2 & \text { if }-2<x \leq 0, \quad g(f(x))=-3 . \\ -2 & \text { if } x>0\end{cases}$
23. f is not defined at $-2, \frac{5}{6}, \frac{5}{6}, \frac{5}{6}$.
24. $-\frac{1}{2},-\frac{1}{2}, 1, \lim _{x \rightarrow \frac{1}{2}} f(x)$ does not exist.
25. $1,-\infty, 1$, does not exist.
26. $0,-1, \infty, \lim _{x \rightarrow 3} f(x)$ does not exist.
27. $0,0,0,0$.
28. $2,1,1,1$.
29. 56.
30. $100-3(-1)^{2}+(-1)^{3}-7(-1)^{5}=101$.
31. -1
32. $\sqrt{3 \cdot 1^{5}-2 \cdot 1+2}=\sqrt{3}$.
33. 0
34. $\frac{3+2}{3^{2}-6}=\frac{5}{3}$.
35. -3 .
36. $\frac{3 \cdot 0-2}{0^{3}-1}+\sqrt[3]{2-0^{2}-0}=2+\sqrt[3]{2}$.
37. $f(x)= \begin{cases}x+1 & \text { if } x \leq 0 \\ -x & \text { if } x>0\end{cases}$
38. $f(x)=\left\{\begin{array}{ll}x & \text { if } x<-1 \\ x+1 & \text { if } x \geq-1\end{array}\right.$.
39. $f(x)=\left\{\begin{array}{ll}2 x-1 & \text { if } x \neq 1 \\ 0 & \text { if } x=1\end{array}\right.$.
40. $f(x)=\left\{\begin{array}{ll}x & \text { if } x \neq 0 \\ 5 & \text { if } x=0\end{array}\right.$.
41. $f(x)=x^{2}+3 x-1$.
42. $f(x)=\frac{x}{x^{2}+1}$.
43. f is continuous on $\mathbb{R} \backslash\{0\}$ and discontinuous at 0 .

44. f is continuous on \mathbb{R}.

45. f is continuous on \mathbb{R}.

46. f is continuous on $\mathbb{R} \backslash\{0\}$ and discontinuous at $\{0\}$.

47. $a=-1$.
48. $a^{2}+2=1-1+6, a^{2}=4, a= \pm 2$.
49. If $f(x)=a x+b,(f \circ f)(x)=x$ for all $x \in \mathbb{R}$ is equivalent to $a(a x+b)+b=x$ for all $x \in \mathbb{R}$. Hence, $\left(a^{2}-1\right) x+a b+b=0$ for all $x \in \mathbb{R}$. The latter holds if and only if $a^{2}-1=0$ and $a b+b=0$. The solutions for this system in a and b are $a=1, b=0$ or $a=-1, b$ arbitrary real number. Consequently, $f(x)=x$ or $f(x)=-x+b$.

