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Algebra Connections  
 
Chapter 2: Arithmetic and Algebra of the Integers     
    
2.1: A few mathematical questions concerning the periodical cicadas   
 
1.  1998 ! (13•17) = 1998 ! 221= 1777 ; 1998 + (13•17) = 1998 + 221= 2219 .  The 

last time they appeared was in 1777, and the next time the will appear is 2219. 
 
2. If both types of locusts appear during the same year then there are more locusts 

competing for the same fixed food supply.  Thus evolutionary pressures have 
resulted in the two types appearing simultaneously on a very infrequent schedule. 

 
2.4: Multiples and divisors 
 
1.   Property 1:   a | b! b = ax for some  x !Z, and   b | a ! a = by  for some 

 
y !Z.  

Thus,   a = by = (ax)y = axy ! xy = 1! either   x = y = !1 or  x = y = 1 , and 
so a = ±b . 

      Property 2:   a | b! b = ay for some
 
y !Z  ! bx = (ay)x = a( yx) ! a | bx . 

Property 3:   a | b and   a | c ! aw = b  and  av = c  for some   w,v !Z.  
Thus,  bx + cy = (aw)x + (av)y = a(wx + vy) ; 
Similarly,   bx ! cy = (aw)x ! (av)y = a(wx ! vy) , so  a | (bx ± cy) . 
Property 5:   a | b and   b | c ! ax = b  and 

 
by = c  for some   x, y !Z. 

Thus,  c = by = (ax)y = a(xy) ! a | c . 
Property 6:   a | b and   c | d ! ax = b  and 

 
cy = d  for some   x, y !Z. 

           Thus,  bd = (ax)(cy) = ac(xy) ! ac | bd . 
 

2. (a). False.  Set   a = 1and  b = 0 .  Then   c = 27 which is not divisible by 7. 
 (b). True.  3 | 51and 3|801 so Property 3 implies that  3 | c . 
 (c). False.  Set   a = 1and  b = 0 .  Then   c = 26 which is not divisible by 8. 

(d). True.  If   15 | (3a ! 2b)  then  3 | (3a ! 2b) .  Thus,   3 | 4a(3a ! 2b) by Property 
2. 

(e). True.  Apply Property 4. 
(f). True.  If   12 | (2a + 4b) then  2 | (a + 4b) .  Now apply Property 4. 
(g). False.  2 | (1+ 3), but 2 does not divide 1 and 2 does not divide 3. 
(h). False. 

  6 | (2 i 3), but 6 does not divide 2 and 6 does not divide 3. 
(i). This is true, but we cannot give a complete proof until Chapter 3. 
(j). False.  If this were true 3 | 3 would imply that 9 | 3. 
(k).  True.  Apply Property 6. 
(l). True, but we cannot give a complete proof until Chapter 3. 
(m)  True. 19620

= (2272 )20
= 240740

= 235(25740 ) . 
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= 1 , a contradiction. 

 
2.6: The Fundamental Theorem of Arithmetic 
 
1.   (a).  Composite:  1,274 = 2 • 72 •13  
      (b).  Composite:  7,921= 892  
      (c).  Composite:  6,561= 38  
      (d).  Prime 
      (e).  Composite:  11,111= 41!271  
      (f).  Prime 
 
2. Suppose   gcd(a,b) > 1  then by the FTA there are primes 

   
p

1
, p

2
,…, p

k
so 

that
   
gcd(a,b) = p

1

n
1 p

2

n
2
iii p

k

n
k .  Then each of the primes 

   
p

1
, p

2
,…, p

k
are common 

factors of  a  and b .  Suppose some prime 
 
p  is a common factor of  a  and b .  Then 

  1< p ! gcd(a,b).  
 
3.  (a).  ! (1313) = 13+1= 14 . 
      (b).   ! (25 • 36  • 174 ) = (5+1)(6 +1)(4 +1) = 210 . 

(c).   If  mwere greater than 0, then the left side of the equation would have an  
11 in its prime factorization while the right side would not.  Similarly, if  
 n were greater than 0, then the right side of the equation would have a 23  
in its prime factorization while the left side would not.  This would  
contradict FTA, so we have  m = n = 0 . 

      (d).   We have  21
m

1 • 29
m

2 = 3
m

1  • 7
m

1  • 29
m

2 , so if 
  
m

1
 is positive, then there is a  

3 in the prime factorization of  21
m

1  • 29
m

2 , but the 3 is not in the prime 
factorization of  7

n
1  • 19

n
2  • 23

n
3 . Thus, by 

FTA,  21
m

1  • 29
m

2 ! 7
n

1  • 19
n

2  • 23
n

3 .  The cases for 
  
m

2
, n

1
, n

2
,  and 

  
n

3
 are 

similar. 
 
4. (a). True.  By 2.6.2 since   5 | 7a but 

 
5 | 7 it follows that  5 | a . 

(b). True.  Apply 2.6.2. 
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(c). True.  Apply 2.6.2. 
(d). False.  For example, 

  6 | (2 i 3) . 
(e). False.  Neither 3 nor 5 divides 637. 
(f). True.  The statement implies that  5 | 24a .  By 2.6.2 it follows that  5 | a . 
(g). True.  The statement along with 2.6.2 implies that   3 | (a ! 3) or  3 | (a + 3) .  

Now apply Elementary Divisibility Property 4 from Section 2.4. 
(h). True.  First we apply Elementary Divisibility Property 4 from Section 2.4 

to conclude that   8 | 35b .  According to 2.6.4,   2n with   n ! 3must appear in 
the prime decomposition of  35b .  It does not appear in the prime 
decomposition of 35, and so it must appear in the prime decomposition 
of b . 

 
5.     n > 1 is an m 

th  power
  
! n = a

m
= ( p
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(where 
  
p

1

m
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2

m
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t

m
t  is the prime factorization of a) !  the prime factors of 

 n occur in multiples of m. 
 
6. Let  n be a positive integer and suppose that  a

n | bn . Let 
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m
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m
2
iii p

j

m
j  be the  

prime factorization of  a .  Then there is a positive integer  k  so that 
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1 q

2

n
2
iiiq

l

n
l be the 

prime factorization of   k  so that we have the equation 

   
b
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We now show that
  
n

1
, the exponent of 

  
q

1
is a multiple of n , and then similar 

reasoning applies to the other exponents.  Since either 
  
q

1
! p

s
for all   1! s ! j  or 

  
q

1
= p

s
for some  1! s ! j , it follows that in the prime factorization of  a

n
k  the 

exponent of 
  
q

1
is either equal to 

  
n

1
or equal to 

  
n

1
+ nm

s
for some  1! s ! j .  In 

either case the exponent of 
  
q

1
must be a multiple of  n (Why?).  It therefore 

follows that in either case 
  
n

1
itself is a multiple of n . 

 
2.8: Relations and results concerning lcm and gcd 
 
1.   (a).   lcm(a, b) = 24  • 32  • 53  • 73  • 132 ,   gcd(a, b) = 21 • 30  • 52  • 72  • 130  

(b).   a = 24  • 7 • 11, b = 23  • 5 • 112
! lcm(a, b) = 24  • 5 • 7 • 112 , 

  gcd(a, b) = 23  • 50  • 70  • 11 
(c).   a = 26  • 31, b = 2003! lcm(a, b) = 26  • 31 • 2003 ,  

  gcd(a, b) = 20  • 310  • 20030  
      (d).   a = 7 • 11 • 13, b = 11 • 9091! lcm(a, b) = 7 • 11 • 13 • 9091 ,  

  gcd(a, b) = 70  • 11 • 130  • 90910  
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(e).   a = 24  • 23 • 47, b = 24  • 1151! lcm(a, b) = 24  • 23 • 47 • 1151,  

  gcd(a, b) = 24  • 230  • 470  • 11510  
 
2. (a). Suppose that   gcd(a,a +1) = d > 1.  Then there are positive integers  k and 

 
j so that  a = kd and  a +1= jd .  But then  1= (a +1) ! a = ( j ! k)d , which 

is impossible.  
 (b). These are consecutive integers, and so we can apply (a). 
 (c).  Suppose that   gcd(30a +14,10a + 4) ! 2.  Then 
     gcd(30a +14,10a + 4) = d > 2.Then there are positive integers  k and 

 
j so that   30a +14 = kd and  10a + 4 = jd .  But then 

  2 = (30a +14) ! 3(10a + 4) = (k ! 3 j)d , which is impossible. 
(d). Suppose that   gcd(14a +11,4a + 3) = d > 1.   Then there are positive 

integers  k and 
 
j so that   14a +11= kd and  4a + 3 = jd .  But then 

  1= 2(14a +11) ! 7(4a + 3) = 2kd ! 7 jd = (2k ! 7 j)d , which is impossible. 
 (e). Suppose that   gcd(12a + 4,28a + 8) ! 4.   Then 

  gcd(12a + 4,28a + 8) = d > 4 .  So there are are positive integers  k and  

 
j so that   12a + 4 = kd and  28a + 8 = jd .  But then  

  4 = 7(12a + 4) ! 3(28a + 8) = 7kd ! 3 jd = (7k ! 3 j)d , which is impossible. 
 

3.   (a).   No.  gcd(a, b) must divide lcm(a, b), but here 4 does not divide 6. 
      (b).   Yes.  Let   a = 4  and  b = 8 . 

(c).    d | m ! gcd(d, m) = d  and lcm(d, m) = m .  Conversely, let a and b be 
positive integers such that  gcd(a, b) = d  and lcm(a, b) = m .  Since 

  gcd(a, b) always divides lcm(a, b), we have that  d | m . 
 
4. Let 

  
p

1

m
1 p

2

m
2 • • • p

t

m
t  and 

  
p

1

n
1 p

2

n
2 • • • p

t

n
t  be the modified canonical prime 

factorization of a and b, respectively.  Notice that   gcd(a,b) = lcm(a,b)  if and 
only if 

  
min{m

j
,n

j
}= max{m

j
,n

j
}for each  1! j ! t .  Thus   gcd(a,b) = lcm(a,b)  if 

and only if 
 
m

j
= n

j
 for each   1! j ! t .  Thus   gcd(a,b) = lcm(a,b) if and only if 

  a = b. 
 
5.  (a).   Let  d = gcd(a, b), and so  a = dw and  b = dv for some integers w, v.   

Thus,  1= ax + by = (dw)x + (dv)y = d(wx + vy) ! d |1! d = 1 . 
      (b).   No.   2 = 1 • 1+1 • 1 , but gcd(1, 1) = 1! 2 . 
 
6. (a). Suppose that   d = gcd(a,b).  Then    d > 0 and   d | a  and  d | (a + b) .  

Suppose that 
 
g  is a positive integer which divides  a  and divides a + b .  

Then   g | balso.  By definition of   gcd(a,b) it follows that   g | d.  
(b). Yes, this can be extended as the statement suggests.  Follow the argument 

for part (a). 
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7. Let 
  
p
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t

m
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n
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n
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factorization of a and b, respectively. It follows that 
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2
= ( p

1

m
1 p

2

m
2 • • • p

t

m
t )2

= p
1

2m
1 p
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t , and so gcd(a2, b2) 
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2
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2
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1
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1
}
p

2
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2
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2

}
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t
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t
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t
}
)2
= (gcd(a, b))2

= d
2 . 

 
8. (a). This follows from Problem 7.  One could also argue directly as follows:  
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n
t  be the modified canonical prime 

factorization of a and b, respectively. Since   gcd(a,b) = 1 it follows that 
for each  1! j ! t ,
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2
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2
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(b). Suppose that  gcd(a + b,ab) = d > 1.  Since   a

2
= a(a + b) ! ab it follows 

that  d | a
2 .  Similarly,   d | b

2 .  Thus   gcd(a
2 ,b2 ) ! 1.   By (a) it follows that 

  gcd(a,b) ! 1.  
(c). Suppose that   gcd(a,bc) = d > 1.  Then there is a prime 

 
p  which divides 

both  a  and  bc .  But then   p | b or   p | c.  

(d).  Suppose that
  
p

1

m
1 p

2

m
2 • • • p

t

m
t , 

  
p

1

n
1 p

2

n
2 • • • p

t

n
t and 

  
p

1

s
1 p

2

s
2 • • • p

t

s
t  are the 

modified canonical prime factorization of a, and b, respectively.  Since 

  gcd(a,b) = 1it follows that for each   1! j ! t either 
  
m

j
= 0  or

  
n

j
= 0 .  Now 

since  ab  is a perfect square it follows that each 

  1! j ! t
  
m

j
+ n

j
= max{m

j
,n

j
} is even.  Thus for each   1! j ! t  

 
m

j
is even 

and for each   1! j ! t  
 
n

j
is even.  Hence both  a  and b are perfect squares. 

(e). Suppose that
  
p

1

m
1 p

2

m
2 • • • p

t

m
t , 

  
p

1

n
1 p

2

n
2 • • • p

t

n
t and 

  
p

1

s
1 p

2

s
2 • • • p

t

s
t  are the 

modified canonical prime factorization of a, b and c, respectively.  Since 

  gcd(a,b) = 1it follows that for each   1! j ! t either 
  
m

j
= 0  or

  
n

j
= 0 .  Thus 

for each   1! j ! t
  
m

j
+ n

j
= max{m

j
,n

j
} .  Now since   a | c and   b | c  it 

follows that for each   1! j ! t
  
max{m

j
,n

j
}! s

j
.  Thus 

   
   
ab = p

1

max{m
1

,n
1
}
p

2

max{m
2

,n
2

}
iii p

t

max{m
t
,n

t
} divides c. 
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9. Let 
  
d

1
= gcd(c, a)  and

  
d

2
= gcd(c, b) , and so

  
d

1
x = a , 

  
d

1
y = c , 

  
d

2
w = c , and 

  
d

2
v = b  for some integers x, y, w, and v. 

  
c | a + b! cm = a + b = d

1
x + b for some 

integer m
  
! d

1
ym = d

1
x + b! d

1
( ym " x) = b! d

1
| b . 

Similarly, 
  
c | a + b! cn = a + b = a + d

2
v for some integer n 

  
! d

2
yn = a + d

2
v ! d

2
( yn " v) = a ! d

2
| a . Thus, 

  
d

1
and 

  
d

2
 are common 

divisors of a and b, and so 
  
d

1
 and 

  
d

2
 both divide  gcd(a, b) = 1 .  

Therefore,
  
d

1
= d

2
= 1 . 

 
10. The argument using prime factorization is an exact copy of the first argument 

which justifies 2.8.3 except that “ max ” is everywhere replaced with “min.”  The 
alternate argument proceeds as follows.  Let  y = gcd(ca,cb) .  Let x and z be 
integers such that ca = xy and cb = zy. Let   d = gcd(a,b).   Then cd | ca and cd | 
cb, so that  cd | y .  Let us say that y = mcd.  Then ca = x(mcd)=c(xmd) and cb = 
z(mcd) = c(zmd).  This implies that a = xmd and b = zmd.  But then md | a and 
md | b.  Since d is the greatest common divisor of a and b, it follows that m = 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


