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Preface

This Solution Manual contains solutions to selected problems in the second
edition of Adaptive Control published by Addison-Wesley 1995, ISBN 0-201-
55866-1.



PROBLEM SOLUTIONS

SOLUTIONS TO CHAPTER 1

1.5 Linearization of the valve shows that

∆v = 4v3
0∆u

The loop transfer function is then

G0(s)GPI(s)4v3
0

where GPI is the transfer function of a PI controller i.e.

GPI (s) = K
(

1 +
1

sTi

)
The characteristic equation for the closed loop system is

sTi(s + 1)3 + K ⋅ 4v3
0(sTi + 1) = 0

with K = 0.15 and Ti = 1 we get

(s + 1)
(
s(s + 1)2 + 0.6v3

0

)
= 0

(s + 1)(s3 + 2s2 + s + 0.6v3
0) = 0

The root locus of this equation with respect to vo is sketched in Fig. 1.
According to the Routh Hurwitz criterion the critical case is

0.6v3
0 = 2 ⇒ v0 = 3

√
10
3

= 1.49

Since the plant G0 has unit static gain and the controller has integral
action the steady-state output is equal to v0 and the set point yr. The
closed-loop system is stable for yr = uc = 0.3 and 1.1 but unstable for
yr = uc = 5.1. Compare with Fig. 1.9.
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Figure 1. Root locus in Problem 1.5.

1.6 Tune the controller using the Ziegler-Nichols closed-loop method. The
frequency ωu, where the process has 180 ○ phase lag is first determined.
The controller parameters are then given by Table 8.2 on page 382 where

Ku =
1

jG0( iωu) j

we have

G0(s) =
e−s/q

1 + s/q

arg G0( iω) = −
ω
q
− arctan

ω
q

= −π

q ω G0( iω) K Ti

0.5 1.0 0.45 1 5.24
2.0 0.45 1 2.62
4.1 0.45 1 1.3

A simulation of the system obtained when the controller is tuned for the
smallest flow q = 0.5 is shown Fig. 2. The Ziegler-Nichols method is not
the best tuning method in this case. In the Fig. 3 we show results for
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Figure 2. Simulation in Problem 1.6. Process output and control signal
are shown for q = 0.5 (full), q = 1 (dashed), and q = 2 (dotted). The
controller is designed for q = 0.5.

controller designed for q = 1 and in Fig. 4when the controller is designed
for q = 2.

1.7 Introducing the feedback
u = −k2 y2

the system becomes

dx
dt

=


−1 0 0

0 −3 0

0 0 −1

 x− k2


0

2

1

1 0 1
 x +


1

0

0

u1

y1 =
 1 1 0

 x

The transfer function from u1 to y1 is

G(s) =
 1 1 0


s + 1 0 0

2k2 s + 3 2k2

k2 0 s + 1 + k2


−1

1

0

0


=

s2 + (4− k2)s + 3 + k2

(s + 1)(s + 3)(s + 1 + k2)
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Figure 3. Simulation in Problem 1.6. Process output and control signal
are shown for q = 0.5 (full), q = 1 (dashed), and q = 2 (dotted). The
controller is designed for q = 1.

The static gain is

G(0) =
3 + k2

3(1 + k2)



Solutions to Chapter 1 5

0 10 20 30 40

0

1

2

 Process output

0 10 20 30 40

0

1

2

 Control signal

Figure 4. Simulation in Problem 1.6. Process output and control signal
are shown for q = 0.5 (full), q = 1 (dashed), and q = 2 (dotted). The
controller is designed for q = 2.


