SOLUTIONS MANUAL

SOLUTIONS MANUAL

SOLUTIONS MANUAL

Solutions to Problems in

Chapter 3: Nuclear Composition and Size

3.1. (a) The initial kinetic energy, E_{0}, is equal to the Coulombic potential at the point of closest approach, so

$$
E_{0}=\frac{Z z e^{2}}{4 \pi \varepsilon_{0} d}
$$

Then

$$
d=\frac{Z z e^{2}}{4 \pi \varepsilon_{0} E_{0}}
$$

(b) Using $E_{0}=8 \mathrm{MeV}, Z=79, z=2$ and the value of the Coulomb constant

$$
\frac{e^{2}}{4 \pi \varepsilon_{0}}=1.44 \mathrm{MeV} \cdot \mathrm{fm}
$$

we find $b=28.4 \mathrm{fm}$.
3.2. Data may be analyzed on the basis of equation (3.12). This may be written in terms of the incident energy, E, as

$$
\frac{d \sigma}{d \Omega}=\left(\frac{Z z e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}\left(\frac{1}{4 E}\right)^{2} \csc ^{4}\left(\frac{\theta}{2}\right)
$$

Measurements are made for a fixed angle, θ, as a function of energy. Since the detector will subtend a sold angle, Ω, the total cross section for scattering into the detector will be

$$
\sigma=\int \frac{d \sigma}{d \Omega} d \Omega=2 \pi\left(\frac{Z z e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}\left(\frac{1}{4 E}\right)^{2} \int \csc ^{4}\left(\frac{\theta}{2}\right) \sin \theta d \theta
$$

The number of scattered particles observed will be proportional to σ and hence to E^{-2}.
3.3. The minimum energy will occur for an impact parameter $b=0$. In this case the initial kinetic energy, E_{0}, is equal to the Coulomb potential when the distance between the nuclei is such that their surfaces are just in contact. This distance is

$$
d=R_{\alpha}+R_{\mathrm{Au}}
$$

Using $R_{0}=1.2 * \mathrm{~A}^{1 / 3} \mathrm{fm}$ then

$$
d=1.2 *\left[4^{1 / 3}+197^{1 / 3}\right]=8.89 \mathrm{fm} .
$$

Equating the energies gives

$$
E_{0}=\frac{Z z e^{2}}{4 \pi \varepsilon_{0} d}
$$

Using $Z=79$ and $z=2$ gives the energy $E_{0}=25.6 \mathrm{MeV}$.
3.4. (a) The scattering angle, θ, is related to the impact parameter, b, as

$$
\tan \frac{\theta}{2}=\frac{Z z e^{2}}{4 \pi \varepsilon_{0} m v_{0}^{2} b}
$$

Solving for b and expressing the velocity in terms of the initial kinetic energy, E_{0};

$$
b=\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z z}{2 E_{0} \tan \frac{\theta}{2}} .
$$

Using $Z=79, z=2, E_{0}=8 \mathrm{MeV}$ and $\theta,=90^{\circ}$ gives

$$
b=14.2 \mathrm{fm} .
$$

(b) Conservation of energy gives

$$
E_{0}=\frac{1}{2} m v_{c}^{2}+\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z z}{r_{c}}
$$

where the subscript c denotes the point of closest approach. Conservation of angular momentum gives

$$
m v_{0} b=m v_{c} r_{c}
$$

Solving for v_{c} and substituting into the expression for E_{0} gives

$$
E_{0}=E_{0} \frac{b^{2}}{r_{c}^{2}}+\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z z}{r_{c}}
$$

Substituting $E_{0}=8 \mathrm{MeV}$ and $b=14.2 \mathrm{fm}$ gives a quadratic in r_{c};

$$
8 r_{c}^{2}-228 r_{c}-1618=0
$$

Solving for r_{c} gives $r_{c}=34.4 \mathrm{fm}$.
(c) The kinetic energy will be

$$
E_{c}=\frac{1}{2} m v_{c}^{2}=E_{0} \frac{b^{2}}{r_{c}^{2}} .
$$

Substituting numerical values gives $E_{c}=1.36 \mathrm{MeV}$.
3.5. The radius of a ${ }^{208} \mathrm{~Pb}$ nucleus is $R_{0}=1.2 * \mathrm{~A}^{1 / 3}=7.11 \mathrm{fm}$. The volume (assuming a well defined edge at R_{0}) is

$$
V=\frac{4}{3} \pi R_{0}^{3}=1505 \mathrm{fm}^{3}
$$

The number of nucleons is 208 so assuming a uniform density inside R_{0} the number of nucleons per unit volume is

$$
\rho(0)=\frac{A}{V}=0.138 \text { nucleons } / \mathrm{fm}^{3}
$$

This is consistent with the more detailed picture, Figure 3.9. Since one nucleon has a mass of $\approx 1 \mathrm{u}$ then

$$
\rho(0)=0.138 u / \mathrm{fm}^{3}
$$

In more conventional units this is

$$
\rho(0)=2.3 \times 10^{-25} \mathrm{~g} / \mathrm{fm}^{3}
$$

or

$$
\rho(0)=2.3 \times 10^{14} \mathrm{~g} / \mathrm{cm}^{3}
$$

3.6. (a) All three nuclei have $\rho(0) \approx 0.16 \mathrm{fm}^{-3}$. The values of r_{90} and r_{10} are found so that

$$
\begin{aligned}
& \rho\left(r_{90}\right)=0.9 \times 0.16=0.144 \mathrm{fm}^{-3} \\
& \rho\left(r_{10}\right)=0.1 \times 0.16=0.016 \mathrm{fm}^{-3}
\end{aligned}
$$

The width of the surface region is then given as $r_{10}-r_{90}$. Reading values from the graph gives values in the table.

nucleus	$r_{10}(\mathrm{fm})$	$r_{90}(\mathrm{fm})$	$\left(r_{10}-r_{90}\right)(\mathrm{fm})$
${ }^{16} \mathrm{O}$	3.6	1.2	2.4
${ }^{118} \mathrm{Sn}$	6.3	3.9	2.4
${ }^{197} \mathrm{Au}$	7.7	5.3	2.4

(b) Using equation (2.4) and assuming

$$
r_{90}=R_{0}-1.2 \times 2.4=R_{0}-1.2(\mathrm{fm})
$$

we find that

$$
r_{10}=R_{0}+1.2(\mathrm{fm})
$$

This gives

$$
\rho_{90}=\frac{0.16}{1+\exp \left[-\frac{1.2}{a}\right]}
$$

and

$$
\rho_{10}=\frac{0.0144}{1+\exp \left[+\frac{1.2}{a}\right]}
$$

Either equation may be solved to give $a=0.55 \mathrm{fm}$.
3.7. (a) We write equation (3.9) as

$$
\sigma=\pi\left(\frac{Z z e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}\left(\frac{1}{4 E}\right)^{2} \cot ^{2}\left(\frac{\theta}{2}\right)
$$

Using $Z=79$ and $z=2$. This gives

$$
\sigma=3.14\left(\frac{79 \cdot 2 \cdot 1.44}{2 \cdot 10}\right)^{2} \cot ^{2}\left(\frac{\theta}{2}\right)=406 \cdot \cot ^{2}\left(\frac{\theta}{2}\right) \quad \mathrm{fm}^{2}
$$

For the angles given we find

$\theta\left({ }^{\circ}\right)$	$\sigma\left(\mathrm{fm}^{2}\right)$
1	5.3×10^{6}
5	2.1×10^{5}
20	1.3×10^{4}

(b) We write equation (3.12) as

$$
\frac{d \sigma}{d \Omega}=\left(\frac{Z z e^{2}}{4 \pi \varepsilon_{0}}\right)^{2}\left(\frac{1}{4 E}\right)^{2} \csc ^{4}\left(\frac{\theta}{2}\right)
$$

And substituting values as above

$$
\frac{d \sigma}{d \Omega}=32.4 \cdot \csc ^{4}\left(\frac{\theta}{2}\right) \quad \mathrm{fm}^{2} \mathrm{sr}^{-1}
$$

This gives the following results

$\theta\left({ }^{\circ}\right)$	$\sigma\left(\mathrm{fm}^{2} \mathrm{sr}^{-1}\right)$
1	5.6×10^{9}
5	8.9×10^{6}
20	3.6×10^{4}

3.8. The relativistic scattering cross section is given as

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\text {rel }}=\left(\frac{d \sigma}{d \Omega}\right)_{\text {nonrel }}\left[1-\frac{v^{2}}{c^{2}} \sin ^{2} \frac{\theta}{2}\right] .
$$

We define the relative size of the relativistic correction as

$$
f=\frac{\left|\left(\frac{d \sigma}{d \Omega}\right)_{\text {rel }}-\left(\frac{d \sigma}{d \Omega}\right)_{\text {nonrel }}\right|}{\left(\frac{d \sigma}{d \Omega}\right)_{\text {nonrel }}}=\frac{v^{2}}{c^{2}} \sin ^{2} \frac{\theta}{2} .
$$

For $E=0.1 \mathrm{MeV}$ then $m v^{2} / 2 \ll m c^{2}$ and we calculate

$$
\frac{v^{2}}{c^{2}}=\frac{2\left(\frac{1}{2} m v^{2}\right)}{c^{2}}=\frac{0.2}{0.511}=0.39
$$

For $E=1 \mathrm{MeV}$ or 100 MeV the $E>m c^{2}$ so $v \approx c$ giving $v^{2} / c^{2}=1$. Using these values in the above expression gives the results in the table.

$E(\mathrm{MeV})$	v^{2} / c^{2}	$\theta\left({ }^{\circ}\right)$	f
0.1	0.39	20	0.011
0.1	0.39	90	0.195
1.0	1.0	20	0.12
1.0	1.0	90	0.5
100	1.0	20	0.12
100	1.0	90	0.5

3.9. We define the central part of the nucleus as $r<r_{90}$. The volume of the central region is therefore $\frac{4}{3} \pi r_{90}{ }^{3}$ and the number of nucleons in this volume is

$$
N_{\text {core }}=\rho_{0} \frac{4}{3} \pi r_{90}^{3}
$$

The fraction of surface nucleons will be

$$
f=\frac{N_{\text {surf }}}{N_{\text {total }}}=\frac{N_{\text {total }}-N_{\text {core }}}{N_{\text {total }}}=\frac{A-N_{\text {core }}}{A}
$$

Reading values from the appropriate graphs gives the values in the table.

nucleus	$r_{90}(\mathrm{fm})$	$N_{\text {core }}$	f
${ }^{16} \mathrm{O}$	1.2	1.2	0.92
${ }^{118} \mathrm{Sn}$	3.9	40	0.63
${ }^{197} \mathrm{Au}$	5.3	100	0.52

3.10. (a) Conservation of energy gives

$$
m_{\alpha}\left(v_{\alpha i}{ }^{2}-v_{\alpha f}{ }^{2}\right)=m_{\mathrm{A}} v_{\mathrm{Af}}{ }^{2} .
$$

This may be rearranged to give

$$
m_{\alpha}\left(v_{\alpha i}-v_{\alpha f}\right)\left(v_{\alpha i}+v_{\alpha f}\right)=m_{\mathrm{A}} v_{\mathrm{A} f}^{2} .
$$

Conservation of momentum gives

$$
m_{\alpha}\left(v_{\alpha i}-v_{\alpha f}\right)=m_{\mathrm{A}} v_{\mathrm{A} f}
$$

Combining these expressions yields

$$
v_{\alpha i}+v_{\alpha f}=v_{\mathrm{A} f} .
$$

Using this with the conservation of momentum equation gives

$$
v_{\mathrm{Af} f}=2 \frac{m_{\alpha} v_{\alpha i}}{m_{\alpha}+m_{\mathrm{A}}}
$$

The recoil energy (kinetic energy) is obtained from this as

$$
R_{\mathrm{A}}=\frac{2 m_{\mathrm{A}} m_{\alpha}{ }^{2} v_{\alpha i}^{2}}{\left(m_{\alpha}+m_{\mathrm{A}}\right)^{2}} .
$$

Using

$$
E_{\alpha i}=\frac{1}{2} m_{\alpha} v_{\alpha i}^{2}
$$

this may be rewritten as

$$
R_{\mathrm{A}}=\frac{4 m_{\alpha} m_{\mathrm{A}} E_{\alpha i}}{\left(m_{\alpha}+m_{\mathrm{A}}\right)^{2}}
$$

(b) Using $m_{\alpha}=4.0015 \mathrm{u}$ and $E_{\alpha i}=10 \mathrm{MeV}$ we obtain the following results:

nucleus	$m_{\mathrm{A}}(\mathrm{u})$	$R_{\mathrm{A}}(\mathrm{MeV})$
${ }^{16} \mathrm{O}$	15.995	6.4
${ }^{118} \mathrm{Sn}$	117.902	1.27
${ }^{197} \mathrm{Au}$	196.967	0.78

