SOLUTIONS MANUAL

Chapter 1

Exercises 1.1

1. $y=2-5 x$; y-intercept: $(0,2)$, slope $=-5$
2. $y=\frac{x+1}{3}=\frac{1}{3} x+\frac{1}{3} ; y$-intercept: $\left(0, \frac{1}{3}\right)$, slope $=\frac{1}{3}$
3. $3 y-2 x-1=0 \Rightarrow y=\frac{2}{3} x+\frac{1}{3} ; y$-intercept: $\left(0, \frac{1}{3}\right)$, slope $=\frac{2}{3}$
4. $y=5 \Rightarrow y=0 x+5$; y-intercept: $(0,5)$, slope $=0$
5. $y=\frac{3 x-1}{3}=x-\frac{1}{3} ; y$-intercept: $\left(0,-\frac{1}{3}\right)$, slope $=1$
6. $2 x+7 y=-1 \Rightarrow y=-\frac{2}{7} x-\frac{1}{7}$;
y-intercept: $\left(0,-\frac{1}{7}\right)$, slope $=-\frac{2}{7}$
7. slope $=-7,(5,0)$ on line.

Let $(x, y)=(5,0), m=-7$.
$y-0=-7(x-5)$ $y=-7 x+35$
8. slope $=0 ;(0,0)$ on line.
y-intercept $(0, b)=(0,0), m=0$
$y=m x+b$
$y=0 x+0$
$y=0$
9. slope $=4 ;(1,0)$ on line.

Let $\left(x_{1}, y_{1}\right)=(1,0), m=4$.
$y-y_{1}=m\left(x-x_{1}\right)$
$y-0=4(x-1)$
$y=4 x-4$
10. slope $=\frac{7}{3} ;(5,-1)$ on line.

Let $\left(x_{1}, y_{1}\right)=(5,-1), m=\frac{7}{3}$.
$y-y_{1}=m\left(x-x_{1}\right)$
$y-(-1)=\frac{7}{3}(x-5)$
$y+1=\frac{7}{3} x-\frac{35}{3}$
$y=\frac{7}{3} x-\frac{38}{3}$
11. $\left(\frac{2}{3}, 5\right)$ and $\left(-\frac{5}{6},-4\right)$ on line.
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-5}{-\frac{5}{6}-\frac{2}{3}}=\frac{-9}{-\frac{9}{6}}=6$
Let $\left(x_{1}, y_{1}\right)=\left(\frac{2}{3}, 5\right), m=6$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-5=6\left(x-\frac{2}{3}\right)$
$y-5=6 x-4$
$y=6 x+1$
12. $\left(\frac{1}{2}, 1\right)$ and $(1,2)$ on line.
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-1}{1-\frac{1}{2}}=\frac{1}{\frac{1}{2}}=2$
Let $\left(x_{1}, y_{1}\right)=(1,2), m=2$.
$y-y_{1}=m\left(x-x_{1}\right)$
$y-2=2(x-1)$
$y=2 x$
13. $(0,0)$ and $(1,-2)$ on line.
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-0}{1-0}=-2$
$y-0=-2(x-0)$
$y=-2 x$
14. $\left(-\frac{1}{2}, 0\right)$ and $(1,2)$ on line.
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-0}{1-\left(-\frac{1}{2}\right)}=\frac{2}{\frac{3}{2}}=\frac{4}{3}=m$
Let $\left(x_{1}, y_{1}\right)=\left(-\frac{1}{2}, 0\right)$.
$y-y_{1}=m\left(x-x_{1}\right)$
$y-0=\frac{4}{3}\left(x-\left(-\frac{1}{2}\right)\right)$
$y=\frac{4}{3}\left(x+\frac{1}{2}\right)$
$y=\frac{4}{3} x+\frac{2}{3}$
15. Horizontal through $(3,-1)$.

Let $\left(x_{1}, y_{1}\right)=(3,-1), m=0$ (horizontal line).
$y-y_{1}=m\left(x-x_{1}\right)$
$y-(-1)=0(x-3)$
$y+1=0$
$y=-1$
16. x-intercept is $2 ; y$-intercept is -2 .

The intercepts $(2,0)$ and $(0,-2)$ are on the line.
slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-0}{0-2}=1=m$
y-intercept $(0, b)=(0,-2)$
$y=m x+b$
$y=1 x-2$
$y=x-2$
17. x-intercept is $-1 ; y$-intercept is 1 .

The intercepts $(-1,0)$ and $(0,1)$ are on the line.

$$
\begin{aligned}
& \text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1-0}{0-(-1)}=1 \\
& y \text {-intercept }(0, b)=(0,1) \\
& y=m x+b \\
& y=1 x+1 \\
& y=x+1
\end{aligned}
$$

18. Slope $=6 ; x$-intercept is -1 .

The x-intercept $(-1,0)$ is on the line.
Let $\left(x_{1}, y_{1}\right)=(-1,0), \quad m=6$.
$y-y_{1}=m\left(x-x_{1}\right)$
$y-0=6(x-(-1))$
$y=6(x+1)$
$y=6 x+6$
19. Slope $=1 ; x$-intercept is -2 .

The x-intercept $(-2,0)$ is on the line.
Let $\left(x_{1}, y_{1}\right)=(-2,0), m=1$.
$y-y_{1}=m\left(x-x_{1}\right)$
$y-0=1(x-(-2))$
$y=1(x+2)$
$y=x+2$
20. Horizontal through $(-2, \sqrt{2})$.

Let $\left(x_{1}, y_{1}\right)=(-2, \sqrt{2}), m=0$ (horizontal line).
$y-y_{1}=m\left(x-x_{1}\right)$
$y-\sqrt{2}=0(x-(-2))$
$y=\sqrt{2}$
21. Parallel to $y=2 x ;(2,0)$ on line.
slope $=m=2,\left(x_{1}, y_{1}\right)=(2,0)$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-0=2(x-2)$
$\mathrm{y}=2 \mathrm{x}-4$
22. Parallel to $x+y=0 ;(1,1)$ on line.
$y=-x$, slope $=m=-1,\left(x_{1}, y_{1}\right)=(1,1)$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-1=-1(x-1)$
$y-1=-x+1$
$\mathrm{y}=-\mathrm{x}+2$
23. Parallel to $y=-x+7$; x -intercept is 1
$y=-x+7$, slope $=m=-1,\left(x_{1}, y_{1}\right)=(1,0)$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-0=-1(x-1)$
$y=-x+1$
24. Parallel to $y-x=13 ; y$-intercept is $-1 / 2$
$y=x+13$, slope $=m=1,\left(x_{1}, y_{1}\right)=(0,-1 / 2)$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-(-1 / 2)=1(x-0)$
$y+1 / 2=x$
$y=x-1 / 2$
25. Perpendicular to $y=2 x ;(2,0)$ on line.
slope $=m_{1}=2$
$m_{1} \cdot m_{2}=-1$
$2 m_{2}=-1$
$m_{2}=-\frac{1}{2}=m$
$\left(x_{1}, y_{1}\right)=(2,0)$
$y-y_{1}=m\left(x-x_{1}\right)$
$y-0=-\frac{1}{2}(x-2)$
$y=-\frac{1}{2} x+1$
26. Perpendicular to $y=-\frac{1}{2} x+1 ;(0,0)$ on line.
slope $=m_{1}=-\frac{1}{2}$
$m_{1} \cdot m_{2}=-1$
$-\frac{1}{2} m_{2}=-1$
$m_{2}=2=m$
y-intercept $(0, b)=(0,0)$
$y=m x+b$
$y=2 x$
27.

28.

29.

30.

31. (a)-(C) x - and y-intercepts are 1 .
(b)-(B) x-intercept is $1, y$-intercept is -1 .
(c)-(D) x - and y-intercepts are -1 .
(d)-(A) x-intercept is $-1, y$-intercept is 1 .
32. Use $(4.8,3.6)$ and (4.9, 4.8).
$m=\frac{4.8-3.6}{4.9-4.8}=12$
$y=m x+b$ so
$6=12(5)+b$
$b=-54$
33. $\frac{1}{2}=\frac{j}{4}, j$ units in y-direction
$j=2$
34. $2=\frac{j}{\left(\frac{1}{4}\right)}$
$j=\frac{1}{2}$
35. $-3=\frac{j}{.25}$
$j=-.75$
36. $.2=\frac{j}{5}$
$j=1$
37. Slope $=2,(1,3)$ on line.
$x_{1}=1, y_{1}=3$
$x=2$
$y-3=2(2-1), y=4-2+3=5$
$x=3$
$y-3=2(3-1), y=6-2+3=7$
$x=0$
$y-3=2(0-1), y=0-2+3=1$
38. Slope $=-3,(2,2)$ on line.
$x_{1}=2, y_{1}=2$
$x=3$
$y-2=-3(3-2), y=-9+6+2=-1$
$x=4$
$y-2=-3(4-2), y=-12+6+2=-4$
$x=1$
$y-2=-3(1-2), y=-3+6+2=5$
39. a. slope of line through A and B :
$m_{A B}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}}=\frac{0-(-1)}{2-1}=\frac{1}{1}=1$
slope of line through A and C :
$m_{A C}=\frac{y_{C}-y_{A}}{x_{C}-x_{A}}=\frac{1-(-1)}{3-1}=\frac{2}{2}=1$
Both lines go through A and have the same slope. So points A, B, and C all lie on the same line.
b.

40. First find the slope of $2 x+3 y=0$.
$2 x+3 y=0$

$$
3 y=-2 x
$$

$$
y=-\frac{2}{3} x, \text { so } m_{1}=-\frac{2}{3}
$$

Now find the slope of the line through $(3,4)$ and (1, 2).
$m_{2}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-4}{-1-3}=\frac{-2}{-4}=\frac{1}{2}$
Since the slopes are not equal, the lines are not parallel.
41. l_{1}
42. l_{2}
43. Slope $=m=-2$
y-intercept: $(0,-1)$
$y=m x+b$
$y=-2 x-1$

44. Slope $=m=\frac{1}{3}$
y-intercept: $(0,1)$
$y=m x+b$
$y=\frac{1}{3} x+1$

45. a is the x-coordinate of the point of intersection of $y=-x+4$ and $y=2$. Use substitution to find the $x-$ coordinate.
$2=-x+4$
$x=2$
So $a=2 . f(a)$ is the y-coordinate of the intersection point. So $f(a)=2$.
46. a is the x-coordinate of the point of intersection of $y=x$ and $y=\frac{1}{2} x+1$. Use substitution to find the x-coordinate.

$$
x=\frac{1}{2} x+1
$$

$\frac{1}{2} x=1$

$$
x=2
$$

So $a=2 . f(a)$ is the y-coordinate of the intersection point. Substituting $x=2$ into $y=x$ gives $y=2$.
So $f(a)=2$.
47. $C(x)=12 x+1100$
a. $C(10)=12(10)+1100=\$ 1220$
b. Marginal cost $=m=\$ 12 /$ unit
c. It would cost an additional $\$ 12$ to raise the daily production level from 10 units to 11 units.
48. $C(x+1)-C(x)$

$$
\begin{gathered}
=(12(x+1)+1100)-(12 x+1100) \\
=12 x+12+1100-12 x-1100 \\
=\$ 12
\end{gathered}
$$

$\$ 12$ is the marginal cost. It is the additional cost incurred when the production level of this commodity is increased one unit, from x to $x+1$, per day.
49. Let x be the number of months since January 1, 2004. Then $(0,1.69)$ is one point on the line, and the slope is .06 . Therefore,
$P(x)=.06 x+1.69$ gives the price of gasoline x months after January 1, 2004.

On April 1, 3 months later, the cost of one gallon of gasoline is:
$P(3)=.06(3)+1.69=\$ 1.87 /$ gallon
Therefore, 15 gallons would cost $15(\$ 1.87)=$ $\$ 28.05$ on April, 2004.

On September 1, 8 months after January 1, the cost of one gallon of gasoline is:

$$
P(8)=.06(8)+1.69=\$ 2.17 / \text { gallon }
$$

Therefore, 15 gallons would cost $15(\$ 2.17)=$ $\$ 32.55$ on September, 2004.
50. Marginal Cost $=100 \Rightarrow$ the additional cost for increasing the producing level 1 unit (1 thousand chips) is $\$ 100$ thousand dollars. Therefore, the additional cost of increasing the production level by 4 thousand chips is $4 \times \$ 100$ thousand $=\$ 400$ thousand.
51. The value of the cars in year 0 (2002) is $\$ 125,000$. This gives the point $(0,125,000)$, which is the y intercept. The depreciation rate is $\$ 25,000$ per year, which gives the slope $m=-25,000$. The equation of the line in slope-intercept form is
$y(t)=m t+b$
$y(t)=-25,000 t+125,000$
Substitute $y(t)=0$ and solve for t to find the number of years that must pass for the value of the cars to reach zero.

$$
\begin{aligned}
0 & =-25,000 t+125,000 \\
25,000 t & =125,000 \\
t & =5
\end{aligned}
$$

The value is 0 after 5 years (in 2007).
52. a. The points $(5.75, .2)$ and $(6, .18)$ are on the line. The slope of the line is
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{.18-.2}{6-5.75}=-.08$
Let $\left(x_{1}, y_{1}\right)=(6, .18)$. The equation of the line is
$y-y_{1}=m\left(x-x_{1}\right)$
$y-.18=-.08(x-6)$
$y-.18=-.08 x+.48$
$y=-.08 x+.66$
$Q(x)=-.08 x+.66$
b. Let $Q(x)=.1(10$ employees per 100$)$ and solve for x.

$$
\begin{aligned}
.1 & =-.08 x+.66 \\
-.56 & =-.08 x \\
x & =7
\end{aligned}
$$

The hourly wage should be $\$ 7$.
53. The points $(1.97,1500)$ and $(2.05,1250)$ are on the line. The slope of the line is
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{1500-1250}{1.97-2.05}=-3125$. Let
$\left(x_{1}, y_{1}\right)=(2.05,1250)$. The equation of the line is
$y-y_{1}=m\left(x-x_{1}\right)$
$y-1250=-3125(x-2.05)$
$y-1250=-3125 x+6406.25$
$y=-3125 x+7656.25$
$G(x)=-3125 x+7656.25$
$G(2.01)=-3125(2.01)+7656.25=1375$ gallons.
54. Solve for $x: G(x)=-3125 x+7656.25=2200$
$\Rightarrow x=\$ 1.746 \approx \$ 1.75 /$ gallon
55. a. $C(x)=m x+b$
$b=\$ 1500$ (fixed costs)
Total cost of producing 100 rods is $\$ 2200$;

$$
\begin{aligned}
& C(100)=m(100)+1500=\$ 2200 \\
& \Rightarrow m=7 \\
& C(x)=7 x+1500
\end{aligned}
$$

b. Marginal cost at $x=100$ is $m=\$ 7 / \mathrm{rod}$
c. Marginal cost $=\$ 7$ or

$$
C(101)-C(100)=2207-2200=\$ 7
$$

56. Each unit sold increases the pay by 5 dollars. The weekly pay is 60 dollars if no units are sold.
57. If the monopolist wants to sell one more unit of goods, then the price per unit must be lowered by 2 cents. No one will pay 7 dollars or more for a unit of goods.
58. $x=$ degrees Fahrenheit, $y=$ degrees Celsius $0=32 \mathrm{~m} / b$ and $100=212 \mathrm{~m} / b$ so $b=-32 \mathrm{~m}$ and hence for $m, 100=212 m+-32 m$ or
$180 \mathrm{~m}=100$
$m=\frac{5}{9}$ and $b=-\frac{160}{9}$
Thus, $y=\frac{5}{9} x-\frac{160}{9} . y=\frac{5}{9}(98.6)-\frac{160}{9}=37$
$98.6^{\circ} \mathrm{F}$ corresponds to $37^{\circ} \mathrm{C}$.
59. The point $(0,1.5)$ is on the line and the slope is 6 $(\mathrm{ml} / \mathrm{min})$. Let y be the amount of drug in the body x minutes from the start of the infusion. Then

$$
\begin{aligned}
& y-1.5=6(x-0) \\
& y=6 x+1.5
\end{aligned}
$$

60. $-2 \mathrm{ml} /$ hour $=-1 / 30 \mathrm{ml} / \mathrm{min}$

$$
\begin{aligned}
y & =6 x+1.5-1 / 30^{x} \\
& =\frac{179}{30} x+1.5
\end{aligned}
$$

61. $y=x+7$
$x_{1}=0, y_{1}=0+7 ; x_{2}=2, y_{2}=2+7=9$
rate of change over $[0,2]=\frac{9-7}{2-0}=1$.
$x_{1}=-1, y_{1}=-1+7=6 ; x_{2}=2, y_{2}=2+7=9$
rate of change over $[-1,2]=\frac{9-6}{2-(-1)}=1$.
Slope $=m=1$.
62. $y+2 x=27 \Rightarrow y=-2 x+27$
$x_{1}=0, y_{1}=-2(0)+27=27 ; x_{2}=1, y_{2}=-2(1)+27=25$
rate of change over $[0,1]=\frac{25-27}{1-0}=-2$.
$x_{1}=0, y_{1}=-2(0)+27=27 ; x_{2}=5, y_{2}=-2(5)+27=17$
rate of change over $[0,1]=\frac{17-27}{5-0}=-2$. Slope $=m=-2$.
63. a-c.

d. $\frac{f(3+h)-f(3)}{3+h-3}=\frac{f(3+h)-f(3)}{h}$
64. Using $\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=m$ and the hint,

$$
\begin{aligned}
& \frac{f(x)-f\left(x_{1}\right)}{x-x_{1}}=m \Rightarrow f(x)-f\left(x_{1}\right)=m\left(x-x_{1}\right) \\
& f(x)=m\left(x-x_{1}\right)+f\left(x_{1}\right) \\
& \quad=m x+\left(-m x_{1}+f\left(x_{1}\right)\right)
\end{aligned}
$$

Let $b=-m x_{1}+f\left(x_{1}\right)$. Then $f(x)=m x+b$.
65. $L(x)=-x+2, m=-1$

$$
\begin{aligned}
\frac{L(x+h)-L(x)}{h} & =\frac{-(x+h)+2-(-x+2)}{h} \\
& =\frac{-x-h+2+x-2}{h} \\
& =-1=m
\end{aligned}
$$

66. $L(x)=\frac{2 x+11}{3}=\frac{2}{3} x+\frac{11}{3}, m=\frac{2}{3}$

$$
\begin{aligned}
\frac{L(x+h)-L(x)}{h} & =\frac{\frac{2}{3}(x+h)+\frac{11}{3}-\left(\frac{2}{3} x+\frac{11}{3}\right)}{h} \\
& =\frac{\frac{2}{3} x+\frac{2}{3} h+\frac{11}{3}-\frac{2}{3} x-\frac{11}{3}}{h} \\
& =\frac{2}{3}=m
\end{aligned}
$$

67. Let $y=m x+b$ and $y=m^{\prime} x+b^{\prime}$ be two distinct lines. We show that these lines are parallel if and only if $m=m^{\prime}$. Since two lines are parallel if and only if they have no points in common, it suffices to show that $m=m^{\prime}$ if and only if the equation $m x+b=m^{\prime} x+b^{\prime}$. Suppose $m=m^{\prime}$. Then $m x+b=m^{\prime} x+b^{\prime}$ implies $b=b^{\prime}$; but since the lines are distinct, $b \neq b^{\prime}$. Thus if $m=m^{\prime}$, $m x+b=m^{\prime} x+b^{\prime}$ has no solution. If $m \neq m^{\prime}$, then $x=\frac{b^{\prime}-b}{m=m^{\prime}}$ is a solution to $m x+b=m^{\prime} x+b^{\prime}$.
Thus, $m x+b=m^{\prime} x+b^{\prime}$ has no solution in x if and only if $m=m^{\prime}$, and it follows that two distinct lines are parallel if and only if they have the same slope.
68. Let $l_{1}, l_{2}, m_{1}, m_{2}, a$, and b be as in the diagram in the text. Then m_{1} is the slope of l_{1} and $-m_{2}$ is the slope of l_{2}. From the Pythagorean theorem, we have $a^{2}+b^{2}=\left(m_{1}+m_{2}\right)^{2}, 1^{2}+m_{1}^{2}=a^{2}$, and $1^{2}+m_{2}^{2}=b^{2}$.
Combining these, we get
$1+m_{1}^{2}+1+m_{2}^{2}=\left(m_{1}+m_{2}\right)^{2}$
$=m_{1}^{2}+2 m_{1} m_{2}+m_{2}^{2}$.
Thus, $2=2 m_{1} m_{2}$ and $m_{1} m_{2}=1$. Since the slope of l_{1} is m_{1} and the slope of l_{2} is $-m_{2}$, the product of their slopes is therefore -1 .
69. a. $(0,39.5)$ and $(15,45.2)$ on line

$$
\begin{aligned}
& \text { slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{45.2-39.5}{15-0}=\frac{5.7}{15}=.38 \\
& y-39.5=.38(x-0) \\
& y-39.5=.38 x \\
& y=.38 x+39.5
\end{aligned}
$$

b.

$[0,40]$ by $[0,100]$
c. Every year, $.38 \%$ more of the world population becomes urban.
d. Using the Trace or Evaluate feature on a graphing calculator, the point $(10,43.3)$ is on the line. Thus, 43.3% of the world population was urban in 1990.
e. Graphing the line $y=50$ and using the Intersect command, the point $(27.63,50)$ is on both graphs. In the year $1980+27=2007,50 \%$ of the world population will be urban.
f. From the slope, $.38 \%$ more of the world population becomes urban each year. Thus, in 5 years the percentage of the world population that is urban has increased by $5(.38 \%)=1.9 \%$.
70. a. $(20,000,729)$ and $(50,000,1380)$ on line.

$$
\begin{aligned}
& \quad=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \quad=\frac{1380-729}{50,000-20,000} \\
& \quad=\frac{651}{30,000} \\
& \text { slope }=0.217 \\
& y-1380=.0217(x-50,000) \\
& y-1380=.0217 x-1085 \\
& y=.0217 x+295
\end{aligned}
$$

b.

$[0,75,000]$ by $[0,2,000]$
c. For every increase of $\$ 1$ in reported income, the average itemized deductions increase by $\$.0217$. (Alternatively, an increase of $\$ 100$ in reported income corresponds to an average increase of \$2.17 in itemized deductions.)
d. Using the Trace or Evaluate feature on a graphing calculator, the point $(75,000,1992.5)$ is on the line. Thus, the average amount of itemized deductions on a return reporting income of $\$ 75,000$ is \$1922.5.
e. Graphing the line $y=5000$ and using the Intersect command, the point $(216,820.28,5000)$ is on both lines. An average itemized deduction of $\$ 5000$ corresponds to a reported income of $\$ 216,820$ (rounded to the nearest dollar).
f. An increase of $\$ 15,000$ in income level will correspond to an increase of $\$ 15,000(.0217)=\$ 325.5$ in itemized deductions.

Exercises 1.2

1.

2.

3.

4.

5. $-\frac{4}{3}$
6. 0
7. 1
8. 1
9. Small positive slope
10. Large positive slope
11. Zero slope
12. Large negative slope
13. Zero slope
14. Small negative slope

ISM: Calculus \& Its Applications, 11e
15.

It appears the points $(1984, .26)$ and $(1990,3.2)$ are on the line. The slope is

$$
m=\frac{3.2-.26}{1990-1984}=.49
$$

Therefore, the annual rate of increase of the federal debt in 1990 is approximately $\$.49$ trillion/year.
16.

Federal Debt at the End of Year: 1940-2004 (in Trillions of Dollars)

Figure 12. U.S. federal debt.

It appears the points $(2000,4.8)$ and $(2002,6.49)$
are on the line. The slope is $m=\frac{6.49-4.8}{2002-2000}$
$=.845$. Therefore, the annual rate of increase of the federal debt in 2002 is approximately $\$.845$ trillion/year
17. a. In 1950 , dept per capita $\square \$ 1000$

In 1990, dept per capita $\square \$ 14000$
In 2001, dept per capita $\square \$ 20500$
In 2004, dept per capita $\square \$ 24000$
b.

It appears the points $(1982,0)$ and
$(1992,17.5)$ are on the line. The slope is
$m=\frac{17.5-0}{1992-1982}=1.75$
Therefore, the annual rate of increase of the debt per capita in 1990 is approximately $\$ 1.75$ thousand/year.
18. a. True, the rate of increase in $1980>0$, the rate of increase in $2000 \square 0$.
b. True, the curve is close to constant up to the mid-1970's and then increases linearly (at a constant rate) from the mid-1970's to the mid1980's.

For 19-28, note that the slope of the line tangent to the graph of $y=x^{2}$ at the point (x, y) is $2 x$.
19. The slope at the point $(-2,4)$ is $2(-2)=-4$.

Let $\left(x_{1}, y_{1}\right)=(-2,4), m=-4$.
$y-4=-4(x-(-2))$
$y=-4 x-4$
20. $\operatorname{At}(-.4, .16), 2 x=2(-.4)=-.8$.

Let $\left(x_{1}, y_{1}\right)=(-.4, .16), m=-.8$.
$y-.16=-.8(x-(-.4))$
$y=-.8 x-.16$
21. At $\left(\frac{4}{3}, \frac{16}{9}\right)$, slope $=m=2 x=2\left(\frac{4}{3}\right)=\frac{8}{3}$.

Let $\left(x_{1}, y_{1}\right)=\left(\frac{4}{3}, \frac{16}{9}\right)$.
$y-\frac{16}{9}=\frac{8}{3}\left(x-\frac{4}{3}\right)$
$y=\frac{8}{3} x-\frac{16}{9}$
22. When $x=-\frac{1}{2}$, slope $=2\left(-\frac{1}{2}\right)=-1$.
23. When $x=1.5$, slope $=2(1.5)=3$ and
$y=(1.5)^{2}=2.25$. Let $\left(x_{1}, y_{1}\right)=(1.5,2.25)$,
$m=3$.
$y-2.25=3(x-1.5)$
$y=3 x-2.25$
24. When $x=.6$, slope $=2(.6)=1.2$ and
$y=(.6)^{2}=.36$. Let $\left(x_{1}, y_{1}\right)=(.6, .36), m=1.2$.
$y-.36=1.2(x-.6)$
$y=1.2 x-.36$
25. Set $2 x=\frac{5}{3}$
$x=\frac{5}{6}$
When $x=\frac{5}{6}, y=\left(\frac{5}{6}\right)^{2}=\frac{25}{36}$, so $\left(\frac{5}{6}, \frac{25}{36}\right)$ is the point.
26. $\operatorname{Set} 2 x=-4$
$x=-2$
When $x=-2, y=(-2)^{2}=4$, so $(-2,4)$ is the point.
27. $x+2 y=4$
$y=-\frac{1}{2} x+2$
so slope $=m=-\frac{1}{2}$.
Slope of the tangent line is $2 x$.
Set $2 x=-\frac{1}{2}$
$x=-\frac{1}{4}$
When $x=-\frac{1}{4}, y=\left(-\frac{1}{4}\right)^{2}=\frac{1}{16}$, so $\left(-\frac{1}{4}, \frac{1}{16}\right)$
is the point.
28. $3 x-y=2$
$y=3 x-2$
slope $=3$
The slope of the tangent line is $2 x$.
Set $2 x=3$
$x=\frac{3}{2}$
When $x=\frac{3}{2}, y=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$, so $\left(\frac{3}{2}, \frac{9}{4}\right)$ is the point.
29. Slope $=3 x^{2}$

When $x=2$, slope $=3(2)^{2}=12$.
30. Slope $=3 x^{2}$

When $x=\frac{3}{2}$, slope $=3\left(\frac{3}{2}\right)^{2}=\frac{27}{4}$.
31. Slope $=3 x^{2}$

When $x=-\frac{1}{2}$, slope $=3\left(-\frac{1}{2}\right)^{2}=\frac{3}{4}$.
32. When $x=-1$, slope $=3(-1)^{2}=3, y=(-1)^{3}=-1$.

Let $\left(x_{1}, y_{1}\right)=(-1,-1)$.
$y-(-1)=3(x-(-1))$
$y=3 x+2$
33. The slope of the line tangent to $y=x^{2}$ at $x=a$ is $2 a$. The slope of $y=2 x-1$ is 2 . Equating these gives: $2 a=2 \Rightarrow a=1$.
So, $f(a)=(1)^{2}=1, f^{\prime}(1)=2(1)=2$
34. The slope of the line tangent to $y=x^{2}$ at $x=a$ is $2 a$. The slope of $y=-x-\frac{1}{4}$ is -1 . Equating these gives: $2 a=-1 \Rightarrow a=-\frac{1}{2}$.
So, $f(a)=\left(-\frac{1}{2}\right)^{2}=\frac{1}{4}, f^{\prime}\left(-\frac{1}{2}\right)=2\left(-\frac{1}{2}\right)=-1$
35. The graphs of $y=\frac{1}{4} x+1$ and $y=\frac{1}{2} x$ intersect at $(a, f(a))$. Use substitution to find a.
$\frac{1}{2} x=\frac{1}{4} x+1 ; \frac{1}{4} x=1 ; x=4$
So $a=4$ and $f(a)=\frac{1}{2}(4)=2$.
The slope of the tangent line is $\frac{1}{4}$, so $f^{\prime}(4)=\frac{1}{4}$.
36. The graphs of $y=-\frac{1}{5} x+\frac{6}{5}$ and $y=2-x$ intersect at $(a, f(a))$. Use substitution to find a.

$$
\begin{aligned}
-\frac{1}{5} x+\frac{6}{5} & =2-x \\
-x+6 & =10-5 x ; 4 x=4 ; x=1
\end{aligned}
$$

So $a=1$ and $f(a)=2-1=1$.
The slope of the tangent line is -1 , so $f^{\prime}(a)=-1$.
37. a. $m=\frac{13-4}{5-2}=3$
length of d is $13-4=9$
b. Increase
38.

39.

$[0,8]$ by $[0,4]$
At $x=4, y \approx 2.45$
$\frac{d y}{d x} \approx .2$
In point-slope form, the tangent line is $y-2.45=.2(x-4)$.
40.

$[21,3]$ by $[2.5,1.5]$
At $x=1, y=1$
$\frac{d y}{d x}=0$
In point-slope form, the tangent line is $y-1=0(x-1)$ or $y-1=0$.
41.

$[0,7]$ by $[0,70]$
At $x=3.5, y=48$
$\frac{d y}{d x} \approx 2.9$
In point-slope form, the tangent line is $y-48=2.9(x-3.5)$.
42.

$$
[2.5,6.5] \text { by }[22,7]
$$

At $x=3, y=2$
$\frac{d y}{d x}=1$
In point-slope form, the tangent line is $y-2=x-3$.

Exercises 1.3

1. $f(x)=2 x-5, f^{\prime}(x)=2$
2. $f(x)=-3 x+7, f^{\prime}(x)=-3$
3. $f(x)=x^{5}, f^{\prime}(x)=5 x^{4}$
4. $f(x)=x^{19}, f^{\prime}(x)=19 x^{18}$
5. $f(x)=x^{\frac{2}{5}}, f^{\prime}(x)=\frac{2}{5} x^{-\frac{3}{5}}$
6. $f(x)=\frac{1}{\sqrt{x}}=x^{-\frac{1}{2}}, f^{\prime}(x)=-\frac{1}{2} x^{-\frac{3}{2}}$
7. $f(x)=\sqrt[3]{x}=x^{1 / 3}, f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$
8. $f(x)=x^{\frac{4}{3}}, f^{\prime}(x)=\frac{4}{3} x^{\frac{1}{3}}$
9. $f(x)=\frac{1}{x^{2}}=x^{-2}, f^{\prime}(x)=-2 x^{-3}$
10. $f(x)=3^{2}=9, f^{\prime}(x)=0$
11. $f(x)=x^{-\frac{5}{7}}, f^{\prime}(x)=-\frac{5}{7} x^{-\frac{12}{7}}$
12. $f(x)=\frac{1}{x^{-5}}=x^{5}, f^{\prime}(x)=5 x^{4}$
13. $f(x)=\frac{3}{4}, f^{\prime}(x)=0$
14. $f(x)=\frac{1}{\sqrt[7]{x}}=x^{-\frac{1}{7}}, f^{\prime}(x)=-\frac{1}{7} x^{-\frac{8}{7}}$
15. $f(x)=\sqrt[3]{x}=x^{-\frac{1}{3}}, f^{\prime}(x)=-\frac{1}{3} x^{-\frac{4}{3}}$
16. $f(x)=\sqrt[5]{x}=x^{\frac{1}{5}}, f^{\prime}(x)=\frac{1}{5} x^{-\frac{4}{5}}$
17. $f(x)=x^{3}$ at $x=1$

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2} \\
f^{\prime}(1) & =3(1)^{2}=3
\end{aligned}
$$

18. $f(x)=x^{5}$ at $x=\frac{2}{3}$

$$
f^{\prime}(x)=5 x^{4}
$$

$$
f^{\prime}\left(\frac{2}{3}\right)=5\left(\frac{2}{3}\right)^{4}=\frac{80}{81}
$$

19. $f(x)=\frac{1}{x}$ at $x=3$
$f(x)=x^{-1}$
$f^{\prime}(x)=-x^{-2}$
$f^{\prime}(3)=-\frac{1}{3^{2}}=-\frac{1}{9}$
20. $f(x)=3^{2}$ at $x=1$
$f(x)=9$
$f^{\prime}(x)=0$
$f^{\prime}(1)=0$
21. $f(x)=4 x+11$ at $x=-1$
$f^{\prime}(x)=4$
$f^{\prime}(-1)=4$
22. $f(x)=x^{\frac{3}{2}}$ at $x=4$
$f^{\prime}(x)=\frac{3}{2} x^{\frac{1}{2}}$
$f^{\prime}(4)=\frac{3}{2}(4)^{\frac{1}{2}}=\frac{3}{2} \cdot 2=3$
23. $f(x)=\sqrt{x}$ at $x=16$
$f(x)=x^{\frac{1}{2}}$
$f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}$
$f^{\prime}(16)=\frac{1}{2 \sqrt{16}}=\frac{1}{8}$
24. $f(x)=\frac{1}{x^{6}}$ at $x=2$
$f(x)=x^{-6}$
$f^{\prime}(x)=-6 x^{-7}=-\frac{6}{x^{7}}$
$f^{\prime}(2)=-\frac{6}{2^{7}}=-\frac{3}{64}$
25. $y=x^{4}$
slope $=y^{\prime}=4 x^{3}$
at $x=3, y^{\prime}=4(3)^{3}=108$
26. $y=x^{5}$
slope $=y^{\prime}=5 x^{4}$
at $x=-2, y^{\prime}=5(-2)^{4}=80$
27. $f(x)=x^{2}$
$f(-5)=(-5)^{2}=25$
$f^{\prime}(x)=2 x$
$f^{\prime}(-5)=2(-5)=-10$
28. $f(x)=x+6$
$f(3)=3+6=9$
$f^{\prime}(x)=1$
$f^{\prime}(3)=1$
29. $f(x)=x^{4 / 3}$
$f(8)=(8)^{4 / 3}=16$
$f^{\prime}(x)=\frac{4}{3} x^{1 / 3}=\frac{4}{3} \sqrt[3]{x}$
$f^{\prime}(8)=\frac{4}{3} \sqrt[3]{8}=\frac{8}{3}$
30. $f(x)=\frac{1}{x^{2}}=x^{-2}$
$f(5)=\frac{1}{5^{2}}=\frac{1}{25}$
$f^{\prime}(x)=-2 x^{-3}=-\frac{2}{x^{3}}$
$f^{\prime}(5)=-\frac{2}{5^{3}}=-\frac{2}{125}$
31. $f(x)=\frac{1}{x^{5}}=x^{-5}$
$f(2)=\frac{1}{2^{5}}=\frac{1}{32}$
$f^{\prime}(x)=-5 x^{-6}=-\frac{5}{x^{6}}$
$f^{\prime}(2)=-\frac{5}{2^{6}}=-\frac{5}{64}$
32. $f(x)=x^{3 / 2}$
$f(16)=(16)^{3 / 2}=64$
$f^{\prime}(x)=\frac{3}{2} x^{1 / 2}=\frac{3}{2} \sqrt{x}$
$f^{\prime}(16)=\frac{3}{2} \sqrt{16}=\frac{12}{2}=6$
33. $f(x)=x^{2}, f\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^{2}=\frac{1}{4}$
$f^{\prime}(x)=2 x, f^{\prime}\left(-\frac{1}{2}\right)=2\left(-\frac{1}{2}\right)=-1$
point: $\left(-\frac{1}{2}, \frac{1}{4}\right), m=-1$
$y-\frac{1}{4}=-1\left(x-\left(-\frac{1}{2}\right)\right)$
$y-\frac{1}{4}=-x-\frac{1}{2}$
$y=-x-\frac{1}{4}$
34. $f(x)=x^{3}, f(-2)=(-2)^{3}=-8$
$f^{\prime}(x)=3 x^{2}, f^{\prime}(-2)=3(-2)^{2}=12$
point: $(-2,-8), m=12$
$y-(-8)=12(x-(-2))$
$y+8=12 x+24$
$y=12 x+16$
35. $f(x)=3 x+1, f(4)=3(4)+1=13$,
$f^{\prime}(x)=3, f^{\prime}(4)=3$
point: $(4,13), m=3$
$y-13=3(x-4)$
$y-13=3 x-12$
$y=3 x+1$
36. $f(x)=5, f(-2)=5$
$f^{\prime}(x)=0, f^{\prime}(-2)=0$
point: $(-2,5), m=0$
$y-5=0(x-(-2))$
$y-5=0$
$y=5$
37. $f(x)=\sqrt{x}=x^{1 / 2}, f(9)=3$
$f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}, f^{\prime}(9)=\frac{1}{6}$
point: $(9,3), m=\frac{1}{6}$
$y-3=\frac{1}{6}(x-9) ; y-3=\frac{1}{6} x-\frac{3}{2}$
$y=\frac{1}{6} x+\frac{3}{2}$
38. $f(x)=\frac{1}{x}=x^{-1}, f(.01)=\frac{1}{.01}=100$
$f^{\prime}(x)=-x^{-2}, f^{\prime}(.01)=-(.01)^{-2}=-10000$
point: $(.01,100), m=-10000$
$y-100=-10000(x-.01)$
$y-100=-10000 x+100$
$y=10000 x+200$
39. $f(x)=\frac{1}{\sqrt{x}}=x^{-1 / 2}, f(4)=\frac{1}{\sqrt{4}}=\frac{1}{2}$
$f^{\prime}(x)=-\frac{1}{2} x^{-3 / 2}, f^{\prime}(4)=-\frac{1}{16}$
point: $\left(4, \frac{1}{2}\right), m=-\frac{1}{16}$
$y-\frac{1}{2}=-\frac{1}{16}(x-4)$
$y-\frac{1}{2}=-\frac{1}{16} x+\frac{1}{4}$
$y=-\frac{1}{16} x+\frac{3}{4}$
40. $f(x)=\frac{1}{x^{2}}=x^{-2}, f(1)=\frac{1}{1^{2}}=1$
$f^{\prime}(x)=-2 x^{-3}, f^{\prime}(1)=-2(1)^{-3}=-2$
point: $(1,1), m=-2$
$y-1=-2(x-1)$
$y-1=-2 x+2$
$y=-2 x+3$
41. $y-f(a)=f^{\prime}(a)(x-a)$
$y=f(x)=x^{4}$
$y^{\prime}=f^{\prime}(x)=4 x^{3}$
$a=1, f(a)=f(1)=1$
$f^{\prime}(a)=f^{\prime}(1)=4$
$y-1=4(x-1)$
42. The tangent is perpendicular to $y=4 x+1$, so the slope of the tangent is $m=-1 / 4$.
$f(x)=\frac{1}{x}=x^{-1}, f^{\prime}(x)=-x^{-2}$. The slope of the tangent is $f^{\prime}(a)=-a^{-2}$. Solving $-a^{-2}=-1 / 4$, $a= \pm 2$. Therefore, $P=(2,1 / 2)$ or $P=(-2,-1 / 2)$.
43. The slope of the tangent is $m=2$.
$f(x)=\sqrt{x}=x^{\frac{1}{2}}, f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}$. The slope of the tangent is $f^{\prime}(a)=\frac{1}{2} a^{-\frac{1}{2}}$. Solving $\frac{1}{2} a^{-\frac{1}{2}}=2$,
$a=\frac{1}{16}$. Therefore $P=\left(\frac{1}{16}, \frac{1}{4}\right)$. Also, $\frac{1}{4}=2\left(\frac{1}{16}\right)+b \Rightarrow b=\frac{1}{8}$.
44. The slope of the tangent is $m=a$.
$f(x)=x^{3}, f^{\prime}(x)=3 x^{2}$. The slope of the tangent is $f^{\prime}(-3)=3(-3)^{2}=27$. Therefore $a=27$. Also, $-27=27(-3)+b \Rightarrow b=54$.
45. a. The slope of the tangent line is $m=\frac{1}{8}$.
$f(x)=\sqrt{x}=x^{\frac{1}{2}}, f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}$. The slope of the tangent is $f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}$. Solving $\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{8}, x=16 ; f(16)=\sqrt{16}=4$.
Therefore, the point we are looking for is $(16,4)$.
b.

46. Slope of graph at point $x=y^{\prime}=-x^{-2}=-\frac{1}{x^{2}}$. But $-\frac{1}{x^{2}}<0$ for all x, so, no, there is no point on the graph where the slope is positive. This implies the graph is always decreasing.
47. a.

b. $f(x)=x^{3} ; f^{\prime}(x)=3 x^{2}, f^{\prime}(1)=3(1)^{2}=3$ $g(x)=x^{4} ; g^{\prime}(x)=4 x^{3}, g^{\prime}(1)=4(1)^{3}=4$

Clearly $g^{\prime}(1)$ is larger. This implies the graph of $g(x)$ is increasing at $x=1$, and is steeper than $f(x)$ at $x=1$.
48. a.

b. $\quad f(1)=1 ; f^{\prime}(x)=1 \Rightarrow f^{\prime}(1)=1$

$$
g(1)=\sqrt{1}=1 ; g^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}} \Rightarrow g^{\prime}(1)=\frac{1}{2}
$$

49. $\frac{d}{d x}\left(x^{8}\right)=8 x^{7}$
50. $\frac{d}{d x}\left(x^{-3}\right)=-3 x^{-4}$
51. $\frac{d}{d x}\left(x^{3 / 4}\right)=\frac{3}{4} x^{-1 / 4}$
52. $\frac{d}{d x}\left(x^{-1 / 3}\right)=-\frac{1}{3} x^{-4 / 3}$
53. $y=1, \frac{d}{d x}(1)=0$
54. $y=x^{-4}, \frac{d}{d x}\left(x^{-4}\right)=-4 x^{-5}$
55. $y=x^{1 / 5}, \frac{d}{d x}\left(x^{1 / 5}\right)=\frac{1}{5} x^{-4 / 5}$
56. $y=\frac{x-1}{3}=\frac{1}{3} x-\frac{1}{3}, \frac{d}{d x}\left[\frac{x-1}{3}\right]=\frac{1}{3}$
57. The tangent line at $x=b$ is $y=\frac{1}{3} x+2$, so
$f(6)=\frac{1}{3}(6)+2=4$.
The slope of $y=\frac{1}{3} x+2$ is $\frac{1}{3}$, so $f^{\prime}(6)=\frac{1}{3}$.
58. The tangent line at $x=1$ is $y=4$, so $f(1)=4$. The slope of $y=4$ is 0 , so $f^{\prime}(1)=0$.
59. $y=f(x)=\sqrt{x}=x^{1 / 2}$
slope $=f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}$
The slope of the tangent line $y=\frac{1}{4} x+b$ is $\frac{1}{4}$.
First, find the value of a. Let $\frac{1}{4}=\frac{1}{2 \sqrt{a}}$ and solve for a.

$$
\begin{aligned}
2 \sqrt{a} & =4 \\
\sqrt{a} & =2 \\
a & =4
\end{aligned}
$$

When $x=4, \quad f(4)=\sqrt{4}=2$.
Let $\left(x_{1}, y_{1}\right)=(4,2)$.
$y-2=\frac{1}{4}(x-4)$
$y=\frac{1}{4} x-1+2$
$y=\frac{1}{4} x+1$, so $b=1$.
60. $y=\frac{1}{x}$

When $x=2, y=\frac{1}{2}$.
slope $=f^{\prime}(x)=-x^{-2}=-\frac{1}{x^{2}}$
$f^{\prime}(2)=-\frac{1}{4}$
To find the equation of the tangent line set
$\left(x_{1}, y_{1}\right)=\left(2, \frac{1}{2}\right), m=-\frac{1}{4}$.
$y-\frac{1}{2}=-\frac{1}{4}(x-2)$
$y=-\frac{1}{4} x+1$
To find the value of a (which is the x-intercept), let
$-\frac{1}{4} x+1=0$ and solve for x.
$-\frac{1}{4} x+1=0$
$x=4=a$
61. At $x=a, y=2.01 a-.51$, or $y=2.02 a-.52$, so
$.01 a=.01$.
$a=1$, and $y=f(a)=2.01-.51=1.5$.
$f^{\prime}(a)=2$ because the slope of the "smallest" secant line is 2.01 .
62. $\frac{f(1+.2)-f(1)}{.2}=\frac{1.1-.8}{.2}=1.5$
63. $\frac{f(x+h)-f(x)}{h}$
$=\frac{(x+h)^{2}-2(x+h)+3-\left(x^{2}-2 x+3\right)}{h}$
$=\frac{x^{2}+2 x h+h^{2}-2 x-2 h+3-x^{2}+2 x-3}{h}$
$=\frac{h(2 x+h-2)}{h}$
$=2 x+h-2$
64. $\frac{f(x+h)-f(x)}{h}$
$=\frac{-2(x+h)^{2}+(x+h)+1-\left(-2 x^{2}+x+1\right)}{h}$
$=\frac{-2 x^{2}-4 x h-2 h^{2}+x+h+1+2 x^{2}-x-1}{h}$
$=\frac{h(-4 x-2 h+1)}{h}$
$=-4 x-2 h+1$
65. $\frac{f(x+h)-f(x)}{h}$
$=\frac{-(x+h)^{2}-(x+h)-1-\left(-x^{2}-x-1\right)}{h}$
$=\frac{-x^{2}-2 x h-h^{2}-x-h-1+x^{2}+x+1}{h}$
$=\frac{h(-2 x-h-1)}{h}$
$=-2 x-h-1$
66. $\frac{f(x+h)-f(x)}{h}=\frac{\frac{1}{2}(x+h)^{2}+\frac{1}{2}-\left(\frac{1}{2} x^{2}+\frac{1}{2}\right)}{h}$
$=\frac{\frac{1}{2} x^{2}+x h+\frac{1}{2} h^{2}+\frac{1}{2}-\frac{1}{2} x^{2}-\frac{1}{2}}{h}$
$=\frac{h\left(x+\frac{1}{2} h\right)}{h}$
$=x+\frac{1}{2} h$
67. $\frac{f(x+h)-f(x)}{h}$
$=\frac{(x+h)^{3}+(x+h)+2-\left(x^{3}+x+2\right)}{h}$
$=\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}+x+h+2-x^{3}-x-2}{h}$
$=\frac{h\left(3 x^{2}+3 x h+h^{2}+1\right)}{h}$
$=3 x^{2}+3 x h+h^{2}+1$
68. $\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{3}-2(x+h)^{2}+\sqrt{5}-\left(x^{3}-2 x^{2}+\sqrt{5}\right)}{h}$
$=\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-2 x^{2}-4 x h-2 h^{2}+\sqrt{5}-x^{3}+2 x^{2}-\sqrt{5}}{h}$
$=\frac{h\left(3 x^{2}+3 x h+h^{2}-4 x-2 h\right)}{h}$
$=3 x^{2}+3 x h+h^{2}-4 x-2 h$
69. $\frac{f(x+h)-f(x)}{h}=\frac{\frac{2}{x+h+2}-\frac{2}{x+2}}{h}=\frac{\frac{2(x+2)-2(x+h+2)}{(x+h+2)(x+2)}}{h}$
$=\frac{\frac{-2 h}{(x+h+2)(x+2)}}{h}=\frac{-2}{(x+h+2)(x+2)}$
70. $\frac{f(x+h)-f(x)}{h}=\frac{\frac{1}{(x+h)^{2}+1}-\frac{1}{x^{2}+1}}{h}=\frac{\frac{\left(x^{2}+1\right)-\left((x+h)^{2}+1\right)}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}}{h}$
$=\frac{\frac{x^{2}+1-x^{2}-2 x h-h^{2}-1}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}}{h}=\frac{\frac{h(-2 x-h)}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}}{h}$
$=\frac{-2 x-h}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}$
71. $f(x)=x^{2}+1, f(1)=1^{2}+1=2$
$\frac{f(1+h)-f(1)}{h}=\frac{(1+h)^{2}+1-2}{h}$
$=\frac{h(2+2 h)}{h}=2+2 h$

\boldsymbol{h}	$2+2 h$	\mathbf{h}	$2+2 h$
1	4	-1	0
.1	2.2	-.1	1.8
.01	2.02	-.01	1.98
.001	2.002	-.001	1.998

Conclude: $f^{\prime}(1)=2$
72. $f(x)=-x^{2}+2, f(-1)=-(-1)^{2}+2=1$

$$
\begin{aligned}
& \frac{f(-1+h)-f(-1)}{h}=\frac{-(-1+h)^{2}+2-1}{h} \\
& =\frac{h(2-h)}{h}=2-h
\end{aligned}
$$

\boldsymbol{h}	$2-h$	\mathbf{h}	$2-h$
1	1	-1	3
.1	1.9	-.1	2.1
.01	1.99	-.01	2.01
.001	1.999	-.001	2.001

Conclude: $f^{\prime}(-1)=2$
73. $f(x)=x^{3}, f(2)=2^{3}=8$

$$
\begin{array}{r}
\frac{f(2+h)-f(2)}{h}=\frac{(2+h)^{3}-8}{h} \\
=\frac{8+12 h+6 h^{2}+h^{3}-8}{h} \\
=\frac{h\left(12+6 h+h^{2}\right)}{h}=12+6 h+h^{2}
\end{array}
$$

\boldsymbol{h}	$12+6 h+h^{2}$	\mathbf{h}	$12+6 h+h^{2}$
1	19	-1	7
.1	12.61	-.1	11.41
.01	12.0601	-.01	11.9401
.001	12.006001	-.001	11.994001

Conclude: $f^{\prime}(2)=12$
74. $f(x)=-3 x^{3}+1, f(-1)=-3(-1)^{3}+1=4$

$$
\begin{array}{r}
\frac{f(-1+h)-f(-1)}{h}=\frac{-3(-1+h)^{3}+1-4}{h} \\
=\frac{-3\left(-1+3 h-3 h^{2}+h^{3}\right)+1-4}{h} \\
=\frac{h\left(-9+9 h-3 h^{2}\right)}{h}=-9+9 h-3 h^{2}
\end{array}
$$

\boldsymbol{h}	$-9+9 h-3 h^{2}$	\boldsymbol{h}	$-9+9 h-3 h^{2}$
1	-3	-1	-21
.1	-8.13	-.1	-9.93
.01	-8.9103	-.01	-9.0903
.001	-8.991003	-.001	-9.009003

Conclude: $f^{\prime}(-1)=-9$
75. $f(x)=x^{2}+4$
$\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{2}+4-\left(x^{2}+4\right)}{h}$
$=\frac{x^{2}+2 x h+h^{2}+4-x^{2}-4}{h}=\frac{h(2 x+h)}{h}$
$=2 x+h$
As h approaches 0 , the expression $2 x+h$ approaches $2 x$. Conclude $f^{\prime}(x)=2 x$.
76. $f(x)=2 x^{2}+x$
$\frac{f(x+h)-f(x)}{h}=\frac{2(x+h)^{2}+x+h-\left(2 x^{2}+x\right)}{h}$
$=\frac{2 x^{2}+4 x h+2 h^{2}+x+h-2 x^{2}-x}{h}=\frac{h(4 x+2 h+1)}{h}$
$=4 x+2 h+1$
As h approaches 0 , the expression $4 x+2 h+1$ approaches $4 x+1$. Conclude $f^{\prime}(x)=4 x+1$.
77. $f(x)=-2 x^{2}-1$
$\frac{f(x+h)-f(x)}{h}=\frac{-2(x+h)^{2}-1-\left(-2 x^{2}-1\right)}{h}$
$=\frac{-2 x^{2}-4 x h-2 h^{2}-1+2 x^{2}+1}{h}=\frac{h(-4 x-2 h)}{h}$
$=-4 x-2 h$
As h approaches 0 , the expression $-4 x-2 h$ approaches $-4 x$. Conclude $f^{\prime}(x)=-4 x$.
78. $f(x)=-x^{2}+\frac{1}{2} x-2$
$\frac{f(x+h)-f(x)}{h}$
$=\frac{-(x+h)^{2}+\frac{1}{2}(x+h)-2-\left(-x^{2}+\frac{1}{2} x-2\right)}{h}$
$=\frac{-x^{2}-2 x h-h^{2}+\frac{1}{2} x+\frac{1}{2} h-2+x^{2}-\frac{1}{2} x+2}{h}$
$=\frac{h\left(-2 x-h+\frac{1}{2}\right)}{h}=-2 x-h+\frac{1}{2}$
As h approaches 0 , the expression $-2 x-h+\frac{1}{2}$
approaches $-2 x+\frac{1}{2}$. Conclude $f^{\prime}(x)=-2 x+\frac{1}{2}$.
79. $f(x)=x^{3}$
$\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{3}-x^{3}}{h}$
$=\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}=\frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h}$
$=3 x^{2}+3 x h+h^{2}$
As h approaches 0 , the expression $3 x^{2}+3 x h+h$ approaches $3 x^{2}$. Conclude $f^{\prime}(x)=3 x^{2}$.
80. $f(x)=2 x^{3}+1$
$\frac{f(x+h)-f(x)}{h}=\frac{2(x+h)^{3}+1-\left(2 x^{3}+1\right)}{h}$
$=\frac{2 x^{3}+6 x^{2} h+6 x h^{2}+2 h^{3}+1-2 x^{3}-1}{h}$
$=\frac{h\left(6 x^{2}+6 x h+2 h^{2}\right)}{h}$
$=6 x^{2}+6 x h+2 h^{2}$
As h approaches 0 , the expression $6 x^{2}+6 x h+2 h^{2}$ approaches $6 x^{2}$. Conclude $f^{\prime}(x)=6 x^{2}$.
81. $f(x)=2 x-1$
$\frac{f(x+h)-f(x)}{h}=\frac{2(x+h)-1-(2 x-1)}{h}$
$=\frac{2 x+2 h-1-2 x+1}{h}=\frac{2 h}{h}=2$
As h approaches 0 , the expression 2 is just 2 . Conclude $f^{\prime}(x)=2$.
82. $f(x)=5$
$\frac{f(x+h)-f(x)}{h}=\frac{5-5}{h}=0$
As h approaches 0 , the expression 0 is just 0 .
Conclude $f^{\prime}(x)=0$.
83. $f(x)=m x+b$
$\frac{f(x+h)-f(x)}{h}=\frac{m(x+h)+b-(m x+b)}{h}$
$=\frac{m x+m h+b-m x-b}{h}=\frac{m h}{h}=m$
As h approaches 0 , the expression m is just m. Conclude $f^{\prime}(x)=m$.
84. $f(x)=a x^{2}$
$\frac{f(x+h)-f(x)}{h}=\frac{a(x+h)^{2}-a x^{2}}{h}$
$=\frac{a x^{2}+2 a x h+a h^{2}-a x^{2}}{h}=\frac{h(2 a x+a h)}{h}$
$=2 a x+a h$
As h approaches 0 , the expression $2 a x+a h$ is $2 a x$. Conclude $f^{\prime}(x)=2 a x$.
85. The coordinates of A are $(4,5)$. Reading the graph of the derivative, we see that $f^{\prime}(4)=\frac{1}{2}$, so the slope of the tangent line is $\frac{1}{2}$. By the point-slope formula, the equation of the tangent line is:
$y-5=\frac{1}{2}(x-4)$
86. The coordinates of P are $(2,1.75)$. Reading the graph of the derivative, we see that $f^{\prime}(2)=\frac{1}{2}$, so the slope of the tangent line is $\frac{1}{2}$. By the pointslope formula, the equation of the tangent line is: $y-1.75=\frac{1}{2}(x-2)$
87. a. Let $f(x)=x^{2}$. Then $f(x)+3=x^{2}+3$:

b. Let $x=-1$:

Let $x=2$:

In both cases the tangent lines are parallel.
c. A vertical shift in a graph does not change its shape. Therefore, the slope at any point x remains the same for any shift in the y-direction.
88.

Observe the tangent lines for the two chosen values of x. For each value of x, the slopes of the lines tangent to $f(x)$ and $f(x)+c$ at x are the same.
89. $f^{\prime}(0)$, where $f(x)=2^{x}$
$n \operatorname{Deriv}\left(2^{\mathrm{X}}, \mathrm{X}, 0\right)=.69315$
90. $f^{\prime}(1)$, where $f(x)=\frac{1}{1+x^{2}}$
$n \operatorname{Deriv}\left(1 /\left(1+X^{2}\right), X, 1\right)=-.5$
91. $f^{\prime}(1)$, where $f(x)=\sqrt{1+x^{2}}$
$\operatorname{nDeriv}\left(\sqrt{1+\mathrm{X}^{2}}, \mathrm{X}, 1\right)=.70711$
92. $f^{\prime}(3)$, where $f(x)=\sqrt{25-x^{2}}$
$n \operatorname{Deriv}\left(\sqrt{25-X^{2}}, X, 3\right)=-.75$
93. $f^{\prime}(2)$, where $f(x)=\frac{x}{1+x}$
$\mathrm{nDeriv}(\mathrm{X} /(1+\mathrm{X}), \mathrm{X}, 2)=.11111$
94. $f^{\prime}(0)$, where $f(x)=10^{1+x}$
$\mathrm{nDeriv}\left(10^{\wedge}(1+\mathrm{X}), \mathrm{X}, 0\right)=23.02587$
95. $\mathrm{Y}_{1}=3 \mathrm{X}^{2}-5$

$[0,4]$ by $[25,40]$
Value of the derivative of Y_{1} at $x=2$ is 12 .
96. $Y_{1}=\sqrt{2 X}$
$Y_{2}=\operatorname{nDeriv}\left(\mathrm{Y}_{1}, \mathrm{X}, \mathrm{X}\right)$

Value of the derivative of Y_{1} at $x=2$ is 0.5 .
97. $f(x)=\sqrt{x},(9,3)$
slope $=f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}$
At $x=9$, slope $=\frac{1}{2}(9)^{-1 / 2}=\frac{1}{2} \cdot \frac{1}{3}=\frac{1}{6}$
$y-3=\frac{1}{6}(x-9)$
$y-3=\frac{x}{6}-\frac{3}{2}$
$y=\frac{x}{6}+\frac{3}{2}$

$[0,20]$ by $[0,5]$
98. $f(x)=\frac{1}{x},(.5,2)$
slope $=f^{\prime}(x)=-\frac{1}{x^{2}}$
At $x=.5$, slope $=-\frac{1}{(.5)^{2}}=-4$
$y-2=-4(x-.5)$
$y-2=-4 x+2$
$y=-4 x+4$

$[0,2]$ by $[0,5]$
99. $f(x)=\frac{1}{x^{2}},(.5,4)$
slope $=f^{\prime}(x)=-\frac{2}{x^{3}}$
At $x=.5$, slope $=-\frac{2}{(.5)^{3}}=-16$.
$y-4=-16(x-.5)$
$y-4=-16 x+8$
$y=-16 x+12$

$[0,2]$ by $[0,8]$
100. $f(x)=x^{3},(1,1)$
slope $=f^{\prime}(x)=3 x^{2}$
At $x=1$, slope $=3(1)^{2}=3$.
$y-1=3(x-1)$
$y-1=3 x-3$

$[0,2]$ by $[0,2]$
101. $f(x)=\frac{5}{x}, g(x)=5-1.25 x$

Graph the functions and use the Intersect command to find where $g(x)$ is tangent to $f(x)$.

$[0,5]$ by $[0,5]$
$a=2$
102. $f(x)=\sqrt{8 x}, g(x)=x+2$

Graph the functions and use the Intersect command to find where $g(x)$ is tangent to $f(x)$.

$[0,5]$ by $[0,10]$
$a=2$
103. $f(x)=x^{3}-12 x^{2}+46 x-50, g(x)=14-2 x$

Graph the functions and use the Intersect command to find where $g(x)$ is tangent to $f(x)$.

$[0,8]$ by $[0,10]$
$a=4$
104. $f(x)=(x-3)^{3}+4, g(x)=4$

Graph the functions and use the Intersect command to find where $g(x)$ is tangent to $f(x)$.

$[0,5]$ by $[0,8]$
$a=3$

Exercises 1.4

1. No limit
2. 2
3. 1
4. No limit
5. No limit
6. No limit
7. $\lim _{x \rightarrow 1}(1-6 x)=1-6(1)=-5$
8. $\lim _{x \rightarrow 2} \frac{x}{x-2}$ is undefined.
9. $\lim _{x \rightarrow 3} \sqrt{x^{2}+16}=\sqrt{(3)^{2}+16}=\sqrt{25}=5$
10. $\lim _{x \rightarrow 4}\left(x^{3}-7\right)=4^{3}-7=57$
11. $\lim _{x \rightarrow 5} \frac{x^{2}+1}{5-x}$ is undefined.
12. $\lim _{x \rightarrow 6}\left(\sqrt{6 x}+3 x-\frac{1}{x}\right)\left(x^{2}-4\right)$
$=\left(\lim _{x \rightarrow 6} \sqrt{6 x}+\lim _{x \rightarrow 6} 3 x-\lim _{x \rightarrow 6} \frac{1}{x}\right)\left(\lim _{x \rightarrow 6} x^{2}-\lim _{x \rightarrow 6} 4\right)$
$=\left(6+18-\frac{1}{6}\right)(36-4)=\frac{143}{6} \cdot 32=\frac{2288}{3}$
13. $\lim _{x \rightarrow 7}(x+\sqrt{x-6})\left(x^{2}-2 x+1\right)$
$=\lim _{x \rightarrow 7}(x+\sqrt{x-6})(x-1)^{2}$
$=\left(\lim _{x \rightarrow 7} x+\lim _{x \rightarrow 7} \sqrt{x-6}\right)\left(\lim _{x \rightarrow 7} x-\lim _{x \rightarrow 7} 1\right)^{2}$
$=(7+1)(7-1)^{2}=8 \cdot 36=288$
14. $\lim _{x \rightarrow 8} \frac{\sqrt{5 x-4}-1}{3 x^{2}+2}=\frac{\lim _{x \rightarrow 8} \sqrt{5 x-4}-\lim _{x \rightarrow 8} 1}{\lim _{x \rightarrow 8} 3 x^{2}+\lim _{x \rightarrow 8} 2}$
$=\frac{6-1}{192+2}=\frac{5}{194}$
15. $\lim _{x \rightarrow 9} \frac{\sqrt{x^{2}-5 x-36}}{8-3 x}$
$=\frac{\left(\lim _{x \rightarrow 9} x^{2}-\lim _{x \rightarrow 9} 5 x-\lim _{x \rightarrow 9} 36\right)^{1 / 2}}{\lim _{x \rightarrow 9} 8-\lim _{x \rightarrow 9} 3 x}$
$=\frac{(81-45-36)^{1 / 2}}{8-27}=\frac{\sqrt{0}}{-19}=0$
16. $\lim _{x \rightarrow 10}\left(2 x^{2}-15 x-50\right)^{20}$
$=\left(\lim _{x \rightarrow 10} 2 x^{2}-\lim _{x \rightarrow 10} 15 x-\lim _{x \rightarrow 10} 50\right)^{20}$
$=(200-150-50)^{2}=0^{20}=0$
17. $\lim _{x \rightarrow 0} \frac{x^{2}+3 x}{x}=\lim _{x \rightarrow 0} \frac{x(x+3)}{x}=\lim _{x \rightarrow 0}(x+3)=3$
18. $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{(x-1)}$
$=\lim _{x \rightarrow 1}(x+1)=2$
19. $\lim _{x \rightarrow 2} \frac{-2 x^{2}+4 x}{x-2}=\lim _{x \rightarrow 2} \frac{-2 x(x-2)}{(x-2)}$

$$
=\lim _{x \rightarrow 2}-2 x=-4
$$

20. $\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}=\lim _{x \rightarrow 3} \frac{(x-3)(x+2)}{(x-3)}$
$=\lim _{x \rightarrow 3}(x+2)=5$
21. $\lim _{x \rightarrow 4} \frac{x^{2}-16}{4-x}=\lim _{x \rightarrow 4} \frac{(x-4)(x+4)}{-(x-4)}$
$=\lim _{x \rightarrow 4}(-x-4)=\lim _{x \rightarrow 4}(-x)-\lim _{x \rightarrow 4} 4$
$=-4-4=-8$
22. $\lim _{x \rightarrow 5} \frac{2 x-10}{x^{2}-25}=\lim _{x \rightarrow 5} \frac{2(x-5)}{(x-5)(x+5)}$
$=\frac{\lim _{x \rightarrow 5} 2}{\lim _{x \rightarrow 5}(x+5)}=\frac{2}{5+5}=\frac{1}{5}$
23. $\lim _{x \rightarrow 6} \frac{x^{2}-6 x}{x^{2}-5 x-6}=\lim _{x \rightarrow 6} \frac{x(x-6)}{(x-6)(x+1)}$
$=\frac{\lim _{x \rightarrow 6} x}{\lim _{x \rightarrow 6}(x+1)}=\frac{6}{6+1}=\frac{6}{7}$
24. $\lim _{x \rightarrow 7} \frac{x^{3}-2 x^{2}+3 x}{x^{2}}=\lim _{x \rightarrow 7} \frac{x\left(x^{2}-2 x+3\right)}{x^{2}}$

$$
=\frac{\lim _{x \rightarrow 7}\left(x^{2}-2 x+3\right)}{\lim _{x \rightarrow 7} x}=\frac{49-14+3}{7}=\frac{38}{7}
$$

25. $\lim _{x \rightarrow 8} \frac{x^{2}+64}{x-8}$ is undefined.
26. $\lim _{x \rightarrow 9} \frac{1}{(x-9)^{2}}=\frac{\lim _{x \rightarrow 9} 1}{\lim _{x \rightarrow 9}(x-9)^{2}}$ is undefined.
27. a. $\lim _{x \rightarrow 0}(f(x)+g(x))$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0} f(x)+\lim _{x \rightarrow 0} g(x) \\
& =-\frac{1}{2}+\frac{1}{2}=0
\end{aligned}
$$

b. $\quad \lim _{x \rightarrow 0}(f(x)-2 g(x))$
$=\lim _{x \rightarrow 0} f(x)-2 \cdot \lim _{x \rightarrow 0} g(x)$
$=-\frac{1}{2}-2 \cdot \frac{1}{2}=-\frac{3}{2}$
c. $\lim _{x \rightarrow 0}(f(x) \cdot g(x))$

$$
\begin{aligned}
& =\left[\lim _{x \rightarrow 0} f(x)\right] \cdot\left[\lim _{x \rightarrow 0} g(x)\right] \\
& =\left[-\frac{1}{2}\right] \cdot\left[\frac{1}{2}\right]=-\frac{1}{4}
\end{aligned}
$$

d. $\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}$

$$
\begin{aligned}
& =\frac{\lim _{x \rightarrow 0} f(x)}{\lim _{x \rightarrow 0} g(x)} \text {, since } \lim _{x \rightarrow 0} g(x) \neq 0 \\
& =\frac{-\frac{1}{2}}{\frac{1}{2}}=-1
\end{aligned}
$$

28. a. $\lim _{x \rightarrow 0} x[f(x)]^{2}$
$=\left[\lim _{x \rightarrow 0} x\right] \cdot\left[\lim _{x \rightarrow 0} f(x)\right]^{2}$
$=[0] \cdot\left[-\frac{1}{2}\right]^{2}=0$
b. $\lim _{x \rightarrow 0}(f(x)+1)$
$=\lim _{x \rightarrow 0} f(x)+\lim _{x \rightarrow 0} 1=-\frac{1}{2}+1=\frac{1}{2}$
c. $\lim _{x \rightarrow 0} \frac{\sqrt{2}}{\sqrt{g(x)}}$
$\lim _{x \rightarrow 0} \sqrt{g(x)}=\lim _{x \rightarrow 0}(g(x))^{\frac{1}{2}}=\left(\lim _{x \rightarrow 0} g(x)\right)^{\frac{1}{2}}=\left(\frac{1}{2}\right)^{\frac{1}{2}}=\frac{1}{\sqrt{2}} \neq 0$.
So $\lim _{x \rightarrow 0} \frac{\sqrt{2}}{\sqrt{g(x)}}=\frac{\sqrt{2}}{\lim _{x \rightarrow 0} \sqrt{g(x)}}=\frac{\sqrt{2}}{\frac{1}{\sqrt{2}}}=2$
d. $\lim _{x \rightarrow 0} \frac{1}{f(x)+g(x)}$
$\lim _{x \rightarrow 0} f(x)+g(x)=\lim _{x \rightarrow 0} f(x)+\lim _{x \rightarrow 0} g(x)=-\frac{1}{2}+\frac{1}{2}=0$.
So $\lim _{x \rightarrow 0} \frac{1}{f(x)+g(x)}$ is undefined.
29. $f(x)=x^{2}+1$
$f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$
$=\lim _{h \rightarrow 0} \frac{(3+h)^{2}+1-\left(3^{2}+1\right)}{h}$
$=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}+1-10}{h}=\lim _{h \rightarrow 0} \frac{h^{2}+6 h}{h}=\lim _{h \rightarrow 0}(h+6)=6$
30. $f(x)=x^{3}$
$f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
$=\lim _{h \rightarrow 0} \frac{(2+h)^{3}-2^{3}}{h}=\lim _{h \rightarrow 0} \frac{8+12 h+6 h^{2}+h^{3}-8}{h}=\lim _{h \rightarrow 0} \frac{h\left(12+6 h+h^{2}\right)}{h}=\lim _{h \rightarrow 0}\left(h^{2}+6 h+12\right)=12$
31. $f(x)=x^{3}+3 x+1$
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{h^{3}+3 h+1-1}{h}=\lim _{h \rightarrow 0} \frac{h\left(h^{2}+3\right)}{h}=\lim _{h \rightarrow 0}\left(h^{2}+3\right)=3$
32. $f(x)=x^{2}+2 x+2$
$f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{(0+h)-f(0)}{h}$
$=\lim _{h \rightarrow 0} \frac{h^{2}+2 h+2-2}{h}$
$=\lim _{h \rightarrow 0} \frac{h(h+2)}{h}=\lim _{h \rightarrow 0}(h+2)=2$
33. $f(x)=\frac{1}{2 x+5}$

$$
\begin{aligned}
& f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{2(3+h)+5}-\frac{1}{2(3)+5}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{6+2 h+5}-\frac{1}{11}}{h}=\lim _{h \rightarrow 0} \frac{\frac{11-(2 h+11)}{21+22 h}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{121+22 h} \cdot \frac{1}{h}=\lim _{h \rightarrow 0} \frac{-2}{121+22 h}=-\frac{2}{121}
\end{aligned}
$$

34. $f(x)=\sqrt{2 x-1}$

$$
\begin{aligned}
& f^{\prime}(4)=\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{2(4+h)-1}-\sqrt{2(4)-1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{7+2 h}-\sqrt{7}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(\sqrt{7+2 h}-\sqrt{7})(\sqrt{7+2 h}+\sqrt{7})}{h(\sqrt{7+2 h}+\sqrt{7})} \\
& =\lim _{h \rightarrow 0} \frac{7+2 h-7}{h(\sqrt{7+2 h}+\sqrt{7})} \\
& =\lim _{h \rightarrow 0} \frac{2}{\sqrt{7+2 h}+\sqrt{7}}=\frac{2}{2 \sqrt{7}}=\frac{1}{\sqrt{7}}
\end{aligned}
$$

35. $f(x)=\sqrt{5-x}$
$f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{3-h}-\sqrt{3}}{h}$
$=\lim _{h \rightarrow 0} \frac{(\sqrt{3-h}-\sqrt{3})(\sqrt{3-h}+\sqrt{3})}{h(\sqrt{3-h}+\sqrt{3})}$
$=\lim _{h \rightarrow 0} \frac{3-h-3}{h(\sqrt{3-h}+\sqrt{3})}$
$=\lim _{h \rightarrow 0}-\frac{1}{\sqrt{3-h}+\sqrt{3}}=-\frac{1}{2 \sqrt{3}}=-\frac{\sqrt{3}}{6}$
36. $f(x)=\frac{1}{7-2 x}$

$$
\begin{aligned}
& f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{7-2(3+h)}-\frac{1}{7-2(3)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{1-2 h}-1}{h}=\lim _{h \rightarrow 0} \frac{1-(1-2 h)}{1-2 h} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{2}{1-2 h}=2
\end{aligned}
$$

37. $f(x)=3 x+1$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3(x+h)+1-(3 x+1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 x+3 h+1-3 x-1}{h}=\lim _{h \rightarrow 0} \frac{3 h}{h} \\
& =\lim _{h \rightarrow 0} 3=3
\end{aligned}
$$

38. $f(x)=-x+11$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{-(x+h)+11-(-x+11)}{h}$
$=\lim _{h \rightarrow 0} \frac{-x-h+11+x-11}{h}=\lim _{h \rightarrow 0} \frac{-h}{h}$
$=\lim _{h \rightarrow 0}(-1)=-1$
39. $f(x)=x+\frac{1}{x}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)+\frac{1}{x+h}-\left(x+\frac{1}{x}\right)}{h}=\lim _{h \rightarrow 0} \frac{x+h+\frac{1}{x+h}-x-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h+\frac{1}{x+h}-\frac{1}{x}}{h}=\lim _{h \rightarrow 0} \frac{\frac{h(x+h)(x)+x-(x+h)}{(x+h)(x)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{h x^{2}+h^{2} x-h}{(x+h)(x)}}{h}=\lim _{h \rightarrow 0} \frac{h\left(x^{2}+h x-1\right)}{(x+h)(x)}\left(\frac{1}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{\left(x^{2}+h x-1\right)}{(x+h)(x)}=\frac{x^{2}-1}{x^{2}}=1-\frac{1}{x^{2}}
\end{aligned}
$$

40. $f(x)=\frac{1}{x^{2}}$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}=\lim _{h \rightarrow 0} \frac{\frac{x^{2}-(x+h)^{2}}{(x+h)^{2}\left(x^{2}\right)}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{x^{2}-x^{2}-2 x h-h^{2}}{(x+h)^{2}\left(x^{2}\right)}}{h}=\lim _{h \rightarrow 0} \frac{h(-2 x-h)}{(x+h)^{2}\left(x^{2}\right)}\left(\frac{1}{h}\right)
$$

$$
=\lim _{h \rightarrow 0} \frac{-2 x-h}{(x+h)^{2}\left(x^{2}\right)}=\frac{-2 x}{\left(x^{2}\right)\left(x^{2}\right)}=\frac{-2}{x^{3}}
$$

41. $f(x)=\frac{x}{x+1}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+h}{x+h+1}-\frac{x}{x+1}}{h}=\lim _{h \rightarrow 0} \frac{\frac{(x+h)(x+1)-(x)(x+h+1)}{(x+h+1)(x+1)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x^{2}+x h+x+h-x^{2}-x h-x}{(x+h+1)(x+1)}}{h}=\lim _{h \rightarrow 0} \frac{h}{(x+h+1)(x+1)}\left(\frac{1}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{1}{(x+h+1)(x+1)}=\frac{1}{(x+1)(x+1)}=\frac{1}{(x+1)^{2}}
\end{aligned}
$$

42. $f(x)=-1+\frac{2}{x-2}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-1+\frac{2}{x+h-2}-\left(-1+\frac{2}{x-2}\right)}{h}=\lim _{h \rightarrow 0} \frac{\frac{2(x-2)-2(x+h-2)}{(x+h-2)(x-2)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2 x-4-2 x-2 h+4}{(x+h-2)(x-2)}}{h}=\lim _{h \rightarrow 0} \frac{-2 h}{(x+h-2)(x-2)}\left(\frac{1}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{-2}{(x+h-2)(x-2)}=\frac{-2}{(x-2)(x-2)}=\frac{-2}{(x-2)^{2}}
\end{aligned}
$$

43. $f(x)=\frac{1}{x^{2}+1}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}+1}-\frac{1}{x^{2}+1}}{h}=\lim _{h \rightarrow 0} \frac{\frac{\left(x^{2}+1\right)-\left((x+h)^{2}+1\right)}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x^{2}+1-x^{2}-2 x h-h^{2}-1}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}}{h}=\lim _{h \rightarrow 0} \frac{h(-2 x-h)}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}\left(\frac{1}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{(-2 x-h)}{\left((x+h)^{2}+1\right)\left(x^{2}+1\right)}=\frac{-2 x}{\left(x^{2}+1\right)\left(x^{2}+1\right)}=\frac{-2 x}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

44. $f(x)=\frac{x}{x+2}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x+h}{x+h+2}-\frac{x}{x+2}}{h}=\lim _{h \rightarrow 0} \frac{\frac{(x+h)(x+2)-(x)(x+h+2)}{(x+h+2)(x+2)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{x^{2}+x h+2 x+2 h-x^{2}-x h-2 x}{(x+h+2)(x+2)}}{h}=\lim _{h \rightarrow 0} \frac{2 h}{(x+h+2)(x+2)}\left(\frac{1}{h}\right) \\
& =\lim _{h \rightarrow 0} \frac{2}{(x+h+2)(x+2)}=\frac{2}{(x+2)(x+2)}=\frac{2}{(x+2)^{2}}
\end{aligned}
$$

45. $f(x)=\sqrt{x+2}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h}\left(\frac{\sqrt{x+h+2}+\sqrt{x+2}}{\sqrt{x+h+2}+\sqrt{x+2}}\right) \\
& =\lim _{h \rightarrow 0} \frac{(x+h+2)-(x+2)}{h(\sqrt{x+h+2}+\sqrt{x+2})}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+2}+\sqrt{x+2})} \\
& =\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h+2}+\sqrt{x+2}}=\frac{1}{\sqrt{x+2}+\sqrt{x+2}}=\frac{1}{2 \sqrt{x+2}}
\end{aligned}
$$

46. $f(x)=\sqrt{x^{2}+1}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)^{2}+1}-\sqrt{x^{2}+1}}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{(x+h)^{2}+1}-\sqrt{x^{2}+1}}{h}\left(\frac{\sqrt{(x+h)^{2}+1}+\sqrt{x^{2}+1}}{\sqrt{(x+h)^{2}+1}+\sqrt{x^{2}+1}}\right) \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}+1-\left(x^{2}+1\right)}{h\left(\sqrt{(x+h)^{2}+1}+\sqrt{x^{2}+1}\right)}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+1-x^{2}-1}{h\left(\sqrt{(x+h)^{2}+1}+\sqrt{x^{2}+1}\right)} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h\left(\sqrt{(x+h)^{2}+1}+\sqrt{x^{2}+1}\right)}=\lim _{h \rightarrow 0} \frac{(2 x+h)}{\sqrt{(x+h)^{2}+1}+\sqrt{x^{2}+1}} \\
& =\frac{2 x}{\sqrt{x^{2}+1}+\sqrt{x^{2}+1}}=\frac{x}{\sqrt{x^{2}+1}}
\end{aligned}
$$

47. $f(x)=\frac{1}{\sqrt{x}}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}=\lim _{h \rightarrow 0} \frac{\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}}{h}}{=\lim _{h \rightarrow 0}\left(\frac{1}{h}\right) \frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x} \sqrt{x+h}}\left(\frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}\right)} \\
& =\lim _{h \rightarrow 0}\left(\frac{1}{h}\right) \frac{x-x-h}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})} \\
& =\lim _{h \rightarrow 0} \frac{-1}{\sqrt{x} \sqrt{x+h}(\sqrt{x}+\sqrt{x+h})}=\frac{-1}{\sqrt{x} \sqrt{x}(\sqrt{x}+\sqrt{x})} \\
& =\frac{-1}{2 x \sqrt{x}}=\frac{-1}{2 x^{3 / 2}}
\end{aligned}
$$

48. $f(x)=x \sqrt{x}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h) \sqrt{x+h}-x \sqrt{x}}{h}=\lim _{h \rightarrow 0} \frac{(x+h) \sqrt{x+h}-x \sqrt{x}}{h}\left(\frac{(x+h) \sqrt{x+h}+x \sqrt{x}}{(x+h) \sqrt{x+h}+x \sqrt{x}}\right) \\
& =\lim _{h \rightarrow 0} \frac{(x+h)^{2}(x+h)-x^{2}(x)}{h((x+h) \sqrt{x+h}+x \sqrt{x})}=\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h((x+h) \sqrt{x+h}+x \sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h((x+h) \sqrt{x+h}+x \sqrt{x})}=\lim _{h \rightarrow 0} \frac{\left(3 x^{2}+3 x h+h^{2}\right)}{(x+h) \sqrt{x+h}+x \sqrt{x}}=\frac{3 x^{2}}{2 x \sqrt{x}}=\frac{3}{2} x^{\frac{1}{2}}
\end{aligned}
$$

49. $a=1$ and $f(x)=x^{2}$
50. $a=2$ and $f(x)=x^{3}$
51. $a=10$ and $f(x)=x^{-1}$
52. $a=64$ and $f(x)=x^{1 / 3}$
53. $a=9$ and $f(x)=\sqrt{x}$
54. $a=1$ and $f(x)=x^{-1 / 2}=\frac{1}{\sqrt{x}}$
55. $f(x)=x^{2} ; f^{\prime}(x)=2 x$

$$
f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{(2+h)^{2}-4}{h}=4
$$

56. $f(x)=x^{3} ; f^{\prime}(x)=3 x^{2}$

$$
f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{(-1+h)^{3}+1}{h}=3
$$

57. $f(x)=\sqrt{x} ; f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}$

$$
f^{\prime}(2)=\lim _{h \rightarrow 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}=\frac{1}{2 \sqrt{2}}
$$

58. $f(x)=\sqrt{x} ; f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}$

$$
f^{\prime}(4)=\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}=\frac{1}{4}
$$

59. $f(x)=x^{1 / 3} ; f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}}$
$f^{\prime}(-8)=\lim _{h \rightarrow 0} \frac{(-8+h)^{1 / 3}+2}{h}=\frac{1}{12}$
60. $f(x)=\frac{1}{x} ; f^{\prime}(x)=-x=\frac{-1}{x^{2}}$
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{1}{h}\left[\frac{1}{1+h}-1\right]=-1$
61. $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0$
62. $\lim _{x \rightarrow-\infty} \frac{1}{x^{2}}=0$
63. $\lim _{x \rightarrow \infty} \frac{1}{x-8}=0$
64. $\lim _{x \rightarrow \infty} \frac{5 x+3}{3 x-2}=\lim _{x \rightarrow \infty} \frac{5+\frac{3}{x}}{3-\frac{2}{x}}=\frac{5}{3}$
65. $\lim _{x \rightarrow \infty} \frac{10 x+100}{x^{2}-30}=\lim _{x \rightarrow \infty} \frac{10+\frac{100}{x}}{x-\frac{30}{x}}=0$
66. $\lim _{x \rightarrow \infty} \frac{x^{2}+x}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}}{1-\frac{1}{x^{2}}}=1$
67. $\lim _{x \rightarrow 0} f(x)$

As x approaches 0 from either side, $f(x)$
approaches $\frac{3}{4}$.
So $\lim _{x \rightarrow 0} f(x)=\frac{3}{4}$.
68. $\lim _{x \rightarrow \infty} f(x)$

As x increases without bound, $f(x)$ approaches 1 .
So $\lim _{x \rightarrow \infty} f(x)=1$
69. $\lim _{x \rightarrow 0} x f(x)$
$=\left[\lim _{x \rightarrow 0} x\right] \cdot\left[\lim _{x \rightarrow 0} f(x)\right]$
$=0 \cdot \frac{3}{4}=0$
70. $\lim _{x \rightarrow \infty}(1+2 f(x))$
$\stackrel{x \rightarrow \infty}{=} \lim _{x \rightarrow \infty} 1+2 \cdot \lim _{x \rightarrow \infty} f(x)$
$\substack{x \rightarrow \infty \\=\\ 1+2 \cdot 1=3}$
71. $\lim _{x \rightarrow \infty}(1-f(x))$
$=\lim _{x \rightarrow \infty} 1-\lim _{x \rightarrow \infty} f(x)$
$=1-1=0$
72. $\lim _{x \rightarrow 0}[f(x)]^{2}$
$=\left[\lim _{x \rightarrow 0} f(x)\right]^{2}$
$=\left[\frac{3}{4}\right]^{2}=\frac{9}{16}$
73. $\lim _{x \rightarrow \infty} \sqrt{25+x}-\sqrt{x}$

At large values of x the function goes to 0 .

[0, 100] by $[0,10]$
74. $\lim _{x \rightarrow \infty} \frac{x^{2}}{2^{x}}$

At large values of x the function goes to 0 .

[22, 20] by $[0,1.5]$
75. $\lim _{x \rightarrow \infty} \frac{x^{2}-2 x+3}{2 x^{2}+1}$

At large values of x the function goes to .5.

$[0,50]$ by $[0,1]$
76. $\lim _{x \rightarrow \infty} \frac{-8 x^{2}+1}{x^{2}+1}$

At large values of x the function goes to -8 .

$[0,20]$ by $[29,1]$

Exercises 1.5

1. No
2. Yes
3. Yes
4. Yes
5. No
6. No
7. No
8. No
9. Yes
10. Yes
11. No
12. No
13. $f(x)=x^{2}$
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} x^{2}=1$
$f(1)=1^{2}=1$
Since $\lim _{x \rightarrow 1} f(x)=1=f(1), f(x)$ is continuous at
$x=1$.
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}$
$=\lim _{h \rightarrow 0} \frac{(1+h)^{2}-(1)^{2}}{h}=\lim _{h \rightarrow 0} \frac{1+2 h+h^{2}-1}{h}$
$=\lim _{h \rightarrow 0} \frac{h(2+h)}{h}=2$
Therefore, $f(x)$ is continuous and differentiable at x $=1$.
14. $f(x)=\frac{1}{x}$
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{1}{x}=1$
$f(1)=\frac{1}{1}=1$
Since $\lim _{x \rightarrow 1} f(x)=1=f(1), f(x)$ is continuous at
$x=1$.
$f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{1+h}-1}{h}$
$=\lim _{h \rightarrow 0} \frac{1-(1+h)}{1+h} \cdot \frac{1}{h}=\lim _{h \rightarrow 0}-\frac{1}{1+h}=-1$
Therefore, $f(x)$ is continuous and differentiable at x $=1$.
15. $f(x)= \begin{cases}x+2 & \text { for }-1 \leq x \leq 1 \\ 3 x & \text { for } 1<x<5\end{cases}$
$\lim _{x \rightarrow 1} 3 x=3$
$\lim _{x \rightarrow 1}(x+2)=3$
$f(1)=1+2=3$
Since $\lim _{x \rightarrow 1} f(x)=3=f(1), f(x)$ is continuous at
$x=1$.
Since the graph of $f(x)$ at $x=1$ does not have a tangent line, $f(x)$ is not differentiable at $x=1$.
Therefore, $f(x)$ is continuous but not differentiable at $x=1$.
16. $f(x)= \begin{cases}x & \text { for } 1 \leq x \leq 2 \\ x^{3} & \text { for } 0 \leq x<1\end{cases}$
$\lim _{x \rightarrow 1} x^{3}=1$
$\lim _{x \rightarrow 1} x=1$
$f(1)=1$
Since $\lim _{x \rightarrow 1} f(x)=1=f(1), f(x)$ is continuous at $x=1$.
Since the graph of $f(x)$ at $x=1$ does not have a tangent line, $f(x)$ is not differentiable at $x=1$.
Therefore, $f(x)$ is continuous but not differentiable at $x=1$.
17. $f(x)= \begin{cases}2 x-1 & \text { for } 0 \leq x \leq 1 \\ 1 & \text { for } 1<x\end{cases}$
$\lim _{x \rightarrow 1} 1=1$
$\lim _{x \rightarrow 1}(2 x-1)=1$
$f(1)=2(1)-1=1$
Since $\lim _{x \rightarrow 1} f(x)=1=f(1), f(x)$ is continuous at $x=1$.
Since the graph of $f(x)$ at $x=1$ does not have a tangent line, $f(x)$ is not differentiable at $x=1$. Therefore, $f(x)$ is continuous but not differentiable at $x=1$.
18. $f(x)= \begin{cases}x & \text { for } x \neq 1 \\ 2 & \text { for } x=1\end{cases}$
$\lim _{x \rightarrow 1} x=1$
$f(1)=2$
Since $\lim _{x \rightarrow 1} f(x)=1 \neq 2=f(1), f(x)$ is not
continuous at $x=1$. By Theorem 1 , since $f(x)$ is not continuous at $x=1$, it is not differentiable.
19. $f(x)= \begin{cases}\frac{1}{x-1} & \text { for } x \neq 1 \\ 0 & \text { for } x=1\end{cases}$
$\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1} \frac{1}{x-1}$ is undefined. Since
$\lim _{x \rightarrow 1} f(x)$ does not exist, $f(x)$ is not continuous at x
$=1$. By Theorem 1, since $f(x)$ is not continuous at $x=1$, it is not differentiable.
20. $f(x)= \begin{cases}x-1 & \text { for } 0 \leq x<1 \\ 1 & \text { for } x=1 \\ 2 x-2 & \text { for } x>1\end{cases}$ $\lim _{x \rightarrow 1}(x-1)=0=\lim _{x \rightarrow 1}(2 x-2)$, but if $f(1)=1$, so
$f(x)$ is not continuous at $x=1$. Therefore, $f(x)$ is not differentiable at $x=1$.
21. $\frac{x^{2}-7 x+10}{x-5}=\frac{(x-5)(x-2)}{x-5}=x-2$, so define $f(5)=5-2=3$.
22. $x^{2}+x-12=(x+4)(x-3)$, so define $f(-4)=-4-3=-7$.
23. $\frac{x^{3}-5 x^{2}+4}{x^{2}}$

It is not possible to define $f(x)$ at $x=0$ and make $f(x)$ continuous.
24. $\frac{x^{2}+25}{x-5}$

It is not possible to define $f(x)$ at $x=5$ and make $f(x)$ continuous.
25. $\frac{(6+x)^{2}-36}{x}=12+x$, define
$f(0)=12$.
26. $\frac{\sqrt{9+x}-\sqrt{9}}{x} \cdot \frac{\sqrt{9+x}+\sqrt{9}}{\sqrt{9+x}+\sqrt{9}}=\frac{1}{\sqrt{9+x}+\sqrt{9}}$,
define $f(0)=\frac{1}{6}$.
27. a. The function $T(x)$ is a piecewise-defined function.
For $0 \leq x \leq 27,050, T(x)=.15 x$.
For $27,050<x \leq 65,550$, we have
$T(x)=.15 \cdot 27,050+.275 \cdot(x-27,050)$

$$
=.275 x-3381.25
$$

For $65,550<x \leq 136,750$, we have
$T(x)=.275 \cdot 65,550-3381.25+.305(x-65,550)$

$$
=.305 x-5347.75
$$

All together, the function is
$T(x)=\left\{\begin{array}{l}.15 x \text { for } 0 \leq x \leq 27,050 \\ .275 x-3381.25 \text { for } 27,050<x \leq 65,550 \\ .305 x-5347.75 \text { for } 65,550<x \leq 136,750\end{array}\right.$
b.

c. $\quad T(65,550)$ is the maximum tax you will pay for income below the third tax bracket. $T(27,050)$ is the maximum tax for income below the second tax bracket. The maximum tax on the portion of income in the second tax bracket is $T(65,550)-T(27,050)=10,587.5$ dollars.
28. a. The function $T(x)$ is a piecewise-defined function.

For $0 \leq x \leq 27,050, T(x)=.15 x$
For $27,050<x \leq 65,550$, we have
$T(x)=.15 \cdot 27,050+.275(x-27,050)$

$$
=.275 x-3381.25
$$

For $65,550<x \leq 136,750$, we have
$T(x)=43057.50+.275(65,550-27,050)+.305(x-65,550)$

$$
=.305 x-5347.75
$$

For $136,750<x \leq 297,350$, we have
$T(x)=.305 \cdot 136,750-5347.75+.355(x-136,750)$

$$
=.355 x-12,185.25
$$

For $297,350<x$, we have
$T(x)=.355 \cdot 297,350-12,185.25+.391(x-297,350)$

$$
=.391 x-22,889.85
$$

All together, we have

$$
T(x)=\left\{\begin{array}{l}
.15 x \text { for } 0 \leq x \leq 27,050 \\
.275 x-3381.25 \text { for } 27,050<x \leq 65,550 \\
.305 x-5347.75 \text { for } 65,550<x \leq 136,750 \\
.355 x-12,185.25 \text { for } 136,750<x \leq 297,350 \\
.391 x-22,889.85 \text { for } x>297,350
\end{array}\right.
$$

b.

c. $\quad T(297,350)-T(136,750)=93,374-36,361=\$ 57,013$
29. a. The function $R(x)$ is a piecewise function

For $0 \leq x \leq 100, R(x)=2.50+.07 x$.
For $x>100$, we have
$R(x)=2.50+.07 \cdot 100+.04(x-100)$

$$
=5.50+.04 x
$$

All together, we have
$R(x)=\left\{\begin{array}{l}2.50+.07 x \text { for } 0 \leq x \leq 100 \\ 5.50+.04 x \text { for } x>100\end{array}\right.$
b. Let $P(x)$ be the profit on x copies.

For $0 \leq x \leq 100, P(x)=2.50+.07 x-.03 x=2.50+.04 x$
For $x>100, P(x)=5.50+.04 x-.03 x=5.50+.01 x$
All together, we have
$P(x)=\left\{\begin{array}{l}2.50+.04 x \text { for } 0 \leq x \leq 100 \\ 5.50+.01 x \text { for } x>100\end{array}\right.$
30. a. For $0 \leq x \leq 50, R(x)=.10 x$.

For $x>50, R(x)=.10(50)+.05(x-50)=2.50+.05 x$
All together, we have
$R(x)=\left\{\begin{array}{l}.10 x \text { for } 0 \leq x \leq 50 \\ 2.50+.05 x \text { for } x>50\end{array}\right.$
b. Let $P(x)$ be the profit on x copies.

For $0 \leq x \leq 50, P(x)=.10 x-.03 x=.07 x$
For $x>50, P(x)=2.50+0.5 x-.03 x=2.50+.02 x$
All together, we have
$P(x)=\left\{\begin{array}{l}.07 x \text { for } 0 \leq x \leq 50 \\ 2.50+.02 x \text { for } x>50\end{array}\right.$
31. a. The rate of sales is the slope of the line connecting the points $(8,4)$ and $(10,10)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{10-4}{10-8}=3$
The rate of sales between 8 a.m. and 10 a.m. is about $\$ 3000$ per hour.
b. We need to find the 2-hour period with the greatest slope. Looking at the graph gives 3 possibilities:

8 a.m. - 10 a.m., $m=3$ (from part a)
12 p.m. -2 p.m., $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{16-12}{14-12}=2$
6 p.m. -8 p.m., $m=\frac{22-18}{8-6}=2$
The interval from 8 a.m. to $10 \mathrm{a} . \mathrm{m}$. has the greatest rate, which is $\$ 3000$ per hour.
32. a. Find the slope for each 2-hour interval.

Midnight -2 a.m., $m=\frac{\frac{1}{2}-0}{2}=\frac{1}{4}=.25 ; 2$ a.m., -4 a.m., $m=\frac{1-\frac{1}{2}}{2}=\frac{1}{4}=.25$
4 a.m., -6 a.m., $m=\frac{2-1}{2}=\frac{1}{2}=.5 ; 6$ a.m., -8 a.m., $m=\frac{4-2}{2}=1$
8 a.m., -10 a.m., $m=\frac{10-4}{2}=3 ; 10$ a.m., - noon, $m=\frac{12-10}{2}=1$
noon -2 p.m., $m=\frac{16-12}{2}=2 ; 2$ p.m. -4 p.m., $m=\frac{17-16}{2}=\frac{1}{2}=.5$
4 p.m. -6 p.m., $m=\frac{18-17}{2}=\frac{1}{2}=.5 ; 6$ p.m. -8 p.m., $m=\frac{22-18}{2}=2$
8 p.m. -10 p.m., $m=\frac{22.5-22}{2}=\frac{1}{4}=.25 ; 10$ p.m. - midnight, $m=\frac{23-22.5}{2}=\frac{1}{4}=.25$
The intervals midnight - 2 a.m./w 2 a.m. -4 a.m., 8 p.m. -10 p.m., and 10 p.m. - midnight have a sales rate of $\$ 250$ per hour.
The intervals 4 a.m. -6 a.m., 2 p.m. -4 p.m., and 4 p.m. -6 p.m. have a sales rate of $\$ 500$ per hour.
The intervals 6 a.m. -8 a.m. and 10 a.m. - noon, have a sales rate of $\$ 1000$ per hour.
The intervals noon -2 p.m. and 6 p.m. -8 p.m. both have a sales rate of $\$ 2000$ per hour.
b. $4,000-0=\$ 4,000$ between midnight and 8 a.m.
$10,000-4,000=\$ 6,000$ between $8 \mathrm{a} . \mathrm{m}$. and 10 a.m.
The sales between $8 \mathrm{a} . \mathrm{m}$. and $10 \mathrm{a} . \mathrm{m}$. are 50% more than the sales between midnight and $8 \mathrm{a} . \mathrm{m}$.
33. For the function to be continuous, $\lim _{x \rightarrow 0} f(x)$ must exist and equal $f(0)$. Therefore $\lim _{x \rightarrow 0}(x+a)=\lim _{x \rightarrow 0} 1$, so $a=1$.
34. For the function to be continuous, $\lim _{x \rightarrow 0} f(x)$ must exist and equal $f(0)$. Therefore,

$$
\begin{aligned}
\lim _{x \rightarrow 0} 2(x-a) & =\lim _{x \rightarrow 0} x^{2}+1 \\
2(-a) & =(0)^{2}+1 \\
-2 a & =1 \\
a & =-\frac{1}{2}
\end{aligned}
$$

Exercises 1.6

1. $y=x^{3}+x^{2}$

$$
\frac{d y}{d x}=\frac{d}{d x}\left(x^{3}+x^{2}\right)=\frac{d}{d x} x^{3}+\frac{d}{d x} x^{2}=3 x^{2}+2 x
$$

2. $y=3 x^{4}$
$\frac{d y}{d x}=\frac{d}{d x}\left(3 x^{4}\right)=12 x^{3}$
3. $y=\frac{2}{x^{2}}=2 x^{-2}$

$$
\frac{d y}{d x}=\frac{d}{d x}\left(2 x^{-2}\right)=-4 x^{-3}=\frac{-4}{x^{3}}
$$

4. $y=\frac{1}{3 x^{3}}=\frac{1}{3} x^{-3}$

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{3} x^{-3}\right)=-x^{-4}=\frac{-1}{x^{4}}
$$

5. $y=\frac{x}{2}-\frac{2}{x}=\frac{1}{2} x-2 x^{-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\frac{1}{2} x-2 x^{-1}\right)=\frac{d}{d x}\left(\frac{1}{2} x\right)-\frac{d}{d x}\left(2 x^{-1}\right) \\
& =\frac{1}{2}+2 x^{-2}=\frac{1}{2}+\frac{2}{x^{2}}
\end{aligned}
$$

6. $f(x)=12+\frac{1}{7^{3}}$

$$
\begin{aligned}
\frac{d}{d x}\left(12+\frac{1}{7^{3}}\right) & =\frac{d}{d x}(12)+\frac{d}{d x}\left(\frac{1}{7^{3}}\right) \\
& =0+0=0
\end{aligned}
$$

7. $f(x)=x^{4}+x^{3}+x$

$$
\begin{aligned}
\frac{d}{d x}\left(x^{4}+x^{3}+x\right) & =\frac{d}{d x} x^{4}+\frac{d}{d x} x^{3}+\frac{d}{d x} x \\
& =4 x^{3}+3 x^{2}+1
\end{aligned}
$$

8. $y=4 x^{3}-2 x^{2}+x+1$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(4 x^{3}-2 x^{2}+x+1\right)=\frac{d}{d x}\left(4 x^{3}\right)-\frac{d}{d x}\left(2 x^{2}\right)+\frac{d}{d x}(x)+\frac{d}{d x}(1) \\
& =12 x^{2}-4 x+1
\end{aligned}
$$

9. $y=(2 x+4)^{3}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(2 x+4)^{3}=3(2 x+4)^{2} \frac{d}{d x}(2 x+4) \\
& =3(2 x+4)^{2}(2)=6(2 x+4)^{2}
\end{aligned}
$$

10. $y=\left(x^{2}-1\right)^{3}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x^{2}-1\right)^{3}=3\left(x^{2}-1\right)^{2} \frac{d}{d x}\left(x^{2}-1\right) \\
& =3\left(x^{2}-1\right)^{2}(2 x)=6 x\left(x^{2}-1\right)^{2}
\end{aligned}
$$

11. $y=\left(x^{3}+x^{2}+1\right)^{7}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x^{3}+x^{2}+1\right)^{7}=7\left(x^{3}+x^{2}+1\right)^{6} \frac{d}{d x}\left(x^{3}+x^{2}+1\right) \\
& =7\left(x^{3}+x^{2}+1\right)^{6}\left(3 x^{2}+2 x\right)
\end{aligned}
$$

12. $y=\left(x^{2}+x\right)^{-2}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x^{2}+x\right)^{-2}=-2\left(x^{2}+x\right)^{-3} \frac{d}{d x}\left(x^{2}+x\right) \\
& =-2\left(x^{2}+x\right)^{-3}(2 x+1)
\end{aligned}
$$

13. $y=\frac{4}{x^{2}}=4 x^{-2}$

$$
\frac{d y}{d x}=4 \frac{d}{d x} x^{-2}=-\frac{8}{x^{3}}
$$

14. $y=4\left(x^{2}-6\right)^{-3}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} 4\left(x^{2}-6\right)^{-3}=-12\left(x^{2}-6\right)^{-4} \frac{d}{d x}\left(x^{2}-6\right) \\
& =-12\left(x^{2}-6\right)^{-4}(2 x)=-24 x\left(x^{2}-6\right)^{-4}
\end{aligned}
$$

15. $y=3 \sqrt[3]{2 x^{2}+1}=3\left(2 x^{2}+1\right)^{1 / 3}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} 3\left(2 x^{2}+1\right)^{1 / 3}=\left(2 x^{2}+1\right)^{-2 / 3} \frac{d}{d x}\left(2 x^{2}+1\right) \\
& =\left(2 x^{2}+1\right)^{-2 / 3}(4 x)=(4 x)\left(2 x^{2}+1\right)^{-2 / 3}
\end{aligned}
$$

16. $y=2 \sqrt{x+1}=2(x+1)^{1 / 2}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} 2(x+1)^{1 / 2}=(x+1)^{-1 / 2} \frac{d}{d x}(x+1) \\
& =(x+1)^{-1 / 2}(1)=(x+1)^{-1 / 2}
\end{aligned}
$$

17. $y=2 x+(x+2)^{3}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(2 x+(x+2)^{3}\right)=\frac{d}{d x} 2 x+\frac{d}{d x}(x+2)^{3} \\
& =2+3(x+2)^{2} \frac{d}{d x}(x+2)=2+3(x+2)^{2}(1) \\
& =2+3(x+2)^{2}
\end{aligned}
$$

18. $y=(x-1)^{3}+(x+2)^{4}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left((x-1)^{3}+(x+2)^{4}\right)=\frac{d}{d x}(x-1)^{3}+\frac{d}{d x}(x+2)^{4} \\
& =3(x-1)^{2} \frac{d}{d x}(x-1)+4(x+2)^{3} \frac{d}{d x}(x+2) \\
& =3(x-1)^{2}(1)+4(x+2)^{3}(1)=3(x-1)^{2}+4(x+2)^{3}
\end{aligned}
$$

19. $y=\frac{1}{5 x^{5}}=\frac{1}{5} x^{-5}$

$$
\frac{d y}{d x}=\frac{d}{d x}\left(\frac{1}{5} x^{-5}\right)=(-1) x^{-6}=\frac{-1}{x^{6}}
$$

20. $y=\left(x^{2}+1\right)^{2}+3\left(x^{2}-1\right)^{2}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(\left(x^{2}+1\right)^{2}+3\left(x^{2}-1\right)^{2}\right)=\frac{d}{d x}\left(x^{2}+1\right)^{2}+\frac{d}{d x} 3\left(x^{2}-1\right)^{2} \\
& =2\left(x^{2}+1\right) \frac{d}{d x}\left(x^{2}+1\right)+6\left(x^{2}-1\right) \frac{d}{d x}\left(x^{2}-1\right) \\
& =2\left(x^{2}+1\right)(2 x)+6\left(x^{2}-1\right)(2 x)=4 x\left(x^{2}+1\right)+12 x\left(x^{2}-1\right)
\end{aligned}
$$

21. $y=\frac{1}{x^{3}+1}=\left(x^{3}+1\right)^{-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x^{3}+1\right)^{-1}=-\left(x^{3}+1\right)^{-2} \frac{d}{d x}\left(x^{3}+1\right) \\
& =-\left(x^{3}+1\right)^{-2}\left(3 x^{2}\right)=-3 x^{2}\left(x^{3}+1\right)^{-2}
\end{aligned}
$$

22. $y=\frac{2}{x+1}=2(x+1)^{-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} 2(x+1)^{-1}=-2(x+1)^{-2} \frac{d}{d x}(x+1) \\
& =-2(x+1)^{-2}(1)=-2(x+1)^{-2}
\end{aligned}
$$

23. $y=x+\frac{1}{x+1}=x+(x+1)^{-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x+(x+1)^{-1}\right)=\frac{d}{d x} x+\frac{d}{d x}(x+1)^{-1} \\
& =1+-(x+1)^{-2} \frac{d}{d x}(x+1)=1+-(x+1)^{-2}(1) \\
& =1+-(x+1)^{-2}
\end{aligned}
$$

24. $y=2 \sqrt[4]{x^{2}+1}=2\left(x^{2}+1\right)^{1 / 4}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x} 2\left(x^{2}+1\right)^{1 / 4}=\frac{1}{2}\left(x^{2}+1\right)^{-3 / 4} \frac{d}{d x}\left(x^{2}+1\right) \\
& =\frac{1}{2}\left(x^{2}+1\right)^{-3 / 4}(2 x)=x\left(x^{2}+1\right)^{-3 / 4}
\end{aligned}
$$

25. $f(x)=5 \sqrt{3 x^{3}+x}=5\left(3 x^{3}+x\right)^{1 / 2}$

$$
\begin{aligned}
\frac{d}{d x}\left[5\left(3 x^{3}+x\right)^{1 / 2}\right] & =5 \frac{d}{d x}\left(3 x^{3}+x\right)^{1 / 2} \\
& =5 \cdot \frac{1}{2}\left(3 x^{3}+x\right)^{-1 / 2} \cdot \frac{d}{d x}\left(3 x^{3}+x\right) \\
& =\frac{5\left(9 x^{2}+1\right)}{2 \sqrt{3 x^{3}+x}}=\frac{45 x^{2}+5}{2 \sqrt{3 x^{3}+x}}
\end{aligned}
$$

26. $y=\frac{1}{x^{3}+x+1}=\left(x^{3}+x+1\right)^{-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(x^{3}+x+1\right)^{-1}=-\left(x^{3}+x+1\right)^{-2} \frac{d}{d x}\left(x^{3}+x+1\right) \\
& =-\left(x^{3}+x+1\right)^{-2}\left(3 x^{2}+1\right)=-\left(3 x^{2}+1\right)\left(x^{3}+x+1\right)^{-2}
\end{aligned}
$$

27. $y=3 x+\pi^{3}$

$$
\frac{d y}{d x}=\frac{d}{d x}\left(3 x+\pi^{3}\right)=\frac{d}{d x} 3 x+\frac{d}{d x} \pi^{3}=3
$$

28. $y=\sqrt{1+x^{2}}=\left(1+x^{2}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(1+x^{2}\right)^{\frac{1}{2}}=\frac{1}{2} \cdot\left(1+x^{2}\right)^{-\frac{1}{2}} \cdot \frac{d}{d x}\left(1+x^{2}\right)=\frac{1}{2} \cdot\left(1+x^{2}\right)^{-\frac{1}{2}} \cdot 2 x \\
& =\frac{x}{\sqrt{1+x^{2}}}
\end{aligned}
$$

29. $y=\sqrt{1+x+x^{2}}=\left(1+x+x^{2}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(1+x+x^{2}\right)^{\frac{1}{2}}=\frac{1}{2} \cdot\left(1+x+x^{2}\right)^{-\frac{1}{2}} \cdot \frac{d}{d x}\left(1+x+x^{2}\right) \\
& =\frac{1}{2} \cdot\left(1+x+x^{2}\right)^{-\frac{1}{2}} \cdot(1+2 x)
\end{aligned}
$$

30. $y=\frac{1}{2 x+5}=(2 x+5)^{-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}(2 x+5)^{-1}=(-1) \cdot(2 x+5)^{-2} \cdot \frac{d}{d x}(2 x+5) \\
& =-(2 x+5)^{-2} \cdot 2=-\frac{2}{(2 x+5)^{2}}
\end{aligned}
$$

31. $y=\frac{2}{1-5 x}=2(1-5 x)^{-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left[2(1-5 x)^{-1}\right]=2 \cdot \frac{d}{d x}\left[(1-5 x)^{-1}\right] \\
& =2 \cdot(-1)(1-5 x)^{-2} \cdot \frac{d}{d x}(1-5 x) \\
& =-2(1-5 x)^{-2} \cdot(-5)=10(1-5 x)^{-2}
\end{aligned}
$$

32. $y=\frac{7}{\sqrt{1+x}}=7(1+x)^{-\frac{1}{2}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left[7(1+x)^{-\frac{1}{2}}\right]=7\left(-\frac{1}{2}\right)(1+x)^{-\frac{3}{2}} \cdot \frac{d}{d x}(1+x) \\
& =7 \cdot\left(-\frac{1}{2}\right) \cdot(1+x)^{-\frac{3}{2}} \cdot 1=-\frac{7}{2(1+x)^{\frac{3}{2}}}
\end{aligned}
$$

33. $y=\frac{45}{1+x+\sqrt{x}}=45\left(1+x+x^{\frac{1}{2}}\right)^{-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left[45\left(1+x+x^{\frac{1}{2}}\right)^{-1}\right]=45(-1)\left(1+x+x^{\frac{1}{2}}\right)^{-2} \frac{d}{d x}\left(1+x+x^{\frac{1}{2}}\right) \\
& =-45(1+x+\sqrt{x})^{-2}\left(1+\frac{1}{2} x^{-\frac{1}{2}}\right)
\end{aligned}
$$

34. $y=\left(1+x+x^{2}\right)^{11}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(1+x+x^{2}\right)^{11}=11\left(1+x+x^{2}\right)^{10} \frac{d}{d x}\left(1+x+x^{2}\right) \\
& =11\left(1+x+x^{2}\right)^{10}(1+2 x)
\end{aligned}
$$

35. $y=x+1+\sqrt{x+1}=x+1+(x+1)^{\frac{1}{2}}$
$\frac{d y}{d x}=\frac{d}{d x}\left(x+1+(x+1)^{\frac{1}{2}}\right)=\frac{d}{d x} x+\frac{d}{d x} 1+\frac{d}{d x}(x+1)^{\frac{1}{2}}$

$$
=1+\frac{1}{2}(x+1)^{-\frac{1}{2}}
$$

36. $y=\pi^{2} x$
$\frac{d y}{d x}=\frac{d}{d x}\left(\pi^{2} x\right)=\pi^{2}$
37. $f(x)=\left(\frac{\sqrt{x}}{2}+1\right)^{3 / 2}$

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{\sqrt{x}}{2}+1\right)^{3 / 2} & =\frac{3}{2}\left(\frac{\sqrt{x}}{2}+1\right)^{1 / 2} \cdot \frac{d}{d x}\left(\frac{\sqrt{x}}{2}+1\right) \\
& =\frac{3}{2}\left(\frac{\sqrt{x}}{2}+1\right)^{1 / 2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot x^{-1 / 2} \\
& =\frac{3}{2}\left(\frac{\sqrt{x}}{2}+1\right)^{1 / 2}\left(\frac{1}{4} x^{-1 / 2}\right) \\
& =\frac{3}{8 \sqrt{x}}\left(\frac{\sqrt{x}}{2}+1\right)^{1 / 2}
\end{aligned}
$$

38. $y=\left(x-\frac{1}{x}\right)^{-1}=\left(x-x^{-1}\right)^{-1}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left[\left(x-x^{-1}\right)^{-1}\right]=(-1)\left(x-x^{-1}\right)^{-2} \frac{d}{d x}\left(x-x^{-1}\right) \\
& =-\left(x-x^{-1}\right)^{-2}\left(1-(-1) x^{-2}\right)=-\frac{1+\frac{1}{x^{2}}}{\left(x-\frac{1}{x}\right)^{2}}=-\frac{x^{2}+1}{\left(x^{2}-1\right)^{2}}
\end{aligned}
$$

39. $f(x)=3 x^{2}-2 x+1,(1,2)$
slope $=f^{\prime}(x)=\frac{d}{d x}\left(3 x^{2}-2 x+1\right)=6 x-2$
$f^{\prime}(1)=6(1)-2=4$
40. $f(x)=x^{10}+1+\sqrt{1-x},(0,2)$
slope $=f^{\prime}(x)=\frac{d}{d x}\left(x^{10}+1+\sqrt{1-x}\right)$
$=10 x^{9}+\frac{d}{d x}(1-x)^{1 / 2}$
$=10 x^{9}+\left(\frac{1}{2}(1-x)^{-1 / 2} \cdot(-1)\right)$
$=10 x^{9}-\frac{1}{2 \sqrt{1-x}}$
$f^{\prime}(0)=10(0)^{9}-\frac{1}{2 \sqrt{1-0}}=-\frac{1}{2}$
41. $y=x^{3}+3 x-8$
slope $=y^{\prime}=\frac{d}{d x}\left(x^{3}+3 x-8\right)=3 x^{2}+3$
$f^{\prime}(2)=3(2)^{2}+3=15$
42. $y=x^{3}+3 x-8$
$y^{\prime}=3 x^{2}+3$, at $x=2, y^{\prime}=15$
To find the equation of the tangent line, let $\left(x_{1}, y_{1}\right)=(2,6)$ and the slope $=15$.
$y-6=15(x-2)$
$y=15 x-30+6$
$y=15 x-24$
43. $y=f(x)=\left(x^{2}-15\right)^{6}$
slope $=\frac{d y}{d x}=\frac{d}{d x}\left(x^{2}-15\right)^{6}$
$=6\left(x^{2}-15\right)^{5} \cdot \frac{d}{d x}\left(x^{2}-15\right)$
$=6\left(x^{2}-15\right)^{5} \cdot 2 x=12 x\left(x^{2}-15\right)^{5}$
slope $=f^{\prime}(x)=12 x\left(x^{2}-15\right)^{5}$
$f^{\prime}(4)=12(4)(16-15)^{5}=48$
$f(4)=\left(4^{2}-15\right)^{6}=1$
Let $\left(x_{1}, y_{1}\right)=(4,1)$, slope $=48$.
$y-1=48(x-4)$
$y=48 x-192+1$
$y=48 x-191$
44. $y=f(x)=\frac{8}{x^{2}+x+2}$
$f(2)=\frac{8}{2^{2}+2+2}=1$
slope $=f^{\prime}(x)=\frac{d}{d x} 8\left(x^{2}+x+2\right)^{-1}$
$=8(-1)\left(x^{2}+x+2\right)^{-2} \cdot \frac{d}{d x}\left(x^{2}+x+2\right)$
$=-8\left(x^{2}+x+2\right)(2 x+1)=\frac{-8(2 x+1)}{\left(x^{2}+x+2\right)}$
$f^{\prime}(2)=\frac{-8(4+1)}{(4+2+2)^{2}}=-\frac{40}{64}=-\frac{5}{8}$
Let $\left(x_{1}, y_{1}\right)=(2,1)$.
$y-1=-\frac{5}{8}(x-2)$
$y=-\frac{5 x}{8}+\frac{10}{8}+1$
$y=-\frac{5 x}{8}+\frac{9}{4}$
45. $f(x)=\left(3 x^{2}+x-2\right)^{2}$
a. $\frac{d}{d x}\left(3 x^{2}+x-2\right)^{2}$
$=2\left(3 x^{2}+x-2\right) \cdot \frac{d}{d x}\left(3 x^{2}+x-2\right)$
$=2\left(3 x^{2}+x-2\right)(6 x+1)$
b. $\left(3 x^{2}+x-2\right)\left(3 x^{2}+x-2\right)$
$=9 x^{4}+3 x^{3}-6 x^{2}+3 x^{3}$
$+x^{2}-2 x-6 x^{2}-2 x+4$
$=9 x^{4}+6 x^{3}-11 x^{2}-4 x+4$
$\frac{d}{d x}\left(9 x^{4}+6 x^{3}-11 x^{2}-4 x+4\right)$
$=36 x^{3}+18 x^{2}-22 x-4$
46. $\frac{d}{d x}[f(x)-g(x)]$
$=\frac{d}{d x} f(x)-\frac{d}{d x} g(x) \quad$ (sum rule)
$=\frac{d}{d x} f(x)+\frac{d}{d x}(-1) g(x) \quad$ (const. mult. rule)
$=\frac{d}{d x} f(x)-\frac{d}{d x} g(x)$
47. $f(1)=.6(1)+1=1.6$, so $g(1)=3 f(1)=4.8$.
$f^{\prime}(1)=.6$ (slope of the line), $g^{\prime}(1)=3 f^{\prime}(1)=1.8$
48. $h(1)=f(1)+g(1)=-.4(1)+2.6+.26(1)+1.1$ $=3.56$
$h^{\prime}(1)=f^{\prime}(1)+g^{\prime}(1)=-.4+.26=-.14$
49. $h(5)=3 f(5)+2 g(5)=3(2)+2(4)=14$
$h^{\prime}(5)=3 f^{\prime}(5)+2 g^{\prime}(5)=3(3)+2(1)=11$
50. $f(x)=2[g(x)]^{3}$
$f^{\prime}(x)=6[g(x)]^{2} g^{\prime}(x)$
$f(3)=2[g(3)]^{3}=2(2)^{3}=16$
$f^{\prime}(3)=6(2)^{2} 4=96$
51. $f(x)=5 \sqrt{g(x)}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{5}{2 \sqrt{g(x)}} g^{\prime}(x) \\
& f(1)=5 \sqrt{g(1)}=5 \sqrt{4}=10 \\
& f^{\prime}(1)=\frac{5}{2 \sqrt{g(1)}} g^{\prime}(1)=\frac{5}{2 \sqrt{4}} 3=\frac{15}{4}
\end{aligned}
$$

52. $h(1)=[f(1)]^{2}+\sqrt{g(1)}=1^{2}+\sqrt{4}=3$

$$
\begin{aligned}
h^{\prime}(x) & =2[f(x)] f^{\prime}(x)+\frac{1}{2}[g(x)]^{-\frac{1}{2}} g^{\prime}(x) \\
h^{\prime}(1) & =2[f(1)] f^{\prime}(1)+\frac{1}{2}[g(1)]^{-\frac{1}{2}} g^{\prime}(1) \\
& =2(1)(-1)+\frac{1}{2}(4)^{-\frac{1}{2}}(4)=-1
\end{aligned}
$$

53. $\frac{d y}{d x}=x^{2}-8 x+18=3$, since the slope of
$6 x-2 y=1$ is 3 .
$x^{2}-8 x+15=0$
$(x-5)(x-3)=0$
$x=3$ or $x=5$
Fit 3 and 5 back into $y \square$ points $(3,49)$ and $\left(5, \frac{161}{3}\right)$.
54. $\frac{d y}{d x}=3 x^{2}-12 x-34=2$
$3 x^{2}-12 x-36=0$
$x^{2}-4 x-12=0$
$(x-6)(x+2)=0$
$x=-2$ or $x=6$
Put -2 and 6 back into the equation to get the points $(-2,27)$ and $(6,-213)$.
55. $y=f(x)$
slope $=\frac{3-5}{0-4}=\frac{1}{2}$
Let $\left(x_{1}, y_{1}\right)=(4,5)$.
$y-5=\frac{1}{2}(x-4)$
$y=\frac{1}{2} x-2+5$
$y=\frac{1}{2} x+3$
$f(4)=\frac{1}{2}(4)+3=2+3=5$
$f^{\prime}(4)=\frac{1}{2}$
56. $y=f(x)=\frac{1}{2} x^{2}-4 x+10$
$f(6)=\frac{1}{2}(6)^{2}-4(6)+10=18-24+10=4$
slope $=f^{\prime}(x)=\frac{d}{d x}\left(\frac{1}{2} x^{2}-4 x+10\right)$
$=\frac{1}{2} \cdot 2 x-4=x-4$
$f^{\prime}(6)=6-4=2$
Let $\left(x_{1}, y_{1}\right)=(6,4)$.
$y-4=2(x-6)$
$y=2 x-12+4$
$y=2 x-8$
To find the value of b, let $x=0$ and solve for y. $y=2(0)-8=-8$
57. a. The sales at the end of January reached $\$ 120,560 \Rightarrow S(1)=\$ 120,560$
Rising at a rate of $\$ 1500 /$ month

$$
\Rightarrow S^{\prime}(1)=\$ 1500
$$

b. At the end of March, the sales for the month dropped to $\$ 80,000 \Rightarrow S(3)=S(2)-\$ 80,000$
Were falling by about $\$ 200$ /day
$\Rightarrow S^{\prime}(3)=\$ 200(30)=\$ 6000$
58. a. $S(10)=3+\frac{9}{11^{2}}=\$ 3.07438$ thousand
$S^{\prime}(10)=\frac{-18}{11^{3}}=\$-.013524$ thousand $/$ day
b. Rate of change of sales on January 2: \$-. 667 thousand/day (down \$667/day), rate of change of sales on January 10: \$-. 013524 (down $\$ 13 /$ day). Although sales are still down on January 10, the rate at which the sales are down is increasing, and since the rates are negative, this implies sales are getting better.
59. a. $S(10)=3+\frac{9}{11^{2}}=\$ 3.07438$ thousand $S^{\prime}(10)=\frac{-18}{11^{3}}=\$-.013524$ thousand $/$ day
b. $S(11) \approx S(10)+S^{\prime}(10)$

$$
\begin{aligned}
& =3.07438+(-.013524) \\
& =\$ 3.060856 \text { thousand }
\end{aligned}
$$

$$
S(11)=3+\frac{9}{12^{2}}=\$ 3.0625 \text { thousand }
$$

60. a. $T(1)=\frac{24}{5}+\frac{36}{5(3(1)+1)^{2}}=\$ 5.25$ thousand

$$
\begin{aligned}
T^{\prime}(x) & =\frac{d}{d x}\left(\frac{24}{5}+\frac{36}{5}(3 x+1)^{-2}\right)=-\frac{72}{5}(3 x+1)^{-3}(3) \\
& =-\frac{216}{5}(3 x+1)^{-3}
\end{aligned}
$$

$T^{\prime}(1)=-\frac{216}{5}(3(1)+1)^{-3}=\$-.675$ thousand $/$ day
$S(1)=3+\frac{9}{4}=\$ 5.25$ thousand
$S^{\prime}(1)=-\frac{18}{8}=\-2.25 thousand $/$ day
b. According to both functions, the sales were $\$ 5250$ on January 1. Although, the rate at which sales fell on that date differ. $T(x)$ gives a much smaller rate of sales dropping then $S(x)$.
61. a. When $\$ 8000$ is spent on advertising, 1200 computers were sold $\Rightarrow A(8)=12$, and it was rising at the rate of 50 computers for each $\$ 1000$ spent on advertising $\Rightarrow A^{\prime}(8)=.5$
b. $\quad A(9) \approx A(8)+A^{\prime}(8)=12.5$ (hundred) $=1,250$ computers.
62. $S(n)$: The number of video games sold on day n since the item was released.
$S^{\prime}(n)$: The rate at which the video games are being sold on day n since the item was released.
$S(n)+S^{\prime}(n)$: The approximate number of video games sold on day $n+1$ since the item was released.
63. Federal debt at the end of $1999=D(4)$

$$
\begin{aligned}
D(4) & =4.95+.402(4)-.1067(4)^{2}+.0124(4)^{3}-.00024(4)^{4} \\
& =\$ 5.58296 \text { trillion }
\end{aligned}
$$

Rate of increase at the end of $1999=D^{\prime}(4)$

$$
\begin{aligned}
D^{\prime}(x) & =.402-.2134 x+.0372 x^{2}-.00096 x^{3} \\
D^{\prime}(4) & =.402-.2134(4)+.0372(4)^{2}-.00096(4)^{3} \\
& =\$.08216 \text { trillion/year }
\end{aligned}
$$

64. a. $D(8)=\$ 6.70296$ trillion
$D(6)=\$ 5.88816$ trillion
No, the federal debt was not twice as large by the end of 2003 than the end of 2001.
b. $D^{\prime}(8)=\$.58408$ trillion/year $D^{\prime}(6)=\$.25344$ trillion/year
Yes, it is true that by the end of 2003 the federal debt was increasing at a rate that was more than twice the rate at the end of 2001.

Exercises 1.7

1. $f(t)=\left(t^{2}+1\right)^{5}$
$\frac{d}{d t}\left(t^{2}+1\right)^{5}=5\left(t^{2}+1\right)^{4} \cdot \frac{d}{d t}\left(t^{2}+1\right)$
$=5\left(t^{2}+1\right)^{4}(2 t)=10 t\left(t^{2}+1\right)^{4}$
2. $f(P)=P^{3}+3 P^{2}-7 P+2$
$\frac{d}{d P}\left(P^{3}+3 P^{2}-7 P+2\right)=3 P^{2}+6 P-7$
3. $v(t)=4 t^{2}+11 \sqrt{t}+1=4 t^{2}+11 t^{\frac{1}{2}}+1$
$\frac{d}{d t}\left(4 t^{2}+11 t^{\frac{1}{2}}+1\right)=8 t+\frac{11}{2} t^{-\frac{1}{2}}$
4. $g(y)=y^{2}-2 y+4$
$\frac{d}{d y}\left(y^{2}-2 y+4\right)=2 y-2$
5. $y=T^{5}-4 T^{4}+3 T^{2}-T-1$

$$
\begin{aligned}
\frac{d y}{d T} & =\frac{d}{d T}\left(T^{5}-4 T^{4}+3 T^{2}-T-1\right) \\
& =5 T^{4}-16 T^{3}+6 T-1
\end{aligned}
$$

6. $x=16 t^{2}+45 t+10$
$\frac{d x}{d t}=\frac{d}{d t}\left(16 t^{2}+45 t+10\right)=32 t+45$
7. $\frac{d}{d P}\left(3 P^{2}-\frac{1}{2} P+1\right)=6 P-\frac{1}{2}$
8. $\frac{d}{d s} \sqrt{s^{2}-1}=\frac{d}{d s}\left(s^{2}-1\right)^{\frac{1}{2}}$
$=\frac{1}{2}\left(s^{2}-1\right)^{-\frac{1}{2}} \frac{d}{d s}\left(s^{2}-1\right)=\frac{1}{2}\left(s^{2}-1\right)^{-\frac{1}{2}}(2 s)$
9. $\frac{d}{d t}\left(a^{2} t^{2}+b^{2} t+c^{2}\right)=2 a^{2} t+b^{2}+0=2 a^{2} t+b^{2}$
10. $\frac{d}{d P}\left(T^{2}+3 P\right)^{3}=3\left(T^{2}+3 P\right)^{2} \frac{d}{d P}\left(T^{2}+3 P\right)$
$=9\left(T^{2}+3 P\right)^{2}$
11. $y=x+1$
$y^{\prime}=1$
$y^{\prime \prime}=0$
12. $\begin{aligned} & y=(x+12)^{3} \\ & y^{\prime}=3(x+12)^{2} \\ & y^{\prime \prime}=6(x+12)=6 x+72\end{aligned}$
13. $y=\sqrt{x}=x^{1 / 2}$
$y^{\prime}=\frac{1}{2} x^{-1 / 2}$
$y^{\prime \prime}=-\frac{1}{4} x^{-3 / 2}$
14. $y=100$
$y^{\prime}=0$
$y^{\prime \prime}=0$
15. $y=\sqrt{x+1}=(x+1)^{\frac{1}{2}}$
$y^{\prime}=\frac{1}{2}(x+1)^{-\frac{1}{2}}$
$y^{\prime \prime}=-\frac{1}{2}\left(\frac{1}{2}\right)(x+1)^{-\frac{3}{2}}=-\frac{1}{4}(x+1)^{-\frac{3}{2}}$
16. $v=2 t^{2}+3 t+11$
$v^{\prime}=4 t+3$
$v^{\prime \prime}=4$
17. $f(r)=\pi r^{2}$
$f^{\prime}(r)=2 \pi r$
$f^{\prime \prime}(r)=2 \pi$
18. $y=\pi^{2}+3 x^{2}$
$y^{\prime}=6 x$
$y^{\prime \prime}=6$
19. $f(P)=(3 P+1)^{5}$
$f^{\prime}(P)=5(3 P+1)^{4} \cdot \frac{d}{d P}(3 P+1)$
$=5(3 P+1)^{4} \cdot 3=15(3 P+1)^{4}$
$f^{\prime \prime}(P)=60(3 P+1)^{3} \cdot \frac{d}{d P}(3 P+1)$
$=60(3 P+1)^{3} \cdot 3=180(3 P+1)^{3}$
20. $T=(1+2 t)^{2}+t^{3}$
$T^{\prime}=2 \cdot(1+2 t) \cdot 2+3 t^{2}=4+8 t+3 t^{2}$
$T^{\prime \prime}=8+6 t$
21. $\left.\frac{d}{d x}(2 x+7)^{2}\right|_{x=1}=\left[2(2 x+7) \frac{d}{d x}(2 x+7)\right]_{x=1}$
$=[4(2 x+7)]_{x=1}=4(2(1)+7)=36$
22. $\left.\frac{d}{d t}\left(t^{2}+\frac{1}{t+1}\right)\right|_{t=0}=\left.\frac{d}{d t}\left(t^{2}+(t+1)^{-1}\right)\right|_{t=0}$

$$
\begin{aligned}
& =\left.\left[2 t+(-1)(t+1)^{-2} \frac{d}{d t}(t+1)\right]\right|_{t=0}=2 t-\left.\frac{1}{(t+1)^{2}}\right|_{t=0} \\
& =2(0)-\frac{1}{(0+1)^{2}}=-1
\end{aligned}
$$

23. $\left.\frac{d}{d z}\left(z^{2}+2 z+1\right)^{7}\right|_{z=-1}$

$$
\begin{aligned}
& =\left.\left[7\left(z^{2}+2 z+1\right)^{6} \frac{d}{d z}\left(z^{2}+2 z+1\right)\right]\right|_{z=-1} \\
& =\left.7(2 z+2)\left(z^{2}+2 z+1\right)^{6}\right|_{z=-1} \\
& =7(2(-1)+2)\left((-1)^{2}+2(-1)+1\right) \\
& =0
\end{aligned}
$$

24. $\left.\frac{d^{2}}{d x^{2}}\left(3 x^{4}+4 x^{2}\right)\right|_{x=2}$
$\frac{d}{d x}\left(3 x^{4}+4 x^{2}\right)=12 x^{3}+8 x$
$\frac{d}{d x}\left(12 x^{3}+8 x\right)=36 x^{2}+8$
$\left.\frac{d^{2}}{d x^{2}}\left(3 x^{4}+4 x^{2}\right)\right|_{x=2}=36(2)^{2}+8=152$
25. $\left.\frac{d^{2}}{d x^{2}}\left(3 x^{3}-x^{2}+7 x-1\right)\right|_{x=2}$

$$
\begin{aligned}
& \frac{d}{d x}\left(3 x^{3}-x^{2}+7 x-1\right)=9 x^{2}-2 x+7 \\
& \frac{d}{d x}\left(9 x^{2}-2 x+7\right)=18 x-2 \\
& \left.\frac{d^{2}}{d x^{2}}\left(3 x^{3}-x^{2}+7 x-1\right)\right|_{x=2}=18(2)-2=34
\end{aligned}
$$

26. $\left.\frac{d}{d x}\left(\frac{d y}{d x}\right)\right|_{x=1}$, where $y=x^{3}+2 x-11$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d}{d x}\left(x^{3}+2 x-11\right)=3 x^{2}+2 \\
& \left.\frac{d}{d x}\left(3 x^{2}+2\right)\right|_{x=1}=\left.6 x\right|_{x=1}=6(1)=6
\end{aligned}
$$

27. $f^{\prime}(1)$ and $f^{\prime \prime}(1)$, when $f(t)=\frac{1}{2+t}$.

$$
\begin{aligned}
& f^{\prime}(t)=(-1)(2+t)^{-2}, f^{\prime}(1)=-(2+1)^{-2}=-\frac{1}{9} \\
& f^{\prime \prime}(t)=(-2)(-1)(2+t)^{-3}, \\
& f^{\prime \prime}(1)=2(2+1)^{-3}=\frac{2}{3^{3}}=\frac{2}{27}
\end{aligned}
$$

28. $g^{\prime}(0)$ and $g^{\prime \prime}(0)$, when $g(T)=(T+2)^{3}$.

$$
\begin{aligned}
& g^{\prime}(T)=3(T+2)^{2} \\
& g^{\prime}(0)=3(0+2)^{2}=12 \\
& g^{\prime \prime}(T)=6(T+2) \\
& g^{\prime \prime}(0)=6(0+2)=12
\end{aligned}
$$

29. $\left.\frac{d}{d t}\left(\frac{d v}{d t}\right)\right|_{t=32}$, where $v-20 t+12$

$$
\frac{d v}{d t}=20,\left.\frac{d}{d t}(20)\right|_{t=32}=0
$$

30. $\frac{d}{d t}\left(\frac{d v}{d t}\right)$, where $v=2 t^{2}+\frac{1}{t+1}$

$$
\begin{aligned}
\frac{d v}{d t} & =\frac{d}{d t}\left(2 t^{2}+(t+1)^{-1}\right) \\
& =4 t+(-1)(t+1)^{-2} \frac{d}{d t}(t+1) \\
& =4 t-(t+1)^{-2} \\
\frac{d}{d t}\left(\frac{d v}{d t}\right) & =\frac{d}{d t}\left(4 t-(t+1)^{-2}\right) \\
& =4-(-2)(t+1)^{-3} \frac{d}{d t}(t+1) \\
& =4+\frac{2}{(t+1)^{3}}
\end{aligned}
$$

31. $R=1000+80 x-.02 x^{2}$, for $0 \leq x \leq 2000$ $\frac{d R}{d x}=80-.04 x$
$\left.\frac{d R}{d x}\right|_{x=1500}=80-.04(1500)=20$
32. $V=20\left(1-\frac{100}{100+t^{2}}\right), 0 \leq t \leq 24$
$V=20-2000\left(100+t^{2}\right)^{-1}$
$\frac{d V}{d t}=2000\left(100+t^{2}\right)^{-2} \cdot \frac{d}{d t}\left(100+t^{2}\right)$
$=2000\left(100+t^{2}\right)^{-2} \cdot 2 t=4000 t\left(100+t^{2}\right)^{-2}$
$\left.\frac{d V}{d t}\right|_{t=10}=\frac{4000(10)}{\left(100+10^{2}\right)^{2}}=1$
33. a. $f(x)=x^{5}-x^{4}+3 x$
$f^{\prime}(x)=5 x^{4}-4 x^{3}+3$
$f^{\prime \prime}(x)=20 x^{3}-12 x^{2}$
$f^{\prime \prime \prime}(x)=60 x^{2}-24 x$
b. $f(x)=4 x^{5 / 2}$
$f^{\prime}(x)=10 x^{3 / 2}$
$f^{\prime \prime}(x)=15 x^{1 / 2}$
$f^{\prime \prime \prime}(x)=\frac{15}{2} x^{-1 / 2}=\frac{15}{2 \sqrt{x}}$
34. a. $f(t)=t^{10}$
$f^{\prime}(t)=10 t^{9}$
$f^{\prime \prime}(t)=90 t^{8}$
$f^{\prime \prime \prime}(t)=720 t^{7}$
b. $\quad f(z)=\frac{1}{z+5}=(z+5)^{-1}$

$$
f^{\prime}(z)=-(z+5)^{-2}
$$

$$
f^{\prime \prime}(z)=2(z+5)^{-3}
$$

$$
f^{\prime \prime \prime}(z)=-6(z+5)^{-4}=-\frac{6}{(z+5)^{4}}
$$

35. $s=T x^{2}+3 x P+T^{2}$
a. $\frac{d s}{d x}=\frac{d}{d x}\left(T x^{2}+3 x P+T^{2}\right)=2 T x+3 P$
b. $\frac{d s}{d P}=\frac{d}{d P}\left(T x^{2}+3 x P+T^{2}\right)=3 x$
c. $\frac{d s}{d T}=\frac{d}{d T}\left(T x^{2}+3 x P+T^{2}\right)=x^{2}+2 T$
36. $s=7 x^{2} y \sqrt{z}$
a. $\frac{d^{2} s}{d x^{2}}=\frac{d^{2}}{d x^{2}}\left(7 x^{2} y \sqrt{z}\right)=\frac{d}{d x}(14 x y \sqrt{z})$

$$
=14 y \sqrt{z}
$$

b. $\frac{d^{2} s}{d y^{2}}=\frac{d^{2}}{d y^{2}}\left(7 x^{2} y \sqrt{z}\right)=\frac{d}{d x}\left(7 x^{2} \sqrt{z}\right)$

$$
=0
$$

c. $\frac{d s}{d z}=\frac{d}{d z}\left(7 x^{2} y \sqrt{z}\right)=\frac{7}{2} x^{2} y z^{-\frac{1}{2}}=\frac{7 x^{2} y}{2 \sqrt{z}}$
37. $C(50)=5000$: It costs $\$ 5000$ to manufacture 50 bicycles in one day.
$C^{\prime}(50)=45:$ It costs and additional $\$ 45$ to make the $51^{\text {st }}$ bicycle.
38. $C(51) \approx C(50)+C^{\prime}(50)=5000+45=\$ 5045$
39. $R(x)=3 x-.01 x^{2}, R^{\prime}(x)=3-.02 x$
a. $R^{\prime}(20)=3-.02(20)=\$ 2.6 /$ unit
b. $R(x)=3 x-.01 x^{2}=200$
$\Rightarrow x=100$ or $x=200$ units .
40. $\mathrm{A} \rightarrow \mathrm{d}$
$\mathrm{B} \rightarrow \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{a}$
$\mathrm{D} \rightarrow \mathrm{c}$
41. a. When 1200 chips are produced per day, the revenue is $\$ 22,000 \Rightarrow R(12)=22$, and the marginal revenue is $\$.75$ per chip \Rightarrow $R^{\prime}(12)=\$.075$ thousand/unit ($\$.75$ per chip $=\$ 75$ per unit $=\$.075$ thousand $/$ unit $)$
b. Marginal Profit $=$ Marginal Revenue - Marginal
Cost

$$
P^{\prime}(12)=R^{\prime}(12)-C^{\prime}(12)=.075-.15
$$

$=-\$.075$ thousand $/$ unit

$$
=-\$ 75 / \text { unit }
$$

42. $P(13)=R(13)-C(13)$
$R(13) \approx R(12)+R^{\prime}(12)=22+.075$
$=\$ 22.075$ thousand
$C(13) \approx C(12)+C^{\prime}(12)=14+.15$
$=\$ 14.15$ thousand
$\Rightarrow P(13)=22.075-14.15=\$ 7.925$ thousand
Although cost is increasing at a rate greater than revenue at 1200 chips, it is still profitable to raise the production level to 1300 .
43. $f(x)=\frac{x}{1+x^{2}}$
$\mathrm{Y}_{1}=\frac{\mathrm{X}}{1+\mathrm{X}^{2}}$
$Y_{2}=n \operatorname{Deriv}\left(Y_{1}, X, X\right)$
$\mathrm{Y}_{3}=\mathrm{nDeriv}\left(\mathrm{Y}_{2}, \mathrm{X}, \mathrm{X}\right)$

44. $C(x)=.005 x^{3}-.5 x^{2}+28 x+300$
a.

$[0,60]$ by $[2300,1260]$
b. $\quad C(x)=535$

Graphing the line $y=535$ and using the Intersect command, the point $(10,535)$ is on both graphs. A level of production of 10 items has a cost of \$535.
c. $\quad C^{\prime}(x)=14$

Graph the derivative:
$\mathrm{Y}_{1}=.015 \mathrm{X}^{2}-\mathrm{X}+28$ and $\mathrm{Y}_{2}=14$.
Using the Intersect command, the points
$(20,14)$ and $\left(46 \frac{2}{3}, 14\right)$ are on both graphs.
The marginal cost will be $\$ 14$ at production levels of 20 items and $46 \frac{2}{3}$ items.

Exercises 1.8

1. $f(x)=4 x^{2}$
a. Over $1 \leq x \leq 2$,
$\frac{f(b)-f(a)}{b-a}=\frac{4(2)^{2}-4(1)^{2}}{2-1}=\frac{16-4}{1}=12$
over $1 \leq x \leq 1.5$,
$\frac{f(b)-f(a)}{b-a}=\frac{4(1.5)^{2}-4(1)^{2}}{1.5-1}=\frac{9-4}{.5}=10$
over $1 \leq x \leq 1.1$,
$\frac{f(b)-f(a)}{b-a}=\frac{4(1.1)^{2}-4(1)^{2}}{1.1-1}=\frac{4.84-4}{.1}$
$=8.4$
b. $\quad f^{\prime}(x)=8 x$
$f^{\prime}(1)=8$
2. $f(x)=-\frac{6}{x}$
a. Over $1 \leq x \leq 2$,

$$
\frac{f(b)-f(a)}{b-a}=\frac{-\frac{6}{2}-\left(-\frac{6}{1}\right)}{2-1}=\frac{-3+6}{1}=3
$$

over $1 \leq x \leq 1.5$,
$\frac{f(b)-f(a)}{b-a}=\frac{-\frac{6}{1.5}-\left(-\frac{6}{1}\right)}{1.5-1}=\frac{-4+6}{.5}=4$
over $1 \leq x \leq 1.2$,

$$
\frac{f(b)-f(a)}{b-a}=\frac{-\frac{6}{1.2}-\left(-\frac{6}{1}\right)}{1.2-1}=\frac{-5+6}{.2}=5
$$

b. $\quad f^{\prime}(x)=\frac{6}{x^{2}}$
$f^{\prime}(1)=\frac{6}{1^{2}}=6$
3. $f(t)=t^{2}+3 t-7$
a. Over $5 \leq x \leq 6$,
$\frac{f(b)-f(a)}{b-a}=\frac{6^{2}+3(6)-7-\left(5^{2}+3(5)-7\right)}{6-5}$
$=36+18-7-25-15+7=14$
b. $\quad f^{\prime}(t)=2 t+3$
$f^{\prime}(5)=2(5)+3=13$
4. $f(t)=3 t+2-\frac{12}{t}$
a. Over $2 \leq x \leq 3$,

$$
\begin{aligned}
& \frac{f(b)-f(a)}{b-a}=\frac{3(3)+2-\frac{12}{3}-\left(3(2)+2-\frac{12}{2}\right)}{3-2} \\
& =9+2-4-6-2+6 \\
& =5
\end{aligned}
$$

b. $f^{\prime}(t)=3+\frac{12}{t^{2}}$
$f^{\prime}(2)=3+\frac{12}{2^{2}}=3+3=6$
5. a. $f(1)=14, f(5)=7$
$\frac{f(b)-f(a)}{b-a}=\frac{7-14}{5-1}=\frac{-7}{4}$
b. Slope of tangent line at $t=9$:
$\frac{10-5}{11-5}=\frac{5}{6}$
The yield was rising at the rate of $\frac{5}{6}$ percent per year on January 1, 1989.
c. The graph is clearly steeper in 1980 than in 1989, so the percentage yield was rising faster on January 1, 1980.
6. a. $f(20)=150, f(60)=300$
$\frac{f(b)-f(a)}{b-a}=\frac{300-150}{60-20}=\frac{150}{40}$
$=\frac{15}{4}$ acres per year
b. Slope of tangent line at $x=50$:
$\frac{400-150}{80-40}=\frac{250}{40}=\frac{25}{4}$
The mean farm size was increasing at the rate of $\frac{25}{4}$ acres per year on January $1,1950$.
c. The graph is steeper in 1960 than in 1980 , so the mean farm size was rising faster on January 1, 1960.
7. $W(t)=.1 t^{2}$

Over $4 \leq t \leq 5$,
$\frac{f(b)-f(a)}{b-a}=\frac{.1(5)^{2}-.1(4)^{2}}{5-4}=\frac{2.5-1.6}{1}$
$=.9 \frac{\text { grams }}{\text { week }}$
$W^{\prime}(t)=.2 t$
$W^{\prime}(4)=.2(4)=.8 \frac{\text { grams }}{\text { week }}$
8. $f(t)=-3 t^{2}+32 t+100$

Over $3 \leq t \leq 4$,
$\frac{f(b)-f(a)}{b-a}$
$=\frac{-3(4)^{2}+32(4)+100-\left(-3(3)^{2}+32(3)+100\right)}{4-3}$
$=-48+128+100+27-96-100=11$ units/day
$f^{\prime}(t)=-6 t+32$
$f^{\prime}(2)=-6(2)+32=20$ units/day
9. $f(t)=60 t+t^{2}-\frac{1}{12} t^{3}$
$f^{\prime}(t)+60+2 t-\frac{1}{4} t^{2}$
$f^{\prime}(2)=60+2(2)-\frac{1}{4}(2)^{2}=60+4-1$
$=63$ units/hour
10. $f(t)=5 t-\sqrt{t}$
$f^{\prime}(t)=5-\frac{1}{2 \sqrt{t}}$
$f^{\prime}(4)=5-\frac{1}{2 \sqrt{4}}=5-\frac{1}{4}=\frac{19}{4}$ gallons/hour
11. $s(t)=2 t^{2}+4 t$
a. $\quad s^{\prime}(t)=4 t+4$
$s^{\prime}(6)=4(6)+4=28 \mathrm{~km} / \mathrm{hr}$
b. $\quad s(6)=2(6)^{2}+4(6)=72+24=96 \mathrm{~km}$
c. When does $s^{\prime}(t)=6$?
$4 t+4=6$
$4 t=2$
$t=\frac{1}{2}$
The object is traveling at the rate of $6 \mathrm{~km} / \mathrm{hr}$ when $t=\frac{1}{2} \mathrm{hr}$.
12. $s(t)=50 t-\frac{7}{t+1}$
$s^{\prime}(t)=50+\frac{7}{(t+1)^{2}}$
$s^{\prime}(0)=50+\frac{7}{(0+1)^{2}}=57 \mathrm{~km} / \mathrm{hr}$
$s^{\prime \prime}(t)=\frac{-14}{(t+1)^{3}}$
$s^{\prime \prime}(0)=\frac{-14}{(0+1)^{3}}=-14 \mathrm{~km} / \mathrm{hr}^{2}$
13. $s(t)=160 t-16 t^{2}$
a. $\quad s^{\prime}(t)=160-32 t$
$s^{\prime}(0)=160-32(0)=160 \mathrm{ft} / \mathrm{sec}$
b. $s^{\prime}(2)=160-32(2)=160-64=96 \mathrm{ft} / \mathrm{sec}$
c. $s^{\prime \prime}(t)=-32$
$s^{\prime \prime}(3)=-32 \mathrm{ft} / \mathrm{sec}^{2}$
d. When will $s(t)=0$?
$160 t-16 t^{2}=0$
$16 t(10-t)=0$
$t=0$ or $t=10 \mathrm{sec}$
The rocket will hit the ground after 10 sec .
e. What is $s^{\prime}(t)$ when $t=10$?

$$
\begin{aligned}
& s^{\prime}(10)=160-32(10)=160-320 \\
& =-160 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

14. $s(t)=t^{2}+t$
a. When will $s(t)=20$?
$20=t^{2}+t$
$t^{2}+t-20=0$
$(t+5)(t-4)=0$
$t+5=0 \quad$ or
t must be positive, so the helicopter takes 4 seconds to rise 20 feet.
b. $\quad s^{\prime}(t)=2 t+1$
$s^{\prime}(4)=2(4)+1=9$ feet $/$ second
$s^{\prime \prime}(t)=2$
$s^{\prime \prime}(4)=2$ feet $/$ second ${ }^{2}$
15. A. The velocity of the ball after 3 seconds is the first derivative evaluated at $t=3$, or $s^{\prime}(3)$.
b
B. To find when the velocity will be 3 feet per second, set $s^{\prime}(t)=3$ and solve for t.
d
C. The average velocity during the first

3 seconds can be found from:
$\frac{f(b)-f(a)}{b-a}=\frac{s(3)-s(0)}{3}$
f
D. The ball will be 3 feet above the ground when, for some value $a, s(a)=3$.
e
E. The ball will hit the ground when $s(t)=0$.

Solve for t.
a
F. The ball will be $s(3)$ feet high after 3 seconds.
C
G. The ball travels $s(3)-s(0)$ feet during the first 3 seconds.
g
16. $\frac{f(b)-f(a)}{b-a}=\frac{47.4-45}{1.05-1}=\frac{2.4}{.05}=48$ miles $/$ hour To estimate the speed at time 1 hour, calculate the average speed in a small interval near one hour:
$\frac{f(b)-f(a)}{b-a}=\frac{f(1.01)-f(1)}{1.01-1}=\frac{45.4-45}{.01}$
$=\frac{.4}{.01}=40 \mathrm{miles} / \mathrm{hour}$
17. $s(t)=t^{2}+3 t+2$
a. $\quad s^{\prime}(t)=2 t+3$
$s^{\prime}(6)=2(6)+3=12+3=15$ feet $/$ second
b. No; the positive velocity indicates the object is moving away from the reference point.
c. The object is 6 feet from the reference point when $s(t)=6$.
$s(t)=t^{2}+3 t+2=6$
$t^{2}+3 t-4=0$
$(t+4)(t-1)=0$
$t+4=0$ or $t-1=0$
$t=-4 \quad t=1$
Time is positive, so $t=1$ second. The velocity at this time is:
$s^{\prime}(1)=2(1)+3=5$ feet $/$ second
18. a. If the car travels at a steady speed, the distance of the car from New York will increase at a constant rate. The distance function will be a straight line with a positive slope.
b
b. If the car is stopped, the value of the distance function will not change, so the function will be a straight line with slope of 0 .
c
c. If the car is backing up, its distance function will have a negative slope.
d
d. If the car is accelerating, its velocity is increasing, so the slopes of tangents to the distance curve are increasing.
a
e. If the car is decelerating, its velocity is decreasing, so the slopes of the tangents to the distance curve are decreasing.
f
19. $f(100)=5000$
$f^{\prime}(100)=10$
$f(a+h)-f(a) \approx f^{\prime}(a) \cdot h$
$f(a+h) \approx f^{\prime}(a) \cdot h+f(a)$
a. $\quad 101=100+1$
$f(100+1) \approx f^{\prime}(100) \cdot 1+f(100)$
$\approx 10+5000 \approx 5010$
b. $\quad 100.5=100+.5$
$f(100+.5) \approx f^{\prime}(100) \cdot .5+f(100)$
$\approx 10 \cdot .5+5000 \approx 5005$
c. $\quad 99=100+(-1)$
$f(100+(-1)) \approx f^{\prime}(100) \cdot(-1)+f(100)$
$\approx 10 \cdot(-1)+5000 \approx 4990$
d. $98=100+(-2)$
$f(100+(-2)) \approx f^{\prime}(100) \cdot(-2)+f(100)$
$\approx 10(-2)+5000 \approx 4980$
e. $\quad 99.75=100+(-.25)$
$f(100+(-.25)) \approx f^{\prime}(100) \cdot(-.25)+f(100)$
$\approx 10(-.25)+5000 \approx 4997.5$
20. $f(25)=10$

$$
\begin{aligned}
& f^{\prime}(25)=-2 \\
& f(a+h) \approx f^{\prime}(a) \cdot h+f(a)
\end{aligned}
$$

a. $\quad 27=25+2$
$f(25+2) \approx f^{\prime}(25) \cdot 2+f(25)$
$\approx-2 \cdot 2+10 \approx 6$
b. $26=25+1$
$f(25+1) \approx f^{\prime}(25) \cdot 1+f(25)$
$\approx-2 \cdot 1+10 \approx 8$
c. $25.25=25+.25$
$f(25+.25) \approx f^{\prime}(25) \cdot .25+f(25)$
$\approx-2 \cdot .25+10 \approx 9.5$
d. $24=25+(-1)$
$f(25+(-1)) \approx f^{\prime}(25) \cdot(-1)+f(25)$
$\approx-2 \cdot(-1)+10 \approx 12$
e. $\quad 23.5=25+(-1.5)$
$f(25+(-1.5)) \approx f^{\prime}(25) \cdot(-1.5)+f(25)$
$\approx-2 \cdot(-1.5)+10 \approx 13$
21. $f(4)=120 ; f^{\prime}(4)=-5$

Four minutes after it has been poured, the temperature of the coffee is 120°. At that time, its temperature is decreasing by 5° per minute.
At 4.1 minutes:
$4.1=4+.1$
$f(4+.1) \approx f^{\prime}(4) \cdot .1+f(4)$
$\approx-5 \cdot .1+120 \approx 119.5^{\circ}$
22. $f(3)=2 ; f^{\prime}(3)=-.5$

Three hours after it is injected, the amount of the drug present in the bloodstream is 2 mg . At that time, the concentration of the drug is decreasing by $.5 \mathrm{mg} /$ hour.
At 3.5 hours:
$3.5=3+.5$
$f(3+.5) \approx f^{\prime}(3) \cdot .5+f(3)$
$\approx-.5 \cdot .5+2 \approx 1.75 \mathrm{mg}$
23. $f(10,000)=200,000 ; f^{\prime}(10,000)=-3$

When the price of a car is $\$ 10,000,200,000$ cars are sold. At that price, the number of cars sold decreases by 3 for each dollar increase in the price.
24. $f(100,000)=3,000,000 ; f^{\prime}(100,000)=30$

When $\$ 100,000$ is spent on advertising, $3,000,000$ toys are sold. For every dollar increase in advertising from that amount, 30 more toys are sold. Or, for every dollar decrease from that amount, 30 fewer toys are sold.
25. $f(12)=60 ; f^{\prime}(12)=-2$

When the price of a computer is $\$ 1200,60,000$ computers will be sold. At that price, the number of computers sold decreases by 2000 for every $\$ 100$ increase in price.

$$
\begin{aligned}
& f(12.5) \approx f(12)+.5 f^{\prime}(12) \\
& =60+.5(-2)=59
\end{aligned}
$$

About 59 computers will be sold if the price increases to $\$ 1250$.
26. $C(2000)=50,000 ; C^{\prime}(2000)=10$

When 2000 radios are manufactured, the cost to manufacture them is $\$ 50,000$. For every additional radio manufactured, there is an additional cost of $\$ 10$.
At 1998 radios:
$1998=2000+(-2)$
$C\left(2000+(-2)=C^{\prime}(2000) \cdot(-2)+C(2000)\right.$
$\approx 10 \cdot(-2)+50,000 \approx \$ 49,980$
27. $P(100)=90,000 ; P^{\prime}(100)=1200$

The profit from manufacturing and selling 100 luxury cars is $\$ 90,000$. Each additional car made and sold creates an additional profit of $\$ 1200$.
At 99 cars:

$$
\begin{aligned}
& 99=100+(-1) \\
& f(100+(-1)) \approx f^{\prime}(100) \cdot(-1)+f(100) \\
& \approx 1200(-1)+90,000 \approx \$ 88,800
\end{aligned}
$$

28. a. $f(100)=16 ; f^{\prime}(100)=.25$

The value of the company is $\$ 16$ per share 100 days since the company went public. At 100 days since the company went public, he value is increasing at a rate of \$.25/day.
b. $\quad f(101) \approx f(100)+f^{\prime}(100)=.25+16$
$=\$ 16.25 /$ share
29. $C(x)=6 x^{2}+2 x+10$
a. $\quad C^{\prime}(x)=12 x+2$
$C^{\prime}(5)=12(5)+2=\$ 62$ thousand/unit
b. $\quad C(5.25) \approx C^{\prime}(5)(.25)+C(5)$
$=62(.25)+170=\$ 185.5$ thousand
c. Solve $6 x^{2}+2 x+10=-x^{2}+39 x$
$7 x^{2}-37 x+10=0$
$x=\frac{37 \pm \sqrt{(-37)^{2}-4(7)(10)}}{14}=\frac{37 \pm 33}{14}$
$x=\frac{2}{7}$ or $x=5$
Since we can't produce $2 / 7$ of an item, the break even point is as $x=5$ items.
d. $\quad R^{\prime}(x)=-2 x+39 ; R^{\prime}(5)=\$ 29 /$ unit
$C^{\prime}(x)=12 x+2 ; C^{\prime}(5)=\$ 62 /$ unit
No, the company should not increase production beyond $x=5$ items. The additional cost is greater than the additional revenue generated and the company will lose money.
30. $f(.9) \approx f^{\prime}(1)(-.1)+f(1)$
$f(x)=\left(1+x^{2}\right)^{-1} ; f(1)=.5$
$f^{\prime}(x)=-\left(1+x^{2}\right)^{-2}(2 x) ; f^{\prime}(1)=-.5$
$\Rightarrow f(.9) \approx(-.5)(.1)+.5=.55$
31. a. $f(7) \approx \$ 500$ billion
b. $\quad f^{\prime}(7) \approx \$ 50$ billion/year
c. $\quad f(t)=1000$ at $t=14$, or 1994 .
d. $f^{\prime}(t)=100$ at $t=14$, or 1994 .
32. a. Find $s(3.5)=60$ feet.
b. Find $s^{\prime}(2)=20$ feet/second.
c. Find $s^{\prime \prime}(1)=10$ feet $/$ second 2.
d. Find $s(t)=120 ; t=5.5$ seconds.
e. Find $s^{\prime}(t)=20 ; t=7$ seconds.
f. Find maximum $s^{\prime}(t)$; at $t=4.5$ seconds, $s^{\prime}(t)=30$ feet $/$ second.
$s(4.5)=90$ feet
33. $f(t)=.36+.77(t-.5)^{-.36}$
a. Graph:
$\mathrm{Y}_{1}=.36+.77(\mathrm{X}-.5)^{-.36}$
$\mathrm{Y}_{2}=\mathrm{nDeriv}\left(\mathrm{Y}_{1}, \mathrm{X}, \mathrm{X}\right)$

[.5, 6] by [23, 3]
b. Evaluate at $t=4$.
$f(4) \approx .85$ seconds
c. Graphing the line $y=.8$ and using the Intersect command, the point $(5.23, .8)$ is on both graphs. After 5 days the judgment time was about .8 seconds.
d. Evaluate $f^{\prime}(t)$ at $t=4$.
$f^{\prime}(4) \approx-.05$ seconds/day
e. Graphing the line $y=-.08$ and $f^{\prime}(t)$, and using the Intersect command, the point (2.994, -.08) is on both graphs. After 3 days the judgment time was changing at the rate of .08 seconds per day.
34. $s(t)=102 t-16 t^{2}$ $s^{\prime}(t)=102-32 t$
a.

$[0,7]$ by $[2100,200]$
b. Evaluate $s(t)$ at $t=2$. $s(2)=140$
c. Graphing the line $y=110$ and using the Intersect command, the point $(5,110)$ is on both graphs. During the descent, at 5 seconds the ball has a height of 110 feet.
d. $s^{\prime}(6)=-90$
e. When is $s^{\prime}(t)=70$?

Graphing the lines $y=70$ and $s^{\prime}(t)$ and using the Intersect command, the point $(1,70)$ is on both graphs. The velocity is 70 feet/second at 1 second.
f. When is $s(t)=0$?

Using the root command, at 6.375 $s^{\prime}(6.375)=-102$ feet $/$ second .

Chapter 1 Supplementary Exercises

1. Let $\left(x_{1}, y_{1}\right)=(0,3)$.
$y-3=-2(x-0)$
$y=3-2 x$

2. Let $\left(x_{1}, y_{1}\right)=(0,-1)$.
$y-(-1)=\frac{3}{4}(x-0) y=\frac{3}{4} x-1$

3. Let $\left(x_{1}, y_{1}\right)=(2,0)$.
$y-0=5(x-2)$
$y=5 x-10$

4. Let $\left(x_{1}, y_{1}\right)=(1,4)$.
$y-4=-\frac{1}{3}(x-1)$
$y=\frac{13-x}{3}$

5. $y=-2 x$, slope $=-2$

Let $\left(x_{1}, y_{1}\right)=(3,5)$.
$y-5=-2(x-3)$
$y=11-2 x$

6. $-2 x+3 y=6$
$y=2+\frac{2}{3} x$, slope $=\frac{2}{3}$
Let $\left(x_{1}, y_{1}\right)=(0,1)$.
$y-1=\frac{2}{3}(x-0)$
$y=\frac{2}{3} x+1$

7. slope $=\frac{7-4}{3-(-1)}=\frac{3}{4}$

Let $\left(x_{1}, y_{1}\right)=(3,7)$.
$y-7=\frac{3}{4}(x-3)$
$y=\frac{3}{4} x+\frac{19}{4}$

8. slope $=\frac{1-1}{5-2}=0$

Let $\left(x_{1}, y_{1}\right)=(2,1)$.
$y-1=0(x-2)$
$y=1$

9. Slope of $y=3 x+4$ is 3 , thus a perpendicular line has slope of $-\frac{1}{3}$. The perpendicular line through $(1,2)$ is
$y-2=\left(-\frac{1}{3}\right)(x-1)$
$y=-\frac{1}{3} x+\frac{7}{3}$

10. Slope of $3 x+4 y=4$ is $-\frac{3}{4}$ since $y=-\frac{3}{4} x+1$, thus a perpendicular line has slope of $\frac{4}{3}$. The perpendicular line through $(6,7)$ is $y-7=\frac{4}{3}(x-6)$ or $y=\frac{4}{3} x-1$.

11. The equation of the x-axis is $y=0$, so the equation of this line is $y=3$.

12. The equation of the y-axis is $x=0$, so 4 units to the right is $x=4$.

14.

15. $y=x^{7}+x^{3} ; y^{\prime}=7 x^{6}+3 x^{2}$
16. $y=5 x^{8} ; y^{\prime}=40 x^{7}$
17. $y=6 \sqrt{x}=6 x^{1 / 2} ; y^{\prime}=3 x^{-1 / 2}=\frac{3}{\sqrt{x}}$
18. $y=x^{7}+3 x^{5}+1 ; y^{\prime}=7 x^{6}+15 x^{4}$
19. $y=\frac{3}{x}=3 x^{-1} ; y^{\prime}=-3 x^{-2}=-\frac{3}{x^{2}}$
20. $y=x^{4}-\frac{4}{x}=x^{4}-4 x^{-1}$ $y^{\prime}=4 x^{3}+4 x^{-2}=4 x^{3}+\frac{4}{x^{2}}$
21. $y=\left(3 x^{2}-1\right)^{8}$
$y^{\prime}=8\left(3 x^{2}-1\right)^{7}(6 x)=48 x\left(3 x^{2}-1\right)^{7}$
22. $y=\frac{3}{4} x^{4 / 3}+\frac{4}{3} x^{3 / 4}$
$y^{\prime}=x^{1 / 3}+x^{-1 / 4}$
23. $y=\frac{1}{5 x-1}=(5 x-1)^{-1}$
$\frac{d y}{d x}=-(5 x-1)^{-2}(5)=-\frac{5}{(5 x-1)^{2}}$
24. $y=\left(x^{3}+x^{2}+1\right)^{5}$
$y^{\prime}=5\left(x^{3}+x^{2}+1\right)^{4}\left(3 x^{2}+2 x\right)$
25. $y=\sqrt{x^{2}+1}=\left(x^{2}+1\right)^{1 / 2}$
$y^{\prime}=\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}(2 x)$
$=x\left(x^{2}+1\right)^{-1 / 2}=\frac{x}{\sqrt{x^{2}+1}}$
26. $y=\frac{5}{7 x^{2}+1}=5\left(7 x^{2}+1\right)^{-1}$
$\frac{d y}{d x}=-5\left(7 x^{2}+1\right)^{-2}(14 x)=-\frac{70 x}{\left(7 x^{2}+1\right)^{2}}$
27. $f(x)=\frac{1}{\sqrt[4]{x}}=x^{-1 / 4}$;
$f^{\prime}(x)=-\frac{1}{4} x^{-5 / 4}=-\frac{1}{4 x^{5 / 4}}$
28. $f(x)=(2 x+1)^{3}$
$f^{\prime}(x)=3(2 x+1)^{2}(2)=6(2 x+1)^{2}$
29. $f(x)=5 ; f^{\prime}(x)=0$
30. $f(x)=\frac{5 x}{2}-\frac{2}{5 x}=\frac{5}{2} x-\frac{2}{5} x^{-1}$
$f^{\prime}(x)=\frac{5}{2}+\frac{2}{5} x^{-2}$
31. $f(x)=\left[x^{5}-(x-1)^{5}\right]^{10}$
$f^{\prime}(x)=10\left[x^{5}-(x-1)^{5}\right]^{9}\left[5 x^{4}-5(x-1)^{4}\right]$
32. $f(t)=t^{10}-10 t^{9} ; f^{\prime}(t)=10 t^{9}-90 t^{8}$
33. $g(t)=3 \sqrt{t}-\frac{3}{\sqrt{t}}=3 t^{1 / 2}-3 t^{-1 / 2}$ $g^{\prime}(t)=\frac{3}{2} t^{-1 / 2}+\frac{3}{2} t^{-3 / 2}$
34. $h(t)=3 \sqrt{2} ; h^{\prime}(t)=0$
35. $f(t)=\frac{2}{t-3 t^{3}}=2\left(t-3 t^{3}\right)^{-1}$
$f^{\prime}(t)=-2\left(t-3 t^{3}\right)^{-2}\left(1-9 t^{2}\right)=\frac{-2\left(1-9 t^{2}\right)}{\left(t-3 t^{3}\right)^{2}}$
$=\frac{2\left(9 t^{2}-1\right)}{\left(t-3 t^{3}\right)^{2}}$
36. $g(P)=4 P^{.7} ; g^{\prime}(P)=2.8 P^{-.3}$
37. $h(x)=\frac{3}{2} x^{3 / 2}-6 x^{2 / 3} ; h^{\prime}(x)=\frac{9}{4} x^{1 / 2}-4 x^{-1 / 3}$
38. $f(x)=\sqrt{x+\sqrt{x}}=\left(x+x^{1 / 2}\right)^{1 / 2}$
$f^{\prime}(x)=\frac{1}{2}\left(x+x^{1 / 2}\right)^{-1 / 2}\left(1+\frac{1}{2} x^{-1 / 2}\right)$
$=\frac{1}{2 \sqrt{x+\sqrt{x}}}\left(1+\frac{1}{2 \sqrt{x}}\right)$
39. $f(t)=3 t^{3}-2 t^{2}$
$f^{\prime}(t)=9 t^{2}-4 t$
$f^{\prime}(2)=36-8=28$
40. $V(r)=15 \pi r^{2}$
$V^{\prime}(r)=30 \pi r$
$V^{\prime}\left(\frac{1}{3}\right)=10 \pi$
41. $g(u)=3 u-1$
$g(5)=15-1=14$
$g^{\prime}(u)=3$
$g^{\prime}(5)=3$
42. $h(x)=-\frac{1}{2}$
$h(-2)=-\frac{1}{2}$
$h^{\prime}(x)=0$
$h^{\prime}(-2)=0$
43. $f(x)=x^{5 / 2}$
$f^{\prime}(x)=\frac{5}{2} x^{3 / 2}$
$f^{\prime \prime}(x)=\frac{15}{4} x^{1 / 2}$
$f^{\prime \prime}(4)=\frac{15}{2}$
44. $g(t)=\frac{1}{4}(2 t-7)^{4}$
$g^{\prime}(t)=(2 t-7)^{3}(2)=2(2 t-7)^{3}$
$g^{\prime \prime}(t)=6(2 t-7)^{2}(2)=12(2 t-7)^{2}$
$g^{\prime \prime}(3)=12[2(3)-7]^{2}=12$
45. $y=(3 x-1)^{3}-4(3 x-1)^{2}$
slope $=y^{\prime}=3(3 x-1)^{2}(3)-8(3 x-1)(3)$
$=9(3 x-1)^{2}-24(3 x-1)$
When $x=0$, slope $=9+24=33$.
46. $y=(4-x)^{5}$
slope $=y^{\prime}=5(4-x)^{4}(-1)=-5(4-x)^{4}$
When $x=5$, slope $=-5$.
47. $\frac{d}{d x}\left(x^{4}-2 x^{2}\right)=4 x^{3}-4 x$
48. $\frac{d}{d t}\left(t^{5 / 2}+2 t^{3 / 2}-t^{1 / 2}\right)=\frac{5}{2} t^{3 / 2}+3 t^{1 / 2}-\frac{1}{2} t^{-1 / 2}$
49. $\frac{d}{d P}(\sqrt{1-3 P})=\frac{d}{d P}(1-3 P)^{1 / 2}$
$=\frac{1}{2}(1-3 P)^{-1 / 2}(-3)=-\frac{3}{2}(1-3 P)^{-1 / 2}$
50. $\frac{d}{d n}\left(n^{-5}\right)=-5 n^{-6}$
51. $\left.\frac{d}{d z}\left(z^{3}-4 z^{2}+z-3\right)\right|_{z=-2}=\left.\left(3 z^{2}-8 z+1\right)\right|_{z=-2}$
$=12+16+1=29$
52. $\left.\frac{d}{d x}(4 x-10)^{5}\right|_{x=3}=\left[5(4 x-10)^{4}(4)\right\}_{x=3}$
$=\left[\left.20(4 x-10)^{4}\right|_{x=3}=320\right.$
53. $\frac{d^{2}}{d x^{2}}(5 x+1)^{4}=\frac{d}{d x}\left[4(5 x+1)^{3}(5)\right]$
$=60(5 x+1)^{2}(5)=300(5 x+1)^{2}$
54. $\frac{d^{2}}{d t^{2}}(2 \sqrt{t})=\frac{d^{2}}{d t^{2}} 2 t^{1 / 2}=\frac{d}{d t} t^{-1 / 2}=-\frac{1}{2} t^{-3 / 2}$
55. $\left.\frac{d^{2}}{d t^{2}}\left(t^{3}+2 t^{2}-t\right)\right|_{t=-1}=\left.\frac{d}{d t}\left(3 t^{2}+4 t-1\right)\right|_{t=-1}$
$=\left.(6 t+4)\right|_{t=-1}=-2$
56. $\left.\frac{d^{2}}{d P^{2}}(3 P+2)\right|_{P=4}=\left.\frac{d}{d P} 3\right|_{P=4}=\left.0\right|_{P=4}=0$
57. $\frac{d^{2} y}{d x^{2}}\left(4 x^{3 / 2}\right)=\frac{d y}{d x}\left(6 x^{1 / 2}\right)=3 x^{-1 / 2}$
58. $\frac{d}{d t}\left(\frac{1}{3 t}\right)=\frac{d}{d t}\left(\frac{1}{3} t^{-1}\right)=-\frac{1}{3} t^{-2}$ or $-\frac{1}{3 t^{2}}$
$\frac{d}{d t}\left(-\frac{1}{3} t^{-2}\right)=\frac{2}{3} t^{-3}$ or $\frac{2}{3 t^{3}}$
59. $f(x)=x^{3}-4 x^{2}+6$
slope $=f^{\prime}(x)=3 x^{2}-8 x$
When $x=2$, slope $=3(2)^{2}-8(2)=-4$.
When $x=2, y=2^{3}-4(2)^{2}+6=-2$.
Let $\left(x_{1}, y_{1}\right)=(2,-2)$.
$y-(-2)=-4(x-2)$
$y=6-4 x$
60. $y=\frac{1}{3 x-5}=(3 x-5)^{-1}$
$y^{\prime}=-(3 x-5)^{-2}(3)=-\frac{3}{(3 x-5)^{2}}$
When $x=1$, slope $=-\frac{3}{3(1)-5^{2}}=-\frac{3}{4}$.
When $x=1, y=\frac{1}{3(1)-5}=-\frac{1}{2}$.
Let $\left(x_{1}, y_{1}\right)=\left(1,-\frac{1}{2}\right)$.
$y-\left(-\frac{1}{2}\right)=-\frac{3}{4}(x-1)$
$y=\frac{1}{4}-\frac{3}{4} x$
61. $y=x^{2}$
slope $=y^{\prime}=2 x$
When $x=\frac{3}{2}$, slope $=2\left(\frac{3}{2}\right)=3$.
Let $\left(x_{1}, y_{1}\right)=\left(\frac{3}{2}, \frac{9}{4}\right)$.
$y-\frac{9}{4}=3\left(x-\frac{3}{2}\right)$
$y=3 x-\frac{9}{4}$

62. $y=x^{2}$
slope $=y^{\prime}=2 x$
When $x=-2$, slope $=2(-2)=-4$.
Let $\left(x_{1}, y_{1}\right)=(-2,4)$.
$y-4=-4(x+2)$
$y=-4 x-4$

63. $y=3 x^{3}-5 x^{2}+x+3$
slope $=y^{\prime}=9 x^{2}-10 x+1$
When $x=1$, slope $=9(1)^{2}-10(1)+1=0$.
When $x=1, y=3(1)^{3}-5(1)^{2}+1+3=2$.
Let $\left(x_{1}, y_{1}\right)=(1,2)$.
$y-2=0(x-1)$
$y=2$
64. $y=\left(2 x^{2}-3 x\right)^{3}$
slope $=y^{\prime}=3\left(2 x^{2}-3 x\right)^{2}(4 x-3)$
When $x=2$,
slope $=3\left(2(2)^{2}-3(2)\right)^{2}(4(2)-3)=60$.
When $x=2, y=\left(2(2)^{2}-3(2)\right)^{3}=8$.
Let $\left(x_{1}, y_{1}\right)=(2,8)$.
$y-8=60(x-2)$
$y=60 x-112$
65. The line has slope -1 and contains the point $(5,0)$.
$y-0=-1(x-5)$
$y=-x+5$
$f(2)=-2+5=3$
$f^{\prime}(2)=-1$
66. The tangent line contains the points $(0,2)$ and $\left(a, a^{3}\right)$ and has slope $=3 a^{2}$. Thus, $\frac{a^{3}-2}{a}=3 a^{2}$ $a^{3}-2=3 a^{3}$
$-2=2 a^{3}$
$a=-1$
67. $s^{\prime}(t)=-32 t+32$

The binoculars will hit the ground when $s(t)=0$, i.e.,
$s(t)=-16 t^{2}+32 t+128=0$
$-16\left(t^{2}-2 t-8\right)=0$
$-16(t-4)(t+2)=0$
$t=4$ or $t=-2$
$s^{\prime}(4)=-32(4)+32=-96$ feet $/ \mathrm{sec}$.
Therefore, when the binoculars hit the ground, they will be falling at the rate of 96 feet $/ \mathrm{sec}$.
68. $40 t+t^{2}-\frac{1}{15} t^{3}$ tons is the total output of a coal mine after t hours. The rate of output is $40+2 t-\frac{1}{5} t^{2}$ tons per hour. At $t=5$, the rate of output is $40+2(5)-\frac{1}{5}(5)^{2}=45$ tons/hour.
69. 11 feet
70. $\frac{s(4)-s(1)}{4-1}=\frac{6-1}{4-1}=\frac{5}{3} \mathrm{ft} / \mathrm{sec}$
71. Slope of the tangent line is $\frac{5}{3}$ so $\frac{5}{3} \mathrm{ft} / \mathrm{sec}$.
72. $t=6$, since $s(t)$ is steeper at $t=6$ than at $t=5$.
73. $C(x)=.1 x^{3}-6 x^{2}+136 x+200$
a. $C(21)-C(20)$

$$
\begin{aligned}
= & .1(21)^{3}-6(21)^{2}+136(21)+200 \\
& -\left(.1(20)^{3}-6(20)^{2}+136(20)+200\right) \\
= & 1336.1-1320=\$ 16.10
\end{aligned}
$$

b. $\quad C^{\prime}(x)=.3 x^{2}-12 x+136$
$C^{\prime}(20)=.3(20)^{2}-12(20)+136=\$ 16$
74. $f(235)=4600$
$f^{\prime}(235)=-100$
$f(a+h) \approx f^{\prime}(a) \cdot h+f(a)$
a. $237=235+2$
$f(235+2) \approx f^{\prime}(235) \cdot 2+f(235)$
$\approx-100 \cdot 2+4600 \approx 4400$ riders
b. $234=235+(-1)$
$f(235+(-1)) \approx f^{\prime}(235) \cdot(-1)+f(235)$
$\approx-100 \cdot(-1)+4600 \approx 4700$ riders
c. $240=235+5$
$f(235+5) \approx f^{\prime}(235) \cdot 5+f(235)$
$\approx-100 \cdot 5+4600 \approx 4100$ riders
d. $232=235+(-3)$
$f(235+(-3)) \approx f^{\prime}(235) \cdot(-3)+f(235)$
$\approx-100 \cdot(-3)+4600 \approx 4900$ riders
75. $h(12.5)-h(12) \approx h^{\prime}(12)(.5)=(1.5)(.5)=.75 \mathrm{in}$.
76. $f\left(7+\frac{1}{2}\right)-f(7) \approx f^{\prime}(7) \frac{1}{2}=(25.06) \frac{1}{2}$
$=12.53$
$\$ 12.53$ is the additional money earned if the bank paid $7 \frac{1}{2} \%$ interest.
77. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x+2)(x-2)}{x-2}$
$=\lim _{x \rightarrow 2}(x+2)=2+2=4$
78. The limit does not exist.
79. The limit does not exist.
80. $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-7 x+2}=\frac{5-5}{25-35+2}=0$
81. $f^{\prime}(5)=\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h}$

If $f(x)=\frac{1}{2 x}$, then
$f(5+h)-f(5)=\frac{1}{2(5+h)}-\frac{1}{2(5)}$
$=\frac{1}{2(5+h)} \cdot \frac{5}{5}-\frac{1}{2(5)} \cdot\left(\frac{5+h}{5+h}\right)$
$=\frac{5-(5+h)}{10(5+h)}=\frac{-h}{10(5+h)}$
Thus,

$$
\begin{aligned}
& f^{\prime}(5)=\lim _{h \rightarrow 0}[f(5+h)-f(5)] \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-h}{10(5+h)} \cdot \frac{1}{h}=\lim _{h \rightarrow 0} \frac{-1}{10(5+h)}=-\frac{1}{50}
\end{aligned}
$$

82. $f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}$

If $f(x)=x^{2}-2 x+1$, then $f(3+h)-f(3)$
$=(3+h)^{2}-2(3+h)+1-(9-6+1)$
$=h^{2}+4 h$.
Thus,
$f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{h^{2}+4 h}{h}$
$=\lim _{h \rightarrow 0}(h+4)=4$.
83. The slope of a secant line at $(3,9)$
84. $\frac{\frac{1}{2+h}-\frac{1}{2}}{h}=\frac{\frac{2-2-h}{2(2+h)}}{h}=\frac{-1}{2(2+h)}$

As $h \rightarrow 0, \frac{-1}{2(2+h)} \rightarrow-\frac{1}{4}$.

