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Part I: Introduction

1 Why Study Automata Theory?

2 Languages and Strings
1) Consider the language L = {1n2n : n > 0}.  Is the string 122 in L?

No.  Every string in L must have the same number of 1’s as 2’s. 

2) Let L1 = {anbn : n > 0}.  Let L2 = {cn : n > 0}. For each of the following strings, state whether or not it is an 
element of L1L2:
a) . No.
b) aabbcc. Yes.
c) abbcc. No.
d) aabbcccc. Yes.

3) Let L1 = {peach, apple, cherry} and L2 = {pie, cobbler, }.  List the elements of L1L2 in lexicographic 
order.

apple, peach, cherry, applepie, peachpie, cherrypie, applecobbler, peachcobbler, 
cherrycobbler  (We list the items shortest first.  Within a given length, we list the items 
alphabetically.)

4) Let L = {w  {a, b}* : |w| 3 0}.  List the first six elements in a lexicographic enumeration of L.

, aaa, aab, aba, abb, baa

5) Consider the language L of all strings drawn from the alphabet {a, b} with at least two different substrings of 
length 2.  
a) Describe L by writing a sentence of the form L = {w  * : P(w)}, where  is a set of symbols and P is a 

first-order logic formula.  You may use the function |s| to return the length of s.  You may use all the 
standard relational symbols (e.g., =, , <, etc.), plus the predicate Substr(s, t), which is True iff s is a 
substring of t.

L = {w  {a, b}* : x, y (x  y  |x| = 2  |y| = 2  Substr(x, w)  Substr(y, w))}.

b) List the first six elements of a lexicographic enumeration of L.

aab, aba, abb, baa, bab, bba

6) For each of the following languages L, give a simple English description.  Show two strings that are in L and 
two that are not (unless there are fewer than two strings in L or two not in L, in which case show as many as 
possible).
a) L = {w  {a, b}* : exactly one prefix of w ends in a}. 

L is the set of strings composed of zero or more b’s and a single a.  a, bba and bbab are in L.  bbb and 
aaa are not.

b) L = {w  {a, b}* : all prefixes of w end in a}.

L = , since  is a prefix of every string and it doesn’t end in a.  So all strings are not in L, including a and 
aa.
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c) L = {w  {a, b}* : x  {a, b}+ (w = axa)}.  

L is the set of strings over the alphabet {a, b} whose length is at least 3 and that start and end with a. aba, 
and aaa are in L.  , a, ab and aa are not.

7) Are the following sets closed under the following operations?  If not, what are their respective closures?
a) The language {a, b} under concatenation.

Not closed.  {w  {a, b}* : |w| > 0}

b) The odd length strings over the alphabet {a, b} under Kleene star.

Not closed because, if two odd length strings are concatenated, the result is of even length.  The closure is 
the set of all strings drawn from the alphabet {a, b}.

c) L = {w  {a, b}*} under reverse.

Closed.  L includes all strings of a’s and b’s, so, since reverse must also generate strings of a’s and b’s, 
any resulting string must have been in the original set.

d) L = {w  {a, b}* : w starts with a} under reverse.

Not closed.  L includes strings that end in b.  When such strings are reversed, they start with b, so they are 
not in L.  But, when any string in L is reversed, it ends in a.  So the closure is {w  {a, b}* : w starts with 
a}  {w  {a, b}* : w ends with a}.

e) L = {w  {a, b}* : w ends in a} under concatenation.

Closed.  

8) For each of the following statements, state whether it is True or False.  Prove your answer.
a) L1, L2 (L1 = L2 iff L1* = L2*).  

False.  Counterexample: L1 = {a}.  L2 = {a}*.  But L1* = L2* = {a}*  {a}.

b) (  *)  ( – (*)) =   (where  is the complement of ).  

False.  The left hand side equals {}, which is not equal to .

c) Every infinite language is the complement of a finite language.  

False.  Counterexample: Given some nonempty alphabet , the set of all even length strings is an infinite 
language.  Its complement is the set of all odd length strings, which is also infinite.

d) L ((LR)R = L).

True. 

e) L1, L2 ((L1 L2)* = L1* L2*).  

False. Counterexample: L1 = {a}.  L2 = {b}.  (L1 L2)* = (ab)*.  L1* L2* = a*b*.
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f) L1, L2 ((L1*L2*L1*)* = (L2  L1)*).

True. 

g) L1, L2 ((L1  L2)* = L1*  L2*).  

False. Counterexample:  L1 = {a}.  L2 = {b}.  (L1  L2)* = (a  b)*.  L1*  L2* = a*  b*. 

h) L1, L2, L3 ((L1  L2) L3 = (L1 L3)  (L2 L3)).  

True. 

i) L1, L2, L3 ((L1 L2)  L3 = (L1  L3) (L2  L3)).  

False. Counterexample: L1 = {a}.  L2 = {b}. L3 = {c}.            (L1 L2)  L3 = {ab, c}.
          (L1  L3) (L2  L3) = (a  c)(b  c)

= {ab, ac, cb, cc}

j) L ((L+)* = L*).  

True. 

k) L (L* = {}). 

False. For any L, and thus for any L*, L = .

l) L (  L+ = L*).

False.   L+ = L+, but it is not true that L+ = L* unless L includes .

m) L1, L2 ((L1  L2)* = (L2  L1)*).

True. 
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3 The Big Picture: A Language Hierarchy
1) Consider the following problem: Given a digital circuit C, does C output 1 on all inputs?  Describe this problem 

as a language to be decided.

L = {<C> : C is a digital circuit that outputs 1 on all inputs}.  <C> is a string encoding of a circuit C.  

2) Using the technique we used in Example 3.8 to describe addition, describe square root as a language recognition 
problem.

SQUARE-ROOT = {w of the form : <integer1>, <integer2>, where integer2 is the square root of integer1}.

3) Consider the problem of encrypting a password, given an encryption key.  Formulate this problem as a language 
recognition problem.  

L = {x; y; z : x is a string, y is the string encoding of an encryption key, and z is the string that results from 
encrypting x using y}.

4) Consider the optical character recognition (OCR) problem: Given an array of black and white pixels, and a set 
of characters, determine which character best matches the pixel array.  Formulate this problem as a language 
recognition problem.

L = {<A, C-list, c> : A is an array of pixels, C-list is a list of characters, and c is an element of C-list with the 
property that A is a closer match to c than it is to any other element of C-list}.

5) Consider the language AnBnCn = {anbncn : n  0}, discussed in Section 3.3.3.  We might consider the following 
design for a PDA to accept AnBnCn:  As each a is read, push two a’s onto the stack.  Then pop one a for each b
and one a for each c.  If the input and the stack come out even, accept.  Otherwise reject.  Why doesn’t this 
work?

This PDA will accept all strings in AnBnCn.  But it will accept others as well.  For example, aabccc.

6) Define a PDA-2 to be a PDA with two stacks (instead of one).  Assume that the stacks can be manipulated 
independently and that the machine accepts iff it is in an accepting state and both stacks are empty when it runs 
out of input.  Describe the operation of a PDA-2 that accepts AnBnCn = {anbncn : n  0}.  (Note: we will see, in 
Section 17.5.2, that the PDA-2 is equivalent to the Turing machine in the sense that any language that can be 
accepted by one can be accepted by the other.)

M will have three states.  In the first, it has seen only a’s.  In the second, it has seen zero or more a’s, followed 
by one or more b’s.  In the third, it has seen zero or more a’s, one or more b’s, and one or more c’s.  In state 1, 
each time it sees an a, it will push it onto both stacks.  In state 2, it will pop one a for each b it sees.  In state 3, 
it will pop one a for each c it sees.  It will accept if both stacks are empty when it runs out of input. 
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4 Some Important Ideas Before We Start
1) Describe in clear English or pseudocode a decision procedure to answer the question: given a list of integers N

and an individual integer n, is there any element of N that is a factor of n?

decidefactor(n: integer, N: list of integers) =
     For each element i of N do:
          If i is a factor of n, then halt and return True.
     Halt and return False.

2) Given a Java program p and the input 0, consider the question, “Does p ever output anything?”
a) Describe a semidecision procedure that answers this question.

Run p on 0.  If it ever outputs something, halt and return True.

b) Is there an obvious way to turn your answer to part (a) into a decision procedure?

No and there isn’t any other way to create a decision procedure either.

3) Let L = {w  {a, b}*: w = wR}.  What is chop(L)? 

chop(L) = {w  {a, b}*: w = wR and |w| is even}.

4) Are the following sets closed under the following operations?  Prove your answer.  If a set is not closed under 
the operation, what is its closure under the operation?

a) L = {w  {a, b}* : w ends in a} under the function odds, defined on strings as follows: odds(s) = the string 
that is formed by concatenating together all of the odd numbered characters of s.  (Start numbering the 
characters at 1.)  For example, odds(ababbbb) = aabb.

Not closed.  If |w| is even, then the last character of odds(w) will be the next to the last character of w, 
which can be either a or b.  For any w, |odds(w)|  |w|, and the shortest string in L has length 1.  So the 
closure is {a, b}+.

b) FIN (the set of finite languages) under the function oddsL, defined on languages as follows:
        oddsL(L) = {w : xL (w = odds(x))} 

FIN is closed under the function OddsL.  Each string in L can contribute at most one string to OddsL(L).  
So |OddsL(L)|  |L|.

c) INF (the set of infinite languages) under the function oddsL.

INF is closed under the function OddsL.  If INF were not closed under OddsL, then there would be some 
language L such that |L| is infinite but |OddsL(L)| were finite.  If |OddsL(L)| is finite, then there is a longest 
string in it.  Let the length of one such longest string be n.  If |L| is infinite, then there is no longest string in 
L.  So there must be some string w in L of length at least 2n + 2.  That string w will cause a string of length 
at least n + 1 to be in OddsL(L).  But if |OddsL(L)| is finite, the length of its longest string is n.  
Contradiction.

d) FIN under the function maxstring, defined in Example 8.22.  

FIN is closed under the function maxstring.  Each string in L can contribute at most one string to 
maxstring(L).  So |maxstring(L)|  |L|.
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e) INF under the function maxstring. 

INF is not closed under maxstring.  a* is infinite, but maxstring(a*) = , which is finite.

5) Let  = {a, b, c}.  Let S be the set of all languages over .  Let f be a binary function defined as follows:     
f: S  S  S

     f(x, y) = x – y
Answer each of the following questions and defend your answers:
a) Is f one-to-one?

No, f is not one-to-one.  Counterexample: {a, b, c} - {b, c} = {a} and {a, b} - {b} = {a}.

b) Is f onto?

Yes, f is onto.  For any language L, L -  = L.  

c) Is f commutative?

No. f is not commutative.  Counterexample: {a, b} - {b} = {a}, but {b} - {a, b} = .

6) Describe a program, using choose, to:
a) Play Sudoku .
b) Solve Rubik’s Cube®.
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Part II: Regular Languages

5 Finite State Machines
1) Give a clear English description of the language accepted by the following FSM:

All strings of a's and b's consisting of an even number of a's, followed by at least one b, followed by zero or an 
odd number of a's.

2) Build a deterministic FSM for each of the following languages:
a) {w  {a, b}* : every a in w is immediately preceded and followed by b}.

                                          b
     b

1           b       2 3
   a

b) {w  {a, b}* : w does not end in ba}.

      a

1
                                     a

           b 2
                                   a

3              b

        b
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c) {w  {0, 1}* : w corresponds to the binary encoding, without leading 0’s, of natural numbers that are 
evenly divisible by 4}.

d) {w  {0, 1}* : w corresponds to the binary encoding, without leading 0’s, of natural numbers that are 
powers of 4}.

  0

1 0

e) {w  {0-9}* : w corresponds to the decimal encoding, without leading 0’s, of an odd natural number}.

2, 4, 6, 8                  even

               odd

                1, 3, 5, 7, 9        even

odd

f) {w  {0, 1}* : w has 001 as a substring}.
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g) {w  {0, 1}* : w does not have 001 as a substring}.

h) {w  {a, b}* : w has bbab as a substring}.

            a       a, b
       a     b

  a b
          b             b

              a

i) {w  {a, b}* : w has neither ab nor bb as a substring}.

       a
       a

         a
       b

j) {w  {a, b}* : w has both aa and bb as a substrings}.

a
  

       a               b
       a       b

b            a a, b

         a
       b    b     a                       a

           b          b

k) {w  {a, b}* : w contains at least two b’s that are not immediately followed by a’s}.

            a      a, b
       a     a

  b   
          b             b
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l) The set of binary strings with at most one pair of consecutive 0’s and at most one pair of consecutive 1’s.

  
       0               1  1

      0   
1            0

                0      1
         0 

       1    1     0                       0

                  1

m) {w  {0, 1}* : none of the prefixes of w ends in 0}.

n) {w {a, b}*: (#a(w) + 2#b(w)) 5 0}. (#aw is the number of a’s in w). 

3) Consider the children’s game Rock, Paper, Scissors .  We’ll say that the first player to win two rounds wins 
the game.  Call the two players A and B.  
a) Define an alphabet  and describe a technique for encoding Rock, Paper, Scissors games as strings over .  

(Hint: each symbol in  should correspond to an ordered pair that describes the simultaneous actions of A
and B.)

Let  have 9 characters.  We’ll use the symbols a - i to correspond to the following events.  Let the first 
element of each pair be A’s move.  The second element of each pair will be B’s move.

a b c d e f g h i
R, R R, P R, S P, P P, R P, S S, S S, P S, R

A Rock, Paper, Scissors game is a string of the symbols a - i.  We’ll allow strings of arbitrary length, but 
once one player as won two turns, no further events affect the outcome of the match.

b) Let LRPS be the language of Rock, Paper, Scissors games, encoded as strings as described in part (a), that 
correspond to wins for player A.  Show a DFSM that accepts LRPS.

In the following diagram, a state with the name (n, m) corresponds to the case where player A has won n
games and player B has one m games.
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0,0 c, h, e 1,0 c, h, e A wins

    i, f, b    i, f, b

         c, h, e

0,1 c, h, e 1,1

          i, f, b
      i, f, b

B wins

In addition, from every state, there is a transition back to itself labeled a, d, g (since the match status is 
unchanged if both players make the same move). And, from the two winning states, there is a transition 
back to that same state with all other labels (since, once someone has won, future events don’t matter).

4) If M is a DFSM and   L(M), what simple property must be true of M?

The start state of M must be an accepting state.

5) Consider the following NDFSM M:

For each of the following strings w, determine whether w  L(M):
a) aabbba. Yes.
b) bab. No.
c) baba. Yes.
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6) Show a possibly nondeterministic FSM to accept each of the following languages:
a) {anbam : n, m  0, n 3 m}.

b) {w  {a, b}* : w contains at least one instance of aaba, bbb or ababa}.

a b a a, b

    a, b a

b b b    a, b

  a

b a b a
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c) L = {w  {0-9}* : w represents the decimal encoding of a natural number whose encoding contains, as a 
substring, the encoding of a natural number that is divisible by 3}.

Note that 0 is a natural number that is divisible by 3.  So any string that contains even one 0, 3, 6, or 9 is in 
L, no matter what else it contains.  Otherwise, to be in L, there must be a sequence of digits whose sum 
equals 0 mod 3.  

0,3,6,9

0-9 0-9  

      
     2,5,8               2,5,8

    
              1,4,7            1,4,7          1,4,7

2,5,8
2,5,8           

d) {w  {0, 1}* : w contains both 101 and 010 as substrings}.

                 0,1                                                                                                 0,1

                              0                        1                        0                        1
                                                                                                                                                           0, 1
                                                                                                                     0
                    1
                                                                                    0
                             0    1                                                                                                     1
                                                 

                                                                         1                                                    0
                                             

                                                                                                          0
                                                                                   0                         1                                    1
                                                                
                                                         0, 1

e) {w  {0, 1}* : w corresponds to the binary encoding of a positive integer that is divisible by 16 or is odd}.

          0,1 

1      

                                                                  0

 0          0            0          0          

  
       0,1                
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f) {w  {a, b, c, d, e}* : |w|  2 and w begins and ends with the same symbol}.

Guess which of the five symbols it is.  Go to a state for each.  Then, from each such state, guess that the 
next symbol is not the last and guess that it is.

7) Show an FSM (deterministic or nondeterministic) that accepts L = {w  {a, b, c}* : w contains at least one 
substring that consists of three identical symbols in a row}.  For example:

 The following strings are in L: aabbb, baacccbbb.
 The following strings are not in L: , aba, abababab, abcbcab.

               a,b,c

a         a           a

                                                           a,b,c     

 b          b            b          

       
a,b,c                 a,b,c                            

c           c           c           

8) Show a deterministic FSM to accept each of the following languages.  The point of this exercise is to see how 
much harder it is to build a deterministic FSM for tasks like these than it is to build an NDFSM.  So do not 
simply built an NDFSM and then convert it. But do, after you build a DFSM, build an equivalent NDFSM.
a) {w  {a, b}* : the fourth from the last character is a}.
b) {w  {a, b}* : x, y  {a, b}* : ((w = x abbaa y)  (w = x baba y))}.

9) For each of the following NDFSMs, use ndfsmtodfsm to construct an equivalent DFSM.  Begin by showing the 
value of eps(q) for each state q:
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a)

b)

c)

a)
s eps(s)
q0 {q0, q1, q3}
q1 {q1, q3}
q2 {q2}
q3 {q3}
q4 {q2, q4, q5}
q5 {q5}

{q0, q1, q3} 0 {q2, q4, q5}
1 {q0, q1, q3}

{q2, q4, q5} 0 {q2, q4, q5}
1 {q1, q3, q5}

{q1, q3, q5} 0 {q2, q4, q5}
1 { }

          1                                        0                                                   0

0,1,3 0 2,4,5 1 1,3,5
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b)

c)

s eps(s)
q0 {q0, q1}
q1 {q1}
q2 {q2}
q3 {q3, q0, q1}
q4 {q4}
q5 {q5}

{q0, q1} a {q2, q4}
b {q0, q1, q3}

{q2, q4} a {q1, q2, q4}
b {q0, q1, q3, q5}

{q0, q1, q3} a {q2, q4,}
b {q0, q1, q3}

{q1, q2, q4} a {q1, q2, q4}
b {q0, q1, q3, q5}

{q0, q1, q3, q5} a {q2, q4}
b {q0, q1, q3}

Accepting state is {q0, q1, q3, q5}. 1
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10) Let M be the following NDFSM.  Construct (using ndfsmtodfsm), a DFSM that accepts L(M).

1) Complete by creating Dead state D and adding the transitions: {3, a, D}, {5, b, D}, {4, a, D}, {7, a, D}, 
{D, a, D}, {D, b, D}.

2) Convert to deterministic:
eps{1} = {1, 2, 4}

{1, 2, 4}, a, {3, D}
{1, 2, 4}, b, {5, 6}
{3, D}, a, {D}
{3, D}, b {5, D}
{5, 6}, a, {3, 7}
{5, 6}, b, {D, 6}
{D}, a, {D}
{D}, b, {D}
{5, D}, a, {3, D}
{5, D}, b, {D}
{3, 7}, a, {D}
{3, 7}, b, {5, 6}
{D, 6}, a, {D, 7}
{D, 6}, b, {D, 6}
{D, 7}, a , {D}
{D, 7}, b, {D, 6}
All these states are accepting except {D}.

3) Swap accepting and nonnonaccepting states, making all states nonaccepting except {D).
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11) For each of the following languages L:
(i) Describe the equivalence classes of L.
(ii) If the number of equivalence classes of L is finite, construct the minimal DFSM that accepts L.

a) {w  {0, 1}* : every 0 in w is immediately followed by the string 11}.

[1] {in L}
[2] {otherwise in L except ends in 0}
[3] {otherwise in L except ends in 01}
[D] {corresponds to the Dead state: string contains at least one instance of 00 or 010}

  1

[1] 0 [2] 1 [3]

  0                      0
       1 

D

    0,1

b) {w  {0, 1}* : w has either an odd number of 1’s and an odd number of 0’s or it has an even number of 
1’s and an even number of 0’s}.

c) {w  {a, b}* : w contains at least one occurrence of the string aababa}.

d) {wwR : w  {a, b}*}.

[1] {} in L
[2] {a}
[3] {b}
[4] {aa} in L
[5] {ab}

And so forth.  Every string is in a different equivalence class because each could become in L if followed 
by the reverse of itself but not if followed by most other strings.  This language is not regular.

e) {w  {a, b}* : w contains at least one a and ends in at least two b’s}.

f) {w  {0, 1}* : there is no occurrence of the substring 000 in w}.
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