SOLUTIONS MANUAL

SOLUTIONS MANUAL

SOLUTIONS MANUAL

Chapter 2

An Introduction to Linear Programming

Learning Objectives

1. Obtain an overview of the kinds of problems linear programming has been used to solve.
2. Learn how to develop linear programming models for simple problems.
3. Be able to identify the special features of a model that make it a linear programming model.
4. Learn how to solve two variable linear programming models by the graphical solution procedure.
5. Understand the importance of extreme points in obtaining the optimal solution.
6. Know the use and interpretation of slack and surplus variables.
7. Be able to interpret the computer solution of a linear programming problem.
8. Understand how alternative optimal solutions, infeasibility and unboundedness can occur in linear programming problems.
9. Understand the following terms:
problem formulation feasible region
constraint function
objective function
solution
optimal solution
nonnegativity constraints
mathematical model
linear program
slack variable
standard form
redundant constraint
extreme point
surplus variable
alternative optimal solutions
infeasibility
linear functions
unbounded
feasible solution

Chapter 2

Solutions:

1. a, b, and e , are acceptable linear programming relationships.
c is not acceptable because of $-2 B^{2}$
d is not acceptable because of $3 \sqrt{A}$
f is not acceptable because of $1 A B$
c , d , and f could not be found in a linear programming model because they have the above nonlinear terms.
2. a .

b.

c.

3. a.

b.

c.

4. a.

2-3
© 2010 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Chapter 2

b.

c.

5.

6.
$7 A+10 B=420$ is labeled (a)
$6 A+4 B=420$ is labeled (b)
$-4 A+7 B=420$ is labeled (c)

7.

Chapter 2

8.

9.

10.

$$
\begin{align*}
& A+2 B=6 \tag{1}\\
& 5 A+3 B=15 \tag{2}\\
& 5 A+10 B=30 \tag{3}\\
& \text { (2) } \begin{aligned}
-(3) \quad-7 B & =-15 \\
B & =15 / 7
\end{aligned}
\end{align*}
$$

From (1), $A=6-2(15 / 7)=6-30 / 7=12 / 7$

Chapter 2

11.

12. a.

c. There are four extreme points: $(0,0),(4,0),(3,1,5)$, and $(0,3)$.
13. a.

b. The extreme points are $(5,1)$ and $(2,4)$.

Chapter 2

c.

14. a. Let $F=$ number of tons of fuel additive
$S=$ number of tons of solvent base

Max	$40 F$	+	$30 S$			
s.t.						
	$2 / 5 F$	+	$1 / 2 S$		200	Material 1
			$1 / 5 \mathrm{~S}$		5	Material 2
	3/5 F	+	$3 / 10 \mathrm{~S}$		21	Material 3
	, $\mathrm{S}^{2} 0$					

b.

c. Material 2: 4 tons are used, 1 ton is unused.
d. No redundant constraints.
15. a.

b. Similar to part (a): the same feasible region with a different objective function. The optimal solution occurs at $(708,0)$ with a profit of $z=20(708)+9(0)=14,160$.
c. The sewing constraint is redundant. Such a change would not change the optimal solution to the original problem.
16. a. A variety of objective functions with a slope greater than $-4 / 10$ (slope of $I \& P$ line) will make extreme point $(0,540)$ the optimal solution. For example, one possibility is $3 S+9 D$.
b. Optimal Solution is $S=0$ and $D=540$.
c.

Department	Hours Used	Max. Available	Slack
Cutting and Dyeing	$1(540)=540$	630	90
Sewing	$5 / 6(540)=450$	600	150
Finishing	$2 / 3(540)=360$	708	348
Inspection and Packaging	$1 / 4(540)=135$	135	0

17.

$$
\begin{array}{lcccc}
\text { Max } & 5 A+2 B+0 S_{1}+0 S_{2}+0 S_{3} & \\
\text { s.t. } & \\
& 1 A-2 B+1 S_{1} & & \\
& 2 A+3 B & & \\
& 6 A-1 B & & \\
& A, B, S_{1}, S_{2}, S_{3} \geq 0
\end{array}
$$

18. a .

$$
\begin{array}{lrl}
\text { Max } & 4 A+1 B+0 S_{1}+0 S_{2}+0 S_{3} \\
\text { s.t. } & & \\
& 10 A+2 B+1 S_{1} & =30 \\
& 3 A+2 B & =12 \\
& 2 A+2 B & \\
& A, B, S_{1}, S_{2}, S_{3} \geq 0
\end{array}
$$

b.

c. $\quad S_{1}=0, S_{2}=0, S_{3}=4 / 7$
19. a.

$$
\begin{align*}
& \operatorname{Max} 3 A+4 B+0 S_{1}+0 S_{2}+0 S_{3} \\
& \text { s.t. } \\
& -1 A+2 B+1 S_{1}=8 \tag{1}\\
& 1 A+2 B+1 S_{2}=12 \tag{2}\\
& 2 A+1 B+1 S_{3}=16 \tag{3}\\
& A, B, S_{1}, S_{2}, S_{3} \geq 0
\end{align*}
$$

Chapter 2

b.

c. $S_{1}=8+A-2 B=8+20 / 3-16 / 3=28 / 3$
$S_{2}=12-A-2 B=12-20 / 3-16 / 3=0$
$S_{3}=16-2 A-B=16-40 / 3-8 / 3=0$
20. a.

Max $3 A+2 B$
s.t.
b.

c. $\quad S_{1}=(3.43+3.43)-4=2.86$
$S_{2}=24-[3(3.43)+4(3.43)]=0$
$S_{3}=3.43-2=1.43$
$S_{4}=0-(3.43-3.43)=0$

Chapter 2

21. a. and b.

c. Optimal solution occurs at the intersection of constraints 1 and 2. For constraint 2,

$$
B=10+A
$$

Substituting for B in constraint 1 we obtain

$$
\begin{aligned}
5 A+5(10+A) & =400 \\
5 A+50+5 A & =400 \\
10 A & =350 \\
A & =35
\end{aligned}
$$

$$
B=10+A=10+35=45
$$

Optimal solution is $A=35, B=45$
d. Because the optimal solution occurs at the intersection of constraints 1 and 2, these are binding constraints.

$$
2-16
$$

e. Constraint 3 is the nonbinding constraint. At the optimal solution $1 A+3 B=1(35)+3(45)=170$. Because 170 exceeds the right-hand side value of 90 by 80 units, there is a surplus of 80 associated with this constraint.
22. a .

b.

Extreme Point	Coordinates	Profit
1	$(0,0)$	$5(0)+4(0)=0$
2	$(1700,0)$	$5(1700)+4(0)=8500$
3	$(1400,600)$	$5(1400)+4(600)=9400$
4	$(800,1200)$	$5(800)+4(1200)=8800$
5	$(0,1680)$	$5(0)+4(1680)=6720$

Extreme point 3 generates the highest profit.
c. Optimal solution is $A=1400, C=600$
d. The optimal solution occurs at the intersection of the cutting and dyeing constraint and the inspection and packaging constraint. Therefore these two constraints are the binding constraints.
e. New optimal solution is $A=800, C=1200$

Profit $=4(800)+5(1200)=9200$
23. a. Let $E=$ number of units of the EZ-Rider produced $L=$ number of units of the Lady-Sport produced

$$
\begin{array}{lrll}
\text { Max } & 2400 E+1800 L & & \\
\text { s.t. } & & \\
& 6 E+3 L & \leq 2100 & \text { Engine time } \\
& & \leq 280 & \text { Lady-Sport maximum } \\
& 2 E+ & \leq 1000 & \text { Assembly and testing } \\
& E, L \geq 0
\end{array}
$$

b.

c. The binding constraints are the manufacturing time and the assembly and testing time.
24. a. Let $R=$ number of units of regular model.
$C=$ number of units of catcher's model.

Max	$5 R$	+	$8 C$		
s.t.					
	$1 R$	$+3 / 2 C$	\leq	900	Cutting and sewing
	$1 / 2 R$	$+1 / 3 C$	\leq	300	Finishing
	$1 / 8 R$	+	$1 / 4 C$	\leq	100

b.

c. $5(500)+8(150)=\$ 3,700$
d. $\quad \mathrm{C} \& \mathrm{~S} \quad 1(500)+3 / 2(150)=725$

F $\quad 1 / 2(500)+1 / 3(150)=300$
P \& S $\quad 1 / 8(500)+1 / 4(150)=100$
e.

Department	Capacity	Usage	Slack
C \& S	900	725	175 hours
F	300	300	0 hours
P \& S	100	100	0 hours

25. a. Let $B=$ percentage of funds invested in the bond fund
$S=$ percentage of funds invested in the stock fund
Max $\quad 0.06 B+\quad 0.10 S$
s.t.

$$
\begin{array}{rrccl}
B & & \geq & 0.3 & \text { Bond fund minimum } \\
0.06 B+ & 0.10 S & \geq & 0.075 & \text { Minimum return } \\
B+ & S & = & 1 & \\
\text { Percentage requirement }
\end{array}
$$

b. Optimal solution: $B=0.3, S=0.7$

Value of optimal solution is 0.088 or 8.8%
26. a. a. Let $N=$ amount spent on newspaper advertising

$$
R=\text { amount spent on radio advertising }
$$

Max $50 N+80 R$
s.t.

$$
\begin{array}{rlrl}
N+R & =1000 & \text { Budget } \\
N & & 250 & \text { Newspaper min. } \\
R & \geq 250 & \text { Radio min. } \\
N & -2 R & \geq 0 \text { News } \geq 2 \text { Radio }
\end{array}
$$

$$
N, R \geq 0
$$

b.

27. Let $I=$ Internet fund investment in thousands
$B=$ Blue Chip fund investment in thousands

Max $0.12 I+0.09 B$
s.t.

1 I	$+$	$1 B$	\leq	50	Available investment funds
1 I			\leq	35	Maximum investment in the internet fund
$6 I$	+	$4 B$	\leq	240	Maximum risk for a moderate investor
	$I, B \geq 0$				

Internet fund	$\$ 20,000$
Blue Chip fund	$\$ 30,000$
Annual return	$\$ 5,100$

b. The third constraint for the aggressive investor becomes

$$
6 I+4 B \leq 320
$$

This constraint is redundant; the available funds and the maximum Internet fund investment constraints define the feasible region. The optimal solution is:

Internet fund	$\$ 35,000$
Blue Chip fund	$\$ 15,000$
Annual return	$\$ 5,550$

The aggressive investor places as much funds as possible in the high return but high risk Internet fund.
c. The third constraint for the conservative investor becomes

$$
6 I+4 B \leq 160
$$

This constraint becomes a binding constraint. The optimal solution is

Internet fund	$\$ 0$
Blue Chip fund	$\$ 40,000$
Annual return	$\$ 3,600$

$$
2-21
$$

© 2010 Cengage Learning. All Rights Reserved.
May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

The slack for constraint 1 is $\$ 10,000$. This indicates that investing all $\$ 50,000$ in the Blue Chip fund is still too risky for the conservative investor. $\$ 40,000$ can be invested in the Blue Chip fund. The remaining $\$ 10,000$ could be invested in low-risk bonds or certificates of deposit.
28. a. Let $W=$ number of jars of Western Foods Salsa produced $M=$ number of jars of Mexico City Salsa produced

Max $1 W+1.25 M$
s.t.

$5 W$	$7 M$	≤ 4480	Whole tomatoes
$3 W+$	$1 M$	≤ 2080	Tomato sauce
$2 W+$	$2 M$	≤ 1600	Tomato paste
$W, M \geq 0$			

Note: units for constraints are ounces
b. Optimal solution: $W=560, M=240$

Value of optimal solution is 860
29. a. Let $B=$ proportion of Buffalo's time used to produce component 1 $D=$ proportion of Dayton's time used to produce component 1

	Maximum Daily Production Component 1 Component 2	
Buffalo	2000	1000
Dayton	600	1400

Number of units of component 1 produced: $2000 B+600 D$
Number of units of component 2 produced: $1000(1-B)+600(1-D)$

For assembly of the ignition systems, the number of units of component 1 produced must equal the number of units of component 2 produced.

Therefore,

$$
\begin{aligned}
& 2000 B+600 D=1000(1-B)+1400(1-D) \\
& 2000 B+600 D=1000-1000 B+1400-1400 D \\
& 3000 B+2000 D=2400
\end{aligned}
$$

Note: Because every ignition system uses 1 unit of component 1 and 1 unit of component 2, we can maximize the number of electronic ignition systems produced by maximizing the number of units of subassembly 1 produced.

Max $2000 B+600 D$
In addition, $B \leq 1$ and $D \leq 1$.

The linear programming model is:

Max	$2000 B+600 D$		
s.t.			
	$3000 B$	$+2000 D$	$=2400$
	B		≤ 1
		D	≤ 1
		B, D	≥ 0

The graphical solution is shown below.

Optimal Solution: $B=.8, D=0$

Optimal Production Plan

Buffalo - Component 1	$.8(2000)=1600$
Buffalo - Component 2	$.2(1000)=200$
Dayton - Component 1	$0(600)=0$
Dayton - Component 2	$1(1400)=1400$

Total units of electronic ignition system $=1600$ per day.

Chapter 2

30. a. Let $E=$ number of shares of Eastern Cable
$C=$ number of shares of ComSwitch

Max	$15 E+18 C$		
s.t.			
	$40 E+25 C$	$\leq 50,000$	Maximum Investment
	$40 E$	$\geq 15,000$	Eastern Cable Minimum
		$25 C$	$\geq 10,000$
ComSwitch Minimum			
	$E, C \geq 0$		

b.

c. There are four extreme points: $(375,400) ;(1000,400) ;(625,1000) ;(375,1000)$
d. Optimal solution is $E=625, C=1000$ Total return $=\$ 27,375$
31.

Optimal Solution
$A=3, B=1$

Objective Function Value $=13$
32.

Chapter 2

Extreme Points	Objective Function Value	Surplus Demand	Surplus Total Production	Slack Processing Time
$(A=250, B=100)$	800	125	-	-
$(A=125, B=225)$	925	-	-	125
$(A=125, B=350)$	1300	-	125	-

33. a .

Optimal Solution: $A=3, B=1$, value $=5$
b.
(1) $3+4(1)=7$
Slack $=21-7=14$
(2) $2(3)+1=7$
Surplus $=7-7=0$
(3) $3(3)+1.5=10.5$
Slack $=21-10.5=10.5$
(4) $-2(3)+6(1)=0$
Surplus $=0-0=0$
c.

Optimal Solution: $A=6, B=2$, value $=34$
34. a.

b. There are two extreme points: $(A=4, B=1)$ and $(A=21 / 4, B=9 / 4)$
c. The optimal solution is $A=4, B=1$

Chapter 2
35. a.

Min	6 A	+	$4 B$	+	S_{1}	+	S_{2}	$+$	S_{3}		
	$2 A$	+	$1 B$	-	S_{1}					$=$	12
	1 A	+	$1 B$			-	S_{2}			$=$	10
			$1 B$					+	S_{3}	$=$	4

A, $B, S_{1}, S_{2}, S_{3} \geq 0$
b. The optimal solution is $A=6, B=4$.
c. $S_{1}=4, S_{2}=0, S_{3}=0$.
36. a. Let $T=$ number of training programs on teaming $P=$ number of training programs on problem solving

Max $10,000 T+8,000 P$
s.t.

T		≥ 8	Minimum Teaming
	P	≥ 10	Minimum Problem Solving
$T+$	P	≥ 25	Minimum Total
$3 T+$	$2 P$	≤ 84	Days Available
$T, P \geq 0$			

b.

c. There are four extreme points: $(15,10) ;(21.33,10) ;(8,30) ;(8,17)$
d. The minimum cost solution is $T=8, P=17$

Total cost $=\$ 216,000$
37.

	Regular	Zesty	
Mild	80%	60%	8100
Extra Sharp	20%	40%	3000

Let $R=$ number of containers of Regular
$Z=$ number of containers of Zesty
Each container holds $12 / 16$ or 0.75 pounds of cheese

$$
\begin{aligned}
\text { Pounds of mild cheese used } & =0.80(0.75) R+0.60(0.75) Z \\
& =0.60 R+0.45 Z
\end{aligned}
$$

Pounds of extra sharp cheese used $=0.20(0.75) R+0.40(0.75) Z$

$$
=0.15 R+0.30 Z
$$

```
Cost of Cheese \(=\) Cost of mild + Cost of extra sharp
    \(=1.20(0.60 R+0.45 Z)+1.40(0.15 R+0.30 Z)\)
    \(=0.72 R+0.54 Z+0.21 R+0.42 Z\)
    \(=0.93 R+0.96 Z\)
Packaging Cost \(=0.20 R+0.20 Z\)
Total Cost \(\quad=(0.93 R+0.96 Z)+(0.20 R+0.20 Z)\)
    \(=1.13 R+1.16 Z\)
Revenue \(\quad=1.95 R+2.20 Z\)
Profit Contribution \(=\) Revenue - Total Cost
    \(=(1.95 R+2.20 Z)-(1.13 R+1.16 Z)\)
    \(=0.82 R+1.04 Z\)
    Max \(\quad 0.82 R+1.04 Z\)
    s.t.
        \(0.60 R+0.45 Z \leq 8100 \quad\) Mild
        \(0.15 R+0.30 Z \leq 3000 \quad\) Extra Sharp
        \(R, \mathrm{Z} \geq 0\)
```

Optimal Solution: $R=9600, Z=5200$, profit $=0.82(9600)+1.04(5200)=\$ 13,280$
38. a. Let $S=$ yards of the standard grade material per frame $P=$ yards of the professional grade material per frame

Min $7.50 S+9.00 P$
s.t.

$$
\begin{aligned}
& 0.10 S+0.30 P \geq 6 \\
& 0.06 S+0.12 P \leq 3 \\
& \text { carbon fiber (at least } 20 \% \text { of } 30 \text { yards) } \\
& S+P=30
\end{aligned} \begin{array}{ll}
\text { total (} 30 \text { yords) }
\end{array}
$$

b.

c.

Extreme Point	Cost
$(15,15)$	$7.50(15)+9.00(15)=247.50$
$(10,20)$	$7.50(10)+9.00(20)=255.00$

The optimal solution is $S=15, P=15$
d. Optimal solution does not change: $S=15$ and $P=15$. However, the value of the optimal solution is reduced to $7.50(15)+8(15)=\$ 232.50$.
e. At $\$ 7.40$ per yard, the optimal solution is $S=10, P=20$. The value of the optimal solution is reduced to $7.50(10)+7.40(20)=\$ 223.00$. A lower price for the professional grade will not change the $S=10, P=20$ solution because of the requirement for the maximum percentage of kevlar (10%).
39. a. Let $S=$ number of units purchased in the stock fund
$M=$ number of units purchased in the money market fund
Min $8 S+3 M$
s.t.

50S	+	100 M	\leq	1,200,000	Funds available
$5 S$	+	$4 M$	\geq	60,000	Annual income
		M	\geq	3,000	Minimum units

$$
S, M, \geq 0
$$

Optimal Solution: $S=4000, M=10000$, value $=62000$
b. Annual income $=5(4000)+4(10000)=60,000$
c. Invest everything in the stock fund.
40. Let $P_{1}=$ gallons of product 1 $P_{2}=$ gallons of product 2

Min	$1 P_{1}$	$+1 P_{2}$			
s.t.					
	$1 P_{1}$	+		\geq	30
			Product 1 minimum		
	$1 P_{1}$	$+\quad 2 P_{2}$	\geq	20	Product 2 minimum
		$P_{1}, P_{2} \geq 0$			Raw material

Optimal Solution: $P_{1}=30, P_{2}=25$ Cost $=\$ 55$
41. a. Let $R=$ number of gallons of regular gasoline produced
$P=$ number of gallons of premium gasoline produced
Max $0.30 R+0.50 P$
s.t.

$$
\begin{array}{rrrl}
0.30 R & +0.60 P & \leq 18,000 & \\
\text { Grade A crude oil available } \\
1 R & 1 P & \leq 50,000 & \text { Production capacity } \\
& 1 P & \leq 20,000 & \text { Demand for premium }
\end{array}
$$

$$
R, P \geq 0
$$

Chapter 2

b.

Gallons of Regular Gasoline

Optimal Solution:
40,000 gallons of regular gasoline
10,000 gallons of premium gasoline
Total profit contribution $=\$ 17,000$
c.

Constraint	Value of Slack Variable	Interpretation
1	0	All available grade A crude oil is used
2	0	Total production capacity is used
3	10,000	Premium gasoline production is 10,000 gallons less than the maximum demand

d. Grade A crude oil and production capacity are the binding constraints.
42.

43.

Unbounded
44. a.

b. New optimal solution is $A=0, B=3$, value $=6$.
45. a.

b. Feasible region is unbounded.
c. Optimal Solution: $A=3, B=0, z=3$.
d. An unbounded feasible region does not imply the problem is unbounded. This will only be the case when it is unbounded in the direction of improvement for the objective function.
46.

Let $N=$ number of sq. ft . for national brands $G=$ number of sq. ft . for generic brands

Problem Constraints:

N	+		\leq
N		200	Space available
			120
National brands			
		20	Generic

a. Optimal solution is extreme point 2; 180 sq . ft. for the national brand and 20 sq . ft . for the generic brand.
b. Alternative optimal solutions. Any point on the line segment joining extreme point 2 and extreme point 3 is optimal.
c. Optimal solution is extreme point $3 ; 120 \mathrm{sq}$. ft. for the national brand and 80 sq . ft . for the generic brand.
47.

Alternative optimal solutions exist at extreme points $(A=125, B=225)$ and $(A=250, B=100)$.

$$
\text { Cost }=3(125)+3(225)=1050
$$

or

$$
\text { Cost }=3(250)+3(100)=1050
$$

The solution $(A=250, B=100)$ uses all available processing time. However, the solution ($A=125, B=225$) uses only $2(125)+1(225)=475$ hours.

Thus, $(A=125, B=225)$ provides $600-475=125$ hours of slack processing time which may be used for other products.

$$
2-38
$$

48.

Possible Actions:
i. Reduce total production to $A=125, B=350$ on 475 gallons.
ii. Make solution $A=125, B=375$ which would require $2(125)+1(375)=625$ hours of processing time. This would involve 25 hours of overtime or extra processing time.
iii. Reduce minimum A production to 100 , making $A=100, B=400$ the desired solution.
49. a. Let $\mathrm{P}=$ number of full-time equivalent pharmacists
$\mathrm{T}=$ number of full-time equivalent physicians
The model and the optimal solution are shown below:
MIN $40 \mathrm{P}+10 \mathrm{~T}$
S.T.

1) $\mathrm{P}+\mathrm{T} \quad>=250$
2) $2 \mathrm{P}-\mathrm{T}>=0$
3) $\quad \mathrm{P}>=90$

Optimal Objective Value
5200.00000

Variable	Value	Reduced Cost
P	90.00000	0.00000
T	160.00000	0.00000

Constraint	Slack/Surplus	Dual Value
1	0.00000	10.00000
2	20.00000	0.00000
3	0.00000	30.00000

The optimal solution requires 90 full-time equivalent pharmacists and 160 full-time equivalent technicians. The total cost is $\$ 5200$ per hour.
b.

	Current Levels	Attrition	Optimal Values	New Hires Required
Pharmacists	85	10	90	15
Technicians	175	30	160	15

The payroll cost using the current levels of 85 pharmacists and 175 technicians is $40(85)+10(175)=$ $\$ 5150$ per hour.

The payroll cost using the optimal solution in part (a) is $\$ 5200$ per hour.
Thus, the payroll cost will go up by $\$ 50$
50. Let $M=$ number of Mount Everest Parkas
$R=$ number of Rocky Mountain Parkas
Max $100 M+150 R$
s.t.

| $30 M+20 R$ | \leq | 7200 | Cutting time |
| :---: | :---: | :---: | :---: | :---: |
| $45 M+15 R$ | \leq | 7200 | Sewing time |
| $0.8 M-0.2 R$ | \geq | $0 \quad \%$ requirement | |

Note: Students often have difficulty formulating constraints such as the \% requirement constraint. We encourage our students to proceed in a systematic step-by-step fashion when formulating these types of constraints. For example:
M must be at least 20% of total production
$M \geq 0.2$ (total production)
$M \geq 0.2(M+R)$
$M \geq 0.2 M+0.2 R$
$0.8 M-0.2 R \geq 0$

The optimal solution is $M=65.45$ and $R=261.82$; the value of this solution is $z=100(65.45)+$ $150(261.82)=\$ 45,818$. If we think of this situation as an on-going continuous production process, the fractional values simply represent partially completed products. If this is not the case, we can approximate the optimal solution by rounding down; this yields the solution $M=65$ and $R=261$ with a corresponding profit of $\$ 45,650$.
51. Let $C=$ number sent to current customers
$N=$ number sent to new customers

Note:

Number of current customers that test drive $=.25 C$

Number of new customers that test drive $=.20 \mathrm{~N}$

```
Number sold \(=.12(.25 C)+.20(.20 N)\)
                        \(=.03 C+.04 N\)
    Max . \(03 \mathrm{C}+.04 \mathrm{~N}\)
    s.t.
\[
\begin{array}{rllrl}
.25 C & & \geq & 30,000 & \text { Current Min } \\
& .20 N & \geq & 10,000 & \text { New Min } \\
.25 C \quad-\quad .40 N & \geq & 0 & \text { Current vs. New } \\
4 C+\quad 6 N & \leq 1,200,000 & \text { Budget } \\
C, N, \geq 0 & & &
\end{array}
\]
```


Chapter 2

52. Let $S=$ number of standard size rackets $O=$ number of oversize size rackets

Max	$10 S$	+	$15 O$		
s.t.					
	$0.8 S$	-	$0.2 O$	\geq	0

53. a. Let $R=$ time allocated to regular customer service $N=$ time allocated to new customer service

Max	$1.2 R$	+	N		
s.t.					
	R	+	N	\leq	80
	$25 R$	+	$8 N$	\geq	800
	$-0.6 R$	+	N	\geq	0
		$R, N, \geq 0$			

b.

Optimal Objective Value		
90.00000		
Variable	Value	Reduced Cost
R	50.00000	0.00000
N	30.00000	0.00000
Constraint	Slack/Surplus	Dual Value
1	0.00000	1.12500
2	690.00000	0.00000
3	0.00000	-0.12500

Optimal solution: $R=50, N=30$, value $=90$

HTS should allocate 50 hours to service for regular customers and 30 hours to calling on new customers.
54. a. Let $M_{1}=$ number of hours spent on the $\mathrm{M}-100$ machine
$M_{2}=$ number of hours spent on the M-200 machine

Total Cost

$$
6(40) M_{1}+6(50) M_{2}+50 M_{1}+75 M_{2}=290 M_{1}+375 M_{2}
$$

Total Revenue

$$
25(18) M_{1}+40(18) M_{2}=450 M_{1}+720 M_{2}
$$

Profit Contribution

$$
(450-290) M_{1}+(720-375) M_{2}=160 M_{1}+345 M_{2}
$$

Max	$160 M_{1}$	+	$345 M_{2}$			
s.t.						
	M_{1}			\leq	15	M-100 maximum
			M_{2}	\leq	10	M-200 maximum
	M_{1}			\geq	5	M-100 minimum
			M_{2}	\geq	5	M-200 minimum
	$40 M_{1}$	+	$50 M_{2}$	\leq	1000	Raw material available

b.

Optimal Objective Value
5450.00000

Variable	Value	Reduced Cost
M1	12.50000	0.00000
M2	10.00000	145.00000

Constraint
1
2
3
4
5
Slack/Surplus
2.50000
0.00000
7.50000
5.00000
0.00000
Dual Value
0.00000
145.00000
0.00000
0.00000
4.00000

The optimal decision is to schedule 12.5 hours on the $\mathrm{M}-100$ and 10 hours on the $\mathrm{M}-200$.
55. Mr. Krtick's solution cannot be optimal. Every department has unused hours, so there are no binding constraints. With unused hours in every department, clearly some more product can be made.
56. No, it is not possible that the problem is now infeasible. Note that the original problem was feasible (it had an optimal solution). Every solution that was feasible is still feasible when we change the constraint to less-than-or-equal-to, since the new constraint is satisfied at equality (as well as inequality). In summary, we have relaxed the constraint so that the previous solutions are feasible (and possibly more satisfying the constraint as strict inequality).
57. Yes, it is possible that the modified problem is infeasible. To see this, consider a redundant greater-than-or-equal to constraint as shown below. Constraints 2, 3, and 4 form the feasible region and constraint 1 is redundant. Change constraint 1 to less-than-or-equal-to and the modified problem is infeasible.

Original Problem:

Modified Problem:

58. It makes no sense to add this constraint. The objective of the problem is to minimize the number of products needed so that everyone's top three choices are included. There are only two possible outcomes relative to the boss' new constraint. First, suppose the minimum number of products is $<=$ 15 , then there was no need for the new constraint. Second, suppose the minimum number is >15. Then the new constraint makes the problem infeasible.

