

Chapter 2

Databases and Accounting Systems

Answers to Review Exercises
Multiple Choice Questions
1. b 6. c

2. d 7. a

3. b 8. b

4. a 9. d

5. c 10. b

Discussion Questions
The solutions presented here come from the textbook discussion. Your students may include other

insight that is relevant but not presented in these solutions.

1. Double-entry bookkeeping provided an excellent way of recording transactions for many years. It

helped accountants capture the essence of each transaction in a safe, effective manner. The

double-entry nature of the approach also provided an automatic internal control feature in manual

accounting systems. Since recording transactions with pen and paper was a time-consuming task,

double-entry bookkeeping gave accountants a valuable tool that quickly identified essential

elements of transactions. Today’s computerized transaction processing systems have freed

accountants from the need to capture only essential transaction elements and store them in a

highly aggregated form. We can capture a wide variety of information about each transaction

quite easily using bar code scanners and other electronic data entry devices. The costs of

information storage have also dropped dramatically.

2. In manual systems, the dual nature of the accounting debit and credit model provides a built-in

error correction mechanism. In automated systems, this same duality is inefficient and serves no

control purpose. Manual double-entry bookkeeping systems can be very efficient; however, most

computer implementations of double-entry bookkeeping use a flat file processing design instead

of a relational database model. Database accounting systems only store data once and avoid the

redundancies of flat-file systems. Database accounting systems use normalized tables to avoid

anomalies. Anomalies can become very troublesome as the accounting system grows to a size

that requires computers to handle transaction-processing volume.

3. Problems of storing data in two or more places include the creation of outdated and redundant

data. Years ago, it was common for departments and individuals to create and maintain their own

computer files that duplicated information kept in the master files. Duplicate files were

maintained in order to access and examine the data with their own programs quickly, rather than

incurring the long delays from the already overworked data processing department. Duplicate

data files—files mirroring the master file data—leads to inevitable data redundancy and, soon,

data inconsistency. For example, Marketing kept its own files, sorted by zip code, of its larger

customers so that they could send them advertising pieces. The marketing department hired a

bright young programmer to keep current the “best customer” file, and she would write programs

to produce mailing labels from the customer file. Problems occurred when the independently

maintained customer list fell out of date. While the master list of customers was kept current by

the data processing department from each month’s purchase orders, the marketing department did

not have access to that data. Their customer list became so out of date—customers moved, and

new customers came on board—that it was practically useless.

4. The primary key consists of one or more fields in each table that provides a unique identifier for

each row in the table. Every table in a relational database (a table in a relational database is also

called a relation) must have a primary key that is unique and that exists for each row in the table.

The primary key can include one or more fields (columns). When the primary key includes more

than one column it is called a composite primary key. The individual column values in a

composite primary key need not be unique, but the combined column values must be unique. The

primary key is important because it allows all of the information that has been broken apart to be

stored in the individual tables to be pulled back together when a user needs the information. The

primary keys (and the foreign keys) provide the connections among all of the tables in a database.

Practice Exercises

The solutions are included in the Ch02-PracticeExercises.accdb file on the Instructor web site.

1. One possible solution is shown below in Design view and Datasheet view.

2. One possible solution to this exercise is the database shown in the following figure, which shows

a screen capture of an Access Relationships window. In creating this file, we assumed that the

grocery store does not track its customers’ names or addresses and that it only accepts cash. The

tblPoSTerminal stores information about each point-of-sale (PoS) terminal in each store. This

database design is a useful example because it illustrates that not all businesses include customer

tables in their sales/collection processes.

3. The additional entities would be best modeled in two separate tables, an Office table and a

Department table. The primary keys of these two tables would each appear as a foreign key in the

Time Worked table.

4. Omit the conversion process bubble and the related resource flow arrows from Figure 2.2. Also,

add a resource flow line for merchandise inventory from the acquisition/payment process to the

sales/collection process to yield the correct answer. See below.

5. The problem is that age is a value that changes each year. The solution is to store a person’s date

of birth. That never changes. Follow the general rule “never store any value in a table that can be

derived from other values in the table or the external environment.” Age is such a value—it can

be calculated from date of birth and the current date, which is stored in the computer’s clock.

Problems

1. One possible solution is the object qryProblem01, which is included in the Ch03Problem01.mdb

database on the Instructor’s CD. The figures below show that query in Design view and in

Datasheet view.

2. The Invoice Line table is a relationship table. All relationship tables have a composite primary key

that includes two or more individual fields (the primary key fields of the entity tables that the

relationship table joins). In this case, tblInvoiceLine joins the Invoice table and the Inventory

table. Thus, the primary key of tblInvoiceLine includes the InvoiceID field and the InventoryID

field. The extension is not included in the table because it is a calculated field. A printed invoice

would be produced by creating a report based on a query. That query would calculate the

extension.

3. The relationship between the Instructor table and a Classes table is one-to-many (1—M). Each

instructor teaches many classes (unless he or she is a researcher and teaches only one class per

semester—atypical of most instructors). The relationship between Students table and the Classes

table is many-to-many (M—M). That is, a given student can take several classes. Any particular

class can have several students enrolled in it. The following shows a typical relationship between

the Catalog, Classes, Instructors, and Students. Notice a relationship table exists when necessary

to convert M—M relationships to two 1—M relationships.

	Chapter 2
	Databases and Accounting Systems
	Answers to Review Exercises
	Multiple Choice Questions
	Discussion Questions
	Practice Exercises
	Problems

