SOLUTIONS MANUAL

2.1	a. d.	meter, length second, time	b. e.	gram, mass Celsius, tempe	rature	c.	liter, vol	lume	
2.2	a. d.	liter, volume gram, mass	b. e.	meter, length kelvin, tempera	ature	c.	kilograr	n, mass	
2.3	a. d.	meter; both second, both	b. e.	kilogram, both Celsius, metric		c.	foot, nei	ither	
2.4	a. d.	cubic meter, both liter, metric	b. e.	kelvin, SI gram, metric		c.	Fahrenh	eit; neither	
2.5	a. d.	gram; metric meter; both	b. e.	liter; metric second; both		c.	Celsius;	metric	
2.6	a. d.	kelvin, SI meter, both	b. e.	kilogram, both cubic meter, bo	oth	c.	liter, me	etric	
2.7	a. b. c. d. e. f.	Move the decimal point left four places to give 5.5×10^4 m. Move the decimal point left two places to give 4.8×10^2 g. Move the decimal point right six places to give 5×10^{-6} cm. Move the decimal point right four places to give 1.4×10^{-4} s. Move the decimal point right three places to give 7.85×10^{-3} L. Move the decimal point left six places to give 6.7×10^5 kg							
2.8	a. e.	$1.8 \times 10^8 \mathrm{g}$ $2.4 \times 10^{-2} \mathrm{s}$	b. 6 × f. 1.5	$10^{-5} { m m} \times 10^{3} { m m}^{3}$	c. 7.5×10^5	g		d. 1.5×10^{-1} r	n
2.9	a. b. c. d.	The value 7.2×10^3 , w The value 3.2×10^{-2} , The value 1×10^4 or The value 6.8×10^{-2}	which is which 0 000 or 0.06	s also 72×10^2 , is also 320×1 is greater than 1 8 is greater than	is greater than 0^{-4} , is greater $\times 10^{-4}$, or 0.0 0.00052.	1 8.2 thai 000	2×10^{2} . n 4.5 × 1.	10 ⁻⁴ .	
2.10	a.	5.5×10^{-9}	b. 3.4	$\times 10^2$	c. 5×10^{-8}			d. 4×10^{-10}	
2.11	a. b. c. d.	The standard number is 1.2 times the power of 10^4 , or 10 000, which gives 12 000. The standard number is 8.25 times the power of 10^{-2} , or 0.01, which gives 0.0825. The standard number is 4 times the power of 10^6 , or 1 000 000, which gives 4 000 000. The standard number is 5 times the power of 10^{-3} , or 0.001, which gives 0.005.							
2.12	a.	0.000 036	b. 87 5	500	c. 0.03			d. 212 000	
2.13	а. b. c.	The <i>estimated digit</i> is decimal (tenths) place The <i>estimated digit</i> is The <i>estimated digit</i> wo	the last was es the 5 in puld be	digit reported in timated and has the second deci the 0 in the first	a measureme some uncertain imal (hundredt decimal (tenth	nt. nty. hs) 1s) p	In 8.6 m place. place.	, the 6 in the firs	st
2.14	а. b. c.	The <i>estimated digit</i> is hundredths place is est The <i>estimated digit</i> is The <i>estimated digit</i> wo	the last imated the 7 in ould be	digit reported in and has some u the third decim the 8 in the first	a measureme ncertainty. al (thousandth: decimal (tenth	nt. 1 s) p is) p	In 125.0 lace. place.	4 g, the 4 in the	

 \oplus

	obtained by counting or a. measured	from a definition in the b. exact	metric or the U.S measur c. exact	ng systems. d. measured			
2.16	a. exact	b. measured	c. measured	d. measured			
2.17	 Measured numbers are of obtained by counting or a. The value 6 oz of me exact number. b. None; both 1 table and c. Both 0.75 lb and 350 d. None; the values in a 	bbtained using some kind from a definition in the eat is obtained by measur and 4 chairs are counted/e g are obtained by measur definition are exact num	d of measuring tool. Exac metric or the U.S. measur ement, whereas 3 hambu xact numbers. arements. bers.	t numbers are numbers ing systems. rgers is a counted/			
2.18	a. 5 pizzas	b. 6 nickels	c. 3 onions	d. 5 cars			
2.19	 a. Zeros preceding significant digits are <i>not significant</i>. b. Zeros between significant digits are <i>significant</i>. c. Zeros after significant digits in a decimal number are <i>significant</i>. d. Zeros in the coefficient of a number written in scientific notation are <i>significant</i>. e. Zeros in a number with no decimal point are considered as placeholders only and <i>not significant</i>. 						
2.20	a. significante. significant	b. significant	c. not significant	d. not significant			
2.21	 a. All five numbers are significant figures. b. Only the two nonzero numbers are significant; the preceding zeros are placeholders. c. Only the two nonzero numbers are significant; the zeros that follow are placeholders. d. All three numbers in the coefficient of a number written in scientific notation are significant. e. All four numbers including the last zero in a decimal number are significant. f. All three numbers including the zeros that follow a nonzero digit in a decimal number are significant 						
2.22	a. 4 SF e. 3 SF	b. 6 SFf. 2 SF	c. 3 SF	d. 3 SF			
2.23	Both measurements in c figures.	have 2 significant figure	es and both measurements	s in d have 4 significant			
2.24	In a and b both pairs ha	ve three significant figure	es. In d both pairs have tw	vo significant figures.			
2.25	 a. 5 000 is the same as b. 30 000 is the same as c. 100 000 is the same 	5×1000 , which is write $3 \times 10\ 000$, which is w as $1 \times 100\ 000$, which is 1	ten in scientific notation a ritten in scientific notatio s written in scientific nota	as 5×10^3 . n as 3×10^4 . ation as 1×10^5 .			
2.25	 a. 5 000 is the same as b. 30 000 is the same as c. 100 000 is the same d. 0.000 25 is the same 	5 × 1000, which is writt 3 × 10 000, which is w as 1 × 100 000, which is as 2.5 × $\frac{1}{10\ 000}$, which	ten in scientific notation a ritten in scientific notatio s written in scientific nota n is written in scientific n	as 5×10^3 . n as 3×10^4 . ation as 1×10^5 . otation as 2.5×10^{-4} .			
2.252.26	 a. 5 000 is the same as b. 30 000 is the same as c. 100 000 is the same d. 0.000 25 is the same a. 5.1 × 10⁶ g 	5 × 1000, which is writt s 3 × 10 000, which is w as 1 × 100 000, which is as 2.5 × $\frac{1}{10\ 000}$, which b. 2.6 × 10 ⁴ s	ten in scientific notation a ritten in scientific notatio s written in scientific nota n is written in scientific n c. 4.0×10^4 m	as 5×10^{3} . n as 3×10^{4} . ation as 1×10^{5} . otation as 2.5×10^{-4} . d. 8.2×10^{-4} kg			
2.25 2.26 2.27	a. 5 000 is the same as b. 30 000 is the same as c. 100 000 is the same d. 0.000 25 is the same a. 5.1×10^6 g Calculators carry out m Our task is to round the by the values of the orig	5 × 1000, which is writt s 3 × 10 000, which is w as 1 × 100 000, which is as 2.5 × $\frac{1}{10\ 000}$, which b. 2.6 × 10 ⁴ s athematical computation calculator's answer to the final data.	ten in scientific notation a ritten in scientific notatio s written in scientific notatio n is written in scientific n c. 4.0×10^4 m s and display without reg e number of significant fi	as 5×10^3 . n as 3×10^4 . ation as 1×10^5 . otation as 2.5×10^{-4} . d. 8.2×10^{-4} kg ard to significant figures gures or digits allowed			

2.29 To round a number, determine how many significant figures are kept and drop all remaining digits. There is no change in the retained figures if the first digit dropped is 0 to 4. However, if the first digit dropped is 5 to 9, raise the last retained digit by 1.

4

a. To round 1.854, drop the 4 and keep 1.85.

- **b.** To round 184.2038, drop 2038 and keep 184.
- c. To round 0.004 738 265, drop 8265 and increase the retained digits by 1, or 0.004 74.
- **d.** To round 8807 to three significant figures, drop 7 and increase the retained digits to 8810, keeping a zero in the ones place as a placeholder. In scientific notation: 8.81×10^3 .
- e. To round 1.832 149, drop 2149 and keep 1.83 as the rounded value.

2.31 a. Drop 55 and increase the last digit by 1, which gives 56.9 m.

- **b.** Drop 25, and keep remaining digits as 0.00228 g.
- c. Drop 27, keep remaining digits, and add two zeros as placeholders, 11 500 s (1.15×10^4 s).

d. Add a significant zero to give three significant figures, 8.10 L.

2.32 a.
$$3.3 \text{ m}$$
 b. $1.9 \times 10^2 \text{ g}$ **c.** 0.0023 m **d.** 2.0 L

- **2.33 a.** Because the value of 0.034 has 2 SFs, the answer 1.6 can have only 2 SFs.
 - **b.** The measurement 5 has 1 SF, which allows 1 SF in the answer (0.01).
 - c. The measurement 1.25 has 3 SFs, which allows 3 SFs in the answer (27.6): $\frac{34.56}{2} = 27.6$

1.25

d. The measurement 25 has 2 SFs, which allows 2 SFs in the answer (3.5): $\frac{(0.2465)(25)}{2} = 3.5$

- e. The measurement 2.8 \times 10⁴ has 2 SFs, which allows 2 SFs in the answer (0.14): $(2.8 \times 10^4)(5.05 \times 10^{-6}) = 0.14 (1.4 \times 10^{-1})$
- **f.** The measurement 8 \times 10³ has 1 SF, which allows 1 SF in the answer (0.8): $\frac{(3.45 \times 10^{-2})(1.8 \times 10^5)}{2} = 8 \times 10^{-1} (0.8)$ (8×10^{3})

2.34 a.
$$7 \times 10^4$$
 b. 0.005 c. 15
d. 0.0055 e. 6×10^6 f. 8.58

2.35 The answer of addition/subtraction problems has the same number of places as the measurement with the largest place.

a.	45.48 cm	2 decimal places
	+ 8.057 cm	3 decimal places
	53.54 cm	2 decimal places
b.	23.45 g	2 decimal places
	104.1 g	1 decimal place
	+ 0.025 g	3 decimal places
	127.6 g	1 decimal place
c.	145.675 mL	3 decimal places
	-24.2 mL	1 decimal place
	121.5 mL	1 decimal place
d.	1.08 L	2 decimal places
	– 0.585 L	3 decimal places

0.50 L 2 decimal places

2.36 a. 5.08 g + 25.1 g = 30.2 g

- **b.** 85.66 cm + 104.10 cm + 0.025 cm = 189.79 cm
- **c.** 24.568 mL 14.25 mL = 10.32 mL
- **d.** 0.2654 L 0.2585 L = 0.0069 L

- **2.37** The km/h markings indicate how many kilometers (how much distance) will be traversed in 1 hour's time if the speed is held constant. The mph markings indicate the same distance traversed *but measured in miles* during the 1 hour of travel.
- **2.38** On the speedometer, 80 kph is about 50 mph. You are *not* exceeding the 55 mph speed limit if your speedometer reads 80 km/hr (kph).
- **2.39** Because the prefix *kilo* means one thousand times, a *kilo*gram is equal to 1000 grams.
- 2.40 Because the prefix *centi* means one hundredth, a *centi*meter is one hundredth of a meter.

2.41	a. mg e. μL	b. dL f. ns	c. km	d. kg
2.42	a. centimeterd. gigameter	b. kilograme. microgram	c. deciliterf. picogram	
2.43	a. 0.01 d. 0.1	b. 1000e. 1 000 000	c. 0.001 f. 10 ⁻⁹	
2.44	a. 1 decigramd. 1 centigram	b. 1 micrograme. 1 milligram	c. 1 kilogramf. 1 picogram	
2.45	a. 100 cm	b. 1000 m	c. 0.001 m	d. 1000 mL
2.46	a. 1 kg = 1000 g	b. $1 \text{ mL} = 0.001 \text{ L}$	c. $1 \text{ g} = 0.001 \text{ kg}$	d. $1 \text{ g} = 1000 \text{ mg}$
2.47	 a. A kilogram, which i b. A milliliter, which is c. A km, which is 10³ d. A kL, which is 10³ (s 1000 g, is larger than a s 10^{-3} L, is larger than a (1000) m, is larger than a 1000) L, is larger than a	milligram (0.001 g). microliter (10^{-6} L). a cm (10^{-2} m or 0.01 m dL (10^{-1} L or 0.1 L).	ı).
2.48	a. mg	b. mm	c. μm	d. mL
2.49	Because a conversion f	actor can be inverted to g	give a second factor. $\frac{1}{10}$	$\frac{1 \text{ m}}{00 \text{ cm}}$ and $\frac{100 \text{ cm}}{1 \text{ m}}$.
2.50	Verify that the units can	ncel when the conversion	factors are applied.	
2.51	The numerator and den	ominator are from the ec	quality: $1 \text{ kg} = 1000 \text{ g}$	
2.52	1 m = 100 cm			
2.53	a. 1 yd = 3 ft,	$\frac{1 \text{ yd}}{3 \text{ ft}}$ and	$\frac{3 \text{ ft}}{1 \text{ yd}}$	
	b. 1 L = 1000 mL,	$\frac{1 \text{ L}}{1000 \text{ mL}}$ and	$\frac{1000 \text{ mL}}{1 \text{ L}}$	
	c. $1 \min = 60 \text{ s},$	$\frac{1 \text{ min}}{60 \text{ s}}$ and	<u>60 s</u> 1 min	
	d. $1 dL = 100 mL$,	$\frac{1 \text{ dL}}{100 \text{ mL}}$ and	$\frac{100 \text{ IIL}}{1 \text{ dL}}$	
2.54	a. 1 gal = 4 qt,	$\frac{1 \text{ gal}}{4 \text{ qt}}$ and	$\frac{4 \text{ qt}}{1 \text{ gal}}$	
	b. 1 m = 1000 mm,	$\frac{1 \text{ m}}{1000 \text{ mm}}$ and	$\frac{1000}{1 \text{ m}}$	
	c. 1 week = 7 days,	$\frac{1 \text{ week}}{7 \text{ days}}$ and	/ days 1 week	
	d. $\$1 = 4$ quarters,	$\frac{\mathfrak{s}_1}{4 \text{ quarters}}$ and	4 quarters \$1	

 \oplus

2.55 The equalities	; between the	e metric	prefixes	can be	e written	as two	conversion facto	rs.
---------------------	---------------	----------	----------	--------	-----------	--------	------------------	-----

	a = 1 m = 100 m	1 m	and	100 cm
	a. $1 \text{ m} = 100 \text{ cm},$	100 cm	anu	1 m
	b $1 a = 1000 ma$	1 g	and	1000 mg
	b. $1 g = 1000 mg,$	1000 mg	anu	1 g
	a 1 I = 1000 mI	1 L	and	1000 mL
	c. $1 L = 1000 \text{ mL},$	1000 mL	anu	1 L
	1 1 1 106	10 ⁶ mg	1	1 kg
	d. $1 \text{ kg} = 10^{\circ} \text{ mg},$	1 kg	and	10 ⁶ mg
	$(1)^2$	$(100 \text{ cm})^3$		$(1 \text{ m})^3$
	e. $(1 \text{ m})^3 = (100 \text{ cm})^3$,	$(1 \text{ m})^3$	and	$(100 \text{ cm})^3$
		1 in.		2.54 cm
2.56	a. 1 in. = 2.54 cm ,	$\frac{1 \text{ in.}}{2.54 \text{ cm}}$	and	$\frac{2.54 \text{ cm}}{1 \text{ in}}$
2.56	a. 1 in. = 2.54 cm,	1 in. 2.54 cm 1 kg	and	2.54 cm 1 in. 2.205 lb
2.56	 a. 1 in. = 2.54 cm, b. 1 kg = 2.205 lb, 	1 in. 2.54 cm 1 kg 2.205 lb	and and	2.54 cm 1 in. 2.205 lb 1 kg
2.56	 a. 1 in. = 2.54 cm, b. 1 kg = 2.205 lb, 	1 in. 2.54 cm 1 kg 2.205 lb 1 lb	and and	2.54 cm 1 in. 2.205 lb 1 kg 453.6 g
2.56	 a. 1 in. = 2.54 cm, b. 1 kg = 2.205 lb, c. 1 lb = 453.6 g, 	1 in. 2.54 cm 1 kg 2.205 lb 1 lb 453.6 g	and and and	2.54 cm 1 in. 2.205 lb 1 kg 453.6 g 1 lb
2.56	 a. 1 in. = 2.54 cm, b. 1 kg = 2.205 lb, c. 1 lb = 453.6 g, d. 1.057 ct = 1 L 	1 in. 2.54 cm 1 kg 2.205 lb 1 lb 453.6 g 1.057 qt	and and and	2.54 cm 1 in. 2.205 lb 1 kg 453.6 g 1 lb 1 L
2.56	 a. 1 in. = 2.54 cm, b. 1 kg = 2.205 lb, c. 1 lb = 453.6 g, d. 1.057 qt = 1 L, 	1 in. 2.54 cm 1 kg 2.205 lb 1 lb 453.6 g 1.057 qt 1 L	and and and and	2.54 cm 1 in. 2.205 lb 1 kg 453.6 g 1 lb 1 L 1.057 qt
2.56	 a. 1 in. = 2.54 cm, b. 1 kg = 2.205 lb, c. 1 lb = 453.6 g, d. 1.057 qt = 1 L, a. 1 in ² = (2.54)² cm² 	$ \begin{array}{r} 1 \text{ in.} \\ \hline 2.54 \text{ cm} \\ 1 \text{ kg} \\ \hline 2.205 \text{ lb} \\ 1 \text{ lb} \\ 453.6 \text{ g} \\ 1.057 \text{ qt} \\ 1 \text{ L} \\ (2.54)^2 \text{ cm}^2 \end{array} $	and and and and	$ \begin{array}{r} 2.54 \text{ cm} \\ 1 \text{ in.} \\ 2.205 \text{ lb} \\ 1 \text{ kg} \\ 453.6 \text{ g} \\ 1 \text{ lb} \\ 1 \text{ L} \\ 1.057 \text{ qt} \\ 1 \text{ in.}^2 \end{array} $

2.57 An equality stated in a problem can be written as two conversion factors, which are true only for that problem.

•	2.5 m = 1.6	3.5 m	and	ls
a.	5.5 m - 1 s,	1 s	anu	3.5 m
h	1 mL = 0.65 c	0.65 g	and	1 mL
D.	1 mL = 0.03 g,	1 mL	and	0.65 g
0	1.0 col = 46.0 km	46.0 km	and	1.0 gal
c.	1.0 gal - 40.0 km,	1.0 gal	and	46.0 km

d. Percent means parts silver per 100 parts sterling silver. Using grams (g) as the mass unit,

	100 a starling = 03 a silver	93 g silver	and	100 g sterling
	100 g sterning - 95 g sinver,	100 g sterling	anu	93 g silver
	e. ppb indicates $\mu g/kg$,	<u>29 μg</u> 1 kg	and	1 kg 29 μg
2.58	a. 32 mi = 1 gal,	<u>32 mi</u> 1 gal	and	<u>1 gal</u> 32 mi
	b. 20 drops = 1 mL,	20 drops 1 mL	and	1 mL 20 drops
	c. ppm indicates mg/kg,	<u>32 mg</u> 1 kg	and	<u>1 kg</u> 32 mg
	d. 58 g gold = 100 g jewelry,	58 g gold 100 g jewelry	and	100 g jewelry 58 g gold
	e. $\$3.19 = 1$ gal,	\$3.19 1 gal	and	<u>1 gal</u> \$3.19

 \oplus

- **2.59** When using a conversion factor, you are trying to cancel existing units and arrive at a new (desired) unit. The conversion factor must be set up to give unit cancellation.
- 2.60 The new (desired) unit should be in the numerator of the conversion factor.
- **a.** Plan: $cm \rightarrow m$ 2.61 $175 \text{ cm} \times \frac{1 \text{ m}}{100 \text{ cm}} = 1.75 \text{ m}$ **b.** Plan: $mL \rightarrow L$ $5500 \text{ mH} \times \frac{1 \text{ L}}{1000 \text{ mH}} = 5.5 \text{ L}$ **c.** Plan: $kg \rightarrow g$ $0.0055 \text{ kg} \times \frac{1000 \text{ g}}{1 \text{ kg}} = 5.5 \text{ g}$ **d.** Plan: $cm^3 \rightarrow n$ $350 \text{ cm}^3 \times \frac{1 \text{ m}^3}{(100)^3 \text{ cm}^3} = 3.5 \times 10^{-4} \text{ m}^3$ **2.62 a.** Plan: $mg \rightarrow g$ $800 \text{ mg} \times \frac{1 \text{ g}}{1000 \text{ mg}} = 0.8 \text{ g}$ **b.** Plan: $dL \rightarrow mI$ $0.85 \, dE \times \frac{100 \, \text{mL}}{1 \, dE} = 85 \, \text{mL}$ **c.** Plan: $mg \rightarrow g$ $2840 \text{ mg} \times \frac{1 \text{ g}}{1000 \text{ mg}} = 2.84 \text{ g}$ **d.** Plan: $m^2 \rightarrow km^2$ $150\ 000\ \mathrm{m}^2 \times \frac{1\ \mathrm{km}^2}{(1000)^2\ \mathrm{m}^2} = 0.15\ \mathrm{km}^2$ **2.63 a.** Plan: $qt \rightarrow mL$ **b.** Plan: stone \rightarrow lb -11.8 stones $\times \frac{14 \text{ k}}{1 \text{ stone}} \times \frac{1 \text{ kg}}{2.205 \text{ kg}} = 74.9 \text{ kg}$ **c.** Plan: in. \rightarrow cm \rightarrow mm $19.5 \text{ inf.} imes rac{2.54 \text{ cm}}{1 \text{ inf.}} imes rac{10 \text{ mm}}{1 \text{ cm}} = 495 \text{ mm}$ **d.** Plan: $\mu m \rightarrow m \rightarrow cm \rightarrow$ $0.50 \ \mu m \times \frac{1 \ m}{10^6 \ \mu m} \times \frac{100 \ cm}{1 \ m} \times \frac{1 \ in.}{2.54 \ cm} = 2.0 \times 10^{-5} \ in.$ **2.64** a. $4.0 \ \varphi z \times \frac{1 \ \text{lb}}{16 \ \varphi z} \times \frac{453.6 \ \text{g}}{1 \ \text{lb}} = 110 \ \text{g}$ **b.** 5.0 pt $\times \frac{1 \, qt}{2 \, pt} \times \frac{1 \, k}{1.057 \, qt} \times \frac{1000 \, mL}{1 \, k} = 2400 \, mL$ c. 120 000 mi $\times \frac{1 \text{ km}}{0.6214 \text{ mi}} = 190 000 \text{ km}$

d.
$$46.0 \text{ E} \times \frac{1.057 \text{ eff}}{1 \text{ E}} \times \frac{1 \text{ gal}}{4 \text{ eff}} = 12.2 \text{ gal}$$

 $18.5 \text{ gal} - 12.2 \text{ gal} = 6.3 \text{ gal}$
2.65 a. Plan: $ft \rightarrow in. \rightarrow cm \rightarrow m$
 $78.0 \text{ ft} \times \frac{12 \text{ inr}}{1 \text{ ft}} \times \frac{2.54 \text{ enr}}{1 \text{ inr}} \times \frac{1 \text{ m}}{100 \text{ enr}} = 23.8 \text{ m} (\text{length})$
b. Plan: $ft \rightarrow in. \rightarrow cm \rightarrow m \rightarrow m^2$
 $27.0 \text{ ft} \times \frac{12 \text{ inr}}{1 \text{ ft}} \times \frac{2.54 \text{ enr}}{1 \text{ inr}} \times \frac{1 \text{ m}}{100 \text{ enr}} = 8.23 \text{ m} (\text{width})$
Area = 23.8 m × 8.23 m = 196 m²
c. Plan: $m \rightarrow km \rightarrow hr \rightarrow min \rightarrow s$
 $23.8 \text{ m} \times \frac{1 \text{ km}}{1000 \text{ m}} \times \frac{1 \text{ kr}}{185 \text{ km}} \times \frac{60 \text{ min}}{1 \text{ kr}} \times \frac{60 \text{ m}}{1 \text{ min}} = 0.463 \text{ s}$
d. Plan: $m^2 \rightarrow cm^2 \rightarrow in^2 \rightarrow ft^2 \rightarrow \text{ gal} \rightarrow qt \rightarrow L$
 $196 \text{ m}^2 \times \frac{(100 \text{ cm})^2}{1 \text{ m}^2} \times \frac{(1 \text{ inr})^2}{(2.54 \text{ emr})^2} \times \frac{(1 \text{ ft})^2}{(12 \text{ inr})^2} \times \frac{1 \text{ gaf}}{150 \text{ ft}^2} \times \frac{4 \text{ eff}}{1 \text{ gaf}} \times \frac{1 \text{ L}}{1.057 \text{ eff}} = 53.2 \text{ L}$
2.66 a. 91.4 m b. 41 m c. 4500 m^2 d. 2.7 s
2.67 Each of the following require a percent factor from the problem information.
a. Plan: g crust \rightarrow g oxygen (percent equality: 100.0 g crust = 46.7 g oxygen)
 $325 \text{ g} \text{ errst} \times \frac{46.7 \text{ g oxygen}}{100.0 \text{ g} \text{ errst}} = 152 \text{ g oxygen}$
b. Plan: g crust \rightarrow g magnesium (percent equality: 100.0 g crust = 2.1 g magnesium)
 $1.25 \text{ g} \text{ errst} \times \frac{2.1 \text{ gmagnesium}}{100.0 \text{ g} \text{ errst}} = 0.026 \text{ g magnesium}$
c. Plan: $oz \rightarrow lb \rightarrow g \rightarrow g$ nitrogen (percent equality: 100.0 g fertilizer = 15 g nitrogen)
 $10.0 \text{ oz} \text{ fertilizer} \times \frac{116}{16 \text{ oz}} \times \frac{453.6 \text{ g}}{1 \text{ lb}} \times \frac{15 \text{ g nitrogen}}{100.0 \text{ g} \text{ fertilizer}} = 43 \text{ g nitrogen}$
d. Plan: kg pecans \rightarrow kg choc. bars \rightarrow lb (percent equality: 100.0 kg bars = 22.0 \text{ kg pecans}
 $5.0 \text{ kg-pecans} \times \frac{100 \text{ kg choc. bars}}{22.0 \text{ kg-pecans}} \times \frac{2.205 \text{ lb}}{1 \text{ kg}} = 50. \text{ lb of chocolate bars}$
2.68 a. 0.045 kg b. 2530 g c. 29 \text{ g fiber/cake} d. 4.0 \text{ oz}
ere unidetify the automount is z.70 g/cm^3, silver is 10.5 g/cm^3, and lead is 11.3 g/cm^3, we contine transt

- **2.69** Because the density of aluminum is 2.70 g/cm³, silver is 10.5 g/cm³, and lead is 11.3 g/cm³, we can identify the unknown metal by calculating its density as follows: $\frac{217 \text{ g metal}}{19.2 \text{ cm}^3 \text{ metal}} = 11.3 \text{ g/cm}^3$ The metal is lead.
- 2.70 The volume of a cube, 2.0 cm on each edge, is calculated as follows: $(2.0 \text{ cm})^3 \times 1 \text{ mL/1 cm}^3 = 8.0 \text{ mL}$ A cube will displace its volume when submerged in water, so the final volume reading in each graduated cylinder is: 40.0 mL water + 8.0 mL metal = 48.0 mL total volume
- **2.71** Density is the mass of a substance divided by its volume. The densities of solids and liquids are usually stated in g/mL or g/cm³.

Density =
$$\frac{\text{Mass (grams)}}{\text{Volume (mL)}}$$

a.
$$\frac{24.0 \text{ g}}{20.0 \text{ mL}} = 1.20 \text{ g/mL}$$

b. $\frac{0.250 \text{ Jb}}{10.3 \text{ mL}} \times \frac{453.6 \text{ g}}{14.5 \text{ mL}} = \frac{0.870 \text{ g}}{\text{mL}}$
c. Volume of gem: 34.5 mL total $= 20.0 \text{ mL}$ water $= 14.5 \text{ mL}$
Density of gem: $\frac{45.0 \text{ g}}{14.5 \text{ mL}} = 3.10 \text{ g/mL}$
d. $\frac{485.6 \text{ g}}{114 \text{ cm}^3} = 4.26 \text{ g/cm}^3$
e. $0.100 \text{ pt} \times \frac{1 \text{ qf}}{2 \text{ pt}} \times \frac{1 \text{ L}}{1.057 \text{ qt}} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 47.3 \text{ mL}$
Mass of syrup $= 182.48 \text{ g} = 115.25 \text{ g} = 67.23 \text{ g}}{20.0 \text{ mL}} = 1.42 \text{ g/mL}}$
2.72 a. $1220 \text{ g/3500 \text{ mL}} = 0.35 \text{ g/mL}$
b. $155 \text{ g/125 \text{ mL}} = 1.24 \text{ g/mL}}{1.24 \text{ g/mL}}$
c. $5.025 \text{ g/5.00 \text{ mL}} = 0.33 \text{ g/cm}^3$
e. $140 \text{ g/10 000 \text{ mL}} = 0.014 \text{ g/mL}}{1 \text{ gaseberlot}} \times \frac{1000 \text{ gf}}{1 \text{ kgaseberlot}} \times \frac{1 \text{ mE}}{0.785 \text{ gf}} \times \frac{1 \text{ L}}{1000 \text{ mE}} = 1.91 \text{ L}}$
b. $6.5 \text{ mE} \times \frac{13.6 \text{ g}}{1 \text{ mE}} = 88 \text{ g}}{1 \text{ mE}} = 88 \text{ g}}{2.25 \text{ mE} \times \frac{7.8 \text{ g}}{1 \text{ mE}}} \times \frac{11 \text{ b}}{453.6 \text{ g}} \times \frac{16 \text{ oz}}{1 \text{ Jb}} = 62 \text{ oz}$
d. $74.1 \text{ cm}^3 \times \frac{1 \text{ mE}}{1 \text{ gm}^2} \times \frac{8.92 \text{ g}}{1 \text{ mE}} = 661 \text{ g}}{1 \text{ mE}} \times \frac{1000 \text{ mE}}{1 \text{ Joff}} \times \frac{1000 \text{ mE}}{1 \text{ mE}}} \times \frac{1.6 \text{ gg}}{1 \text{ mE}} = 30. \text{ kg}}$
2.74 a. $35.6 \text{ g} \times \frac{1 \text{ mL}}{10.5 \text{ g}} = 3.39 \text{ mL silver metal}$
18.0 mL water $+ 3.39 \text{ mL silver = 21.4 \text{ mL total volume}}$
b. $8.3 \text{ g} \times \frac{1 \text{ mL}}{13.6 \text{ g}} = 0.61 \text{ mL}$ mercury metal
c. $35 \text{ gmf} \times \frac{4 \text{ qf}}{1 \text{ gmf}} \times \frac{1 \text{ L}}{1.057 \text{ qf}} \times \frac{1000 \text{ mE}}{1 \text{ L}} \times \frac{1.0 \text{ g}}{1 \text{ mE}} \times \frac{11 \text{ b}}{1 \text{ mE}} \times \frac{1100}{1 \text{ mE}} \times \frac{1000 \text{ g}}{1 \text{ mE}} \times \frac{1000 \text{ g}}{1 \text{ mE}} \times \frac{1000 \text{ mE}}{1 \text{ mE}} \times \frac{100}{1 \text{ mE}} \times \frac{100}{1 \text{ mE}} \times \frac{100}{1 \text{ mE}} \times \frac{100}{1 \text{ mE}}} \approx \frac{1000 \text{ mE}}{1 \text{ mE}} \times \frac{100 \text{ g}}{1 \text{ mE}} \times \frac{100 \text{ g}}{1 \text{ mE}} \times \frac{100 \text{ g}}{1 \text{ mE}} \times \frac{1000 \text{ g}}{1 \text{ mE}} = 30. \text{ kg}}$
2.74 a. $35.6 \text{ g} \times \frac{1000 \text{ m}}{1 \text{ gmf}} \times \frac{1000 \text{ mE}}{1 \text{ gmf}} \times \frac{1000 \text{ mE}}{1 \text{ mE}} \times \frac{1000 \text{ g}}{1 \text{ mE}} \times \frac{1000 \text{ mE}$

2.77 a. length = 6.96 cm; width = 4.75 cm

b. length = 69.6 mm; width = 47.5 mm

c. There are three significant figures in the length measurement.

d. There are three significant figures in the width measurement.

e. 33.3 cm^2

- **f.** Since there are three significant figures in the width and length measurements, there are three significant figures in the area.
- **2.78 a.** Length is 3.7 cm; the 7 is the estimated digit.
 - **b.** Length is 2.50 cm; the 0 is the estimated digit.
 - **c.** Length is 4.10 cm; the 0 is the estimated digit.
- **2.79** The volume of the object is: 23.1 mL 18.5 mL = 4.6 mL. The mass is 8.24 g and the density is: $\frac{8.24 \text{ g}}{1.8 \text{ g/mL}} = 1.8 \text{ g/mL}.$

mass is 8.24 g and the density is:
$$\frac{1}{4.6 \text{ mL}} = 1.8 \text{ g/mL}$$

- **2.80 a.** This is cube 3, since it has sunk to the bottom.
 - b. This is cube 4, since it is floating about one-third out of the water.
 - c. This is cube 1, since it is floating about one-half out of the water.
 - d. This is cube 2, since it is floating just at the surface of the water.
- **2.81** A is vegetable oil, B is water, and C is mercury.
- 2.82 A. would be gold; it has the highest density and the smallest volume.B. would be silver; its density is intermediate and the volume is intermediate.
 - **C.** would be aluminum; it has the lowest density and the largest volume.
- **a.** Drop 8 and increase retained digits by 1 to give 0.000 0126 L (1.26 × 10⁻⁵ L). **b.** Drop 8 and increase retained digits by 1 to give 3.53 × 10² kg.
 - c. Drop 111, keep retained digits, and add three zeros as placeholders to give 125 000 m³, or 1.25×10^5 m³.
 - **d.** Drop 03 and keep retained digits to give 58.7 m.
 - e. Add 2 significant zeros to give 3.00×10^{-3} s.
 - f. Drop 26 and keep retained digits, 0.0108 g.
- **2.84** 265 g

4.

2.85 Plan: ft \rightarrow in. \rightarrow cm \rightarrow m \rightarrow min

$$7500 \text{ ft} \times \frac{12 \text{ inf.}}{1 \text{ ft}} \times \frac{2.54 \text{ cm}}{1 \text{ inf.}} \times \frac{1 \text{ m}}{100 \text{ cm}} \times \frac{1 \text{ min}}{55.0 \text{ m}} = 42 \text{ min}$$

2.86 a. 22 kg salmon + 5.5 kg crab + 3.48 kg oysters = 31 kg seafood

b. 31 kg seafood (total)
$$\times \frac{2.205 \text{ lb}}{1 \text{ kg}} = 68 \text{ lb}$$

2.87 Plan: $lb \rightarrow g \rightarrow onions$

$$0 \text{ lb-enions} \times \frac{453.6 \text{ g-enions}}{1 \text{ lb-enions}} \times \frac{1 \text{ enion}}{115 \text{ g-enions}} = 16 \text{ enions}$$

Because the number of onions is a counting number, the value for onions, 15.8, is rounded to a whole number, 16.

2.88
$$\$1420 \times \frac{1 \ \text{lb}}{\$1.75} \times \frac{1 \ \text{kg}}{2.205 \ \text{lb}} = 4 \times 10^2 \ \text{kg}$$

2.89 a. Plan: oz
$$\rightarrow$$
 crackers
 $8.0 \ \varphi z \times \frac{6 \ \text{crackers}}{0.50 \ \varphi z} = 96 \ \text{crackers}$
b. Plan: crackers \rightarrow servings $\rightarrow g \rightarrow lb \rightarrow oz$
 $10 \ \text{crackers} \times \frac{1 \ \text{serving}}{6 \ \text{crackers}} \times \frac{4 \ g \ \text{fat}}{1 \ \text{serving}} \times \frac{1 \ lb}{453.6 \ g} \times \frac{16 \ \text{oz}}{1 \ lb} = 0.2 \ \text{oz} \ \text{fat}$

11

c. Plan: boxes
$$\rightarrow$$
 oz \rightarrow servings \rightarrow mg \rightarrow g
50 boxes $\times \frac{8.0 \, \wp z}{1 \, \text{box}} \times \frac{1 \, \text{serving}}{0.50 \, \wp z} \times \frac{140 \, \text{mg sodium}}{1 \, \text{serving}} \times \frac{1 \, \text{g}}{1000 \, \text{mg}} = 110 \, \text{g sodium}$

2.90 75 000 mH ×
$$\frac{1 L}{1000 \text{ mH}}$$
 × $\frac{1.057 \text{ qf}}{1 L}$ × $\frac{1 \text{ gal}}{4 \text{ qf}}$ = 20. gal

2.91 Plan: $lb \rightarrow kg \rightarrow pesos \rightarrow dollar \rightarrow cents$ $0.45 \ lb \times \frac{1 \ kg}{2.205 \ lb} \times \frac{48 \ peses}{1 \ kg} \times \frac{1 \ dollar}{10.8 \ peses} \times \frac{100 \ cents}{1 \ dollar} = 91 \ cents$ Because the calculation is for a counted number of cents, the value 90.7 is rounded to 91.

2.92 8.0 oz burger
$$\times \frac{15.0 \text{ oz protein}}{100.0 \text{ oz burger}} \times \frac{1 \text{ lb}}{16 \text{ oz}} \times \frac{453.6 \text{ g}}{1 \text{ lb}} = 34 \text{ g protein}$$

Yes, the hamburger contains 34 g of protein, which is 10 grams more than she is allowed. To stay within her diet, Celeste could have only a 5.6-oz burger, as shown by the following calculation:

$$24 \text{ g-protein} \times \frac{1 \text{ lb}}{453.6 \text{ g}} \times \frac{16 \text{ øz}}{1 \text{ lb}} \times \frac{100.0 \text{ oz burger}}{15.0 \text{ oz-protein}} = 5.6 \text{ oz burger}$$

This one burger would use her entire day's allowance of protein!

2.93 Plan: tubes \rightarrow oz \rightarrow lb \rightarrow g \rightarrow kg sunscreen \rightarrow kg benzyl salicylate 225 tuber $\rightarrow 4.0 \, \varrho z$ $1 \, lb$ $453.6 \, g$ $1 \, kg$ $2.50 \, kg$ = 0

$$325 \text{ tubes} \times \frac{4.0 \text{ gz}}{1 \text{ tube}} \times \frac{1100}{16 \text{ gz}} \times \frac{455.0 \text{ g}}{1 \text{ Jb}} \times \frac{11 \text{ kg}}{1000 \text{ g}} \times \frac{2.50 \text{ kg}}{100 \text{ kg sunscreen}} = 0.92 \text{ kg}$$

- 2.94 442.5 mL total 325.2 mL water = 117.3 mL object $\frac{3.15 \, \wp z \text{ object}}{117.3 \text{ mL object}} \times \frac{1 \, l \wp}{16 \, \wp z} \times \frac{453.6 \text{ g}}{1 \, l \wp} = 0.761 \text{ g/mL}$
- 2.95 This problem has two units. Convert g to mg, and convert L in the denominator to dL.

$$\frac{1.85 \text{ g}}{1 \text{ L}} \times \frac{1000 \text{ mg}}{1 \text{ g}} \times \frac{1 \text{ L}}{10 \text{ dL}} = 185 \text{ mg/dL}$$

- 2.96 9.60 L
- **2.97** The difference between the initial volume of the water and its volume with the lead object will give us the volume of the object. 285 mL total 215 mL water = 70 mL lead

Using the density of lead, we can convert mL to the mass in grams of the lead object.

70. mL lead
$$\times \frac{11.3 \text{ g lead}}{1 \text{ mL lead}} = 790 \text{ g lead}$$

2.98 $15.0 \text{ g-iron} \times \frac{1 \text{ cm}^3 \text{ iron}}{7.86 \text{ g-iron}} \times \frac{1 \text{ mL}}{1 \text{ cm}^3} = 1.91 \text{ mL} \text{ iron}$ $20.0 \text{ g-lead} \times \frac{1 \text{ cm}^3 \text{ lead}}{11.3 \text{ g-lead}} \times \frac{1 \text{ mL}}{1 \text{ cm}^3} = 1.77 \text{ mL} \text{ lead}$ 155 mL water + 1.91 mL iron + 1.77 mL lead = 159 mL total volume

2.99 Plan: L gas
$$\rightarrow$$
 mL gas \rightarrow g gas \rightarrow g oil \rightarrow mL oil \rightarrow cm³ oil
1.00 L gas $\times \frac{1000 \text{ mL gas}}{1 \text{ L gas}} \times \frac{0.66 \text{ g-gas}}{1 \text{ mL gas}} \times \frac{1 \text{ g-oil}}{1 \text{ g-gas}} \times \frac{1 \text{ mL oil}}{0.92 \text{ g-oil}} \times \frac{1 \text{ cm}^3}{1 \text{ mL}} = 720$

2.100 Plan: kg
$$\rightarrow$$
 g \rightarrow mL \rightarrow L \rightarrow qt
1.50 kg-aleohot $\times \frac{1000 \text{ g}}{1 \text{ kg}} \times \frac{1 \text{ mE alcohol}}{0.785 \text{ g-aleohot}} \times \frac{1 \text{ E}}{1000 \text{ mE}} \times \frac{1.057 \text{ qt}}{1 \text{ E}} = 2.02 \text{ qt alcohol}$

cm³ oil

12

47374_02_p3-14.qxd 2/9/07 7:45 AM Page 13

2.101 a. Plan: kg mass
$$\rightarrow$$
 kg fat \rightarrow lb (percent equality: 100.0 kg mass = 3.0 kg fat)
45 kg body weight $\times \frac{3.0 \text{ kg fat}}{100.0 \text{ kg body mass}} \times \frac{2.205 \text{ lb}}{1 \text{ kg}} = 3.0 \text{ lb fat}$

b. Plan: L fat
$$\rightarrow$$
 mL \rightarrow g \rightarrow lb
 $3.0 \text{ L-fat} \times \frac{1000 \text{ m/L}}{1 \text{ k}} \times \frac{0.94 \text{ g fat}}{1 \text{ mL-fat}} \times \frac{1 \text{ lb}}{453.6 \text{ g}} = 6.2 \text{ lb fat}$

2.102 5.77 kg

2.103 Plan: cm³ \rightarrow g \rightarrow g silver \rightarrow lb \rightarrow oz (percent equality: 100 g sterling = 92.5 g silver) 27.0 cm³ $\times \frac{10.3 \text{ g}}{1 \text{ cm}^3} \times \frac{92.5 \text{ g silver}}{100 \text{ g}} \times \frac{1 \text{ kb}}{453.6 \text{ g}} \times \frac{16 \text{ oz}}{1 \text{ kb}} = 9.07 \text{ oz pure silver}$

- **2.104** Plan: kg \rightarrow lb body mass \rightarrow lb water 65 kg body mass $\times \frac{2.205 \text{ lb}}{1 \text{ kg}} \times \frac{55 \text{ lb water}}{100. \text{ lb body mass}} = 79 \text{ lb water}$
- **2.105** Since the balance can measure mass to 0.001 g, the mass should be given to 0.001 g; you should record the mass of the object as 34.075 g.
- **2.106** The student who reports 5.8 cm is not reading to the nearest mm. The others are estimating differently.

2.107 6.4 gal

2.108	a. 79 cups	b. 314 cans	c.	157 tablets
2.109	$3.8 imes 10^2$ g aluminu	um		
2.110	a. 69 m ³	b. $6.9 \times 10^4 \mathrm{kg}$		
2.111	a. 43 g	b. 3.9 g copper	c.	2.8 cm ³
2.112	0.203 mm			
2.113	75.7 mL + 4.8 mL	(silver) + 2.6 mL (gold)	= 8	82.9 mL

47374_02_p3-14.qxd 2/9/07 7:45 AM Page 14

 \oplus

-