SOLUTIONS MANUAL

SOLUTIONS MANUAL

Solution Manual for Adaptive Control

Second Edition

Karl Johan Åström Björn Wittenmark

Preface

This Solution Manual contains solutions to selected problems in the second edition of Adaptive Control published by Addison-Wesley 1995, ISBN 0-201- 55866-1.

PROBLEM SOLUTIONS

SOLUTIONS TO CHAPTER 1

1.5 Linearization of the valve shows that

$$
\Delta v = 4v_0^3 \Delta u
$$

The loop transfer function is then

$$
G_0(s)G_{PI}(s)4v_0^3\\
$$

where G_{PI} is the transfer function of a PI controller i.e.

$$
G_{PI}(s) = K\left(1+\frac{1}{sT_i}\right)
$$

The characteristic equation for the closed loop system is

$$
sT_i(s+1)^3 + K \cdot 4v_0^3(sT_i+1) = 0
$$

with $K = 0.15$ and $T_i = 1$ we get

$$
(s+1)\left(s(s+1)^2 + 0.6v_0^3\right) = 0
$$

$$
(s+1)(s^3 + 2s^2 + s + 0.6v_0^3) = 0
$$

The root locus of this equation with respect to v_o is sketched in Fig. 1. According to the Routh Hurwitz criterion the critical case is

$$
0.6v_0^3 = 2 \qquad \Rightarrow v_0 = \sqrt[3]{\frac{10}{3}} = 1.49
$$

Since the plant *G*⁰ has unit static gain and the controller has integral action the steady-state output is equal to v_0 and the set point y_r . The closed-loop system is stable for $y_r = u_c = 0.3$ and 1.1 but unstable for $y_r = u_c = 5.1$. Compare with Fig. 1.9.

Figure 1. Root locus in Problem 1.5.

1.6 Tune the controller using the Ziegler-Nichols closed-loop method. The frequency ω_u , where the process has 180 $^{\circ}$ phase lag is first determined. The controller parameters are then given by Table 8.2 on page 382 where

$$
K_u = \frac{1}{|G_0(i\omega_u)}|
$$

we have

$$
G_0(s) = \frac{e^{-s/q}}{1 + s/q}
$$

arg G₀(*i*-\frac{\omega}{q} - arctan $\frac{\omega}{q}$ = $-\pi$
 $\frac{q}{0.5}$ $\frac{\omega}{1.0}$ $G_0(i\omega)$ K T_i
0.5 1.0 0.45 1 5.24
2.0 0.45 1 2.62
4.1 0.45 1 1.3

A simulation of the system obtained when the controller is tuned for the smallest flow $q = 0.5$ is shown Fig. 2. The Ziegler-Nichols method is not the best tuning method in this case. In the Fig. 3 we show results for

Figure 2. Simulation in Problem 1.6. Process output and control signal are shown for $q = 0.5$ (full), $q = 1$ (dashed), and $q = 2$ (dotted). The controller is designed for $q = 0.5$.

controller designed for $q = 1$ and in Fig. 4when the controller is designed for $q = 2$.

1.7 Introducing the feedback

$$
u=-k_2y_2
$$

the system becomes

$$
\frac{dx}{dt} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & -1 \end{pmatrix} x - k_2 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} u_1
$$

$$
y_1 = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} x
$$

The transfer function from u_1 to y_1 is

$$
G(s) = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} s+1 & 0 & 0 \ 2k_2 & s+3 & 2k_2 \ k_2 & 0 & s+1+k_2 \end{pmatrix}^{-1} \begin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}
$$

$$
= \frac{s^2 + (4 - k_2)s + 3 + k_2}{(s+1)(s+3)(s+1+k_2)}
$$

4 *Problem Solutions*

Figure 3. Simulation in Problem 1.6. Process output and control signal are shown for $q = 0.5$ (full), $q = 1$ (dashed), and $q = 2$ (dotted). The controller is designed for $q = 1$.

The static gain is

$$
G(0)=\frac{3+k_2}{3(1+k_2)}
$$

Figure 4. Simulation in Problem 1.6. Process output and control signal are shown for $q = 0.5$ (full), $q = 1$ (dashed), and $q = 2$ (dotted). The controller is designed for *q* = 2.