

Chapter 2 Answer Section

Quick Quiz 2.1 Answers:

1 a	2 c	3 b	4 a	5 a	6 a				
Quic	k Quiz 2	.2 Answe	ers:						
1b	2 a	3 c	4 c	5c	6 b	7 c	8 a	9c	10 b
Quic	k Quiz 2	.3 Answe	ers:						
1c	2 c	3 c	4 b	5c	6 b	7 b	8 a	9c	10 b
Quic	k Quiz 2	.4 Answe	ers:						
1 a	2 a	3 c	4 a	5c	6 c	7 a	8 a		
Quic	k Quiz 2	.5 Answe	ers:						
1b	2 a	3 c	4 c	5 b	6 a	7 b	8 c	9c	10 b
Quic	ck Quiz 2	.6 Answe	ers:						
1b	2 a	3 c	4 c	5c	6 c	7 a	8 b	9c	10 c
Quic	ck Quiz 2	.7 Answe	ers:						
1 b	2 c	3 b	4 c	5c	6 a	7 c			

Chapter 2 Review Question Answers

- 1. The value of the function tends to L as x tends to a.
- 2. Let *f* be a function defined on an open interval containing *a*; *f* need not be defined at the point *a*. The limit $\lim_{x \to a} f(x) = L$ means that for all $\varepsilon > 0$ there exists a $\delta > 0$ such that if $|x-a| < \delta$, then $|f(x) L| < \varepsilon$.
- 3. Any positive value of δ will satisfy this condition provided that it is less than $\frac{1}{4}$.
- 4. They must exist and be equal.
- 5. The function $\sqrt{x-1}$ is defined only when $x \ge 1$, which occurs only in the right-hand limit.
- 6. This is because the limit asks how the function behaves as x gets near 1, not when x = 1.
- 7. No; the left- and right-hand limits of $\frac{x-1}{x^2-4x+3}$ as x approaches 1 do not approach $\pm \infty$ (a requirement for a vertical asymptote), whereas the limits associated with x = 3 do approach $\pm \infty$.
- 8. The vertical asymptotes are given by the roots of q that are not also roots of p.
- 9. Evaluate p at x = a.
- **10.** Continuity from the left means $\lim_{x \to a^-} f(x) = f(a)$. Continuity from the right means $\lim_{x \to a^+} f(x) = f(a)$.
- 11. We can make f(x) as large as we wish by making x sufficiently close to a.
- 12. No, if f(x) were continuous on [1,3] then f(x) would attain every value between -1 and 1.

13. As x goes to a, g(x) gets closer to 0 from the negative side.

Chapter 2 Test Bank Answers

1.	50	2. 90	3. –2	4. –3
5.	2 <i>a</i>	6. –2 <i>a</i>	7. 2 <i>a</i>	8. $\frac{1}{2}$
9.	$-\frac{1}{25}$	10. $-\frac{1}{20}$	11. –8	
12.	a. 10	b. 10	c. 10	
13.	a. 4	b. 4	c. 4	
14.	-2	15. $\frac{1}{4}$	16. $\frac{1}{2}$	

17. $\lim_{V \to 0^+} \sqrt[3]{\frac{3V}{4\pi}} = 0$; This result means that as the volume of a sphere gets arbitrarily small, then the radius of the same sphere also approaches zero.

18.
$$\infty$$
 19. -3 **20.** $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$; horizontal asymptote at $y = 0$

- **21.** lim f(x) = 2 and lim f(x) = -2; horizontal asymptotes at $y = \pm 2$
- **22.** a. no vertical asymptotes, horizontal asymptote at y = 1 b.

23. a. vertical asymptote at x = 1, horizontal asymptote at y = 0

b. The hand-drawn sketch should show the vertical asymptote at x = 1 as a dashed line (rather than the solid line shown in the figure).

- 24. continuous
- 25. continuous
- **26.** *a* = 5

27. a. a = 4, b = 1

b. $a = 4, b \neq 1$

c. $a \neq 4$, b = 1