






Solutions to Problems in  
Chapter 3: Nuclear Composition and Size 
 
 
3.1. (a) The initial kinetic energy, E0, is equal to the Coulombic potential at the point of closest approach, so 
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(b) Using E0 = 8 MeV, Z = 79, z = 2 and the value of the Coulomb constant 
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we find b = 28.4 fm. 
 
 
3.2. Data may be analyzed on the basis of equation (3.12).  This may be written in terms of the incident energy, E, as 
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Measurements are made for a fixed angle, θ, as a function of energy.  Since the detector will subtend a sold angle, 
Ω, the total cross section for scattering into the detector will be 
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The number of scattered particles observed will be proportional to σ and hence to E -2. 
 
 
3.3. The minimum energy will occur for an impact parameter b = 0.  In this case the initial kinetic energy, E0, is 
equal to the Coulomb potential when the distance between the nuclei is such that their surfaces are just in contact.  
This distance is 

 
Aud R Rα= +  

 
Using R0 = 1.2*A1/3 fm then 

 
1/ 3 1/ 31.2* 4 197d  = +  = 8.89 fm. 

 
Equating the energies gives 
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Using Z = 79 and z = 2 gives the energy E0 = 25.6 MeV. 
 
 
3.4. (a) The scattering angle, θ, is related to the impact parameter, b, as 
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Solving for b and expressing the velocity in terms of the initial kinetic energy, E0; 
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Using Z = 79, z = 2, E0 = 8 MeV and θ, = 90° gives 
 

14.2b = fm. 
 
(b) Conservation of energy gives 
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where the subscript c denotes the point of closest approach.  Conservation of angular momentum gives 
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Solving for vc and substituting into the expression for E0 gives 
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Substituting E0 = 8 MeV and b = 14.2 fm gives a quadratic in rc; 
 

28 228 1618 0c cr r− − = . 
 
Solving for rc gives rc = 34.4 fm. 
 
(c) The kinetic energy will be 
 

2
2

0 2

1
2c c

c

bE mv E
r

= = . 

 
Substituting numerical values gives Ec = 1.36 MeV. 
 
3.5. The radius of a 208Pb nucleus is R0 = 1.2*A1/3 = 7.11 fm. The volume (assuming a well defined edge at R0) is 

 2
 



3
0

4 1505
3

V Rπ= = fm3 

 
The number of nucleons is 208 so assuming a uniform density inside R0 the number of nucleons per unit volume is 

 

( )0 0.1A
V

ρ = = 38  nucleons/fm3. 

 
This is consistent with the more detailed picture, Figure 3.9.  Since one nucleon has a mass of ≈1 u then 

 
( )0 0.13ρ = 8 u/fm3. 

 
In more conventional units this is 

 
( ) 250 2.3 10ρ −= × g/fm3 

 
or 

 
( ) 140 2.3 10ρ = × g/cm3 

 
 
 
3.6. (a) All three nuclei have ρ(0) ≈ 0.16 fm-3. The values of r90 and r10 are found so that 
 

( )90 0.9 0.16 0.144rρ = × = fm-3 

( )10 0.1 0.16 0.016rρ = × = fm-3. 
 
The width of the surface region is then given as r10 – r90.  Reading values from the graph gives values in the table. 
 

nucleus r10 (fm) r90 (fm) (r10 – r90) (fm) 
16O 3.6 1.2 2.4 

118Sn 6.3 3.9 2.4 
197Au 7.7 5.3 2.4 

 
(b) Using equation (2.4) and assuming 
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we find that 
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This gives 
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and 
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Either equation may be solved to give a = 0.55 fm. 
 
 
3.7. (a) We write equation (3.9) as 
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Using Z=79 and z=2.  This gives 
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For the angles given we find 

 
 

θ (°) σ (fm2) 
1 5.3×106 
5 2.1×105 

20 1.3×104 
 
 

(b) We write equation (3.12) as 
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And substituting values as above 
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This gives the following results 

 
θ (°) σ (fm2sr-1) 

1 5.6×109 
5 8.9×106 

20 3.6×104 
 

 
 
3.8. The relativistic scattering cross section is given as 
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We define the relative size of the relativistic correction as 
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For E = 0.1 MeV then mv2/2<<mc2 and we calculate 
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For E = 1 MeV or 100 MeV the E > mc2 so v  ≈ c giving v2/c2 = 1.  Using these values in the above expression gives 
the results in the table. 

 
E (MeV) v2/c2 θ  (°) f 

0.1 0.39 20 0.011 
0.1 0.39 90 0.195 
1.0 1.0 20 0.12 
1.0 1.0 90 0.5 
100 1.0 20 0.12 
100 1.0 90 0.5 

 
 
 

3.9. We define the central part of the nucleus as r < r90.  The volume of the central region is therefore 3
90

4
3

rπ  and 

the number of nucleons in this volume is 
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The fraction of surface nucleons will be 
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Reading values from the appropriate graphs gives the values in the table. 
 

nucleus r90 (fm) Ncore f 
16O 1.2 1.2 0.92 

118Sn 3.9 40 0.63 
197Au 5.3 100 0.52 

 
 
3.10. (a) Conservation of energy gives 
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This may be rearranged to give 
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Conservation of momentum gives 
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Combining these expressions yields 
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Using this with the conservation of momentum equation gives 
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The recoil energy (kinetic energy) is obtained from this as 
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Using 
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this may be rewritten as 
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(b) Using mα = 4.0015 u and Eαi = 10 MeV we obtain the following results: 

 
nucleus mA (u) RA (MeV) 

16O 15.995 6.4 
118Sn 117.902 1.27 
197Au 196.967 0.78 
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