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Chapter 1

Setting the Stage

1.1 Euclidean Spaces and Vectors

1.

x| =3+ (12 + ()7 + 2 =2V3 Iyl = V(=22 + 2 + 12 = 3, x -y = 3(=2) + (- 1)2+
(-1)14+1.0= -9, 0 = arccos(—9/3 - 2¢/3) = arccos(—+/3 /2) = 57/6.

x+tyl?=(x+y) - (x+y) = |x|> £2x -y + |y|> Taking the plus sign gives (a); adding these
identities with the plus and minus signs gives (b).

[y + - %2 = 38 %1% + 2301 << Xi - ;. The Pythagorean theorem follows immediately.

With f(t) = |a — tb|? as in the proof, equality holds precisely when the minimum value of £ (¢) is 0,
that is, when a = tb for some ¢ € R. Thus equality holds in Cauchy’s inequality precisely when a and
b are linearly dependent.

The triangle inequality is an equality precisely when a - b = |a| |b]|, that is, when the angle from a to b
is 0, or when a is a positive scalar multiple of b or vice versa.

|a| =|(a — b) + b| < |a— b| + |b|, so |a] — |b| < |a — b|. Likewise, |b| — |a] < |a — b|.

(@) Ifa-b=0thena L b,so|a x b| = |a| |b|; hence ifalsoa x b=0thena=0o0rb =0.
(b)lIfa-c=b-candaxc=bxcthen(a—b)-c=0and (a—b) xc = 0,so by (a), either
a — b = 0 or ¢ = 0; the latter possibility is excluded.

(c) We always have a x a = 0. If a and b are proportional, then a x b = 0 too. If not, thena x bis a
nonzero vector perpendicular to a, soa x (a x b) # 0.

This follows from the definitions by a simple calculation.

1.2 Subsets of Euclidean Space

1.

(a)—(d): See the answers in the back of the text.

(e) S =gand S =S = SU{(y,0): -1 <y < 1}.

) gint S\ {(0,0)}, S = {(z,y) : z? + 9% < 1}, and 9SS is the union of the unit circle and the line
segment [—1,0] x {0}.

(@) S™ = @and 9S = § = [0,1] x [0, 1].
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Chapter 1. Setting the Stage

If x € St there is a ball B = B(r,x) contained in S. B is open, so every point of B is an interior
point of B and hence of S, so in fact B C ™™ and x is an interior point of S, Thus S™ is open by
Proposition 1.4a. Next, S and 85 are the complements of (S¢)in® and S™ U (S¢)™™, respectively, so
they are closed by Proposition 1.4b.

We use Proposition 1.4a. If x € S; U Sy, some ball centered at x is contained in either S; or Sy and
hence in S1 U Sy, S0 x is an interior point of S1 U S,. If x € S1N .S, there are balls B; and B, centered
at x and contained in Sy and S, respectively; the smaller of these balls is contained in S; N Sy, so again
x is an interior point of S1 N Ss.

The complements of S; U Sy and S; N Sy are ST N S5 and S U S5, respectively, which are both open
by Exercise 3 and Proposition 1.4b.

This follows from the remarks preceding Proposition 1.4: R™ is the disjoint union of S, 95, and
(S¢)int, whereas S = S U 9S and S¢ = (S¢)int U 9S.

One example (in R") is S; = [0, 1 — 571], for which J° S; = [0, 1).
R™ and @.
The sets in Exercise 1a and 1f are both examples.

If |x —a| < rthen |x| = |(x —a)+a| <r+|al. Thus, if S C B(r,a) then S C B(r + |a|, 0).

1.3 Limitsand Continuity

1.

(@ f(0,y) =1fory > 0and f(0,y) = —1fory <O0.
(b) f(z,0) =272 = ccasz — 0.
(€) f(t,t) =1/8t* = ccast — 0.

. (a) Since |zy| < (2 + y?), we have |f(z,y)| < (z® +y?) = Oasz,y — 0.

(b) Since [3z% — y*| < 3(z* + y*), we have | f(z,y)| < 3|z| — Oasz,y — 0.
f(z,y) = yasz — 0, so take f(0,y) = y.

f(z,a) and f(a,y) are continuous for a # 0 since f is continuous except at (0, 0). Moreover, f(z,0) =
f(0,y) = 0 forall z, y, also continuous.

The two formulas for f agree along the curves y = 0 and y = z2, = # 0, so f is continuous except at

the origin. It is discontinuous there since f(0,0) = 0 but f(z, 32%) = 3 /4 0asz — 0.

. Since |f(z)| < |z| for all z, we have f(z) — 0 = f(0) asz — 0. Suppose a # 0. If a is irrational, then

f(a) = a # 0, but there are points = arbitrarily close to a with f(z) = 0. If a is rational, then f(a) = 0,
but there are points z arbitrarily close to a with | f(z)| > 3|al. In both cases f is discontinuous at a.

Clearly |f(z)| < |z| for all z, so f is continuous at 0. If a # 0 is rational, then f(a) # 0, but there are
points z arbitrarily close to a with f(z) = 0; hence f is discontinuous at a. If a is irrational and ¢ is the
distance from a to the nearest rational number with denominator < &, then | f(z)| < 1/k for |[z—a| < §;
hence f is continuous at a. (There are only finitely many rational numbers with denominator < % in any
bounded interval.)
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8. Givena € R" and e > 0, let U = B(e,f(a)). Then U is open, and hence sois V = {x : f(x) € U}.
We have a € V, so there exists > 0 such that B(d,a) C V. But this says that |f(x) — f(a)| < €
whenever |x — a| < 4, so f is continuous at a. One can replace “open” by “closed” in the hypothesis by
the reasoning of the second paragraph of the proof of Theorem 1.13.

9. The fact that since f is a one-to-one correspondence between the points of U and the points of V' has

the following consequences that we shall use: (i) If A C U, f(U\ A) = V \f(4). (i) IfB C V,
{x:f(x) € B} = f1(B).
Suppose b € f(0S), and let ¢ > 0 be small enough so that B(e¢,b) C V. Since f is continuous,
£ 1(B(e, b)) is a neighborhood of £ !(b) by Theorem 1.13 and the remarks following it. Hence it
contains points in .S and points not in .S, and therefore B(e, b) contains points in £(.5) and points not in
£(S). It follows that b € 9(f(.9)).

Conversely, suppose b € 9(f(S)), and let a = f ~1(b); let ¢ > 0 be small enough so that B(e,a) C U.
Since £~ is continuous, f(B(e,a)) = (f~!)~!(B(e,a)) is a neighborhood of b by Theorem 1.13 again.
Hence it contains points in £(S) and points not in £(.S), and so B(e, a) contains points in S and points
notin S. It follows that a € 0S and hence b € £(95).

1.4 Sequences
A/ -1
1. (a) Divide top and bottom by /% to get zj, = % - ?

(b) |sink/k| < 1/k — 0.
(c) Diverges since zy, is 0, %\/?: and —%\/?_, for infinitely many & each.

2. |z — 3] =19/|k — 5| < e whenever k > 5 + 19¢~".

12 k-1 1

3. -1.2.2... -~ _ =

TREIET TR Tk

4. If zx, — a and y; — b, then (zx,yx) — (a,b). By continuity of addition and multiplication (Theorem
1.10) and the sequential characterization of continuity (Theorem 1.15), the result follows.

— 0.

5. Iff(x) — lasx — a, forany e > 0 there exists 0 > 0 such that |f(x) —1| < ewhenever0 < |x—a| < d.
If x; — a, there exists K such that |x; — a|] < § whenever k¥ > K, and hence |f(x;) — 1| < e. On
the other hand, if f(x) 4 las x — a, there exists e > 0 such that for every § > 0 there is an x with
0 < |x —a|] < é but |f(x) —1| > e. Let xy be such a point for § = 1/k. Then x;, — a but f(x;) 4 L

6. If x, € S, x; # a, and x;, — a, then the sequence {x; } must assume infinitely many distinct values,
and for ¢ > 0, all but finitely many of them are in B(e,a); thus a is an accumulation point of S.
Conversely, if a is an accumulation point of S, for each positive integer & the ball B(a, 1/k) contains
points of S other than a; let x;, be one.

7. If ais an accumulation point of S, then a € S by Theorem 1.14 and Exercise 6. If a ¢ S and a is not
an accumulation point of .S, there is a neighborhood of a that contains only finitely many points of S. If
€ is less than the minimum distance from a to any of these points (which do not coincide with a since
a ¢ S), B(e, a) is a neighborhood of a that is disjoint from S, and hence a ¢ S.



